JP2009155696A - Iron-based sintered alloy for sliding member - Google Patents

Iron-based sintered alloy for sliding member Download PDF

Info

Publication number
JP2009155696A
JP2009155696A JP2007336145A JP2007336145A JP2009155696A JP 2009155696 A JP2009155696 A JP 2009155696A JP 2007336145 A JP2007336145 A JP 2007336145A JP 2007336145 A JP2007336145 A JP 2007336145A JP 2009155696 A JP2009155696 A JP 2009155696A
Authority
JP
Japan
Prior art keywords
mns
phase
iron
based sintered
sintered alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007336145A
Other languages
Japanese (ja)
Other versions
JP5096130B2 (en
Inventor
Takeshi Yanase
剛 柳瀬
Kazuo Maruyama
和夫 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP2007336145A priority Critical patent/JP5096130B2/en
Priority to KR1020080129150A priority patent/KR101087376B1/en
Priority to CN2008101911092A priority patent/CN101469393B/en
Publication of JP2009155696A publication Critical patent/JP2009155696A/en
Application granted granted Critical
Publication of JP5096130B2 publication Critical patent/JP5096130B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2200/00Crystalline structure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Powder Metallurgy (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an iron-based sintered alloy for a sliding member with which the production cost can be reduced by reducing the using quantity of copper while keeping the excellent characteristic by containing the copper. <P>SOLUTION: The whole composition is composed of, by mass%, 0.6-1.2% C, 3.5-9.0% Cu, 0.6-2.2% Mn, 0.4-1.3% S, and the balance Fe with inevitable impurities, and this alloy microstructure is dispersed with at least one side of isolated Cu phase or isolated Cu-Fe phase and also, 1.0-3.5 mass% MnS phase in a martensitic microstructure. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、内周面に高い面圧が作用するような軸受に用いて好適な摺動部材用鉄基焼結合金に係り、特に、焼結時の寸法変化が少なく、しかも優れた耐焼付き性を示す摺動部材用鉄基焼結合金に関する。   The present invention relates to an iron-based sintered alloy for a sliding member suitable for use in a bearing in which a high surface pressure acts on the inner peripheral surface, and in particular, there is little dimensional change during sintering and excellent seizure resistance. The present invention relates to an iron-based sintered alloy for a sliding member exhibiting properties.

たとえば、車両、工作機械、産業機械等の駆動部位や摺動部位のように摺動面に高い面圧が作用するような摺動部材としては、炭素鋼を切削加工して焼入れ、焼戻ししたものや、焼結合金製のものが使用されている。特に、焼結合金は含浸した潤滑油による自己潤滑性を付与できるため、耐焼付き性と耐摩耗性が良好で広く用いられている。たとえば特許文献1には、Cu:10〜30%、残部:Feからなる鉄系焼結合金層を摺動面に設けたベアリングが開示されている。   For example, as a sliding member in which a high surface pressure acts on the sliding surface such as a driving part or sliding part of a vehicle, machine tool, industrial machine, etc., carbon steel is cut and quenched and tempered. In addition, a sintered alloy is used. In particular, sintered alloys are widely used because they can provide self-lubricating properties due to the impregnated lubricating oil, and therefore have good seizure resistance and wear resistance. For example, Patent Document 1 discloses a bearing in which an iron-based sintered alloy layer made of Cu: 10 to 30% and the balance: Fe is provided on a sliding surface.

特開平11−117940号公報JP-A-11-117940

しかしながら、近年、銅の価格は高騰しているため、特許文献1のように銅を10〜30%使用する技術では製造コストが割高で実用的ではない。また、融点の低い銅が焼結時に液相となるため、焼結後の寸法変化量が大きいという欠点もある。このため、要求精度を満たすために機械加工が必要となり、製造コストがさらに割高となる。   However, since the price of copper has soared in recent years, a technique using 10 to 30% of copper as in Patent Document 1 is expensive and is not practical. In addition, since copper having a low melting point becomes a liquid phase during sintering, there is also a drawback that the amount of dimensional change after sintering is large. For this reason, machining is required to satisfy the required accuracy, and the manufacturing cost is further increased.

一方、焼結合金中に銅を含有することにより、基地中に軟質のCu相またはCu合金相が分散し、これによって、相手部材への攻撃性が緩和されるとともに適度に変形することによる相手部材とのなじみ性が向上する。このため、銅の含有量を少なくすると、耐摩耗性が低下するとともに相手部材への攻撃性が高まるとともに、潤滑油が不充分であると鳴き音が発生する等の問題が生じる。したがって、本発明は、銅を含有することによる優れた性能を維持しつつ、銅の使用量を低減して製造コストを低減することができる摺動部材用鉄基焼結合金を提供することを目的としている。   On the other hand, by containing copper in the sintered alloy, the soft Cu phase or the Cu alloy phase is dispersed in the matrix, thereby reducing the attack on the mating member and appropriately deforming the mating partner. The compatibility with the member is improved. For this reason, if the copper content is reduced, the wear resistance is lowered and the attacking property against the mating member is increased, and a problem arises in that a squeal is generated when the lubricating oil is insufficient. Therefore, the present invention provides an iron-based sintered alloy for a sliding member that can reduce the manufacturing cost by reducing the amount of copper used while maintaining excellent performance by containing copper. It is aimed.

本発明の摺動部材用鉄基焼結合金は、全体組成が、質量比で、C:0.6〜1.2%、Cu:3.5〜9.0%、Mn:0.6〜2.2%、S:0.4〜1.3%、残部:Feおよび不可避不純物からなり、その合金組織が、マルテンサイト基地中に、遊離したCu相または遊離したCu−Fe合金相の少なくとも一方が分散しているとともに、MnS相が1.0〜3.5質量%分散していることを特徴としている。   The overall composition of the iron-based sintered alloy for sliding members of the present invention is, by mass ratio, C: 0.6 to 1.2%, Cu: 3.5 to 9.0%, Mn: 0.6 to 2.2%, S: 0.4 to 1.3%, balance: Fe and inevitable impurities, and the alloy structure is at least a free Cu phase or a free Cu-Fe alloy phase in the martensite matrix. One of them is dispersed and the MnS phase is dispersed in an amount of 1.0 to 3.5% by mass.

基地中に分散したMnSは固体潤滑剤として作用し、潤滑油が不充分な条件下でも部材どうしの金属接触を防止して鳴き音の発生を防止する。また、MnSが相手部材への攻撃性を緩和するとともに、相手部材との優れたなじみ性を得ることができる。以下、本発明の限定の根拠を本発明の作用とともに説明する。なお、以下の説明において「%」は質量%の意である。   MnS dispersed in the base acts as a solid lubricant, preventing metal contact between members even under conditions where the lubricating oil is insufficient, thereby preventing the generation of noise. Further, MnS can alleviate the aggressiveness to the mating member, and can obtain excellent compatibility with the mating member. Hereinafter, the basis for the limitation of the present invention will be described together with the operation of the present invention. In the following description, “%” means mass%.

基地
高面圧下で使用されて耐摩耗性を発揮できるように、基地は高い硬さと強度を有するマルテンサイトとする。
The base is made of martensite having high hardness and strength so that it can be used under high surface pressure and exhibit wear resistance.

C:0.6〜1.2%
Cの含有量が0.6%を下回ると、硬さおよび強度が不充分となり、摩耗量が増大する。一方、Cの含有量が1.2%を超えると、基地が脆化して摩耗量が増大する。なお、Cは焼結や焼入れなどの加熱によって脱炭され、原料粉末における含有量に対して目減りしたり、あるいは、浸炭により増加したりする。本発明におけるCの含有量は、最終的な熱処理が終了した後の含有量をいう。
C: 0.6-1.2%
When the C content is less than 0.6%, the hardness and strength become insufficient, and the wear amount increases. On the other hand, if the C content exceeds 1.2%, the base becomes brittle and the wear amount increases. Note that C is decarburized by heating such as sintering and quenching, and is reduced or increased by carburizing with respect to the content in the raw material powder. The content of C in the present invention refers to the content after the final heat treatment is completed.

Cu:3.5〜9.0%
Cuの含有量が3.5%を下回ると、基地中に分散する遊離Cu相やCu−Fe相の量が不充分となり、相手部材との凝着が生じ易くなる。一方、Cuの含有量が9.0%を超えると、焼結の際に液相が生じて焼結後の寸法変化量が増大する。
Cu: 3.5-9.0%
If the Cu content is less than 3.5%, the amount of free Cu phase or Cu—Fe phase dispersed in the matrix becomes insufficient, and adhesion with the mating member tends to occur. On the other hand, if the Cu content exceeds 9.0%, a liquid phase is generated during sintering, and the dimensional change after sintering increases.

固体潤滑剤
油による潤滑が不充分な条件下での摩擦係数の低減、相手部材への攻撃性の低減、相手部材とのなじみ性の向上ができるように、基地中に固体潤滑剤を分散させる。代表的な固体潤滑剤としては、黒鉛、MoS、FeS、CuS、WS、MnS等があるが、黒鉛は焼結時に鉄中に拡散するため、遊離させて基地中に分散させることが難しく、また黒鉛が遊離するほどに添加量を多くすると基地中にセメンタイトが析出し脆くなるとともに相手攻撃性が増大し、好ましくない。MoS、FeS、CuS、WSは焼結時に分解しやすいため、焼結後の基地中の分散状態がばらつきやすく、分散量を確保するために添加量を多くすると材料コストの上昇と強度の低下を招くこととなり、好ましくない。その点で、MnSは極めて安定であり、優れた潤滑特性と強度特性を併せ持つ摺動部材用鉄系焼結合金を得るために基地中に分散させる固体潤滑剤として好ましい。
Disperse the solid lubricant in the base so that the coefficient of friction under insufficient lubrication with solid lubricant oil can be reduced, the aggressiveness to the mating member can be reduced, and the compatibility with the mating member can be improved. . Typical solid lubricants include graphite, MoS 2 , FeS, CuS, WS 2 , MnS, etc., but since graphite diffuses into iron during sintering, it is difficult to release and disperse in the matrix. Further, if the amount of addition is increased so that the graphite is liberated, cementite precipitates in the base and becomes brittle, and the opponent attack property increases, which is not preferable. Since MoS 2 , FeS, CuS, and WS 2 are easily decomposed during sintering, the dispersion state in the matrix after sintering is likely to vary, and increasing the addition amount to ensure the dispersion amount increases the material cost and increases the strength. It will cause a decrease, which is not preferable. In that respect, MnS is extremely stable and is preferable as a solid lubricant to be dispersed in the matrix in order to obtain an iron-based sintered alloy for a sliding member having both excellent lubrication characteristics and strength characteristics.

MnS:1.0〜3.5%
MnSの含有量が1.0%を下回ると、固体潤滑剤としての作用が不充分となる。一方、MnSの含有量が3.5%を超えると、基地の強度が低下して面圧の高い条件下では摩耗量が増大する。
MnS: 1.0 to 3.5%
When the content of MnS is less than 1.0%, the action as a solid lubricant becomes insufficient. On the other hand, when the content of MnS exceeds 3.5%, the strength of the base decreases and the wear amount increases under the condition of high surface pressure.

MnS相の大きさ:2〜100μm
MnS相の大きさが2μmを下回ると、固体潤滑剤としての作用が不充分となる。一方、MnS相の大きさが100μmを超えると、基地の強度が低下する。
MnS相は、材料粉末中にMnS粉末を添加することで生成することが望ましい。MnSは、MoSや黒鉛に比べて安定なため焼結時に分解しにくい。したがって、少ない添加量で充分な効果が得られるとともに、基地への分散量を制御し易く摺動部材の性能を安定させることができる。また、MnS粉末は、粒径が15μm以下の粒子が90質量%以上含まれることが望ましい。このように微粉のMnS粉末で添加することにより、基地への分散性が良好となる。なお、MnS粒子が互いに凝集した形態で基地中に分散することがあるが、摺動部材の性能上問題はない。
Size of MnS phase: 2 to 100 μm
When the size of the MnS phase is less than 2 μm, the action as a solid lubricant becomes insufficient. On the other hand, when the size of the MnS phase exceeds 100 μm, the strength of the base decreases.
The MnS phase is desirably generated by adding MnS powder to the material powder. Since MnS is more stable than MoS 2 and graphite, it is difficult to decompose during sintering. Therefore, a sufficient effect can be obtained with a small addition amount, and the dispersion amount to the base can be easily controlled, and the performance of the sliding member can be stabilized. The MnS powder desirably contains 90% by mass or more of particles having a particle size of 15 μm or less. Thus, the dispersibility to a base | substrate becomes favorable by adding with fine MnS powder. In addition, although MnS particles may be dispersed in the matrix in a form in which they are aggregated with each other, there is no problem in the performance of the sliding member.

本発明によれば、MnSがCuによる作用を補填するから、銅を含有することによる優れた性能を維持しつつ、銅の使用量を低減することができる。これにより、焼結時の寸法変化量を低減することができるので、材料費に加えて加工費用を低減することができる等の効果が得られる。   According to the present invention, since MnS compensates for the effect of Cu, the amount of copper used can be reduced while maintaining excellent performance due to the inclusion of copper. Thereby, since the dimensional change amount at the time of sintering can be reduced, effects such as reduction in processing costs in addition to material costs can be obtained.

以下、本発明を実施例によりさらに詳細に説明する。
軸受の焼結合金を作製するために下記の原料粉末を用意した。
1.アトマイズ鉄粉(神戸製鋼所製 アトメル300M)
2.電解銅粉(福田金属箔粉工業製 CE15)
3.天然黒鉛粉(日本黒鉛製 JCPB)
4.硫化マンガン粉(ヘガネス社製 MnS−E)
5.ステアリン酸亜鉛(ADEKAケミカルサプライ製 エフコケムZNS730)
Hereinafter, the present invention will be described in more detail with reference to examples.
In order to produce a sintered alloy of the bearing, the following raw material powders were prepared.
1. Atomized iron powder (Atmel 300M, Kobe Steel)
2. Electrolytic copper powder (CE15 manufactured by Fukuda Metal Foil Powder Industry)
3. Natural graphite powder (JCPB made by Nippon Graphite)
4). Manganese sulfide powder (MnS-E manufactured by Höganäs)
5. Zinc stearate (ADEKA Chemical Supply Fcochem ZNS730)

これらの粉末を全体組成が表1に示す割合となるように配合した。なお、ステアリン酸亜鉛は、成形時の潤滑のために添加するものであり、これを除く混合粉末を100%としたときに、全ての混合粉末対して0.75%添加した。   These powders were blended so that the total composition would be the ratio shown in Table 1. Zinc stearate was added for lubrication during molding. When the mixed powder excluding this was taken as 100%, 0.75% was added to all the mixed powders.

Figure 2009155696
Figure 2009155696

上記のように配合した粉末をV型混合機で30分間混合し、混合粉末について密度6.2g/cm、密度比80%の軸受円筒形状に圧縮成形し、成形体を1130℃で20分間焼結した。次いで、焼結体を850℃で浸炭焼入れし、180℃で焼戻しした。そして、切削加工により内径:30mm、外径:36mm、長さ:25mmに仕上げた後、焼結体の気孔に潤滑油(ISO VG460相当のギヤ油)を含浸させ、試料No.1〜16を得た。また、比較のためにMnS粉末に代えてMoSを表1に示す割合で配合し、その他は試料No.1〜16と同じ条件で試料No.17を得た The powder blended as described above was mixed with a V-type mixer for 30 minutes, and the mixed powder was compression-molded into a bearing cylindrical shape having a density of 6.2 g / cm 3 and a density ratio of 80%, and the compact was molded at 1130 ° C. for 20 minutes. Sintered. Next, the sintered body was carburized and quenched at 850 ° C. and tempered at 180 ° C. Then, after finishing the inner diameter: 30 mm, the outer diameter: 36 mm, and the length: 25 mm by cutting, the pores of the sintered body were impregnated with lubricating oil (gear oil equivalent to ISO VG460). 1-16 were obtained. For comparison, MoS 2 was blended in the proportions shown in Table 1 instead of MnS powder. Sample Nos. 1 to 16 under the same conditions. Got 17

表1に、試料No.1〜17の焼結後の寸法変化を楕円量で表した。楕円量は、試料の内径の最大測定値から最小測定値を引いた値である。表1では、本発明で規定する範囲を逸脱する値と不可と認められる特性値に下線を付してある。   In Table 1, Sample No. The dimensional change after sintering of 1 to 17 was expressed as an elliptical amount. The amount of ellipse is a value obtained by subtracting the minimum measured value from the maximum measured value of the inner diameter of the sample. In Table 1, values that deviate from the range defined by the present invention and characteristic values that are deemed impossible are underlined.

表1に示すように、Cuの含有量が本発明の上限(9%)を超える試料No.16では、楕円量が格段に大きく、焼結の際の寸法変化が激しいことが判る。また、試料No.1〜17の圧環強さを表1に示す。表1に示すように、MnSの含有量が本発明の上限値(3.5%)を超える試料No.8、Cの含有量が本発明の下限値(0.6%)を下回る試料No.10では強度が低いために、Cの含有量が本発明の上限値(1.2%)を超える試料No.14では基地が脆化したために、圧環強さが低かった。   As shown in Table 1, the sample No. in which the Cu content exceeds the upper limit (9%) of the present invention. No. 16 shows that the amount of ellipse is remarkably large and the dimensional change during sintering is severe. Sample No. The crushing strength of 1 to 17 is shown in Table 1. As shown in Table 1, the sample No. in which the MnS content exceeds the upper limit (3.5%) of the present invention. 8, Sample No. whose C content is lower than the lower limit (0.6%) of the present invention. No. 10 has a low strength, so that the sample No. C in which the C content exceeds the upper limit (1.2%) of the present invention. In 14, the crushing strength was low because the base became brittle.

次に、試料No.1〜17に対して軸受試験を行った。軸受試験は、試料を試験機のハウジングに固定し、試料の孔にS45C焼入れ鋼の軸を装着して軸心と直角方向に均等に荷重を加え、面圧25MPaの状態で100rpmで200時間回転させて行った。表1に運転初期の摩擦係数と200時間運転後の摩耗量を示す。   Next, sample No. A bearing test was performed on 1-17. In the bearing test, the sample is fixed to the housing of the testing machine, a shaft of S45C hardened steel is attached to the hole of the sample, a load is applied evenly in the direction perpendicular to the axis, and the surface is rotated at 100 rpm for 200 hours with a surface pressure of 25 MPa. I went. Table 1 shows the friction coefficient at the initial stage of operation and the amount of wear after 200 hours of operation.

表1に示すように、Cuの含有量が本発明の下限値(3.5%)を下回る試料No.2,3では、摩擦係数が高く、その結果、相手材の摩耗量が大きくなった。特に、Cuの含有量が本発明の下限値を下回る試料No.1では、相手材との焼付きが生じて軸受試験を中断した。また、MnSの含有量が本発明の下限値(1.0%)を下回る試料No.4では、摩擦係数が高く、その結果、相手材の摩耗量が大きくなった。一方、MnSの含有量が本発明の上限値(3.5%)を超える試料No.8では、基地の強度が低下し、試料の摩耗量が増大した。   As shown in Table 1, the sample Nos. In which the Cu content falls below the lower limit (3.5%) of the present invention. In Nos. 2 and 3, the coefficient of friction was high, and as a result, the wear amount of the counterpart material was increased. In particular, Sample No. with a Cu content below the lower limit of the present invention. In No. 1, seizure with the counterpart material occurred and the bearing test was interrupted. Moreover, sample No. in which content of MnS falls below the lower limit (1.0%) of the present invention. In No. 4, the coefficient of friction was high, and as a result, the wear amount of the counterpart material was increased. On the other hand, Sample No. whose MnS content exceeds the upper limit (3.5%) of the present invention. In No. 8, the strength of the base decreased and the wear amount of the sample increased.

Cの含有量が本発明の下限値(0.6%)を下回る試料No.10では、硬さおよび強度が低いため、試料の摩耗量が増大した。一方、Cの含有量が本発明の上限値(1.2%)を超える試料No.14では、基地が脆化して試料の摩耗量が増大した。また、MnS粉末に代えてMoS粉末を添加した試料No.17では、焼結によりMoSが分解してMoが基地に固溶し、その結果、潤滑不足のために初期摩擦係数が高く、さらに、基地が硬化したために相手材の摩耗量が増大した。 Sample No. whose C content is lower than the lower limit (0.6%) of the present invention. In No. 10, since the hardness and strength were low, the amount of wear of the sample increased. On the other hand, sample No. C content exceeding the upper limit (1.2%) of the present invention. In No. 14, the base became brittle and the amount of wear of the sample increased. In addition, sample No. 1 in which MoS 2 powder was added instead of MnS powder. In No. 17, MoS 2 was decomposed by sintering, and Mo was dissolved in the matrix. As a result, the initial friction coefficient was high due to insufficient lubrication, and the wear amount of the counterpart material was increased because the matrix was cured.

以上の比較例に対して本発明の実施例では、摩擦係数、強度および寸法変化のいずれにおいても優れた値を示し、また、軸受試験においても試料および相手材ともに摩耗量が少なかった。   In contrast to the comparative examples described above, the examples of the present invention showed excellent values in all of the friction coefficient, strength, and dimensional change, and the amount of wear was small in both the sample and the counterpart material in the bearing test.

本発明の摺動部材用鉄基焼結合金は、車両、工作機械、産業機械等の駆動部位や摺動部位のように摺動面に高い面圧が作用するような摺動部材に用いて好適である。具体的には、例えばプレス機械用軸受、車両等の制動装置リンク用軸受、ヒンジ用軸受、産業用ロボット等の関節用軸受、キャスター用軸受等が挙げられる。
The iron-based sintered alloy for a sliding member of the present invention is used for a sliding member in which a high surface pressure acts on a sliding surface such as a driving part or a sliding part of a vehicle, a machine tool, an industrial machine or the like. Is preferred. Specific examples include a bearing for a press machine, a bearing for a brake device link of a vehicle, a bearing for a hinge, a joint bearing for an industrial robot, a caster bearing, and the like.

Claims (3)

全体組成が、質量比で、C:0.6〜1.2%、Cu:3.5〜9.0%、Mn:0.6〜2.2%、S:0.4〜1.3%、残部:Feおよび不可避不純物からなり、その合金組織が、マルテンサイト基地中に、遊離したCu相または遊離したCu−Fe合金相の少なくとも一方が分散しているとともに、MnS相が1.0〜3.5質量%分散していることを特徴とする摺動部材用鉄基焼結合金。   The overall composition is, by mass ratio, C: 0.6 to 1.2%, Cu: 3.5 to 9.0%, Mn: 0.6 to 2.2%, S: 0.4 to 1.3 %, Balance: Fe and inevitable impurities, and the alloy structure has a martensite matrix in which at least one of the free Cu phase or the free Cu-Fe alloy phase is dispersed, and the MnS phase is 1.0. Iron-based sintered alloy for sliding members, characterized in that it is dispersed in an amount of ~ 3.5% by mass. 分散している前記MnS相の大きさは2〜100μmであることを特徴とする請求項1に記載の摺動部材用鉄基焼結合金。   The iron-based sintered alloy for sliding members according to claim 1, wherein the size of the dispersed MnS phase is 2 to 100 µm. 前記MnS相は、材料粉末中にMnS粉末を添加することで生成され、前記MnS粉末は、粒径が15μm以下の粒子が90質量%以上含まれることを特徴とする請求項1または2に記載の摺動部材用鉄基焼結合金。   The MnS phase is generated by adding MnS powder to a material powder, and the MnS powder includes 90% by mass or more of particles having a particle size of 15 μm or less. An iron-based sintered alloy for sliding members.
JP2007336145A 2007-12-27 2007-12-27 Iron-based sintered alloy for sliding members Expired - Fee Related JP5096130B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007336145A JP5096130B2 (en) 2007-12-27 2007-12-27 Iron-based sintered alloy for sliding members
KR1020080129150A KR101087376B1 (en) 2007-12-27 2008-12-18 Iron base sintered alloy for slide member
CN2008101911092A CN101469393B (en) 2007-12-27 2008-12-26 Iron based sintered alloy for sliding component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007336145A JP5096130B2 (en) 2007-12-27 2007-12-27 Iron-based sintered alloy for sliding members

Publications (2)

Publication Number Publication Date
JP2009155696A true JP2009155696A (en) 2009-07-16
JP5096130B2 JP5096130B2 (en) 2012-12-12

Family

ID=40827195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007336145A Expired - Fee Related JP5096130B2 (en) 2007-12-27 2007-12-27 Iron-based sintered alloy for sliding members

Country Status (3)

Country Link
JP (1) JP5096130B2 (en)
KR (1) KR101087376B1 (en)
CN (1) CN101469393B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2495209A (en) * 2011-09-30 2013-04-03 Hitachi Powdered Metals An iron-based sintered sliding member comprising copper, carbon, manganese and sulphur
WO2014051136A1 (en) * 2012-09-25 2014-04-03 日立粉末冶金株式会社 Sliding bearing assembly
WO2014065316A1 (en) * 2012-10-24 2014-05-01 Ntn株式会社 Sintered bearing
EP2778243A1 (en) 2013-03-13 2014-09-17 Hitachi Chemical Company, Ltd. Iron based sintered sliding member and method for producing the same
EP2781283A1 (en) 2013-03-19 2014-09-24 Hitachi Chemical Company, Ltd. Iron base sintered sliding member and method for producing same
DE102014004450A1 (en) 2013-03-29 2014-10-02 Hitachi Chemical Company, Ltd. Iron-based sintered alloy for a sliding member and manufacturing method therefor
CN104653458A (en) * 2014-12-11 2015-05-27 广东美芝制冷设备有限公司 Compressor, slip sheet of compressor and preparation method of bearing

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103451575B (en) * 2013-08-23 2015-07-01 苏州长盛机电有限公司 Copper-iron alloy material
CN105986203A (en) * 2015-10-21 2016-10-05 李学峰 High-toughness iron-base powder metallurgy forging automobile connecting rod and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5156713A (en) * 1974-11-13 1976-05-18 Tokyo Sintered Metal Co Ltd TAINETSUTAIMAMOSEISHOKETSU GOKIN
JPS6415350A (en) * 1987-07-07 1989-01-19 Mitsubishi Metal Corp Fe-base sintered alloy excellent in sliding characteristic
JPH0293042A (en) * 1988-09-29 1990-04-03 Komatsu Ltd Seizure-resistant iron-series sliding material
JPH06158218A (en) * 1992-11-16 1994-06-07 Mitsubishi Materials Corp Valve guide member made of fe-based sintered alloy excellent in wear resistance
JPH06346180A (en) * 1993-06-07 1994-12-20 Mitsubishi Materials Corp Valve guide member made of fe-base sintered alloy, excellent in wear resistance
JP2002332552A (en) * 2001-05-14 2002-11-22 Hitachi Powdered Metals Co Ltd Free cutting sintered member and production method therefor
JP2003013185A (en) * 2001-06-27 2003-01-15 Nisshin Steel Co Ltd Fe-Cr-Ni-Cu ALLOY FOR SLIDING MEMBER
JP2003014120A (en) * 2001-06-29 2003-01-15 Nippon Piston Ring Co Ltd Wear-resistant ring and manufacturing method therefor
JP2004232088A (en) * 2003-01-10 2004-08-19 Nippon Piston Ring Co Ltd Valve seat made of iron-based sintered alloy, and production method therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3865293B2 (en) * 2001-05-30 2007-01-10 日立粉末冶金株式会社 Abrasion resistant hard phase forming alloy powder and method for producing wear resistant sintered alloy using the same
JP3809944B2 (en) 2001-11-29 2006-08-16 株式会社リケン Hard particle dispersed sintered alloy and method for producing the same
JP4193969B2 (en) * 2002-01-11 2008-12-10 日立粉末冶金株式会社 Valve guide for internal combustion engine made of iron-based sintered alloy

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5156713A (en) * 1974-11-13 1976-05-18 Tokyo Sintered Metal Co Ltd TAINETSUTAIMAMOSEISHOKETSU GOKIN
JPS6415350A (en) * 1987-07-07 1989-01-19 Mitsubishi Metal Corp Fe-base sintered alloy excellent in sliding characteristic
JPH0293042A (en) * 1988-09-29 1990-04-03 Komatsu Ltd Seizure-resistant iron-series sliding material
JPH06158218A (en) * 1992-11-16 1994-06-07 Mitsubishi Materials Corp Valve guide member made of fe-based sintered alloy excellent in wear resistance
JPH06346180A (en) * 1993-06-07 1994-12-20 Mitsubishi Materials Corp Valve guide member made of fe-base sintered alloy, excellent in wear resistance
JP2002332552A (en) * 2001-05-14 2002-11-22 Hitachi Powdered Metals Co Ltd Free cutting sintered member and production method therefor
JP2003013185A (en) * 2001-06-27 2003-01-15 Nisshin Steel Co Ltd Fe-Cr-Ni-Cu ALLOY FOR SLIDING MEMBER
JP2003014120A (en) * 2001-06-29 2003-01-15 Nippon Piston Ring Co Ltd Wear-resistant ring and manufacturing method therefor
JP2004232088A (en) * 2003-01-10 2004-08-19 Nippon Piston Ring Co Ltd Valve seat made of iron-based sintered alloy, and production method therefor

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2495209B (en) * 2011-09-30 2014-08-20 Hitachi Powdered Metals Iron-based sintered sliding member
DE102012018964A1 (en) 2011-09-30 2013-04-04 Hitachi Powdered Metals Co., Ltd. Iron-based sintered body and process for its preparation
JP2013076152A (en) * 2011-09-30 2013-04-25 Hitachi Powdered Metals Co Ltd Iron-based sintered sliding member and method for producing the same
US9637811B2 (en) 2011-09-30 2017-05-02 Hitachi Powdered Metals Co., Ltd. Iron-based sintered sliding member and production method therefor
DE102012018964B4 (en) * 2011-09-30 2017-01-26 Hitachi Powdered Metals Co., Ltd. Iron-based sintered body and process for its preparation
GB2495209A (en) * 2011-09-30 2013-04-03 Hitachi Powdered Metals An iron-based sintered sliding member comprising copper, carbon, manganese and sulphur
KR20150086245A (en) * 2012-09-25 2015-07-27 히타치가세이가부시끼가이샤 Sliding bearing assembly
DE112013004670B4 (en) 2012-09-25 2018-09-20 Hitachi Chemical Company, Ltd. plain bearing arrangement
WO2014051136A1 (en) * 2012-09-25 2014-04-03 日立粉末冶金株式会社 Sliding bearing assembly
JP2014066271A (en) * 2012-09-25 2014-04-17 Hitachi Powdered Metals Co Ltd Plain bearing assembly
KR101699189B1 (en) 2012-09-25 2017-01-23 히타치가세이가부시끼가이샤 Sliding bearing assembly
US9404535B2 (en) 2012-09-25 2016-08-02 Hitachi Chemical Company, Ltd. Sliding bearing assembly
US11248653B2 (en) 2012-10-24 2022-02-15 Ntn Corporation Sintered bearing
US10590990B2 (en) 2012-10-24 2020-03-17 Ntn Corporation Sintered bearing
WO2014065316A1 (en) * 2012-10-24 2014-05-01 Ntn株式会社 Sintered bearing
US10131972B2 (en) 2013-03-13 2018-11-20 Hitachi Chemical Company, Ltd. Iron based sintered sliding member and method for producing same
EP3354760A1 (en) 2013-03-13 2018-08-01 Hitachi Chemical Company, Ltd. Iron based sintered sliding member and method for producing same
EP2778243A1 (en) 2013-03-13 2014-09-17 Hitachi Chemical Company, Ltd. Iron based sintered sliding member and method for producing the same
EP2781283A1 (en) 2013-03-19 2014-09-24 Hitachi Chemical Company, Ltd. Iron base sintered sliding member and method for producing same
US9744591B2 (en) 2013-03-19 2017-08-29 Hitachi Chemical Company, Ltd. Iron base sintered sliding member and method for producing same
DE102014004450A1 (en) 2013-03-29 2014-10-02 Hitachi Chemical Company, Ltd. Iron-based sintered alloy for a sliding member and manufacturing method therefor
US10150162B2 (en) 2013-03-29 2018-12-11 Hitachi Chemical Company, Ltd. Iron-based sintered alloy for sliding member and production method therefor
JP2014196526A (en) * 2013-03-29 2014-10-16 日立化成株式会社 Iron-based sintered alloy for sliding member and production method thereof
DE102014004450B4 (en) * 2013-03-29 2020-10-01 Hitachi Chemical Company, Ltd. Iron-based sintered alloy for a sliding element and manufacturing process therefor
CN104653458A (en) * 2014-12-11 2015-05-27 广东美芝制冷设备有限公司 Compressor, slip sheet of compressor and preparation method of bearing

Also Published As

Publication number Publication date
KR101087376B1 (en) 2011-11-25
CN101469393A (en) 2009-07-01
KR20090071400A (en) 2009-07-01
JP5096130B2 (en) 2012-12-12
CN101469393B (en) 2011-05-18

Similar Documents

Publication Publication Date Title
JP5096130B2 (en) Iron-based sintered alloy for sliding members
JP5378530B2 (en) Sliding bearing with improved wear resistance and method for manufacturing the same
JP5783303B2 (en) Copper-based sintered sliding member
EP2087250B1 (en) Bearing having improved consume resistivity and manufacturing method thereof
JP5308123B2 (en) High-strength composition iron powder and sintered parts using it
WO2011024941A2 (en) Copper-based sintered sliding member
JP6194613B2 (en) Iron-based sintered alloy for sliding member and manufacturing method thereof
CN104039995B (en) Sintered alloy with excellent wear resistance
US10619229B2 (en) Manufacturing method of wear-resistant iron-based sintered alloy and wear-resistant iron-based sintered alloy
JP2009079136A (en) Copper-based, oil-impregnated and sintered sliding member
KR101699189B1 (en) Sliding bearing assembly
JP3298636B2 (en) Sliding material
JP2019065323A (en) Iron-based sintered shaft bearing, and iron-based sintered oil-containing shaft bearing
JP3835915B2 (en) Copper-based sintered bearing material and manufacturing method thereof
JP2004018940A (en) Method for manufacturing ferrous sintered sliding member, and ferrous sintered sliding member
JP2008297361A (en) Copper-based oil-impregnated sintered sliding member
JP2012162771A (en) Iron-based sintered sliding member, and method for manufacturing the same
JP3381626B2 (en) Bearings made of free graphite-precipitated iron-based sintered material exhibiting excellent wear resistance under high surface pressure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120920

R150 Certificate of patent or registration of utility model

Ref document number: 5096130

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees