JP2009180405A - 廃熱利用システム - Google Patents

廃熱利用システム Download PDF

Info

Publication number
JP2009180405A
JP2009180405A JP2008018549A JP2008018549A JP2009180405A JP 2009180405 A JP2009180405 A JP 2009180405A JP 2008018549 A JP2008018549 A JP 2008018549A JP 2008018549 A JP2008018549 A JP 2008018549A JP 2009180405 A JP2009180405 A JP 2009180405A
Authority
JP
Japan
Prior art keywords
heating fluid
temperature
adsorption
adsorbent
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008018549A
Other languages
English (en)
Other versions
JP4946894B2 (ja
Inventor
Hiroaki Yoshida
宏章 吉田
Takeo Kasashima
丈夫 笠嶋
Fumio Takei
文雄 武井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2008018549A priority Critical patent/JP4946894B2/ja
Publication of JP2009180405A publication Critical patent/JP2009180405A/ja
Application granted granted Critical
Publication of JP4946894B2 publication Critical patent/JP4946894B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Abstract

【課題】加熱流体の温度が変動しても、廃熱の回収を時間的に連続して行うことが可能な廃熱利用システムを提供すること。
【解決手段】第1の脱着温度を有する第1の吸着式冷凍機27と、前記第1の脱着温度よりも低い第2の脱着温度を有する第2の吸着式冷凍機28と、複数の発熱体22〜25で発生した熱を、該発熱体22〜25毎に加熱流体6に乗せて輸送する複数の熱輸送配管59〜62と、熱輸送配管59〜62を流れる加熱流体6を、第1の吸着式冷凍機27と第2の吸着式冷凍機28のそれぞれに振り分けて供給する加熱流体供給部90とを有し、加熱流体供給部90が、第1の吸着式冷凍機27に供給される加熱流体6の温度が第2の吸着式冷凍機28に供給される加熱流体6の温度よりも高くなるように加熱流体6の振り分けを行う廃熱利用システムによる。
【選択図】図1

Description

本発明は、廃熱利用システムに関する。
近年、電子機器類の進歩に加え、高度情報通信網の整備により、大量のデータを扱うブレードサーバやストレージサーバを多数設置したデータセンターの増加が著しく、これに伴い、これらの電子機器類からの廃熱エネルギも増加の一途をたどっている。
特に、データセンター等では、1ラックあたり複数のボードを装着してデータ処理能力を向上させるブレードサーバが一般的になっており、このブレードサーバでは1ラック当たりの消費電力が数kW以上と大電力化している。
このような1ラック当たりの消費電力の増加に伴い、発熱源であるCPU等の冷却技術についても課題が増加している。例えば、通常は、大型のデータセンターやビル内に設置されたサーバールームにおいて、専用の空調機を用いて室内に冷風を循環させ、この冷風をサーバラック内にファンを用いて導入することでCPU等を冷却しているが、この方式では十分な冷風を作り出すために大量の電力を消費するので、低コスト化や環境問題の点で問題がある。
そこで、サーバ等の電子機器からの廃熱を回収し、それを再利用する技術として、吸着式冷凍機が着目されている。
その吸着式冷凍機では、吸着剤に冷媒を吸着させる吸着工程の後、脱着工程と呼ばれる工程において、廃熱を運んできた水等の加熱流体の熱により吸着剤から冷媒を脱離(脱着)させる。そして、この脱離過程において吸着剤が吸熱することを利用して加熱流体を冷却し、その冷却後の加熱流体により電子機器等を冷却する。
また、上記の吸着工程では、蒸発器に入れられた冷媒を蒸発させて吸着剤に吸着させるが、冷媒が蒸発するときの気化熱を利用することで冷熱を得ることができ、この冷熱でサーバルーム内、あるいは直接ラック内に冷風を供給することにより廃熱を有効活用することができる。
そして、このような吸着工程と脱着工程とを繰り返すことにより、廃熱の回収と冷熱の生成とを連続して行うことが可能となる。
吸着式冷凍機で使用される吸着剤と冷媒の組み合わせには幾つかある。
例えば、脱着工程における吸着剤の温度が70〜90℃程度の場合は、シリカゲル又はゼオライトが吸着剤として使用され、冷媒としては蒸発熱の大きな水が使用される。
この他の組み合わせとしては、活性炭素−メタノール系や、活性炭素−アンモニア系もある。これらの系では、水を冷媒として使用しないため、0℃程度の冷熱を生成することができると供に、脱着温度をシリカゲルよりも低くできるという特徴を有するが、単位体積当たりの冷熱出力の点ではシリカゲル−水系の方が有利である。
更に、活性炭素表面にアルカリ等で賦活処理を施し親水化した賦活活性炭を吸着剤として用い、冷媒として水を用いる組み合わせもある。
このように、廃熱を用いて吸着式冷凍器を作動させることにより、得られた冷熱をサーバルームの冷却等に有効利用し、省電力化を図ることが可能となる。
そのような吸着式冷凍機の適用対象には様々なものがある。例えば、特許文献1では、自動車に使用する吸着式冷凍機が開示されている。また、特許文献2では電子機器類の冷却用に使用しており、特許文献3ではボイラ等の比較的高温での廃熱回収に使用している。
また、吸着式冷凍機の簡単な原理については、非特許文献1に開示されている。
その他に、本発明に関連する技術が特許文献4〜6にも開示されている。
特許第3924885号明細書 特開2002−100891号公報 特開平3−186165号公報 特開2003−240383号公報 特開平10−132416号公報 特開2003−166770号公報 高性能ケミカルヒートポンプ応用事例集、サイエンスフォーラム社
ところで、サーバ等からの廃熱を利用する場合、サーバと吸着式冷凍機との間を循環している加熱流体の温度や総熱量は、サーバの負荷変動によって時間的に大きく変動するのが普通である。
例えば、複数のCPUの各々に個別に加熱流体を循環させ、それらを合流させて吸着式冷凍機に戻す場合、各CPUの動作状況の違いにより加熱流体の温度も異なるようになり、合流後の加熱流体の温度が時間的に変動する。
しかしながら、このような変動の結果、加熱流体の温度が吸着剤から冷媒を脱離するのに必要な温度よりも低くなると、加熱流体の熱によって冷媒を十分に脱離させることができない。
この場合は、むしろ加熱流体によって吸着剤が冷却されてその温度が低下し、回収した廃熱を冷却することができない。更に、この場合、時間の経過と供に加熱流体の温度が再び上昇したとしても、冷媒の脱離に必要な温度にまで吸着剤が加熱されるのにある程度の時間を要することになるので、冷熱の生成を時間的に連続して行うことが困難となり、冷却性能の低下という問題が発生する。
本発明の目的は、加熱流体の温度が変動しても、廃熱の回収を時間的に連続して行うことが可能な廃熱利用システムを提供することにある。
本発明の一観点によれば、第1の冷媒の蒸気を吸着するとともに、加熱流体の熱によって第1の脱着温度に加熱されることにより前記第1の冷媒を脱着する第1の吸着剤が収納された吸着器を複数個備えた第1の吸着式冷凍機と、第2の冷媒の蒸気を吸着すると供に、前記加熱流体の熱によって前記第1の脱着温度よりも低い第2の脱着温度に加熱されることにより前記第2の冷媒を脱着する第2の吸着剤が収納された吸着器を複数個備えた第2の吸着式冷凍機と、複数の発熱体で発生した熱を、該発熱体毎に前記加熱流体に乗せて輸送する複数の熱輸送配管と、前記複数の熱輸送配管を流れる前記加熱流体を、前記第1の吸着式冷凍機と前記第2の吸着式冷凍機のそれぞれの前記吸着器に振り分けて供給する加熱流体供給部とを有し、前記加熱流体供給部が、前記第1の吸着式冷凍機の前記吸着器に供給される前記加熱流体の温度が前記第2の吸着式冷凍機の前記吸着器に供給される前記加熱流体の温度よりも高くなるように前記加熱流体の振り分けを行う廃熱利用システムが提供される。
本発明によれば、加熱流体の振り分けにより、脱着温度が高い第1の吸着式冷凍機に温度低下が抑制された加熱流体を導入するので、加熱流体の振り分けを行わない場合と比較して、第1の吸着式冷凍機において脱着工程を行うときに吸着剤から冷媒が離脱し易くなる。
一方、第2の吸着式冷凍機では、第1の吸着式冷凍機よりも脱着温度が低いため、振り分けによって温度が低い加熱流体が導入されても、吸着剤の脱着効率の低下が顕著となることはない。
その結果、第1及び第2の吸着式冷凍機全体としてみれば安定的に廃熱を回収することができるようになる。
以下に、本発明の実施の形態に係る排熱利用システムについて、添付図面を参照しながら詳細に説明する。
(システム全体の構成)
図1は、本実施形態に係る廃熱利用システム20の構成図である。
このシステム20は、サーバ21内のCPU等の複数の発熱体22〜25から廃熱を回収してそれを再利用するものであって、各発熱体22〜25で発生した熱を水等の加熱流体6に乗せて輸送する複数の熱輸送配管59〜62を備える。
発熱体22〜25には、放熱フィンの代わりにコールドプレートが接続され、この中を上記の加熱流体6が流れて発熱体22〜25の熱が吸収される。
また、各熱輸送配管59〜62には、その中を流れる加熱流体6の温度と流量とを検出する加熱流体温度・流量検出器29〜32が設けられる。なお、温度検出機能と流量検出機能を分け、加熱流体温度検出器と流量検出器とを別々に設けるようにしてもよい。
更に、これらの検出器29〜32の下流の輸送配管59〜62には三方バルブ33〜36が設けられる。輸送配管59〜62を流れる加熱流体6は、これらのバルブ33〜36で分岐して第1の加熱流体混合器40と第2の加熱流体混合器41のいずれかに供給される。
第1及び第2の加熱流体混合器40、41は、輸送配管59〜62から供給された加熱流体6を混合するタンクであって、その出口側にはそれぞれ加熱流体配管80が接続される。
その加熱流体配管80の下流には、第1及び第2の吸着式冷凍機27、28が図示のように接続される。なお、これらの吸着式冷凍機27、28の構成については後述する。
加熱流体配管80を流れる加熱流体6は、各吸着式冷凍機27、28で冷却された後、それぞれ第1及び第2の加熱流体分流器42、43に供給される。
そして、これら第1及び第2の加熱流体分流器42、43を出た加熱流体6は、三方バルブ45〜48によって所定の熱輸送配管59〜62に戻された後、送液ポンプ49〜52により再び発熱体22〜25に戻り、該発熱体22〜25を冷却する。
(吸着式冷凍機の構成)
次に、上記の第1及び第2の吸着式冷凍機27、28の構成について説明する。
図2は、これらの吸着式冷凍機27、28の構成図である。
吸着式冷凍機27、28は、いずれも内部が減圧された第1の吸着器1、第2の吸着器2、蒸発器3、及び凝縮器4と、これらを接続する真空経路19とを有する。
このうち、第1及び第2の吸着器1、2には吸着剤17が収容され、蒸発器3には冷媒18が収容される。
一方、真空経路19には開閉バルブ11〜14が図示のように設けられており、これらのバルブ11〜14の開閉を切り替えることにより、吸着式冷凍機27、28内で吸着工程と脱着工程とを切り替えることができる。
例えば、図示のようなバルブの開閉状態では、第1の吸着器1において吸着工程が行われ、第2の吸着器2において脱着工程が行われる。
すなわち、吸着工程が行われている第1の吸着器1では、蒸発器3において蒸発した冷媒18の蒸気がバルブ12を介して供給され、その蒸気が吸着剤17に吸着される。吸着時に吸着剤17で発生する熱は、内部配管7を流れる冷却水等の冷却流体9によって冷却される。この冷却が速やかに行われないと、吸着剤17による冷媒18の吸着に長時間を要し、設計通りのタイミングで吸着式冷凍機27、28を動作させることができない。そこで、本実施形態では、内部配管7に熱交換器7aを設け、冷却流体9と吸着剤17との間の熱の移動効率を高めるようにした。熱交換器7aとしては、例えばフィンチューブタイプ又はコルゲートフィンタイプのものが使用される。
第1の吸着器1に入る直前の冷却流体9の温度は特に限定されないが、本実施形態では約25℃の冷却水を冷却流体9として用いる。その場合、第1の吸着器1を出た直後の冷却流体9は、冷媒18を吸着したことで発熱した吸着剤17によって30℃程度に温められた状態となっている。
一方、脱着工程が行われている第2の吸着器2では、内部配管7に加熱流体6が流され、その熱によって吸着剤17から冷媒18が脱離すると供に、冷媒18が脱離するときに吸着剤17が吸熱することから、加熱流体6が冷却される。例えば、第2の吸着器2に入る直前の加熱流体6の温度が75℃の場合、第2の吸着器2を出た直後では加熱流体6の温度は70℃程度に低下する。
ここで、吸着剤17から冷媒18が脱離して、該吸着剤17の乾燥度Dが所定時間内に基準値D0、例えば80%以上となる温度を脱着温度と呼ぶこととする。
乾燥度Dは、乾燥した吸着剤重量M1,脱着工程中の吸着剤の重量をM2としてM1/M2×100と定義する。これらの値は、冷却水温度や切替時間など、吸着式冷凍機の設計によって設定ができ、システムとして最も効率がよい値に設定することとなる。
脱着温度は、このように吸着剤17の乾燥度の基準値D0から決められるものであるため、同一の吸着剤17と冷媒18とを使用しても、吸着式冷凍機の設計時に使用した基準値D0の値によって異なる値になることもある。
加熱流体6による加熱で吸着剤17から効率的に冷媒18を脱離させるには、加熱流体6の温度を上記の脱着温度以上とする必要がある。
脱着温度は、吸着剤17と冷媒18との組み合わせにより定まる。
例えば、吸着剤17としてシリカゲルを使用し、冷媒18として水を用いる場合、脱着温度は70℃程度となる。
これに対し、吸着剤17として活性炭素を用い、冷媒18としてメタノールを用いる場合は、脱着温度は60℃程度となる。
一方、蒸発器3には、水等の冷媒18が溜められていると供に、水等の循環流体5が流れる循環配管10が通されている。そして、第1の吸着器1で吸着工程が行われているとき、冷媒18の気化熱によって循環流体5が冷やされ、蒸発器3に入る前よりも5℃程度低い温度に循環流体5を冷やすことができる。
一方、凝縮器4には、脱着工程が行われている第2の吸着器2から冷媒18の蒸気が供給される。その蒸気は、冷却配管8を流れる冷却水15により冷却されて液化した後、冷媒回収配管16を通って再び蒸発器18に戻される。
冷却水8の温度は特に限定されないが、本実施形態では凝縮器4に入る直前の温度を25℃程度とする。この場合、凝縮器4から出た直後の冷却水8の温度は30℃程度となる。
このような一連のプロセスでは、加熱流体6の熱によって吸着剤17から冷媒18を脱離させ、更にその冷媒18を蒸発器18に戻してその気化熱によって循環流体5を冷却しており、加熱流体6の熱が循環流体5の冷熱の生成に再利用されていることになる。
更に、バルブ11〜14の開閉状態を図示のものから反転させると供に、加熱流体6を第1吸着器1の内部配管7に流し、且つ冷却流体9を第2吸着器2の内部配管7に流すことで、各吸着器1、2において脱着工程と吸着工程が切り替わり、循環流体5の冷熱を連続して生成することができる。
図3は、このような脱着工程と吸着工程の切り替えをするために必要な配管の接続例を示す構成図である。
この例では、図1で示した加熱流体配管80と、外部から冷却流体9を導入するための冷却流体配管81に、三方バルブ91〜94を図示のように設ける。
各バルブ91〜94の切り替え方向が同図で示される方向の場合、加熱流体6が第2の吸着器2に導入され、冷却流体9が第1の吸着器1に導入される。したがって、この場合は、第1の吸着器1において吸着工程が行われ、第2の吸着器2において脱着工程が行われることになる。
脱着工程と吸着工程を切り替えるには、次の表1のように各バルブ91〜94を切り替えればよい。
Figure 2009180405
ところで、図1に示した廃熱利用システム20は、複数の発熱体22〜25から廃熱を回収するものであるが、各発熱体22〜25がCPU等の電子機器の場合は、その動作状況に応じて発熱温度が時間と供に変動するのが普通である。
その発熱温度が第1及び第2の吸着式冷凍機27、28の脱着温度以上の期間は特に問題はない。
しかし、発熱温度が脱着温度よりも下回る期間では、各吸着式冷凍機27、28において脱着工程が行われている方の吸着器、例えば図1の第2の吸着器2において、加熱流体6の熱によって吸着剤17を脱着温度以上に加熱することができず、吸着剤17から冷媒18が離脱するのが妨げられ、吸着剤17の脱着効率が低下する。
また、この期間が終了して発熱温度が上昇しても、吸着剤17の温度が脱着温度以上となるのに不要な時間を要してしまう。
そこで、本実施形態では、図1に示すように二つの吸着式冷凍機27、28を設けると供に、使用する吸着剤17と冷媒18の組み合わせを各吸着式冷凍機27、28で異なるものとすることで、第2の吸着式冷凍機28における脱着温度を第1の吸着式冷凍機27のそれよりも低くする。なお、第1及び第2の吸着式冷凍機27、28のそれぞれの脱着温度同士の比較は、各吸着式冷凍機27、28で使用される吸着剤17の乾燥度の基準値D0として同一の値を使用して行うものとする。
例えば、第1の吸着式冷凍機27では、脱着温度が70℃程度のシリカゲル−水系が使用される。この場合に冷媒18として用いる水は、25℃での蒸発熱が2.44kJ/gと大きく、循環流体5から比較的大きな冷熱を得ることができる。なお、吸着剤17として用いられるシリカゲルとしては、富士シリシア化学製のRD2060がある。また、シリカゲルに代えてゼオライト(例えば、三菱化学社製)を用いてもよい。
これに対し、第2の吸着式冷凍機28では、これよりも低い脱着温度(60℃以下)となる活性炭素−メタノール系が使用される。
更に、各バルブ29〜32の切り替え方向を制御することにより、第1の吸着式冷凍機27に供給される加熱流体6の温度が第2の吸着式冷凍機28に供給される加熱流体6の温度よりも高くなるように加熱流体6の振り分けを行う。
これにより、脱着温度が高い第1の吸着式冷凍機27には、温度低下が抑制された加熱流体6が導入されることになるので、加熱流体6の振り分けを行わない場合と比較して、吸着剤17から冷媒18が離脱し易くなる。
一方、第2の吸着式冷凍機28では、脱着温度が低いため、振り分けによって温度が低い加熱流体6が導入されても、吸着剤17の脱着効率の低下が顕著となることはない。
その結果、第1及び第2の吸着式冷凍機27、28全体としてみれば安定的に廃熱を回収することができ、各吸着式冷凍機27、28から連続して循環流体5の冷熱を生成することができる。
上記のような加熱流体6の振り分けは、図1に示す加熱流体供給部90により自動的に行われる。
加熱流体供給部90は、既述の加熱流体温度・流量検出器29〜32と、切り替えバルブ33〜36と、第1及び第2の加熱流体混合器40、41とにより構成される。
このうち、加熱流体温度・流量検出器29〜32の検出信号S1は、パーソナルコンピュータ等の制御部101に取り込まれる。その検出信号S1に基づいて、制御部101が切り替えバルブ33〜36の切り替え方向を制御することにより、第1の吸着式冷凍機27に供給される加熱流体6の温度が第2の吸着式冷凍機28に供給される加熱流体6の温度よりも高くなるように加熱流体6の振り分けが行われる。
制御部101は、加熱流体配管80の途中に設けられた温度検出器44の検出信号S2に基づいて、切り替えバルブ45〜48の切り替え方向を制御し、加熱流体6が元の発熱体22〜25に同じ流量で戻るようにする。
このとき、発熱体22〜25に戻ってきた加熱流体6の温度が、発熱体22〜25を出たときの温度よりも高くなったのでは、発熱体22〜25で発生した熱を加熱流体6で奪うことができず、むしろ加熱流体6によって発熱体22〜25を加熱することになってしまう。
そのため、制御部101は、発熱体22〜25を出発した時の流量と同一流量になるように加熱流体6を戻すだけでなく、加熱流体6の温度が出発時よりも下がるように切り替えバルブ45〜48の切り替え方向を制御する。
以下に、バルブ33〜36、45〜48の切り替えの例について詳述する。
第1例
本例では、第1の吸着式冷凍機27に供給される加熱流体6の温度が、該第1の吸着式冷凍機27における脱着温度以上となるように加熱流体6の振り分けを行う。そして、第1の吸着式冷凍機27に供給されない残りの加熱流体6を第2の吸着式冷凍機28に供給する。
この場合、バルブ33〜36、45〜48の切り替え方向は次の表2のようになる。
Figure 2009180405
表2では、発熱体22〜25を出た加熱流体6の温度をそれぞれ73℃、75℃、63℃、58℃とし、その流量を500ml/minとしている。
この場合、表のように発熱体22、23を出た加熱流体6を混合すると、混合後の温度が74℃となり、第1の吸着式冷凍機27で使用されるシリカゲル−水系の脱着温度(約70℃)よりも高くすることができる。
一方、発熱体24、25を出た加熱流体6を混合すると、混合後の温度が60.5℃となる。この温度は、第2の吸着式冷凍機28で使用さえる活性炭素−メタノール系の脱着温度(約60℃)よりも高い。
これによれば、各吸着式冷凍機27、28に、それぞれの吸着温度よりも高い温度の加熱流体6を供給することができるので、吸着式冷凍機27、28における脱着効率の低下を防止することが可能となる。
次の表3は、バルブの切り替え方向の他の例を示す。
Figure 2009180405
表3の例では、発熱体22〜24を出た加熱流体6を混合することで、混合後の温度が第1の吸着式冷凍機27における脱着温度(約70℃)よりも高い70.3℃となる。したがって、第1の吸着式冷凍機27において脱着効率が低下することはない。
一方、発熱体25を出た温度が58℃の加熱流体6については他の加熱流体と混合せずにそのまま第2の吸着式冷凍機28に供給する。
第2の吸着式冷凍機28における脱着温度は約60℃であるから、58℃の加熱流体6では脱着効率が低下する。
しかし、上記のように第1の吸着式冷凍機27において脱着効率が低下しないので、第1の吸着式冷凍機27において廃熱の回収と冷熱の生成とを行うことができ、システム20全体として廃熱の回収効率は維持することができる。
第2例
脱着工程中の吸着剤17に供給される熱流体6の温度は、脱着効率を維持するために、第1例のように常に第1の吸着式冷凍機27における脱着温度以上であるのが理想的である。
しかしながら、吸着工程が終了して脱着工程に移った直後の吸着剤17は、直前の吸着工程で冷却流体9によって25℃〜33℃程度に冷却された状態となっており、脱着温度以上の温度の加熱流体6で加熱しても、吸着剤17の温度がすぐさま上昇することはない。これは、切替直後では、熱交換によって加熱流体6から吸着剤17に移動する熱量が、加熱流体6自身の温度に大きく依存していないことによる。
したがって、この場合に脱着温度以上の過度に高い温度の加熱流体6を供給しても、該加熱流体6の有する高い熱量を有効活用しきれないことになる。
この点に鑑み、本例では、第1の吸着式冷凍機27において吸着工程が終了して脱着工程に移るときに、第1の吸着式冷凍機27に供給される加熱流体6の温度が、吸着剤17の温度よりも高くかつその脱着温度以下となるように加熱流体供給部90で加熱流体6の振り分けを行う。
このような振り分けは、次の表4のようにバルブ33〜36、45〜48の切り替え方向を制御することにより行うことができる。
Figure 2009180405
なお、表4の例では、表2、表3と同様に、発熱体22〜25を出た加熱流体6の温度をそれぞれ73℃、75℃、63℃、58℃としている。
表4に例示されるように、脱着工程の開始直後では、全てのバルブ33〜36を第1の混合器40の方に切り替え、各加熱流体6を合流させてそれを第1の吸着式冷凍機27に供給する。発熱体22〜25を出た加熱流体6のそれぞれの流量が同じなので、合流後の加熱流体の温度は約67.3℃(≒(73℃+75℃+63℃+58℃)/4)となる。この温度は、第1の吸着式冷凍機27における脱着温度(約70℃)よりも低いが、脱着温度以上の加熱流体6を供給する場合と比較して、該加熱流体6の熱量を有効活用することができる。
また、ある程度の時間tが経過して吸着剤17の温度が十分に高くなったら、脱着温度以上の加熱流体6を吸着剤17に供給し、吸着剤17の脱着効率を高めるのが好ましい。
本実施形態では、発熱体22〜25から出てくる加熱流体6のうち、最も温度が低い加熱流体6よりも吸着剤17の温度が高くなったときに、バルブ33〜36を切り替えて、脱着温度以上の加熱流体6を吸着剤17に供給する。
なお、吸着剤17の温度は、各吸着式冷凍機27、28に設けられた吸着剤温度検出器53(図1参照)により検出される。そして、吸着剤温度検出器53から出力される検出信号S3に基づいて、制御部101が自動的にバルブ33〜36の切り替えを行う。
本例のようにバルブ33〜36の切り替えをこまめに行うことで、加熱流体6の熱量を有効活用しながら、脱着剤17における脱着効率を維持することが可能となる。
(循環流体の接続例)
図2で説明したように、蒸発器3には循環配管5が通され、冷媒18の気化熱によって循環流体5が冷却される構成となっている。
以下に、循環流体5による第1及び第2の吸着式冷凍機27、28同士の接続例について説明する。
図4は、その接続例を示す構成図である。
この例では、ドライコイル等の外部熱交換器97と第1及び第2の吸着式冷凍機27、28との間を循環する循環流体5の循環経路に、循環流体分流器95、循環流体混合器96、循環配管10、開閉バルブ98、及び三方バルブ99等で構成される循環流体切り替え部100を図示のように設ける。
このうち、外部熱交換器97は、例えばデータセンター等の空調設備に使用されるものであって、各吸着式冷凍機27、28で冷却された循環流体5の冷熱により、室内の気流を冷却して冷風を生成するのに使用される。
一方、循環流体切り替え部100は、第1及び第2の吸着式冷凍機27、28のそれぞれの蒸発器3同士の循環流体5の流路による接続を、直列接続と並列接続との間で切り替える機能を有する。
その切り替えは、次の表5のように各バルブを制御することで行うことができる。
Figure 2009180405
バルブの制御により直列接続を選択した場合は、循環流体5は、第1の吸着式冷凍機27で冷却された後、更に第2の吸着式冷凍機28で冷却されることになる。そのため、各吸着式冷凍機27、28を単体で使用する場合と比較して循環流体5を低温に冷却することができ、外部熱交換機97において強力な冷風を生成することができる。
また、循環流体5を強く冷却する必要がない場合であっても、このように直列接続とすることで、各吸着式冷凍機27、28が担う冷却能力が低減され、それぞれの吸着式冷凍機27、28の負担を低減することができる。
例えば、もともと10℃の循環流体5を5℃に冷却する必要がある場合、第1の吸着式冷凍機27では10℃から7℃に冷却し、第2の吸着式冷凍機28では7℃から5℃に冷却すればよい。つまり、各吸着式冷凍機27、28では循環流体6の温度を2℃〜3℃程度だけ冷却すればよく、一台の吸着式冷凍機で10℃から5℃に冷却する場合と比較して吸着式冷凍機27、28の負担軽減が図られる。
或いは、このような負担軽減が要求されない場合には、表5に従ってバルブを操作し、並列接続にしてもよい。
このように、循環流体6に要求される冷却温度や、吸着式冷凍機27、28の負担に応じて直列接続と並列接続のどちらかを選択するようにすることで、廃熱利用システム20の汎用性を高めることが可能となる。
次に、図1に示した廃熱利用システム20を利用した実施例について説明する。
本実施例では、熱交換器7aとしてコールドフィンタイプのものを用いた。第1の吸着式冷凍機27の二つの吸着器1、2には、吸着剤17として一吸着器あたりシリカゲル(富士シリシア化学製RD2060、平均粒径600〜800μm)を乾燥重量で600g充填し、冷媒18として水を使用した。そして、脱着温度を70℃とした。
一方、第2の吸着式冷凍機28の二つの吸着器1、2には、吸着剤として活性炭素(N2比表面積1000m2/g、広島和光純薬製)を一吸着器あたり200g充填した。そして、冷媒18としてメタノールを使用し、脱着温度を55℃とした。
循環流体5としては水を用い、それを図4で説明したように各吸着式冷凍機27、28に直列に循環させた。なお、第1吸着式冷凍機27に入る直前の循環流体5の温度を13℃とした。
また、冷却流体9としては水を用いた。そして、この冷却流体9と冷却水15が各吸着式冷凍機27、28に入る直前の入り口温度をいずれも25℃とした。各吸着式冷凍機27、28で昇温したこれら冷却流体9と冷却水15の放熱は、屋外のクーリングタワー(不図示)で行った。
吸着式冷凍機27、28の性能は、吸着器1、2内の相対圧φによって表される。
相対圧φは、ある温度での冷媒18の飽和蒸気圧をPs、その温度で冷媒18が実際に示している蒸気圧をPとすると、φ=P/Psで定義される。
また、吸着時、脱着時の相対圧φは、次のように定義される。
吸着時相対圧φ1=Pc/Pm
脱着時相対圧φ2=Pm/Ph
ここで、Pcは蒸発器温度Tcでの冷媒の飽和蒸気圧、Pmは冷却水温度Tmでの冷媒の飽和蒸気圧、Phは脱着温度Thでの冷媒の飽和蒸気圧である。
本実施例では、各パラメータが次のような値となる。
Tc=10℃
Pc=1.205
Tm=25℃
Pm=3.143 kPa
Th=70℃
Ph=31.17 kPa
なお、飽和蒸気圧Pc、Pm、Phについては、水の蒸気圧表から各温度Tc、Tm、Thでの値を参照した。
これらの値を用いると、吸着工程が行われているときの第1の吸着器1での相対圧φ1は、1.205/3.14=0.383となる。
一方、脱着工程が行われているときの第1の吸着器1での相対圧φ2もこれと同様に考えることができる。このときは、吸着剤17が加熱流体6によって70℃に加熱され、凝縮器4の温度が冷却水15によって25℃に冷却されているとすると、φ2=0.101となる。
吸着式冷凍機の作動範囲は、φ2〜φ1の範囲で定義され、本実施例では上記のように0.101〜0.383となった。
また、吸着剤17に吸着・脱着する冷媒18の量はこの作動範囲により規定される。本実施例では、吸着剤17として使用されるシリカゲル1kgに対して0.2kg程度の冷媒(水)18が吸着・脱着することになる。
一方、サーバ21(図1参照)が備えるCPU等の四つの発熱体22〜25で発生した廃熱は、熱輸送配管59〜62を通る加熱流体6により回収される。各熱輸送配管59〜62は、最大で300W、最小で100W程度の廃熱を回収する。
送液ポンプ49〜52による加熱流体6の循環流量は、例えばCPU表面温度を85℃以下に抑えることができる流量、例えば一つの輸送配管59〜62あたり1l/minとした。
この場合、CPUの処理状況の違いから、加熱流体6の温度は、各熱輸送配管59〜62のそれぞれにおいて72℃、76℃、64℃、58℃となった。
更に、各バルブ33〜36を制御することにより、熱輸送配管59〜61を流れる加熱流体6を第1の吸着式冷凍機27に供給し、熱輸送配管62を流れる加熱流体6については第2の吸着式冷凍機28に供給した。
このような条件で廃熱回収システム20を稼動させた場合の実温度を図5に示す。
なお、図5は、第1の吸着式冷凍機27内の第1の吸着器1の実温度を示すものである。
これに示されるように、本実施例では、脱着工程における第1の吸着器1の温度が、シリカゲル−水系の脱着温度(約70℃)を下回ることがない。これにより、脱着工程において大きなロスなく吸着剤17の脱着再生を行うことができ、約5分の周期で吸着工程と脱着工程とを繰り返すことができる。
また、実温度の図示は省略するが、活性炭素−メタノール系を利用した第2の吸着式冷凍機28では、吸着工程と脱着工程とを約10分の周期で繰り返すことができる。このように第1の吸着式冷凍機27よりも周期が長くなったのは、活性炭素−メタノール系ではもともとシリカゲル−水系よりも脱着再生に長時間を要するためであって、加熱流体6の温度の時間変動によって脱着再生時間が律速されたためではない。
このように、本実施例では、各吸着式冷凍機27、28を無駄なく動作させることができ、循環流体5の冷熱をシステム20全体で500W程度とすることができた。
なお、図5には、比較例に係るシステムでの実温度も点線でプロットしてある。
その比較例では、四つの熱輸送配管59〜61を流れる加熱流体6の全てを第1の加熱流体混合器40で混合し、第1の吸着式冷凍機27に温度が67℃〜68℃程度の加熱流体6を供給した。これ以外は上記実施例と同じ構成である。
本比較例では、脱着工程での第1の吸着器1の温度が、シリカゲル−水系の脱着温度(約70℃)を下回るため、脱着工程を5分としたのでは脱着が不十分で、脱着工程前に吸着剤17に吸着していた冷媒18のうち60%程度しか脱着しない。したがって、吸着剤17から冷媒18を十分に脱着させるには、脱着工程を5分よりも長くしなければならず、第1の吸着式冷凍機27の動作に無駄が生じると供に、冷熱の平均出力が250W程度にしかならなかった。
以上、本発明の実施の形態について詳細に説明したが、本発明は上記実施形態に限定されない。例えば、上記では、図2に示したように第1及び第2の吸着式冷凍機27、28のそれぞれが二つの吸着器1、2を備えているが、これらの吸着式冷凍機27、28に三以上の吸着器を設けるようにしてもよい。
以下に、本発明の特徴について付記する。
(付記1) 第1の冷媒の蒸気を吸着するとともに、加熱流体の熱によって第1の脱着温度に加熱されることにより前記第1の冷媒を脱着する第1の吸着剤が収納された吸着器を複数個備えた第1の吸着式冷凍機と、
第2の冷媒の蒸気を吸着すると供に、前記加熱流体の熱によって前記第1の脱着温度よりも低い第2の脱着温度に加熱されることにより前記第2の冷媒を脱着する第2の吸着剤が収納された吸着器を複数個備えた第2の吸着式冷凍機と、
複数の発熱体で発生した熱を、該発熱体毎に前記加熱流体に乗せて輸送する複数の熱輸送配管と、
前記複数の熱輸送配管を流れる前記加熱流体を、前記第1の吸着式冷凍機と前記第2の吸着式冷凍機のそれぞれの前記吸着器に振り分けて供給する加熱流体供給部とを有し、
前記加熱流体供給部が、前記第1の吸着式冷凍機の前記吸着器に供給される前記加熱流体の温度が前記第2の吸着式冷凍機の前記吸着器に供給される前記加熱流体の温度よりも高くなるように前記加熱流体の振り分けを行うことを特徴とする廃熱利用システム。
(付記2) 前記加熱流体供給部は、前記第1の吸着式冷凍機の前記吸着器に供給される前記加熱流体の温度が前記第1の脱着温度以上となるように前記加熱流体の振り分けを行い、前記第1の吸着式冷凍機に供給されない残りの前記加熱流体を前記第2の吸着式冷凍機に供給することを特徴とする付記1に記載の廃熱利用システム。
(付記3) 前記加熱流体供給部は、
前記第1の吸着式冷凍機の前記吸着器に繋がる第1の加熱流体混合器と、
前記第2の吸着式冷凍機の前記吸着器に繋がる第2の加熱流体混合器と、
前記熱輸送配管のそれぞれに設けられ、該熱輸送配管を流れる前記加熱流体の流路を前記第1の加熱流体混合器と前記第2の加熱流体混合器のいずれかに切り替える切り替えバルブと、
前記熱輸送配管のそれぞれに設けられた加熱流体温度検出器及び加熱流体流量検出器とを有し、
前記加熱流体体温度検出器と前記加熱流体流量検出器のそれぞれの検出結果に基づいて、前記切り替えバルブを制御して、前記加熱流体の振り分けを行うことを特徴とする付記1又は付記2に記載の廃熱利用システム。
(付記4) 前記第1の冷媒が水であり、前記第1の吸着剤がシリカゲル又はゼオライトであり、
前記第2の冷媒がメタノールであり、前記第2の吸着剤が活性炭素であることを特徴とする付記1〜付記3のいずれかに記載の廃熱利用システム。
(付記5) 前記発熱体の少なくとも一つが電子機器であることを特徴とする付記1〜付記4のいずれかに記載の廃熱利用システム。
(付記6) 前記第1の吸着式冷凍機において、前記第1の冷媒の蒸気を前記第1の吸着剤に吸着させる吸着工程が終了し、前記加熱流体の熱により前記第1の吸着剤から前記第1の冷媒を脱着させる脱着工程に移るときに、前記第1の吸着式冷凍機に供給される前記加熱流体の温度が、前記第1の吸着剤の温度よりも高くかつ前記第1の脱着温度以下となるように前記加熱流体供給部で前記加熱流体の振り分けを行うことを特徴とする付記1に記載の廃熱利用システム。
(付記7) 前記第1及び第2の吸着式冷凍機のそれぞれに設けられ、前記第1及び第2の冷媒のそれぞれを蒸発させる蒸発器と、
前記第1及び第2の吸着式冷凍機のそれぞれの前記蒸発器と、外部熱交換機との間を循環する循環流体の循環経路と、
前記循環経路に設けられ、前記循環流体の流路による前記第1及び第2の吸着式冷凍機のそれぞれの前記蒸発器同士の接続を、直列接続と並列接続との間で切り替えを行う循環流体切り替え部とを更に有することを特徴とする付記1〜付記6のいずれかに記載の廃熱利用システム。
図1は、本発明の実施の形態に係る廃熱利用システムの構成図である。 図2は、本発明の実施の形態に係る廃熱利用システムが備える吸着式冷凍機の構成図である。 図3は、本発明の実施の形態において、各吸着器において脱着工程と吸着工程との切り替えをするための配管の接続例を示す構成図である。 図4は、本発明の実施の形態において、循環流体による第1及び第2の吸着式冷凍機同士の接続例を示す構成図である。 図5は、本発明の実施の形態に係る廃熱回収システムを稼動させた場合の実温度を示すグラフである。
符号の説明
1…第1の吸着器、2…第2の吸着器、3…蒸発器、4…凝縮器、5…循環流体、6…加熱流体、7…内部配管、7a…熱交換器、8…冷却配管、9…冷却流体、10…循環配管、11〜14…開閉バルブ、15…冷却水、16…冷媒回収配管、17…吸着剤、18…冷媒、19…真空経路、20…廃熱利用システム、21…サーバ、22〜25…発熱体、27…第1の吸着式冷凍機、28…第2の吸着式冷凍機、29〜32…加熱流体温度・流量検出器、33〜36…三方バルブ、37…制御部、40…第1の加熱流体混合器、41…第2の加熱流体混合器、42…第1の加熱流体分流器、43…第2の加熱流体分流器、45〜48…三方バルブ、49〜52…送液ポンプ、59〜62…熱輸送配管、80…加熱流体配管、81…冷却流体配管、90…加熱流体供給部、91〜94…三方バルブ、95…循環流体分流器、96…循環流体混合器、97…外部熱交換器、98…開閉バルブ、99…三方バルブ、100…循環流体切り替え部。

Claims (5)

  1. 第1の冷媒の蒸気を吸着するとともに、加熱流体の熱によって第1の脱着温度に加熱されることにより前記第1の冷媒を脱着する第1の吸着剤が収納された吸着器を複数個備えた第1の吸着式冷凍機と、
    第2の冷媒の蒸気を吸着すると供に、前記加熱流体の熱によって前記第1の脱着温度よりも低い第2の脱着温度に加熱されることにより前記第2の冷媒を脱着する第2の吸着剤が収納された吸着器を複数個備えた第2の吸着式冷凍機と、
    複数の発熱体で発生した熱を、該発熱体毎に前記加熱流体に乗せて輸送する複数の熱輸送配管と、
    前記複数の熱輸送配管を流れる前記加熱流体を、前記第1の吸着式冷凍機と前記第2の吸着式冷凍機のそれぞれの前記吸着器に振り分けて供給する加熱流体供給部とを有し、
    前記加熱流体供給部が、前記第1の吸着式冷凍機の前記吸着器に供給される前記加熱流体の温度が前記第2の吸着式冷凍機の前記吸着器に供給される前記加熱流体の温度よりも高くなるように前記加熱流体の振り分けを行うことを特徴とする廃熱利用システム。
  2. 前記加熱流体供給部は、前記第1の吸着式冷凍機の前記吸着器に供給される前記加熱流体の温度が前記第1の脱着温度以上となるように前記加熱流体の振り分けを行い、前記第1の吸着式冷凍機に供給されない残りの前記加熱流体を前記第2の吸着式冷凍機に供給することを特徴とする請求項1に記載の廃熱利用システム。
  3. 前記加熱流体供給部は、
    前記第1の吸着式冷凍機の前記吸着器に繋がる第1の加熱流体混合器と、
    前記第2の吸着式冷凍機の前記吸着器に繋がる第2の加熱流体混合器と、
    前記熱輸送配管のそれぞれに設けられ、該熱輸送配管を流れる前記加熱流体の流路を前記第1の加熱流体混合器と前記第2の加熱流体混合器のいずれかに切り替える切り替えバルブと、
    前記熱輸送配管のそれぞれに設けられた加熱流体温度検出器及び加熱流体流量検出器とを有し、
    前記加熱流体体温度検出器と前記加熱流体流量検出器のそれぞれの検出結果に基づいて、前記切り替えバルブを制御して、前記加熱流体の振り分けを行うことを特徴とする請求項1又は請求項2に記載の廃熱利用システム。
  4. 前記第1の冷媒が水であり、前記第1の吸着剤がシリカゲル又はゼオライトであり、
    前記第2の冷媒がメタノールであり、前記第2の吸着剤が活性炭素であることを特徴とする請求項1〜請求項3のいずれか一項に記載の廃熱利用システム。
  5. 前記第1の吸着式冷凍機において、前記第1の冷媒の蒸気を前記第1の吸着剤に吸着させる吸着工程が終了し、前記加熱流体の熱により前記第1の吸着剤から前記第1の冷媒を脱着させる脱着工程に移るときに、前記第1の吸着式冷凍機に供給される前記加熱流体の温度が、前記第1の吸着剤の温度よりも高くかつ前記第1の脱着温度以下となるように前記加熱流体供給部で前記加熱流体の振り分けを行うことを特徴とする請求項1に記載の廃熱利用システム。
JP2008018549A 2008-01-30 2008-01-30 廃熱利用システム Active JP4946894B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008018549A JP4946894B2 (ja) 2008-01-30 2008-01-30 廃熱利用システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008018549A JP4946894B2 (ja) 2008-01-30 2008-01-30 廃熱利用システム

Publications (2)

Publication Number Publication Date
JP2009180405A true JP2009180405A (ja) 2009-08-13
JP4946894B2 JP4946894B2 (ja) 2012-06-06

Family

ID=41034534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008018549A Active JP4946894B2 (ja) 2008-01-30 2008-01-30 廃熱利用システム

Country Status (1)

Country Link
JP (1) JP4946894B2 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011064352A (ja) * 2009-09-15 2011-03-31 Fujitsu Ltd 熱回収装置及び冷却システム
WO2011082790A1 (de) * 2009-12-14 2011-07-14 Sam Technologies Gmbh System und verfahren zur kühlung einer rechenanlage
JP2012127596A (ja) * 2010-12-16 2012-07-05 Ricoh Co Ltd 熱回収利用システム
WO2012101666A1 (ja) 2011-01-24 2012-08-02 富士通株式会社 吸着器及び吸着式ヒートポンプ
JP2012220165A (ja) * 2011-04-13 2012-11-12 Ricoh Co Ltd 熱回収利用システム及び熱回収利用方法
JP2013044486A (ja) * 2011-08-25 2013-03-04 Fujitsu Ltd 吸着式ヒートポンプの制御方法、情報処理システム及び制御装置
WO2013076805A1 (ja) * 2011-11-22 2013-05-30 富士通株式会社 吸着式ヒートポンプシステム及び吸着式ヒートポンプの駆動方法
JP2015034668A (ja) * 2013-08-08 2015-02-19 株式会社豊田中央研究所 吸着式ヒートポンプ及びその制御方法
EP2730860A4 (en) * 2011-07-04 2015-12-09 Fujitsu Ltd METHOD FOR CONTROLLING AN ADSORPTION HEAT PUMP, INFORMATION PROCESSING SYSTEM AND CONTROL DEVICE

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62175563A (ja) * 1985-11-19 1987-08-01 ジユモン シユナイダ− 高温および低温を連続的に発生するための装置
JPH03186165A (ja) * 1989-12-15 1991-08-14 Tokyo Gas Co Ltd 冷水発生装置
JP2006189228A (ja) * 2005-01-07 2006-07-20 Osaka Gas Co Ltd 空調システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62175563A (ja) * 1985-11-19 1987-08-01 ジユモン シユナイダ− 高温および低温を連続的に発生するための装置
JPH03186165A (ja) * 1989-12-15 1991-08-14 Tokyo Gas Co Ltd 冷水発生装置
JP2006189228A (ja) * 2005-01-07 2006-07-20 Osaka Gas Co Ltd 空調システム

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011064352A (ja) * 2009-09-15 2011-03-31 Fujitsu Ltd 熱回収装置及び冷却システム
WO2011082790A1 (de) * 2009-12-14 2011-07-14 Sam Technologies Gmbh System und verfahren zur kühlung einer rechenanlage
JP2012127596A (ja) * 2010-12-16 2012-07-05 Ricoh Co Ltd 熱回収利用システム
WO2012101666A1 (ja) 2011-01-24 2012-08-02 富士通株式会社 吸着器及び吸着式ヒートポンプ
US9353978B2 (en) 2011-01-24 2016-05-31 Fujitsu Limited Adsorber and adsorption heat pump
JP2012220165A (ja) * 2011-04-13 2012-11-12 Ricoh Co Ltd 熱回収利用システム及び熱回収利用方法
EP2730860A4 (en) * 2011-07-04 2015-12-09 Fujitsu Ltd METHOD FOR CONTROLLING AN ADSORPTION HEAT PUMP, INFORMATION PROCESSING SYSTEM AND CONTROL DEVICE
JP2013044486A (ja) * 2011-08-25 2013-03-04 Fujitsu Ltd 吸着式ヒートポンプの制御方法、情報処理システム及び制御装置
WO2013076805A1 (ja) * 2011-11-22 2013-05-30 富士通株式会社 吸着式ヒートポンプシステム及び吸着式ヒートポンプの駆動方法
JPWO2013076805A1 (ja) * 2011-11-22 2015-04-27 富士通株式会社 吸着式ヒートポンプシステム及び吸着式ヒートポンプの駆動方法
CN103946648B (zh) * 2011-11-22 2016-03-02 富士通株式会社 吸附式热泵系统以及吸附式热泵的驱动方法
CN103946648A (zh) * 2011-11-22 2014-07-23 富士通株式会社 吸附式热泵系统以及吸附式热泵的驱动方法
JP2015034668A (ja) * 2013-08-08 2015-02-19 株式会社豊田中央研究所 吸着式ヒートポンプ及びその制御方法

Also Published As

Publication number Publication date
JP4946894B2 (ja) 2012-06-06

Similar Documents

Publication Publication Date Title
JP4946894B2 (ja) 廃熱利用システム
JP2006300414A (ja) 吸着式ヒートポンプ装置
KR101360975B1 (ko) 선박의 엔진 폐열을 이용한 흡착식 냉방시스템
JP2011112272A (ja) 冷暖房方法および装置
US10267543B2 (en) Adsorption refrigerator, method for controlling adsorption refrigerator, and cooling system
JP2016080310A (ja) 冷却システム
KR100827570B1 (ko) 흡착식 냉동기의 폐열 재활용을 위한 히트펌프 장치
JP2015048987A (ja) 空気調和装置
JP2013156002A (ja) 冷凍システム
JP5412775B2 (ja) 吸着式冷凍機とその制御方法、及び冷却システム
CN111442493B (zh) 用于双制冷式空调的控制方法、控制装置及双制冷式空调
JP6083123B2 (ja) 吸着式ヒートポンプシステム及び吸着式ヒートポンプの駆動方法
CN104890474A (zh) 车用空调器及车辆
US20140260359A1 (en) Adsorption heat pump and method of driving the same
JP5471223B2 (ja) 熱回収装置及び冷却システム
WO2017169925A1 (ja) 冷却システムおよび冷却方法
JP2008232464A (ja) ケミカルヒートポンプ及びこれを用いた熱利用システム
JP2014001876A (ja) 吸着式冷凍装置及びエンジン駆動式空調装置
CN112880146A (zh) 用于双制冷式空调的控制方法、控制装置及双制冷式空调
JP2015048986A (ja) 空気調和装置
CN213983858U (zh) 数据中心供能系统
JP5395388B2 (ja) 排熱利用システム及びその運転方法
JP2018151076A (ja) ヒートポンプシステム、及び冷熱生成方法
JP6326899B2 (ja) 蒸発器
JP2008000660A (ja) 有機溶剤濃縮装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4946894

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150