WO2012101666A1 - 吸着器及び吸着式ヒートポンプ - Google Patents

吸着器及び吸着式ヒートポンプ Download PDF

Info

Publication number
WO2012101666A1
WO2012101666A1 PCT/JP2011/000344 JP2011000344W WO2012101666A1 WO 2012101666 A1 WO2012101666 A1 WO 2012101666A1 JP 2011000344 W JP2011000344 W JP 2011000344W WO 2012101666 A1 WO2012101666 A1 WO 2012101666A1
Authority
WO
WIPO (PCT)
Prior art keywords
adsorber
adsorbent
refrigerant
vapor pressure
container
Prior art date
Application number
PCT/JP2011/000344
Other languages
English (en)
French (fr)
Inventor
徳康 安曽
敏夫 眞鍋
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2011/000344 priority Critical patent/WO2012101666A1/ja
Priority to EP11857366.6A priority patent/EP2669603B1/en
Priority to JP2012554474A priority patent/JP5761205B2/ja
Publication of WO2012101666A1 publication Critical patent/WO2012101666A1/ja
Priority to US13/926,137 priority patent/US9353978B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B17/00Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B17/00Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type
    • F25B17/08Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type the absorbent or adsorbent being a solid, e.g. salt
    • F25B17/083Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type the absorbent or adsorbent being a solid, e.g. salt with two or more boiler-sorbers operating alternately
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/04Heat pumps of the sorption type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • the present invention relates to an adsorber and an adsorption heat pump.
  • an adsorption heat pump is an adsorber that adsorbs and desorbs a refrigerant such as water with an adsorbent, an evaporator that generates cold by evaporating the refrigerant in accordance with an adsorption operation in the adsorber, and an adsorption desorbed by the adsorber.
  • a condenser that condenses the vapor of the refrigerant and supplies it to the evaporator, and the adsorber, the evaporator, and the condenser are arranged in series along the refrigerant circulation pipe.
  • cooling water for an automobile engine of 85 ° C. to 90 ° C.
  • heat drainage of a polymer fuel cell of 60 ° C. to 80 ° C.
  • heat drainage of cogeneration equipment at 60 °C to 80 °C.
  • cooling water used for an automobile radiator of 30 ° C. to 40 ° C.
  • water cooling of a building of 25 ° C. to 35 ° C.
  • water and river water there is water and river water.
  • a plurality of adsorbers including adsorbents are arranged in parallel with the refrigerant circulation pipe, and the adsorption type
  • An adsorption heat pump having a function of selecting an adsorber according to the operating temperature range of the heat pump has been proposed (Patent Document 2).
  • the temperature of the hot water or the cooling water flowing through the penetrating pipe is different between the vicinity of the inlet and the outlet of the pipe. This is because the hot water is gradually cooled by the adsorbent and the cooling water is gradually warmed.
  • the adsorbent in the adsorber high adsorption characteristics may not be maintained, and it is assumed that the original refrigerant absorption efficiency corresponding to the adsorbent cannot be obtained.
  • an adsorber having a structure capable of improving the efficiency of refrigerant desorption in the adsorber, and an adsorption heat pipe including the adsorber.
  • An adsorber comprising: a simple container; and a water channel pipe that penetrates the container and is in thermal contact with any of the two or more adsorbents and functions as a water channel.
  • a desorber having a structure capable of improving the efficiency of desorbing refrigerant in the desorber and an adsorption heat pipe including the desorber are provided.
  • FIG. 1 is a view showing an adsorption heat pump 100 and a fluid supply mechanism 1 attached to the adsorption heat pump 100.
  • FIG. 2 is a diagram illustrating an operation state of the adsorption heat pump 100 in the period A.
  • 3A and 3B are diagrams illustrating the configurations of the adsorber A1 (130) and the adsorber A2 (120) according to the first embodiment and the flow directions of the warm waste water and the cooling water in the period A.
  • 4A and 4B are diagrams illustrating the configurations of the adsorber A1 (130) and the adsorber A2 (120) according to the first embodiment and the flow directions of the warm waste water and the cooling water in the period B.
  • FIG. 1 is a view showing an adsorption heat pump 100 and a fluid supply mechanism 1 attached to the adsorption heat pump 100.
  • FIG. 2 is a diagram illustrating an operation state of the adsorption heat pump 100 in the period A.
  • 3A and 3B are diagrams illustrating
  • FIG. 5 is a graph showing the refrigerant adsorption isotherm of the adsorbent contained in the adsorber A1 (130) and the adsorber A2 (120).
  • FIG. 6 is a table showing the results of comparing the temperature changes of the cooling water and hot waste water passing through the adsorber in the specific example of the adsorption heat pump 100 of Example 1 and the comparative example.
  • 7A and 7B are diagrams illustrating the adsorbers 230 and 220 in the adsorption heat pump according to the second embodiment.
  • FIG. 8 is a diagram illustrating an adsorber 300 used in the adsorption heat pump according to the third embodiment.
  • the present invention includes the embodiments described below that have been modified by the design that can be conceived by those skilled in the art, and those in which the components shown in the embodiments have been recombined. Further, the present invention includes those in which the constituent elements are replaced with other constituent elements having the same operational effects, and are not limited to the following embodiments.
  • FIG. 1 is a diagram showing an adsorption heat pump 100 and a fluid supply mechanism 1 attached to the adsorption heat pump 100.
  • the adsorption heat pump 100 includes a condenser 110, an adsorber A2 (120), an adsorber A3 (130), an evaporator 140, and a refrigerant circulation pipe 150.
  • the fluid supply mechanism 1 and the valve controller 2 are mechanisms that are attached to the adsorption heat pump and control the heat pump operation of the adsorption heat pump.
  • the fluid supply mechanism 1 shown in FIG. 1 includes pumps 10 and 20, pipe switching 30, 40, 50, 60, and fluid piping.
  • the fluid flowing through the fluid piping is driven by pumps 10 and 20.
  • the direction in which the fluid flows is also switched by the pumps 10 and 20.
  • the inlet of the pipe switching 30 is connected to the pump inlet / outlet 11, and the upper outlet and the lower outlet of the pipe switching 30 are connected to the inlets 101 and 103 of the adsorption heat pump 100, respectively.
  • the inlet of the pipe switching 40 is connected to the pump inlet / outlet 21, and the upper outlet and the lower outlet of the pipe switching 40 are connected to the inlets 101 and 103 of the adsorption heat pump 100, respectively.
  • the inlet of the pipe switching 50 is connected to the adsorption heat pump inlet / outlet 102, and the upper outlet and the lower outlet of the pipe switching 50 are connected to the inlet / outlet 12 of the pump 10 and the inlet / outlet 22 of the pump 20, respectively.
  • the inlet of the pipe switching 60 is connected to the adsorption heat pump inlet / outlet 104, and the upper outlet and the lower outlet of the pipe switching 60 are connected to the inlet / outlet 12 of the pump 10 and the inlet / outlet 22 of the pump 20, respectively.
  • the valve control unit 2 is a control unit that controls opening and closing of four on-off valves disposed in the refrigerant circulation pipe 150. Then, the valve control unit 2 opens the refrigerant circulation pipe 150 between the condenser 110 and the adsorber A2 (120) in the period A by controlling the opening / closing valve, and between the evaporator 140 and the adsorber A2 (120). The refrigerant circulation pipe 150 is closed. Further, the refrigerant circulation pipe 150 between the condenser 110 and the adsorber A1 (130) is closed, and the refrigerant circulation pipe 150 between the evaporator 140 and the adsorber A1 (130) is opened.
  • the valve control unit 2 closes the refrigerant circulation pipe 150 between the condenser 110 and the adsorber A2 (120) and controls the refrigerant circulation between the evaporator 140 and the adsorber A2 (120) in the period B by controlling the open / close valve.
  • the pipe 150 is opened. Further, the refrigerant circulation pipe 150 between the condenser 110 and the adsorber A1 (130) is opened, and the refrigerant circulation pipe 150 between the evaporator 140 and the adsorber A1 (130) is closed.
  • the pump 10 is a pump that discharges the warm waste water to the adsorption heat pump 100 and sucks the warm waste water cooled by the adsorption heat pump 100.
  • the pump 10 has a function of switching between a discharge port for hot wastewater as an entrance / exit 11 and an intake port as an entrance / exit 12 and a discharge port for warm wastewater as an entrance / exit 12 and an intake port as an entrance / exit 11.
  • the pump 20 is a pump that discharges cooling water to the adsorption heat pump 100 and sucks the cooling water cooled by the adsorption heat pump 100.
  • the pump 20 has a function of switching the cooling water discharge port as the inlet / outlet 21 and the suction port as the inlet / outlet port 22, and the cooling water discharge port as the inlet / outlet port 22 and the suction port as 21.
  • Period A is a period in which warm wastewater flows in and drains from the entrances 103 and 104 of the adsorption heat pump 100 and cooling water flows in and drains from the entrances 102 and 101.
  • the warm drainage flows from the entrance 103 to the entrance 104, while the cooling water flows from the entrance 102 to the entrance 101.
  • Period B is a period in which warm wastewater flows in and drains from the entrances 101 and 102 of the adsorption heat pump 100 and cooling water flows in and drains from the entrances 104 and 103.
  • the warm drainage flows from the entrance / exit 101 to the entrance / exit 102, while the cooling water flows from the entrance / exit 104 to the entrance / exit 103.
  • the pumps 10 and 20 are used to reverse the inflow directions of the warm drainage and cooling water.
  • the orientation of the adsorbers 120 and 130 is changed to change the warm drainage.
  • the cooling water inflow direction may be changed.
  • FIG. 2 is a diagram illustrating an operation state of the adsorption heat pump 100 in the period A.
  • the adsorption heat pump 100 includes a condenser 110, an adsorber A2 (120), an adsorber A1 (130), an evaporator 140, refrigerant circulation pipes 121, 122, 131, 132, and on-off valves 123, 124, 133, 134.
  • the cooling water flows into the condenser 110 and the cooling water flows out of the condenser 110.
  • the inflow and outflow directions of the cooling water are the same regardless of the periods A and B.
  • Cold water flows into the evaporator 140, the cold water is cooled from the evaporator 140, and the cold water flows out.
  • the inflow direction of the cooling water and the outflow direction of the cold water are the same.
  • Adsorber A ⁇ b> 2 (120) includes a sealed container and a through water channel that penetrates the sealed container and is connected to the entrance 103 and the entrance 104. Further, the adsorber A2 (120) includes two or more types of adsorbents having different refrigerant vapor pressure conditions and temperature conditions corresponding to the lower limit value of the refrigerant adsorption amount and the upper limit value of the refrigerant adsorption amount. All of these adsorbents are in contact with the through water channel, and are arranged in series from the entrance 103 to the entrance 104 along the through water channel. Here, the conditions of the relative vapor pressure corresponding to the refrigerant adsorption amount described in FIG.
  • the refrigerant vapor pressure condition and the temperature corresponding to the lower limit value of the refrigerant adsorption amount and the upper limit value of the refrigerant adsorption amount are the refrigerant vapor pressure condition and the temperature corresponding to the lower limit value of the refrigerant adsorption amount and the upper limit value of the refrigerant adsorption amount. Suppose that it corresponds to the condition. Then, the adsorption amount of the adsorbent changes within a range specified by the relative vapor pressure corresponding to the lower limit value of the refrigerant adsorption amount and the relative vapor pressure corresponding to the upper limit value of the refrigerant adsorption amount. Will have properties.
  • an adsorbent having a property that the adsorption amount changes in a range where the relative vapor pressure is low is arranged on the inlet / outlet 103 side, and an adsorbent whose adsorption amount changes in the relative vapor pressure is higher than the adsorbent is It is arranged on the entrance / exit 104 side.
  • the adsorbent amount range in which the adsorption amount changes in the relative vapor pressure is set to the lower adsorbent port 103 side, and the adsorbent amount range in which the adsorbed amount changes is set to the adsorbent port 104 side.
  • the warm wastewater flows into the through water channel of the adsorber A ⁇ b> 2 (120) from the inlet / outlet 103 of the adsorption heat pump 100 and flows out of the inlet / outlet 104.
  • the adsorber A2 (120) receives warm waste water and desorbs water vapor as a refrigerant.
  • the temperature of the warm drainage at the entrance / exit 103 gradually decreases toward the entrance / exit 104.
  • the adsorber A2 (120) and the condenser 110 are connected by the refrigerant circulation pipe 121, and the open / close valve 123 is in an open state.
  • the on-off valve 124 in the refrigerant circulation pipe 122 connecting the adsorber A2 (120) and the evaporator 140 is in a closed state. That is, the adsorber A2 (120), the condenser 110, and the refrigerant circulation pipe 121 constitute a sealed space.
  • the water vapor 125 desorbed by the adsorber A2 (120) moves to the condenser 110 and changes into water.
  • the vapor pressure in the sealed space becomes equal to the saturated water vapor pressure with respect to the temperature in the adsorber A2 (120) due to the water vapor desorbed by the inflow of warm wastewater into the adsorber A2 (120) at the beginning of the period A.
  • the water vapor is changed to water in the condenser 110, so that the atmospheric pressure in the sealed space is determined in accordance with the temperature of the condenser 110. It becomes the atmospheric pressure in the gas phase equilibrium state.
  • Adsorber A ⁇ b> 1 includes a sealed container and a through water channel that passes through the sealed container and is connected to the inlet / outlet 101 and the inlet / outlet 102. Further, the adsorber A1 (130) includes two or more types of adsorbents having different refrigerant vapor pressure conditions and temperature conditions corresponding to the lower limit value of the refrigerant adsorption amount and the upper limit value of the refrigerant adsorption amount. These adsorbents contact the through water channel and are arranged in series along the through water channel from the entrance 101 to the entrance 102.
  • the refrigerant vapor pressure condition and the temperature corresponding to the lower limit value of the refrigerant adsorption amount and the upper limit value of the refrigerant adsorption amount are the refrigerant vapor pressure condition and the temperature corresponding to the lower limit value of the refrigerant adsorption amount and the upper limit value of the refrigerant adsorption amount. Suppose that it corresponds to the condition. Then, the adsorption amount of the adsorbent changes within a range specified by the relative vapor pressure corresponding to the lower limit value of the refrigerant adsorption amount and the relative vapor pressure corresponding to the upper limit value of the refrigerant adsorption amount. Will have properties.
  • an adsorbent having a property that the adsorption amount changes in a range where the relative vapor pressure is low is arranged on the entrance / exit 101 side, and an adsorbent whose range of change in the relative vapor pressure is higher than the adsorbent is It is arranged on the entrance / exit 102 side.
  • the region where the adsorption amount changes in the relative vapor pressure is arranged on the adsorbent 102 side, and the region where the adsorption amount changes is arranged on the adsorbent 101 side.
  • the cooling water flows from the inlet / outlet 102 of the adsorption heat pump 100 to the through water channel of the adsorber A ⁇ b> 1 (130) and flows out of the inlet / outlet 101.
  • adsorber A1 (130) receives cooling water and adsorbs water vapor as a refrigerant.
  • the temperature of the cooling water at the inlet / outlet 102 gradually increases toward the inlet / outlet 101.
  • the adsorber A1 (130) and the evaporator 140 are connected by the refrigerant circulation pipe 131, and the open / close valve 133 is open.
  • the open / close valve 134 in the refrigerant circulation pipe 132 connecting the adsorber A1 (130) and the condenser 110 is in a closed state. That is, the adsorber A1 (130), the evaporator 140, and the refrigerant circulation pipe 131 constitute a sealed space.
  • the water vapor 135 adsorbed by the adsorber A1 (130) is a phase change from water to water vapor in the evaporator 140.
  • the vapor pressure in the sealed space is reduced from the saturated water vapor pressure with respect to the temperature in the adsorber A1 (130) because the water vapor is adsorbed by the inflow of cooling water into the adsorber A1 (130).
  • the water vapor is changed into water vapor in the evaporator 140, so that the atmospheric pressure in the sealed space is determined according to the temperature of the evaporator 140.
  • the pressure is in a phase equilibrium state.
  • water is supplied from the condenser 110 to the evaporator 140 through the pipe 111.
  • period B warm wastewater flows from the entrance 101 to the entrance 102 through the adsorber A1 (130). Further, the adsorber A1 (130) forms a closed space together with the condenser 110 and the refrigerant circulation pipe 132. At that time, the opening / closing valve 134 is in an open state, and the opening / closing valve 133 is in a closed state.
  • the change in the vapor pressure of the closed space composed of the adsorber A1 (130), the condenser 110, and the refrigerant circulation pipe 132 in the period B consists of the adsorber A2 (120), the condenser 110, and the refrigerant circulation pipe 121 in the period A. It becomes the same as the change of the vapor pressure in the closed space.
  • the cooling water flows from the entrance 104 to the entrance 103 to the adsorber A2 (120).
  • the adsorber A2 (120) forms a closed space together with the evaporator 140 and the refrigerant circulation pipe 122.
  • the opening / closing valve 124 is in an open state, and the opening / closing valve 123 is in a closed state.
  • the change in the vapor pressure of the closed space composed of the adsorber A2 (120), the evaporator 140, and the refrigerant circulation pipe 122 in the period B is composed of the adsorber A1 (130), the evaporator 140, and the refrigerant circulation pipe 131 in the period A. It becomes the same as the change of the vapor pressure in the closed space.
  • 3A and 3B are diagrams showing the configurations of the adsorber A1 (130) and the adsorber A2 (120) of Example 1, and the flow directions of the warm waste water and the cooling water in the period A.
  • FIG. 1 is diagrams showing the configurations of the adsorber A1 (130) and the adsorber A2 (120) of Example 1, and the flow directions of the warm waste water and the cooling water in the period A.
  • the condenser 110 the refrigerant circulation pipes 131 and 132, the evaporator 140, and the entrances 101 and 102 are shown.
  • the condenser 110, the evaporator 140, and the entrances 101 and 102 have the same functions as those described with reference to FIG.
  • the refrigerant circulation pipe 131 includes a pipe connecting the adsorber A1A (130a) and the evaporator 140, an open / close valve in the pipe for opening and closing the pipe, and a pipe connecting the adsorber A1B (130b) and the evaporator 140. And an open / close valve that opens and closes the pipe.
  • the refrigerant circulation pipe 132 is a pipe connecting the adsorber A1A (130a) and the condenser 110, an on-off valve in the pipe for opening and closing the pipe, and a pipe connecting the adsorber A1B (130b) and the condenser 110. And an open / close valve that opens and closes the pipe.
  • the adsorber A1 (130) in FIG. 3A includes an adsorber A1A (130a) and an adsorber A1B (130b).
  • the adsorber A1A (130a) includes an airtight container that is sealed by closing the on-off valve, a pipe that passes through the container and through which the cooling water or warm drainage flows, and is in thermal contact with the pipe.
  • the adsorber A1B (130b) includes the same components as the adsorber A1A (130a).
  • the pipes of the adsorber A1A (130a) and the pipes of the adsorber A1B (130b) are a continuous continuous pipe having the entrance / exit 101 and the entrance / exit 102.
  • the adsorber A1A (130a) is arranged on the inlet / outlet 101 side of the pipe, and the adsorber A1B (130b) is arranged on the inlet / outlet 102 side of the pipe.
  • the cooling water is injected from the inlet / outlet 102 and discharged from the inlet / outlet 101. Since the adsorbent is warmed by moisture adsorption, the temperature of the cooling water rises from the entrance 102 to the entrance 101. That is, assuming that the temperature of the cooling water at the inlet / outlet 102 is Tz, the temperature of the cooling water between the adsorber A1B (130b) and the adsorber A1A (130a) is Ty, and the temperature of the cooling water at the inlet / outlet 101 is Tx. > Ty> Tz.
  • the adsorber A1A (130a) has an adsorbent in a range where the range of relative vapor pressure at which the amount of adsorption changes is low.
  • the range of the relative vapor pressure in which the adsorption amount of the adsorber A1A (130a) changes is, for example, 0 to 0.48.
  • the adsorber A1B (130b) has an adsorbent in a range where the range of the relative vapor pressure at which the adsorption amount changes is high.
  • the range of the relative vapor pressure in which the adsorption amount of the adsorber A1B (130b) changes is, for example, 0.37 to 0.58 for the adsorbent.
  • the range of the relative vapor pressure in which the adsorption amounts of the adsorber A1A (130a) and the adsorber A1B (130b) change will be described in detail later with reference to FIG.
  • the condenser 110 the refrigerant circulation pipes 131 and 132, the evaporator 140, and the entrances 103 and 104 are shown. Since the condenser 110, the evaporator 140, and the entrances 103 and 104 have the same functions as those described in FIG.
  • the refrigerant circulation pipe 122 is a pipe that connects the adsorber A2A (120a) and the evaporator 140, an open / close valve that opens and closes the pipe, and a pipe that connects the adsorber A2B (120b) and the evaporator 140. And an open / close valve that opens and closes the pipe.
  • the refrigerant circulation pipe 121 is a pipe connecting the adsorber A2A (120a) and the condenser 110, an on-off valve in the pipe for opening and closing the pipe, and a pipe connecting the adsorber A2B (120b) and the condenser 110. And an open / close valve that opens and closes the pipe.
  • the adsorber A2 (120) in FIG. 3B includes an adsorber A2A (120a) and an adsorber A2B (120b).
  • the adsorber A2A (120a) includes an airtight container that is sealed by closing the opening / closing valve, a pipe that passes through the container and through which the cooling water or warm drainage flows, and is in thermal contact with the pipe. An adsorbent that adsorbs or desorbs the refrigerant.
  • the adsorber A2B (120b) includes the same components as the adsorber A2A (120a).
  • the pipe of the adsorber A2A (120a) and the pipe of the adsorber A2B (120b) are a continuous continuous pipe having the entrance 103 and the entrance 104.
  • the adsorber A2A (120a) is arranged on the inlet / outlet 103 side of the pipe, and the adsorber A2B (120b) is arranged on the inlet / outlet 104 side of the pipe
  • Adsorber A2A (120a) has an adsorbent in a range where the range of relative vapor pressure at which the amount of adsorption changes is low.
  • the refrigerant desorption temperature region of the adsorbent of the adsorber A2A (120a) is, for example, 0 to 0.48.
  • Adsorber A2B (120b) has an adsorbent in a range where the range of relative vapor pressure at which the amount of adsorption changes is high.
  • the range of the relative vapor pressure in which the adsorption amount of the adsorber A1B (120b) changes is, for example, 0.37 to 0.58. Note that the range of the relative vapor pressure in which the adsorption amounts of the adsorber A2A (120a) and the adsorber A2B (120b) change will be described in detail later with reference to FIG.
  • FIGS. 3A and 3B are diagrams illustrating the configurations of the adsorber A1 (130) and the adsorber A2 (120) according to the first embodiment and the flow directions of the warm waste water and the cooling water in the period B.
  • FIGS. 3A and 3B the configurations of the adsorber A1 (130) and the adsorber A2 (120) of the first embodiment are shown in FIGS. 3A and 3B.
  • the adsorbers A1 (130) and the adsorber A2 (120) of the first embodiment are shown in FIGS. ), The description is omitted.
  • hot wastewater is injected from the inlet / outlet 101 and discharged from the inlet / outlet 102 in the period B shown in FIG.
  • the temperature of the warm waste water decreases from the entrance / exit 101 to the entrance / exit 102. That is, if the temperature of the hot waste water at the inlet / outlet 102 is Tz, the temperature of the hot waste water between the adsorber A1B (130b) and the adsorber A1A (130a) is Ty, and the temperature of the hot waste water at the inlet / outlet 101 is Tx, Tx >Ty> Tz.
  • the cooling water is injected from the inlet / outlet 104 and discharged from the inlet / outlet 103 in the period B shown in FIG. Then, since the adsorbent is warmed by moisture adsorption, the temperature of the cooling water rises from the entrance / exit 104 to the entrance / exit 103. That is, assuming that the temperature of the cooling water at the inlet / outlet 104 is Tc, the temperature of the cooling water between the adsorber A2B (120b) and the adsorber A2A (120a) is Tb, and the temperature of the cooling water at the inlet / outlet 103 is Ta. >Tb> Tc.
  • FIG. 5 is a graph showing the refrigerant adsorption isotherm of the adsorbent contained in the adsorber A1 (130) and the adsorber A2 (120).
  • the horizontal axis indicates the relative vapor pressure
  • the vertical axis indicates the moisture adsorption amount.
  • the relative vapor pressure refers to the ratio between the adsorption equilibrium pressure and the saturated vapor pressure.
  • the adsorption equilibrium pressure means an atmospheric pressure in a state where the progress of the adsorption of the refrigerant is stopped, and is determined by the temperature in the condenser as described below.
  • the saturated vapor pressure refers to the saturated vapor pressure of the refrigerant at the temperature in the adsorber.
  • the relative vapor pressure is expressed by the following formula.
  • Relative vapor pressure adsorption equilibrium pressure / saturated vapor pressure
  • the condenser 110 is in a gas phase-liquid phase equilibrium state, and the vapor pressure in the condenser 110 is about 42 hPa.
  • a solid curve A shows an isothermal curve for an adsorbent having a low relative vapor pressure range in which the amount of adsorption changes.
  • the solid curve B shows an isothermal curve for an adsorbent having a high relative vapor pressure range in which the amount of adsorption changes.
  • An isotherm curve is a curve which shows the moisture adsorption amount of the adsorbent with respect to relative vapor pressure.
  • the relative vapor pressure is related to the difference between the temperature of the adsorbent in the adsorber and the temperature of the evaporator 140 or the condenser 110 connected to the adsorber container, as described above.
  • the temperature of the evaporator 140 or the condenser 110 is constant, the higher the temperature of the adsorbent in the adsorber, the higher the relative vapor pressure in the adsorber is on the left side (lower value side) on the X axis. Relative vapor pressure.
  • the state in the container of the adsorber is shifted to a state where the relative vapor pressure is different, the difference in the amount of moisture adsorption between two points on the isothermal curve is the moisture released from or absorbed by the adsorbent. It becomes quantity.
  • the amount of adsorption of the adsorbent having the property shown in the isothermal curve A approaches 0 as the temperature increases.
  • the adsorption amount of the adsorbent increases, and the adsorption amount is saturated at about 40 ° C.
  • the adsorbent having the property shown in the isothermal curve B has an adsorption amount of approximately 0 around 50 ° C., and the adsorption amount decreases as the temperature decreases. It increases, and the adsorption amount is saturated around about 38 ° C.
  • the temperature of the hot waste water is different between the entrance / exit side (for example, the entrance / exit 103) through which the warm wastewater flows and the entrance / exit side (for example, the entrance / exit 104) from which the warm waste water flows out.
  • the adsorbent contained in the adsorber is one type of the adsorbent having the property shown by the solid line curve A or the adsorbent having the property shown by the solid line curve B, the side into which the warm waste water flows is assumed.
  • the amount of water released or adsorbed by the adsorbent on the outflow side is reduced with respect to the adsorbent near the inlet / outlet of the gas.
  • the state of the adsorbent on the inflow side of the warm waste water is shown in FIG. 5 (55-30) in the period A explained in FIG. It is assumed that the state of the adsorbent on the outflow side is (50-30) shown in FIG.
  • the state of the adsorbent is the state on the cooling water inflow side (25-18) shown in FIG. 5, and the state of the adsorbent on the outflow side is shown in FIG. 30-18)
  • the difference between the amount of water released by the adsorbent or the amount of water adsorbed is D1 shown below.
  • D1 Dqa + Dqb
  • Dqa represents the amount of water released or adsorbed by the adsorbent represented by the solid curve A when the adsorbent state (55-30) and state (30-18) are alternately repeated.
  • Dqb indicates the difference between the amount of water released or adsorbed by the adsorbent represented by the solid curve A when the adsorbent state (50-30) and state (25-18) are alternately repeated.
  • the adsorbent is composed of an adsorbent represented by a solid curve A and an adsorbent represented by a dotted curve B
  • the state of the adsorbent by warm drainage and the state of the adsorbent by cooling water are as described above. If it is the same, the difference between the amount of moisture released by the adsorbent or the amount of moisture adsorbed is D2 shown below.
  • D2 Dqa + Dqc
  • Dqc is the amount of water released or adsorbed by the adsorbent represented by the solid curve B when the adsorbent state (50-30) and state (25-18) are alternately repeated. Represents the difference.
  • the amount of water released or adsorbed by the adsorbent represented by the dotted curve B is the solid curve A Is greater than the amount of water released or adsorbed by the adsorbent. This is because the amount of water that can be contained in the adsorbent represented by the solid curve A does not change greatly in the low temperature region (relative vapor pressure is a high range).
  • the adsorber A1 (130) and the adsorber A2 (120) include the adsorber including the adsorbent represented by the solid curve A and the adsorber including the adsorbent represented by the dotted curve B. Then, the adsorber A1 (130) and the adsorber A2 (120) and the adsorber A2 (120) with respect to the amount of water that becomes water vapor in the adsorber including only the adsorbent represented by the solid curve A when the warm waste water flows. The amount of water that becomes water vapor increases.
  • the refrigerant desorption efficiency of the adsorber A1 (130) and the adsorber A2 (120) is improved. Further, since the heat of vaporization is taken away from the warm waste water, the temperature of the warm waste water flowing out from the adsorber A1 (130) and the adsorber A2 (120) is further lowered. Further, when the cooling water is flowing in, the adsorber A1 (130) and the adsorber A2 (120) are compared with the amount of water adsorbed in the adsorber including only the adsorbent represented by the solid curve A. Therefore, the amount of moisture adsorbed increases.
  • the temperature of the cooling water flowing out from the adsorber A1 (130) and the adsorber A2 (120) becomes higher.
  • the adsorber A1 (130) or the adsorber A2 (120) is connected to the evaporator 140, the amount of moisture adsorbed on the adsorber A1 (130) or the adsorber A2 (120) increases, and thus the evaporation In the vessel 140, the amount of water that becomes water vapor increases. As a result, the cold water passing through the evaporator 140 is further cooled, and the cold water having a further lowered temperature flows out of the evaporator 140.
  • FIG. 6 is a table showing the results of comparing the temperature changes of the cooling water and hot waste water passing through the adsorber in the specific example of the adsorption heat pump 100 of Example 1 and the comparative example.
  • a specific example of the adsorption heat pump 100 a commercially available heat exchanger is used as the adsorber A1A (130a) and the adsorber A2A (120a), and silica gel (for example, RD2060 manufactured by Fuji Silysia) is used as the adsorbent in the heat exchanger. It was used.
  • a commercially available heat exchanger was used as the adsorber A1B (130b) and the adsorber A2B (120b), and spherical activated carbon (for example, Kureha A-BAC_mp) was used as the adsorbent in the heat exchanger.
  • spherical activated carbon for example, Kureha A-BAC_mp
  • silica gel for example, RD2060 manufactured by Fuji Silysia
  • the temperature of cold water was 18 ° C.
  • the temperature of cooling water was 25 ° C.
  • the temperature of hot wastewater was 55 ° C.
  • the temperature of the cold water which flowed out of the evaporator 140 was 12 degreeC.
  • the temperature of the warm drainage was 48 ° C. when it flowed out, and 30 ° C. when the cooling water flowed out.
  • the temperature of the cold water was 18 ° C.
  • the temperature of the cooling water was 25 ° C.
  • the temperature of the hot waste water was 55 ° C.
  • the temperature of the cold water flowing out from the evaporator 140 was 15 ° C.
  • the temperature of the hot effluent was 51 ° C. when it flowed out and 28 ° C. when the cooling water flowed out.
  • FIGS. 7A and 7B are diagrams showing the adsorbers 230 and 330 in the adsorption heat pump according to the second embodiment.
  • coolant circulation piping 131,132, the evaporator 140, and the entrances 101 and 102 are shown.
  • the condenser 110, the evaporator 140, and the entrances 101 and 102 have the same functions as those described with reference to FIG.
  • the refrigerant circulation pipe 131 and the refrigerant circulation pipe 132 have the same functions as those described with reference to FIGS. 3A and 3B, and thus description thereof is omitted.
  • the adsorber A1 (230) in FIG. 7A adsorbs or absorbs a sealed container that is sealed by closing the on-off valve, a pipe that passes through the container and through which cooling water or warm drainage flows, and a refrigerant in the container. It includes a suction part A1C (230a) to be desorbed and a suction part A1D (230b).
  • the adsorbing part A1C (230a) and the adsorbing part A1D (230b) include an adsorbent that is in thermal contact with the pipe and adsorbs or desorbs the refrigerant in the container.
  • the above-mentioned pipe is a continuous continuous pipe having an entrance 101 and an entrance 102.
  • the adsorbing part A1C (230a) is arranged on the inlet / outlet 101 side of the pipe, and the adsorbing part A1D (230b) is arranged on the inlet / outlet 102 side of the pipe and arranged in series.
  • the nature of the adsorbent contained in the adsorbing part A1C (230a) is the adsorbent shown in the isotherm A in FIG. 5, and the nature of the adsorbent contained in the adsorbing part A1D (230b) is shown in the isotherm B in FIG. The adsorbent shown. Comparing the adsorber A1 (230) of FIG. 7A and the adsorber A1 (130) of FIG.
  • the adsorber A2 (220) in FIG. 7B adsorbs or absorbs a sealed container that is sealed by closing the on-off valve, a pipe that passes through the container and through which cooling water or warm drainage flows, and a refrigerant in the container. It includes an adsorbing part A2C (220a) to be desorbed and an adsorbing part A2D (220b).
  • the adsorbing part A2C (220a) and the adsorbing part A2D (220b) include an adsorbent that is in thermal contact with the pipe and adsorbs or desorbs the refrigerant in the container.
  • the pipe is a continuous pipe having an entrance 103 and an entrance 104.
  • the adsorption part A2C (220a) is arranged on the side of the inlet / outlet 103 of the pipe, and the adsorption part A2D (220b) is arranged on the side of the inlet / outlet 104 of the pipe and arranged in series.
  • the nature of the adsorbent contained in the adsorbing part A2C (220a) is the adsorbent shown in the isotherm A of FIG. 5, and the nature of the adsorbent contained in the adsorbing part A2D (220b) is the adsorbent shown in the isotherm B. It is. Comparing the adsorber A2 (220) of FIG. 7B and the adsorber A2 (120) of FIG.
  • the adsorption heat pump of the second embodiment has the same components as the adsorption heat pump of the first embodiment except for the adsorber A1 (230) and the adsorber A2 (220). Then, compared with the adsorber including only the adsorbent represented by the solid curve A, the adsorber refrigerant desorption efficiency is improved in the adsorber A1 (230) and the adsorber A2 (220). As a result, there is an effect of improving the performance of the adsorption heat pump of Example 2 using the adsorber A1 (230) and the adsorber A2 (220).
  • FIG. 8 is a view showing an adsorber 300 used in the adsorption heat pump according to the third embodiment.
  • the adsorber 300 includes an adsorbing unit 311, an adsorbing unit 312, an adsorbing unit 313, an adsorbent 314, an adsorbent 315, an adsorbent 316, a through pipe 320, an inlet / outlet pipe 321, an inlet / outlet pipe 322, and a container 323.
  • the vessel 323 is provided with a tube connected to the condenser and a tube connected to the evaporator. Valves are arranged on the pipe connected to the condenser and the pipe connected to the evaporator. By opening and closing the valve, the container 323 and the condenser or the container 323 and the evaporator are integrated to form a sealed space. To do. Further, the container 323 includes an adsorption unit 311, an adsorption unit 312, and an adsorption unit 313. An adsorbent 314 that is filled between the through pipes 320 and that is in thermal contact with the through pipes 320 is disposed in the adsorption unit 311.
  • An adsorbent 315 that is filled between the through pipes 320 and that is in thermal contact with the through pipes 320 is disposed in the adsorption unit 312.
  • An adsorbent 316 that is filled between the through pipes 320 and that is in thermal contact with the through pipes 320 is disposed in the adsorption unit 313. That is, the adsorbent 314, the adsorbent 315, and the adsorbent 316 are arranged in series with respect to the through pipe 320. Further, the suction part 311, the suction part 312, and the suction part 313 are also arranged in series with respect to the through pipe 320.
  • the adsorbent 314, the adsorbent 315, and the adsorbent 316 are compared in the relative vapor pressure range in which the adsorption amount changes, the adsorbent 314, the adsorbent 315, and the adsorbent 316 increase in this order.
  • the through pipe 320 includes a plurality of pipes arranged in parallel and a portion where the plurality of pipes are bundled at the end, and is connected to the inlet / outlet pipes 321 and 322 at the end of the through pipe 320.
  • Warm drainage or cooling water flows through the through-pipe 320, but the direction in which the warm drainage and cooling water flows is determined so that the temperature of the water flowing through the inlet / outlet 321 increases.
  • warm wastewater flows from the entrance / exit 321 toward the entrance / exit 322.
  • the temperature of the warm drainage is high near the entrance / exit 321, but the temperature of the warm drainage decreases near the entrance / exit 322.
  • the adsorption heat pump of Example 3 is the same as the adsorption heat pump of Example 1 except for the adsorbers A1 (130) and A2 (120). Therefore, the adsorption heat pump according to the third embodiment includes an adsorber 300 instead of the adsorber A1 (130) and the adsorber A2 (120).
  • the adsorbent in the range where the relative vapor pressure where the adsorption amount changes is low and the adsorbent in the high range are mixed with warm drainage or cooling water.
  • the pipe is placed in series from the inlet to the outlet, the refrigerant desorption efficiency in the adsorber is increased even when the temperature of the warm drainage is decreased or the temperature of the cooling water is increased in the adsorber.
  • the adsorption heat pump of the third embodiment when the relative vapor pressure range in which the adsorption amount changes in the adsorber 300, the adsorbent 314, the adsorbent 315, and the adsorbent 316 increase in this order.
  • coolant desorption efficiency of the adsorber 300 will improve from the viewpoint of the range of the relative vapor pressure from which adsorption amount changes compared with the adsorber containing only 1 type of adsorbent. As a result, there is an effect that the performance of the adsorption heat pump of the third embodiment using the adsorber 300 is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

【課題】 吸着器における冷媒脱着効率を向上させることが可能な構造を有する吸着器及びその吸着器を含む吸着式ヒートパイプを提供する。 【解決手段】 冷媒の吸着又は脱着を行う第1吸着剤と、第1吸着剤と前記冷媒の吸着又は脱着を行う蒸気圧条件又は温度条件が異なる第2吸着剤と、第1吸着剤及び前記第2吸着剤が格納され、密閉可能な容器と、容器を貫通し、第1吸着剤及び第2吸着剤のいずれとも熱的に接触する水路管と、を備え、第1吸着剤と第2吸着剤は、水路管に沿って異なる位置に配置されていることを特徴とする吸着器。

Description

吸着器及び吸着式ヒートポンプ
 本発明は、吸着器及び吸着式ヒートポンプに関する。
 吸着式ヒートポンプは、一般に、吸着剤によって水等の冷媒を吸着及び脱着する吸着器、吸着器における吸着操作に伴って冷媒の蒸発により冷熱を生成する蒸発器、及び、吸着器で脱着された吸着された冷媒の蒸気を凝縮させて蒸発器に供給する凝縮器とを含み、吸着器、蒸発器、及び、凝縮器は冷媒循環配管にそって直列に配置されている。
 ここで、冷媒を吸着剤から脱着する際に、吸着器において使用される温水の例として、85℃~90℃の自動車エンジンの冷却水、60℃から80℃の高分子型燃料電池の熱排水、60℃から80℃のコジェネレーション機器の熱排水がある。
 一方、冷媒を吸着剤に吸着する際に、吸着器において使用される冷却水の例として、30℃~40℃の自動車のラジエーターに用いられる冷却水、25℃~35℃のビルの水冷用の水や河川水がある。
 そうすると、吸着式ヒートポンプの動作に関連する温度範囲及び吸着器内の蒸気圧において、冷媒に対する吸着特性が高い吸着剤を選択すると、吸着式ヒートポンプの性能が向上することが期待される。
 そこで、吸着器において使用される温水と、冷却水との温度差が小さいときにも冷媒吸収効率のよい吸着剤を含む吸着式ヒートポンプが提案された(特許文献1)。
 また、有効に冷媒の脱着が行われる温度範囲及び吸着器内の蒸気圧の範囲が異なる、吸着剤をふくむ、複数の吸着器を、冷媒循環配管に対して並列に配置しておき、吸着式ヒートポンプの操作温度範囲に応じて、吸着器を選択する機能を持つ吸着式ヒートポンプが提案された(特許文献2)。
 ここで、吸着式ヒートポンプの吸着器内において、貫通する配管を流れる温水又は冷却水の温度は、配管の入口付近と出口付近では異なる。吸着剤により、温水は徐々に冷やされ、冷却水は徐々に温められるからである。
 そうすると、吸着器内の吸着剤の一部において、高い吸着特性を保てない場合があり、吸着剤に応じた吸着器本来の冷媒吸収効率が得られないことが想定される。
特開2005-205331号公報 特開2009-180405号公報
 吸着器における冷媒脱着効率を向上させることが可能な構造を有する吸着器及びその吸着器を含む吸着式ヒートパイプを提供する。
 冷媒の吸着量の下限値と、冷媒の吸着量の上限値とに対応する冷媒の蒸気圧条件及び温度条件が異なる2以上の吸着剤と、前記吸着剤のいずれかを含み、冷媒を封入可能な容器と、前記容器を貫通し、前記2以上の吸着剤のいずれとも熱的に接触するとともに、水路として機能する水路管と、を備えることを特徴とする吸着器。
 脱着器における冷媒脱着効率を向上させることが可能な構造を有する脱着器及びその脱着器を含む吸着式ヒートパイプを提供する。
図1は吸着式ヒートポンプ100及びその吸着式ヒートポンプ100に付属する流体供給機構1について示す図である。 図2は、期間Aにおける吸着式ヒートポンプ100の動作状態を表す図である。 図3A、図3Bは実施例1の吸着器A1(130)及び吸着器A2(120)の構成及び期間Aにおける温排水及び冷却水が流れ方向を示す図である。 図4A、図4Bは実施例1の吸着器A1(130)及び吸着器A2(120)の構成及び期間Bにおける温排水及び冷却水が流れ方向を示す図である。 図5は吸着器A1(130)、吸着器A2(120)に含まれる吸着剤の冷媒吸着等温線についてのグラフを示す。 図6は実施例1の吸着式ヒートポンプ100についての具体例と、比較例と、において吸着器を通過する、冷却水及び温排水の温度変化を比較した結果を示す表である。 図7A、図7Bは、実施例2の吸着式ヒートポンプにおける吸着器230、220について示す図である。 図8は実施例3の吸着式ヒートポンプにおいて使用される吸着器300を示す図である。
 本発明は、以下に説明する実施例に対し、当業者が想到可能な、設計上の変更が加えられたもの、及び、実施例に現れた構成要素の組み換えが行われたものも含む。また、本発明は、その構成要素が同一の作用効果を及ぼす他の構成要素へ置き換えられたもの等も含み、以下の実施例に限定されない。
 図1は吸着式ヒートポンプ100及びその吸着式ヒートポンプ100に付属する流体供給機構1について示す図である。吸着式ヒートポンプ100は、凝縮器110、吸着器A2(120)、吸着器A3(130)、蒸発器140、冷媒循環配管150を含む。また、流体供給機構1及びバルブ制御部2は、吸着式ヒートポンプに付属し、吸着式ヒートポンプのヒートポンプ動作を制御する機構である。吸着式ヒートポンプ100に含まれる上記要素それぞれについて、図2を用いて説明する。
 図1に示す流体供給機構1は、ポンプ10、20、配管切替30、40、50、60、及び、流体配管を含む。流体配管中を流れる流体はポンプ10、20により駆動される。また、流体が流れる方向も、ポンプ10、20により切替られる。
 配管切替30の入口はポンプ出入口11と接続し、配管切替30の上出口、下出口はそれぞれ、吸着式ヒートポンプ100の出入口101、103に接続する。
 配管切替40の入口はポンプ出入口21と接続し、配管切替40の上出口、下出口はそれぞれ、吸着式ヒートポンプ100の出入口101、103に接続する。
 配管切替50の入口は吸着式ヒートポンプ出入口102と接続し、配管切替50の上出口、下出口はそれぞれ、ポンプ10の出入口12、ポンプ20の出入口22に接続する。
 配管切替60の入口は吸着式ヒートポンプ出入口104と接続し、配管切替60の上出口、下出口はそれぞれ、ポンプ10の出入口12、ポンプ20の出入口22に接続する。
 バルブ制御部2は、冷媒循環配管150内に配置された、4つの開閉バルブの開閉を制御する制御部である。そして、バルブ制御部2は、開閉バルブの制御により、期間Aにおいて、凝縮器110と吸着器A2(120)間の冷媒循環配管150を開放し、蒸発器140と吸着器A2(120)間の冷媒循環配管150を閉鎖する。また、凝縮器110と吸着器A1(130)間の冷媒循環配管150を閉鎖し、蒸発器140と吸着器A1(130)間の冷媒循環配管150を開放する。
 バルブ制御部2は、開閉バルブの制御により、期間Bにおいて、凝縮器110と吸着器A2(120)間の冷媒循環配管150を閉鎖し、蒸発器140と吸着器A2(120)間の冷媒循環配管150を開放する。また、凝縮器110と吸着器A1(130)間の冷媒循環配管150を開放し、蒸発器140と吸着器A1(130)間の冷媒循環配管150を閉鎖する。
 ポンプ10は吸着式ヒートポンプ100へ温排水を排出し、吸着式ヒートポンプ100により冷やされた温排水を吸入するポンプである。ポンプ10は、温排水の排出口を出入口11とし、吸入口を出入口12とすること、及び、温排水の排出口を出入口12とし、吸入口を出入口11とすること、を切り替える機能を有する。
 ポンプ20は吸着式ヒートポンプ100へ冷却水を排出し、吸着式ヒートポンプ100により冷やされた冷却水を吸入するポンプである。ポンプ20は、冷却水の排出口を出入口21とし、吸入口を出入口22とすること、及び、冷却水の排出口を出入口22とし、吸入口を21とすること、を切り替える機能を有する。
 以上より、流体配管とポンプ10、20は、次に説明する期間A、Bを吸着式ヒートポンプ100に交互に設けさせる機能を有する。
 期間Aは吸着式ヒートポンプ100の出入口103、104から温排水を流入及び排水させ、出入口102、101から冷却水を流入及び排水させる期間である。なお、温排水は出入口103から出入口104の向きに流れるが、冷却水は出入口102から出入口101の向きに流れる。温排水、冷却水の流入方向を上記のようにする理由は図3Aを用いて説明する。
 期間Bは吸着式ヒートポンプ100の出入口101、102から温排水を流入及び排水させ、出入口104、103から冷却水を流入及び排水させる期間である。なお、温排水は出入口101から出入口102の向きに流れるが、冷却水は出入口104から出入口103の向きに流れる。温排水、冷却水の流入方向を上記のようにする理由は図3Bを用いて説明する。
 なお、上記では、温排水、冷却水の流入方向を逆転させるために、ポンプ10、20によって行うこととしたが、吸着式ヒートポンプ100において、吸着器120、130の向きを替えることによって、温排水、冷却水の流入方向を替えてもよい。
 図2は、期間Aにおける吸着式ヒートポンプ100の動作状態を表す図である。吸着式ヒートポンプ100は凝縮器110、吸着器A2(120)、吸着器A1(130)、蒸発器140、冷媒循環配管121、122、131、132、開閉バルブ123、124、133、134を含む。
 凝縮器110に対して冷却水が流入し、凝縮器110から冷却水が流出する。凝縮器110において、期間A、Bによらず、冷却水の流入、流出方向は、同一である。
 蒸発器140に対して冷水が流入し、蒸発器140から冷水が冷やされて冷水が流出する。蒸発器140において、期間A、Bによらず、冷却水の流入方向、冷水の流出方向は、同一である。
 吸着器A2(120)は、密閉容器と、密閉容器を貫通し、出入口103と出入口104とに接続する貫通水路を含む。また、吸着器A2(120)は、冷媒の吸着量の下限値と、冷媒の吸着量の上限値とに対応する冷媒の蒸気圧条件及び温度条件が異なる2種類以上の吸着剤を含む。それらの吸着剤はいずれも、貫通水路に接触し、貫通水路にそって出入口103から出入口104に向けて直列に配置されている。
 ここで、図5において説明する、冷媒の吸着量に対応する相対蒸気圧の条件を、冷媒の吸着量の下限値と、冷媒の吸着量の上限値とに対応する冷媒の蒸気圧条件及び温度条件に対応させたとする。そうすると、上記の吸着剤は、冷媒の吸着量の下限値に対応する相対蒸気圧と、冷媒の吸着量の上限値に対応する相対蒸気圧とにより特定される範囲内において、吸着量が変化する性質を有することになる。
 そこで、相対蒸気圧が低い範囲において、吸着量が変化する性質を有する吸着剤は出入口103側に配置され、相対蒸気圧において吸着量が変化する範囲が上記吸着剤より高い範囲にある吸着剤は出入口104側に配置される。複数種類の吸着剤を並べる場合、相対蒸気圧において吸着量が変化する範囲が低い吸着剤程出入口103側に配置され、吸着量が変化する範囲が高い吸着剤程出入口104側に配置される。
 期間Aにおいて、吸着器A2(120)の貫通水路に対して、温排水は吸着式ヒートポンプ100の出入口103から流入し、出入口104から流出する。吸着器A2(120)は、期間Aにおいて、温排水を受けて、冷媒である水蒸気を脱着する。その結果、出入口103における温排水の温度は、出入口104に向け、徐々に低下する。
 期間Aにおいて、吸着器A2(120)と凝縮器110とは冷媒循環配管121で接続されており、開閉バルブ123は開放状態である。一方、吸着器A2(120)と蒸発器140を接続する冷媒循環配管122中の開閉バルブ124は閉じた状態である。すなわち、吸着器A2(120)と、凝縮器110と、冷媒循環配管121とは密閉空間を構成している。
 上記密閉空間内において、吸着器A2(120)で脱着された水蒸気125は凝縮器110へ移動し、水に相変化する。上記密閉空間の蒸気圧は、期間Aの当初において、吸着器A2(120)に対する温排水の流入により脱着される水蒸気によって、吸着器A2(120)内の温度に対する飽和水蒸気圧と等しくなる。その後、吸着器A2(120)からの水蒸気の供給がなくなると、凝縮器110において水蒸気は水に変化するので、密閉空間内の気圧は、凝縮器110の温度に応じて決定される液相-気相平衡状態の気圧となる。
 吸着器A1(130)は、密閉容器と、密閉容器を貫通し、出入口101と出入口102とに接続する貫通水路を含む。また、吸着器A1(130)は、冷媒の吸着量の下限値と、冷媒の吸着量の上限値とに対応する冷媒の蒸気圧条件及び温度条件が異なる2種類以上の吸着剤を含む。それらの吸着剤は、貫通水路に接触し、貫通水路にそって出入口101から出入口102向けて直列に配置されている。
 ここで、図5において説明する、冷媒の吸着量に対応する相対蒸気圧の条件を、冷媒の吸着量の下限値と、冷媒の吸着量の上限値とに対応する冷媒の蒸気圧条件及び温度条件に対応させたとする。そうすると、上記の吸着剤は、冷媒の吸着量の下限値に対応する相対蒸気圧と、冷媒の吸着量の上限値に対応する相対蒸気圧とにより特定される範囲内において、吸着量が変化する性質を有することになる。
 そこで、相対蒸気圧が低い範囲において、吸着量が変化する性質を有する吸着剤は出入口101側に配置され、相対蒸気圧において吸着量が変化する範囲が上記吸着剤より高い範囲にある吸着剤は出入口102側に配置される。複数種類の吸着剤を並べる場合、相対蒸気圧において吸着量が変化する領域が高い吸着剤程出入口102側に配置され、吸着量が変化する領域が低い吸着剤程出入口101側に配置される。
 期間Aにおいて、吸着器A1(130)の貫通水路に対して、冷却水は吸着式ヒートポンプ100の出入口102から流入し、出入口101から流出する。吸着器A1(130)は、期間Aにおいて、冷却水を受けて、冷媒である水蒸気を吸着する。その結果、出入口102における冷却水の温度は、出入口101に向けて、徐々に上昇する。
 期間Aにおいて、吸着器A1(130)と蒸発器140とは冷媒循環配管131で接続されており、開閉バルブ133は開放状態である。一方、吸着器A1(130)と凝縮器110を接続する冷媒循環配管132中の開閉バルブ134は閉じた状態である。すなわち、吸着器A1(130)と、蒸発器140と、冷媒循環配管131とは密閉空間を構成している。
 上記密閉空間内において、吸着器A1(130)で吸着される水蒸気135は蒸発器140において、水から水蒸気に相変化したものである。上記密閉空間の蒸気圧は、期間Aの当初において、吸着器A1(130)に対する冷却水の流入により、水蒸気が吸着されるため、吸着器A1(130)内の温度に対する飽和水蒸気圧から低下する。その後、吸着器A1(130)において水蒸気の吸着がなくなると、蒸発器140において水から水蒸気に変化するので、密閉空間内の気圧は、蒸発器140の温度に応じて決定される液相-気相平衡状態の気圧となる。なお、期間Aにおいて、水は凝縮器110から蒸発器140へ配管111を通じて供給される。
 なお、期間Bにおいて、吸着器A1(130)に出入口101から出入口102に向けて温排水が流れる。また、吸着器A1(130)は凝縮器110及び冷媒循環配管132とともに閉空間を形成する。その際、開閉バルブ134は開放状態であり、開閉バルブ133は閉じた状態となる。期間Bにおける吸着器A1(130)、凝縮器110及び冷媒循環配管132からなる閉空間の蒸気圧の変化は、期間Aにおける、吸着器A2(120)、凝縮器110及び冷媒循環配管121からなる閉空間の蒸気圧の変化と同様なものとなる。
 一方、期間Bにおいて、吸着器A2(120)に出入口104から出入口103に向けて冷却水が流れる。また、吸着器A2(120)は蒸発器140及び冷媒循環配管122とともに閉空間を形成する。その際、開閉バルブ124は開放状態であり、開閉バルブ123は閉じた状態となる。期間Bにおける吸着器A2(120)、蒸発器140及び冷媒循環配管122からなる閉空間の蒸気圧の変化は、期間Aにおける、吸着器A1(130)、蒸発器140及び冷媒循環配管131からなる閉空間の蒸気圧の変化と同様なものとなる。
 図3A、図3Bは実施例1の吸着器A1(130)及び吸着器A2(120)の構成及び期間Aにおける温排水及び冷却水が流れ方向を示す図である。
 図3Aにおいて、凝縮器110、冷媒循環配管131、132、蒸発器140、出入口101、102を示す。凝縮器110、蒸発器140、出入口101、102については図2において説明したものと同一機能を有するものであるため、説明を省略する。
 冷媒循環配管131は、吸着器A1A(130a)と蒸発器140を接続する配管と、その配管内にあって配管を開閉する開閉バルブと、吸着器A1B(130b)と蒸発器140を接続する配管と、その配管内にあって配管を開閉する開閉バルブとからなる。
 冷媒循環配管132は、吸着器A1A(130a)と凝縮器110を接続する配管と、その配管内にあって配管を開閉する開閉バルブと、吸着器A1B(130b)と凝縮器110を接続する配管と、その配管内にあって配管を開閉する開閉バルブとからなる。
 図3Aにおける、吸着器A1(130)は、吸着器A1A(130a)と、吸着器A1B(130b)とを含む。
 吸着器A1A(130a)は、開閉バルブが閉じられることにより密閉される密閉容器と、その容器を貫通し、冷却水又は温排水が流れる管と、その管に熱的に接触し、上記容器内の冷媒を吸着又は脱着する吸着剤を含む。吸着器A1B(130b)は吸着器A1A(130a)と同様な構成要素を含む。吸着器A1A(130a)の管と、吸着器A1B(130b)の管とは、出入口101、出入口102を有する連続した一つながりの管である。吸着器A1A(130a)は管の出入口101側に配置され、吸着器A1B(130b)は管の出入口102側に配置されている。
 なお、図2に記載の期間Aにおいては冷却水が出入口102から注入され、出入口101から排出される。吸着剤が水分吸着により温まるため、冷却水の温度は出入口102から出入口101に向けて上昇する。すなわち、出入口102での冷却水の温度をTz、吸着器A1B(130b)と吸着器A1A(130a)の間における冷却水の温度をTy、出入口101での冷却水の温度をTxとすると、Tx>Ty>Tzとなる。
 吸着器A1A(130a)は吸着量が変化する相対蒸気圧の範囲が低い範囲にある吸着剤を有する。吸着器A1A(130a)の吸着量が変化する相対蒸気圧の範囲は例えば0から0.48である。吸着器A1B(130b)は吸着量が変化する相対蒸気圧の範囲が高い範囲にある吸着剤有する。吸着器A1B(130b)の吸着量が変化する相対蒸気圧の範囲は吸着剤は例えば0.37から0.58である。なお、吸着器A1A(130a)と、吸着器A1B(130b)の吸着量が変化する相対蒸気圧の範囲について、図5を用いて後に詳細に説明する。
 図3Bにおいて、凝縮器110、冷媒循環配管131、132、蒸発器140、出入口103、104を示す。凝縮器110、蒸発器140、出入口103、104については図2において説明したものと同一機能を有するものであるため、説明を省略する。
 冷媒循環配管122は、吸着器A2A(120a)と蒸発器140を接続する配管と、その配管内にあって配管を開閉する開閉バルブと、吸着器A2B(120b)と蒸発器140を接続する配管と、その配管内にあって配管を開閉する開閉バルブとからなる。
 冷媒循環配管121は、吸着器A2A(120a)と凝縮器110を接続する配管と、その配管内にあって配管を開閉する開閉バルブと、吸着器A2B(120b)と凝縮器110を接続する配管と、その配管内にあって配管を開閉する開閉バルブとからなる。
 図3Bにおける、吸着器A2(120)は、吸着器A2A(120a)と、吸着器A2B(120b)とを含む。
 吸着器A2A(120a)は、開閉バルブが閉じられることにより密閉される密閉容器と、その容器を貫通し、冷却水又は温排水が流れる管と、その管に熱的に接触し、上記容器内の冷媒を吸着又は脱着する吸着剤を含む。吸着器A2B(120b)は吸着器A2A(120a)と同様な構成要素を含む。吸着器A2A(120a)の管と、吸着器A2B(120b)の管とは、出入口103、出入口104を有する連続した一つながりの管である。吸着器A2A(120a)は管の出入口103側に配置され、吸着器A2B(120b)は管の出入口104側に配置されている。
 なお、図2に記載の期間Aにおいては温排水が出入口103から注入され、出入口104から排出される。吸着剤が水分蒸発により冷やされるため、温排水の温度は出入口103から出入口104に向けて低下する。すなわち、出入口103での温排水の温度をTa、吸着器A2B(120b)と吸着器A2A(120a)の間における温排水の温度をTb、出入口104での冷却水の温度をTcとすると、Ta>Tb>Tcとなる。
 吸着器A2A(120a)は吸着量が変化する相対蒸気圧の範囲が低い範囲にある吸着剤を有する。吸着器A2A(120a)の吸着剤の冷媒脱着温度領域は例えば0から0.48である。吸着器A2B(120b)は吸着量が変化する相対蒸気圧の範囲が高い範囲にある吸着剤を有する。吸着器A1B(120b)の吸着量が変化する相対蒸気圧の範囲は例えば0.37から0.58である。なお、吸着器A2A(120a)と、吸着器A2B(120b)の吸着量が変化する相対蒸気圧の範囲について、図5を用いて後に詳細に説明する。
 図4A、図4Bは実施例1の吸着器A1(130)及び吸着器A2(120)の構成及び期間Bにおける温排水及び冷却水が流れ方向を示す図である。図4A、図4Bにおける、実施例1の吸着器A1(130)及び吸着器A2(120)の構成は、図3A、図3Bは実施例1の吸着器A1(130)及び吸着器A2(120)の構成と同様であるため、説明を省略する。
 図4Aを参照すると、実施例1の吸着器A1(130)に対して、図2に記載の期間Bにおいては温排水が出入口101から注入され、出入口102から排出される。そうすると、吸着剤が水分蒸発により冷やされるため、温排水の温度は出入口101から出入口102に向けて低下する。すなわち、出入口102での温排水の温度をTz、吸着器A1B(130b)と吸着器A1A(130a)の間における温排水の温度をTy、出入口101での温排水の温度をTxとすると、Tx>Ty>Tzとなる。
 図4Bを参照すると、実施例1の吸着器A2(120)に対して、図2に記載の期間Bにおいては冷却水が出入口104から注入され、出入口103から排出される。そうすると、吸着剤が水分吸着により温まるため、冷却水の温度は出入口104から出入口103に向けて上昇する。すなわち、出入口104での冷却水の温度をTc、吸着器A2B(120b)と吸着器A2A(120a)の間における冷却水の温度をTb、出入口103での冷却水の温度をTaとすると、Ta>Tb>Tcとなる。
 図5は吸着器A1(130)、吸着器A2(120)に含まれる吸着剤の冷媒吸着等温線についてのグラフを示す。
 図5に示すグラフにおいて、横軸は相対蒸気圧を示し、縦軸は水分吸着量を示す。ここで、相対蒸気圧とは、吸着平衡圧と、飽和蒸気圧との比をいう。また、吸着平衡圧とは、冷媒の吸着の進行が止まった状態の気圧をいい、以下で説明するように凝縮器内の温度により決定される。さらに、飽和蒸気圧とは、吸着器内の温度における冷媒の飽和蒸気圧をいう。すなわち、相対蒸気圧は、以下の式で表される。
 相対蒸気圧=吸着平衡圧/飽和蒸気圧
 例えば、吸着器A1(120)と凝縮器110とが密閉空間を構成する場合において、さらに、吸着器A1(120)を貫通する管に55℃の温排水が流れ、凝縮器110には30℃の冷却水が流されているとする場合に相対蒸気圧を求めると、以下のようになる。まず、凝縮器110においては気相-液相平衡状態にあり、凝縮器110内の蒸気圧は約42hPaである。一方、吸着器A1(120)の容器内の蒸気圧は温排水が流れ始めると、吸着剤から水分が供給され、55℃における水の飽和蒸気圧約157hPaとなる。その後、水分の脱着がある程度進むと、水分の供給がほぼなくなり、吸着器A1(120)の容器内において、凝縮器110内の蒸気圧とほぼ等しい圧力となり、吸着平衡状態が実現する。従って、上記の状態に対応する相対蒸気圧は、図5のグラフ中では(55-30)と表される線と、X軸が交わる箇所の数値となり、約(42hPa/150hPa=0.27)となる。
 実線曲線Aは、吸着量が変化する相対蒸気圧の範囲が低い吸着剤に対する等温曲線を示す。一方、実線曲線Bは、吸着量変化する相対蒸気圧の範囲が高い吸着剤に対する等温曲線を示す。
 等温曲線とは、相対蒸気圧に対する吸着剤の水分吸着量を示す曲線である。ここで、相対蒸気圧は、吸着器中の吸着剤の温度と、吸着器の容器に連結する蒸発器140又は凝縮器110の温度との差に関連することは上記において説明した通りである。従って、蒸発器140又は凝縮器110の温度が一定であれば、吸着器中の吸着剤の温度が高くなるほど、その吸着器における相対蒸気圧は、X軸上、左側(値が低い側)の相対蒸気圧となる。また、相対蒸気圧が異なる状態に吸着器の容器内の状態が移行した場合、等温曲線上の2点間の水分吸着量の差が、吸着剤から放出される又は吸着剤に吸収される水分量となる。
 従って、凝縮器110又は蒸発器140の温度が一定であった場合、等温曲線Aに示す性質を有する吸着剤は、温度が高くなるほど、吸着量は0に近づく。そして温度が低くなるに従い、吸着剤の吸着量は増加し、約40℃近辺において吸着量が飽和する。
 また、凝縮器110又は蒸発器140の温度が一定であった場合、等温曲線Bに示す性質を有する吸着剤は、約50℃近辺で吸着量はほぼ0になり、温度が低くなると吸着量が増加し、約38℃近辺において吸着量が飽和する。
 ここで、温排水が流入する出入口側(例えば出入口103)と、温排水が流出する出入口側(例えば出入口104)とでは温排水の温度は異なる。
 そうすると、吸着器中に含まれる吸着剤が、実線曲線Aで示す性質を有する吸着剤または、実線曲線Bで示す性質を有する吸着剤の内、1種類であるとすると、温排水が流入する側の出入口近くの吸着剤に対して、流出する側の吸着剤による、吸着剤が放出する水分量又は吸着する水分量が減少する。
 吸着剤がすべて実線曲線Aで表される吸着剤である場合であって、図2で説明した期間Aにおいて、温排水の流入側の吸着剤の状態が図5に示す(55-30)であり、流出側の吸着剤の状態が図5に示す(50-30)であったとする。そして、図2で説明した期間Bにおいて、吸着剤の状態が、冷却水の流入側の状態が図5に示す(25-18)であり、流出側の吸着剤の状態が図5に示す(30-18)であったとすると、吸着剤が放出する水分量又は吸着する水分量の差は、以下に示すD1となる。
    D1=Dqa+Dqb
 上記の式において、Dqaは吸着剤の状態(55-30)と状態(30-18)とを交互に繰り返す場合に、実線曲線Aで表される吸着剤が放出する水分量又は吸着する水分量の差を表す。また、Dqbは吸着剤の状態(50-30)と状態(25-18)とを交互に繰り返す場合に、実線曲線Aで表される吸着剤が放出する水分量又は吸着する水分量の差を表す。
 一方、吸着剤が実線曲線Aで表される吸着剤と、点線曲線Bで表される吸着剤からなる場合であって、温排水による吸着剤の状態及び冷却水による吸着剤の状態が上記と同様であったとすると、吸着剤が放出する水分量又は吸着する水分量の差は、以下に示すD2となる。
    D2=Dqa+Dqc 
 上記の式において、Dqcは吸着剤の状態(50-30)と状態(25-18)とを交互に繰り返す場合に、実線曲線Bで表される吸着剤が放出する水分量又は吸着する水分量の差を表す。
 ここで、低温領域(相対蒸気圧でいうと高い範囲)において吸着剤の状態が変化する場合に、点線曲線Bで表される吸着剤の放出する水分量又は吸着する水分量は、実線曲線Aで表される吸着剤の放出する水分量又は吸着する水分量より大きい。実線曲線Aで表される吸着剤が含むことができる水分量は低温領域(相対蒸気圧でいうと高い範囲)では大きな変化がないからである。
 以上より、吸着器A1(130)及び吸着器A2(120)は、実線曲線Aで表される吸着剤を含む吸着器と、点線曲線Bで表される吸着剤を含む吸着器とを含む。そうすると、温排水が流入している際に、実線曲線Aで表される吸着剤のみを含む吸着器において水蒸気となる水分量に対して、吸着器A1(130)及び吸着器A2(120)おいて水蒸気となる水分量は多くなる。
 そうすると、実線曲線Aで表される吸着剤のみを含む吸着器に比較し、吸着器A1(130)及び吸着器A2(120)の冷媒脱着効率は向上することになる。
 また、気化熱が温排水から奪われるため、吸着器A1(130)及び吸着器A2(120)から流出する温排水の温度はより低下する。
 また、冷却水が流入している際に、実線曲線Aで表される吸着剤のみを含む吸着器において吸着される水分量に対して、吸着器A1(130)及び吸着器A2(120)おいて吸着される水分量は多くなる。従って、吸着熱が冷却水に流入するため、吸着器A1(130)及び吸着器A2(120)から流出する冷却水の温度はより高くなる。さらに、吸着器A1(130)又は吸着器A2(120)が蒸発器140に接続されている時には、吸着器A1(130)又は吸着器A2(120)に吸着される水分が多くなるので、蒸発器140において水蒸気となる水分量が増加する。その結果、蒸発器140を通過する冷水はより冷やされ、より温度が低下した冷水が蒸発器140より流出する。
 図6は実施例1の吸着式ヒートポンプ100についての具体例と、比較例と、において吸着器を通過する、冷却水及び温排水の温度変化を比較した結果を示す表である。
 吸着式ヒートポンプ100についての具体例において、吸着器A1A(130a)及び吸着器A2A(120a)として市販の熱交換器を使用し、その熱交換器において吸着剤としてシリカゲル(例えば、富士シリシア製RD2060)を使用した。また、吸着器A1B(130b)及び吸着器A2B(120b)として市販の熱交換器を使用し、その熱交換器において吸着剤として球状活性炭(例えば、クレハA-BAC_mp)を使用した。一方、比較例において、2つの市販の熱交換器のいずれにもシリカゲル(例えば、富士シリシア製RD2060)を使用した。
 実施例1の吸着式ヒートポンプ100において、冷水の温度は18℃であり、冷却水の温度は25℃であり、温排水の温度は55℃であった。また、蒸発器140から流出した冷水の温度は12℃であった。温排水の温度は流出するときは48℃であり、冷却水が流出する際には30℃であった。
 一方、比較例においても、冷水の温度は18℃であり、冷却水の温度は25℃であり、温排水の温度は55℃であった。また、蒸発器140から流出した冷水の温度は15℃であった。温排水の温度は流出するときは51℃であり、冷却水が流出する際には28℃であった。
 以上より、吸着器A1(130)及び吸着器A2(120)を使用した実施例1の吸着式ヒートポンプの性能が向上する効果があることがわかる。
 図7A、図7Bは、実施例2の吸着式ヒートポンプにおける吸着器230、330について示す図である。図7Aにおいて、凝縮器110、冷媒循環配管131、132、蒸発器140、出入口101、102を示す。凝縮器110、蒸発器140、出入口101、102については図2において説明したものと同一機能を有するものであるため、説明を省略する。冷媒循環配管131及び冷媒循環配管132については図3A、図3Bにおいて説明したものと同一機能を有するものであるため、説明を省略する。
 図7Aにおける、吸着器A1(230)は、開閉バルブが閉じられることにより密閉される密閉容器と、その容器を貫通し、冷却水又は温排水が流れる管と、上記容器内の冷媒を吸着又は脱着する吸着部A1C(230a)と、吸着部A1D(230b)とを含む。
 吸着部A1C(230a)及び吸着部A1D(230b)は、その管に熱的に接触し、上記容器内の冷媒を吸着又は脱着する吸着剤を含む。上記の管は、出入口101、出入口102を有する連続した一つながりの管である。吸着部A1C(230a)は管の出入口101側に配置され、吸着部A1D(230b)は管の出入口102側に配置され、直列的に配置されている。
 吸着部A1C(230a)に含まれる吸着剤の性質は、図5の等温線Aに示す吸着剤であり、吸着部A1D(230b)に含まれる吸着剤の性質は、図5の等温線Bに示す吸着剤である。
 図7Aの吸着器A1(230)と図3Aの吸着器A1(130)とを比較すると、密閉容器が一体となっているか、吸着剤の種類毎に容器が分割されているかの違いはある。しかし、図2で説明した期間Aにおいて、吸着器内部において、図5に示す(30-18)の状態となる部分と、(25-18)の状態となる部分があり、期間Bにおいて、吸着器内部において、(55-30)の状態となる部分と、(50-30)の状態となる部分が、図7Aの吸着器A1(230)及び図3Aの吸着器A1(130)のいずれにも存在することは同様である。
 図7Bにおける、吸着器A2(220)は、開閉バルブが閉じられることにより密閉される密閉容器と、その容器を貫通し、冷却水又は温排水が流れる管と、上記容器内の冷媒を吸着又は脱着する吸着部A2C(220a)と、吸着部A2D(220b)とを含む。
 吸着部A2C(220a)及び吸着部A2D(220b)は、その管に熱的に接触し、上記容器内の冷媒を吸着又は脱着する吸着剤を含む。上記の管は、出入口103、出入口104を有する連続した一つながりの管である。吸着部A2C(220a)は管の出入口103側に配置され、吸着部A2D(220b)は管の出入口104側に配置され、直列的に配置されている。
 吸着部A2C(220a)に含まれる吸着剤の性質は、図5の等温線Aに示す吸着剤であり、吸着部A2D(220b)に含まれる吸着剤の性質は、等温線Bに示す吸着剤である。
 図7Bの吸着器A2(220)と図3Bの吸着器A2(120)とを比較すると、密閉容器が一体となっているか、吸着剤の種類毎に容器が分割されているかの違いはある。しかし、図2で説明した期間Aにおいて、吸着器内部において、図5に示す(55-30)の状態となる部分と、(50-30)の状態となる部分があり、期間Bにおいて、吸着器内部において、(30-18)の状態となる部分と、(28-18)の状態となる部分が、図7Bの吸着器A2(220)と図3Bの吸着器A2(120)のいずれにも存在することは同様である。
 なお、実施例2の吸着式ヒートポンプは吸着器A1(230)、吸着器A2(220)を除き、実施例1の吸着式ヒートポンプと同様な構成要素を有する。
 そうすると、実線曲線Aで表される吸着剤のみを含む吸着器に比較し、吸着器A1(230)及び吸着器A2(220)において、吸着器の冷媒脱着効率は向上する。その結果、吸着器A1(230)及び吸着器A2(220)を使用した実施例2の吸着式ヒートポンプの性能が向上する効果がある。
 図8は実施例3の吸着式ヒートポンプにおいて使用される吸着器300を示す図である。吸着器300は、吸着部311、吸着部312、吸着部313、吸着剤314、吸着剤315、吸着剤316、貫通管320、出入口管321、出入口管322、及び、容器323を含む。
 容器323には凝縮器に接続する管、及び、蒸発器に接続する管がとりつけられている。凝縮器に接続する管、蒸発器に接続する管には、バルブが配置されており、バルブの開閉により、容器323と凝縮器、又は、容器323と蒸発器が一体となり、それぞれ密閉空間を形成する。また、容器323中には吸着部311、吸着部312、吸着部313が含まれる。
 吸着部311には、貫通管320の間に充填され、貫通管320に熱的に接触する吸着剤314が配置されている。
 吸着部312には、貫通管320の間に充填され、貫通管320に熱的に接触する吸着剤315が配置されている。
 吸着部313には、貫通管320の間に充填され、貫通管320に熱的に接触する吸着剤316が配置されている。
 すなわち、吸着剤314、吸着剤315、及び、吸着剤316は、貫通管320に対して直列に配置されている。また、吸着部311、吸着部312、及び、吸着部313も貫通管320に対して直列に配置されている。
 なお、吸着量が変化する相対蒸気圧の範囲について、吸着剤314、吸着剤315、吸着剤316を比較すると、吸着剤314、吸着剤315、吸着剤316の順に高くなる。
 貫通管320は、複数本の並列に配置された管と、複数の管を端において束ねる部分からなっており、貫通管320の端で出入口管321、322と接続している。貫通管320中には温排水又は冷却水が流れるが、出入口321側を流れる水の温度が高くなるように、温排水及び冷却水の流れる方向が決定される。
 例えば、温排水は、出入口321から出入口322に向け流される。その結果、温排水の温度は出入口321付近では高いが、出入口322付近では温排水の温度は低下する。吸着剤314、315、316に含まれる水分が吸着剤から脱着する際に気化熱として、貫通管320を流れる温排水から熱を奪うためである。
 一方、例えば、冷却水は出入口322から出入口321に向け流される。その結果、冷却水の温度は出入口322付近では低いが、出入口321付近では高くなる。吸着剤314、315、316に水分が吸着される際に発生する熱が貫通管320を流れる冷却水に吸収されるためである。
 実施例3の吸着式ヒートポンプは、吸着器A1(130)、吸着器A2(120)以外の構成要素については、実施例1の吸着式ヒートポンプと同様なものである。そこで、実施例3の吸着式ヒートポンプは、吸着器A1(130)、吸着器A2(120)に代えて、吸着器300を含む。
 ここで、図3を用いて説明したように、吸着器において、吸着量が変化する相対蒸気圧の範囲が低い範囲にある吸着剤と、高い範囲にある吸着剤を、温排水又は冷却水が通過する管に、入口から排出口にむけて直列に配置する場合、吸着器内において、温排水の温度が低下又は冷却水の温度が高くなる場合においても、吸着器内における冷媒脱着効率を高く維持することができることを説明した。
 実施例3の吸着式ヒートポンプにおいては、吸着器300において、吸着量が変化する相対蒸気圧の範囲を比較すると、吸着剤314、吸着剤315、吸着剤316の順に高くなる、3種類の吸着剤を含んでいる。
 そうすると、吸着量が変化する相対蒸気圧の範囲の観点から、1種類の吸着剤のみを含む吸着器に比較し、吸着器300の冷媒脱着効率は向上する。その結果、吸着器300を使用した実施例3の吸着式ヒートポンプの性能が向上する効果がある。
1 流体供給機構
2 バルブ制御部
10、20 ポンプ
30、40、50、60 配管切替
100 吸着式ヒートポンプ
110 凝縮器
120、220 吸着器A2
120a 吸着器A2A
102b 吸着器A2B
130、230 吸着器A1
130a 吸着器A1A
130b 吸着器A1B
140 蒸発器
150 冷媒循環配管

Claims (9)

  1.  冷媒の吸着又は脱着を行う第1吸着剤と、
     前記第1吸着剤と前記冷媒の吸着又は脱着を行う蒸気圧条件又は温度条件が異なる第2吸着剤と、
     前記第1吸着剤及び前記第2吸着剤が格納され、密閉可能な容器と、
     前記容器を貫通し、前記第1吸着剤及び前記第2吸着剤のいずれとも熱的に接触する水路管と、を備え、
     前記第1吸着剤と前記第2吸着剤は、前記水路管に沿って異なる位置に配置されていることを特徴とする吸着器。
  2.  前記第1吸着剤及び前記第2吸着剤に対する前記冷媒の吸着量の下限値、及び、前記冷媒の吸着量の上限値に対応する前記冷媒の蒸気圧条件及び温度条件を、相対蒸気圧の条件に対応させた場合に、
     前記第1吸着剤は、前記冷媒の吸着量が下限値に対応する相対蒸気圧と上限値に対応する相対蒸気圧により特定される第1範囲において吸着量が変化し、
     前記第2吸着剤は、前記冷媒の吸着量が下限値に対応する相対蒸気圧と上限値に対応する相対蒸気圧により特定される第2範囲において吸着量が変化するとともに、前記第1範囲及び前記第2範囲が異なる範囲であることを特徴とする請求項1記載の吸着器。
  3.  前記容器内において、前記第1吸着剤及び前記第2吸着剤が、前記水路管の入口から出口までの間において直列に配置されていることを特徴とする請求項2記載の吸着器。
  4.  冷媒の吸着又は脱着を行う第1吸着剤と、
     前記第1吸着剤と前記冷媒の吸着又は脱着を行う蒸気圧条件又は温度条件が異なる第2吸着剤と、
     前記第1吸着剤が格納され、密閉可能な第1容器と、
     前記第2吸着剤が格納され、密閉可能な第2容器と、
     前記第1容器と、前記第2容器とを貫通し、前記第1吸着剤及び前記第2吸着剤のいずれとも熱的に接触する水路管と、を備え、
     前記第1容器、及び、前記第2容器は前記水路管に対して、異なる位置において、直列に配置されていることを特徴とする吸着器。
  5.  前記吸着器は、さらに
     凝縮器と前記第1容器とに接続する第1冷媒循環配管及び前記第1冷媒循環配管の開閉を行う第1バルブと、
     蒸発器と前記第1容器とに接続する第2冷媒循環配管及び前記第2冷媒循環配管の開閉を行う第2バルブと、
     前記凝縮器と前記第2容器とに接続する第3冷媒循環配管及び前記第3冷媒循環配管の開閉を行う第3バルブと、
     前記蒸発器と前記第2容器とに接続する第4冷媒循環配管及び前記第4冷媒循環配管の開閉を行う第4バルブと、を備え
     前記第1吸着剤は、前記冷媒の吸着量の下限値に対応する蒸気圧条件及び温度条件と、前記冷媒の吸着量の上限値に対応する蒸気圧条件及び温度条件とにより特定される第1範囲において、冷媒の吸着量が変化し、
     前記第2吸着剤は、前記冷媒の吸着量の下限値に対応する蒸気圧条件及び温度条件と、前記冷媒の吸着量の上限値に対応する蒸気圧条件及び温度条件により特定される第2範囲において、冷媒の吸着量が変化し、前記第1範囲及び前記第2範囲が異なる範囲であることを特徴とする請求項4記載の吸着器。
  6.  前記冷媒の吸着量の下限値と、前記冷媒の吸着量の上限値とに対応する冷媒の蒸気圧条件及び温度条件を、吸着剤における冷媒の吸着量に対応する相対蒸気圧の条件に対応させた場合に、
     前記第1範囲に対応する相対蒸気圧の範囲より、前記第2範囲に対応する相対蒸気圧の範囲が低く、
     前記第1容器及び前記第2容器は、前記水路管に対して直列に配置されていることを特徴とする請求項5に記載の吸着器。
  7.  第1吸着器と、
     第2吸着器と、
     凝縮器と
     蒸発器と、を備え、
     前記第1吸着器及び前記第2吸着器は、請求項4に記載の吸着器であり、
     前記冷媒の吸着量の下限値と、前記冷媒の吸着量の上限値とに対応する冷媒の蒸気圧条件及び温度条件を、吸着剤における前記冷媒の吸着量に対応する相対蒸気圧の条件に対応させた場合に、
     前記第1範囲に対応する相対蒸気圧の範囲より、前記第2範囲に対応する相対蒸気圧の範囲が低く、
     前記第1吸着器中の前記第1容器及び第2容器は、前記第1吸着器中の水路管の入口から出口にかけて直列に配置されているとともに、
     前記第2吸着器中の前記第1容器及び第2容器は、前記第2吸着器中の水路管の入口から出口にかけて直列に配置されるていることを特徴とする吸着式ヒートポンプ。
  8.  前記第1期間において、前記第1冷媒循環配管は開放され、前記第2冷媒循環配管は閉鎖され、
     前記第2期間において、前記第1冷媒循環配管は閉鎖され、前記第2冷媒循環配管は開放され、
     前記第1期間において、前記第3冷媒循環配管は閉鎖され、前記第4冷媒循環配管は開放され、
     前記第2期間において、前記第3冷媒循環配管は開放され、前記第4冷媒循環配管は閉鎖されるように、第1バルブ、第2バルブ、第3バルブ、第4バルブを制御するバルブ制御部を、さらに備えることを特徴とする請求項7に記載の吸着式ヒートポンプ。
  9.  前記第1吸着器に温水を供給するとともに、前記第2吸着器に前記温水より温度が低い冷却水を供給する第1期間、
     前記第1吸着器に前記冷却水を供給するとともに、前記第2吸着器に前記温水を供給する第2期間を設定した場合に、
     前記第1期間において、前記温水を第1水路管の出口から入口に向け流すとともに、前記冷却水を第2水路管の入口から出口に向け流し、
     前記第2期間において、前記温水を第2水路管の出口から入口に向け流すとともに、前記冷却水を第1水路管の入口から出口に向け流す、温水及び冷却水供給部をさらに有する請求項7に記載の吸着式ヒートポンプ。
PCT/JP2011/000344 2011-01-24 2011-01-24 吸着器及び吸着式ヒートポンプ WO2012101666A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2011/000344 WO2012101666A1 (ja) 2011-01-24 2011-01-24 吸着器及び吸着式ヒートポンプ
EP11857366.6A EP2669603B1 (en) 2011-01-24 2011-01-24 Adsorber and adsorber-type heat pump
JP2012554474A JP5761205B2 (ja) 2011-01-24 2011-01-24 吸着器及び吸着式ヒートポンプ
US13/926,137 US9353978B2 (en) 2011-01-24 2013-06-25 Adsorber and adsorption heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/000344 WO2012101666A1 (ja) 2011-01-24 2011-01-24 吸着器及び吸着式ヒートポンプ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/926,137 Continuation US9353978B2 (en) 2011-01-24 2013-06-25 Adsorber and adsorption heat pump

Publications (1)

Publication Number Publication Date
WO2012101666A1 true WO2012101666A1 (ja) 2012-08-02

Family

ID=46580282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000344 WO2012101666A1 (ja) 2011-01-24 2011-01-24 吸着器及び吸着式ヒートポンプ

Country Status (4)

Country Link
US (1) US9353978B2 (ja)
EP (1) EP2669603B1 (ja)
JP (1) JP5761205B2 (ja)
WO (1) WO2012101666A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015183930A (ja) * 2014-03-24 2015-10-22 株式会社豊田中央研究所 吸着式ヒートポンプシステム及び冷熱生成方法
JP2016011821A (ja) * 2014-06-30 2016-01-21 株式会社豊田中央研究所 吸着式ヒートポンプシステム及び冷熱生成方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013013835B4 (de) * 2012-08-22 2017-05-18 Kabushiki Kaisha Toyota Chuo Kenkyusho Adsorptionswärmepumpensystem und Verfahren zur Erzeugung von Kühlleistung
DE102013226158A1 (de) * 2013-12-17 2015-06-18 Robert Bosch Gmbh Adsorptionskältemaschine, Anordnung und Kraftfahrzeug
JP6065882B2 (ja) 2014-06-30 2017-01-25 株式会社豊田中央研究所 吸着式ヒートポンプシステム及び冷熱生成方法
US9822999B2 (en) * 2015-02-12 2017-11-21 Rocky Research Systems, devices and methods for gas distribution in a sorber
JP6200911B2 (ja) * 2015-03-03 2017-09-20 株式会社豊田中央研究所 ヒートポンプ及び冷熱生成方法
JP6722860B2 (ja) * 2017-02-07 2020-07-15 パナソニックIpマネジメント株式会社 吸着冷凍機、吸着冷凍機を制御する方法および冷却システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05504612A (ja) * 1989-11-14 1993-07-15 ロッキー・リサーチ 固体蒸気化合物反応器の連続定圧ステージング
JPH11223411A (ja) * 1998-02-03 1999-08-17 Toyota Central Res & Dev Lab Inc 吸着式ヒートポンプ
JP2005205331A (ja) 2004-01-23 2005-08-04 Mitsubishi Chemicals Corp 吸着ヒートポンプ用吸着材および吸着ヒートポンプ
JP2009180405A (ja) 2008-01-30 2009-08-13 Fujitsu Ltd 廃熱利用システム

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4285208A (en) * 1980-04-16 1981-08-25 Matsushita Electric Industrial Co., Ltd. Absorption type refrigerating machine of hybrid constructions
FR2704631B1 (fr) * 1993-04-27 1995-07-13 Elf Aquitaine Dispositif de refrigeration et de chauffage utilisant un sorbant solide.
KR100241795B1 (ko) * 1993-11-29 2000-03-02 시마가 테쭈오 흡착식 냉각장치 및 냉열출력 제어방법
JP3341516B2 (ja) * 1994-09-19 2002-11-05 株式会社デンソー 吸着式冷凍機
FR2726282B1 (fr) * 1994-10-28 1999-02-19 Elf Aquitaine Reactif pour systemes thermochimiques et systeme thermochimique destine a utiliser un tel reactif
AU7324496A (en) * 1995-11-10 1997-05-29 University Of Nottingham, The Rotatable heat transfer apparatus
GB9613211D0 (en) * 1996-06-24 1996-08-28 Johnson Matthey Plc Improvements in heat transfer materials
US6086659A (en) * 1999-01-29 2000-07-11 Air Products And Chemicals, Inc. Radial flow adsorption vessel
JP4467856B2 (ja) * 2001-06-22 2010-05-26 株式会社デンソー 吸着式冷凍機
US6595022B2 (en) * 2001-06-27 2003-07-22 Intel Corporation Computer system having a refrigeration cycle utilizing an adsorber/desorber for purposes of compression
WO2004090458A1 (ja) * 2003-04-01 2004-10-21 Mitsubishi Chemical Corporation 吸着ヒートポンプ用吸着材、調湿空調装置用吸着材、吸着ヒートポンプ及び調湿空調装置
AU2005207978B2 (en) * 2004-01-28 2009-07-30 Commonwealth Scientific And Industrial Research Organisation Method, apparatus and system for transferring heat
AU2008226321B2 (en) * 2007-03-09 2011-12-15 Commonwealth Scientific And Industrial Research Organisation Apparatus and method for transferring heat
DE102007022841A1 (de) * 2007-05-11 2008-11-13 Invensor Gmbh Kältemaschine mit verschiedenen Sorptionsmaterialien
US20090095012A1 (en) * 2007-10-12 2009-04-16 Atsushi Akisawa Double-effect adsorption refrigeration device
JP5417866B2 (ja) 2009-01-28 2014-02-19 ダイキン工業株式会社 調湿装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05504612A (ja) * 1989-11-14 1993-07-15 ロッキー・リサーチ 固体蒸気化合物反応器の連続定圧ステージング
JPH11223411A (ja) * 1998-02-03 1999-08-17 Toyota Central Res & Dev Lab Inc 吸着式ヒートポンプ
JP2005205331A (ja) 2004-01-23 2005-08-04 Mitsubishi Chemicals Corp 吸着ヒートポンプ用吸着材および吸着ヒートポンプ
JP2009180405A (ja) 2008-01-30 2009-08-13 Fujitsu Ltd 廃熱利用システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015183930A (ja) * 2014-03-24 2015-10-22 株式会社豊田中央研究所 吸着式ヒートポンプシステム及び冷熱生成方法
JP2016011821A (ja) * 2014-06-30 2016-01-21 株式会社豊田中央研究所 吸着式ヒートポンプシステム及び冷熱生成方法

Also Published As

Publication number Publication date
EP2669603B1 (en) 2018-08-01
US9353978B2 (en) 2016-05-31
JPWO2012101666A1 (ja) 2014-06-30
US20130276475A1 (en) 2013-10-24
EP2669603A1 (en) 2013-12-04
EP2669603A4 (en) 2016-08-24
JP5761205B2 (ja) 2015-08-12

Similar Documents

Publication Publication Date Title
JP5761205B2 (ja) 吸着器及び吸着式ヒートポンプ
JP4192385B2 (ja) 吸着式冷凍機
US9618238B2 (en) Adsorption refrigerator
US9631851B2 (en) Vacuum container for removing foreign gases from an adsorption refrigeration machine
CN100419345C (zh) 固体吸附式制冷装置
US20090282846A1 (en) Adsorption heat pump with heat accumulator
JPH02230068A (ja) 吸着式冷凍機とその運転方法
JP3102955B2 (ja) 収着法および収着装置
WO2011142352A1 (ja) 車両用空調装置
US10137762B2 (en) Vehicular adsorption type air conditioning device
WO2012085605A1 (en) Adsorption thermal compressor technology and apparatuses
JP2008008582A (ja) 吸着式暖房・給湯装置
US10309694B2 (en) Heat pump and cooling power generation method
US20100300124A1 (en) Refrigerating machine comprising different sorption materials
JP2017009173A (ja) 吸着式冷凍機及びその運転方法
JP5974541B2 (ja) 空気調和システム
JP2017166429A (ja) 排熱回収システム
CN202442430U (zh) 太阳能冷管汽车空调系统
JPH07301469A (ja) 吸着式冷凍機
KR101988550B1 (ko) 다중의 흡착탑을 구비하는 흡착식 냉방장치 및 이를 이용한 냉방방법
JP5315893B2 (ja) 吸着式ヒートポンプ
JPH04292752A (ja) 吸着式冷却装置
JPH02272268A (ja) 吸着式冷凍装置
JPH05113271A (ja) 吸着式冷却装置
JPH1137598A (ja) 吸着式冷凍装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11857366

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012554474

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011857366

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE