JP3381626B2 - Bearings made of free graphite-precipitated iron-based sintered material exhibiting excellent wear resistance under high surface pressure - Google Patents

Bearings made of free graphite-precipitated iron-based sintered material exhibiting excellent wear resistance under high surface pressure

Info

Publication number
JP3381626B2
JP3381626B2 JP14103098A JP14103098A JP3381626B2 JP 3381626 B2 JP3381626 B2 JP 3381626B2 JP 14103098 A JP14103098 A JP 14103098A JP 14103098 A JP14103098 A JP 14103098A JP 3381626 B2 JP3381626 B2 JP 3381626B2
Authority
JP
Japan
Prior art keywords
free graphite
sintered material
graphite
precipitated
based sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14103098A
Other languages
Japanese (ja)
Other versions
JPH11335798A (en
Inventor
楊  積彬
久仁夫 花田
徹 桜田
利英 河原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Motors Corp
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp, Mitsubishi Materials Corp filed Critical Mitsubishi Motors Corp
Priority to JP14103098A priority Critical patent/JP3381626B2/en
Publication of JPH11335798A publication Critical patent/JPH11335798A/en
Application granted granted Critical
Publication of JP3381626B2 publication Critical patent/JP3381626B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、潤滑性向上に寄
与する遊離黒鉛を素地に析出させないで気孔内に析出さ
せ、かつこれを気孔内で成長させることにより前記素地
の強化を図ると共に、このように遊離黒鉛の析出がない
素地を微細なパーライト相で構成することにより高面圧
下でもすぐれた耐摩耗性を発揮するようにした遊離黒鉛
析出鉄系焼結材料製軸受(以下、黒鉛析出焼結材料軸受
と云う)に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention aims at strengthening the base material by precipitating free graphite, which contributes to the improvement of lubricity, in the pores without precipitating it in the base material and by growing it in the pores. As described above, by forming the matrix with no precipitation of free graphite in a fine pearlite phase, excellent wear resistance is exhibited even under high surface pressure. This is a binder bearing).

【0002】[0002]

【従来の技術】従来、例えば特開平8−41610号公
報に記載される通り、重量%で(以下、%の表示は重量
%を意味する)、 C:1.1〜4%、 S :0.02〜0.5%、 B:0.01〜0.5%、 Cu:0.5〜4%、 を含有し、残りがFeと不可避不純物からなる組成、並
びに実質的に主体がパーライトの素地と、前記素地中に
分散分布した微細な析出遊離黒鉛および気孔とからなる
組織を有する遊離黒鉛析出鉄系焼結材料(以下、黒鉛析
出焼結材料と云う)で構成された軸受(黒鉛析出焼結材
料軸受)が知られている。
2. Description of the Related Art Conventionally, as described in, for example, Japanese Patent Application Laid-Open No. 8-41610, in% by weight (hereinafter, "%" means "% by weight"), C: 1.1 to 4%, S: 0 0.02 to 0.5%, B: 0.01 to 0.5%, Cu: 0.5 to 4%, with the balance being Fe and inevitable impurities, and substantially the main component being pearlite. Bearings (graphite precipitation) composed of a matrix and a free-graphite-precipitated iron-based sintered material (hereinafter referred to as "graphite-precipitated sintered material") having a structure consisting of fine precipitated free-graphite and pores dispersedly distributed in the matrix Sintered material bearings) are known.

【0003】[0003]

【発明が解決しようとする課題】一方、近年の各種駆動
装置の高出力化および高速化はめざましく、これに伴な
い、駆動装置の構造部材である回転軸は高負荷の状態で
回転することになり、この結果相手部材である軸受は、
高荷重摩擦条件、すなわち高面圧下にさらされることに
なるが、上記の従来黒鉛析出焼結材料軸受の場合、高面
圧を受けると摩耗が急速に進行し、比較的短時間で使用
寿命に至るのが現状である。
On the other hand, in recent years, various drives have been remarkably increased in output and speed, and along with this, the rotary shaft, which is a structural member of the drive, rotates under a high load condition. As a result, the bearing, which is the mating member,
Although it will be exposed to high load friction conditions, that is, high surface pressure, in the case of the above-mentioned conventional graphite precipitation sintered material bearing, wear will progress rapidly when subjected to high surface pressure, and the service life will be relatively short. It is the current situation.

【0004】[0004]

【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、高面圧下でもすぐれた耐摩耗性
を発揮する黒鉛析出焼結材料軸受を開発すべく、研究を
行なった結果、原料粉末として、基本的にFeに、合金
成分としてS(硫黄)成分、あるいは同じくCrとMn
とS成分、さらに必要に応じてS成分とNiおよび/ま
たはMo成分をそれぞれ所定量含有させてなるアトマイ
ズFe合金粉末と、六方晶窒化ほう素(以下、h−BN
で示す)粉末および/またはほう酸粉末を用い、さらに
Cr粉末、Cu粉末、Mn粉末、S(硫黄)粉末、およ
び黒鉛粉末、必要に応じてNi粉末、Mo粉末を用い、
これら原料粉末を所定の配合組成に配合し、通常の条件
で混合し、圧粉体にプレス成形した状態で、前記圧粉体
を、還元性雰囲気中、相対的に高い焼結温度となる11
00〜1250℃の範囲内の所定温度に加熱し、所定時
間保持後、相対的に遅い冷却速度、すなわち5〜40℃
/分の冷却速度(40℃/分を越えた冷却速度ではマル
テンサイト相やベーナイト相が出現するようになって相
手攻撃性が急激に増大し、一方5℃/分未満の冷却速度
ではパーライト相の粗大化が著しくなるという理由によ
る)、望ましくは10〜35℃/分の冷却速度で、少な
くとも600℃まで冷却の条件で焼結して、 C:1〜3%、 S :0.05〜1%、 B:0.05〜1%、 Cr:0.5〜5%、 Cu:0.5〜4%、 Mn:0.2〜1%、 を含有し、さらに必要に応じて、 Ni:1〜5%、 Mo:0.5〜2%、 を含有し、残りがFeと不可避不純物からなる組成を有
し、かつ望ましくは6.0〜7.2g/cm3 の密度、
さらに言い換えれば80〜95%の理論密度比をもった
鉄系焼結材料を形成すると、この鉄系焼結材料において
は、前記焼結温度で、素地を形成する上記Fe合金粉末
にC成分(黒鉛粉末)が固溶するが、この固溶したC成
分は、同じく素地に固溶したCr成分による素地中への
遊離黒鉛析出抑制作用と相まって、上記h−BN粉末お
よびほう酸粉末のB成分と前記Fe合金粉末中に固溶の
S成分の共働作用で、冷却過程で気孔内に遊離黒鉛とし
て析出して、成長し、この結果析出遊離黒鉛は実質的に
気孔内にのみ存在し、一方素地は、析出遊離黒鉛が実質
的存在しないので、著しく強化されるようになるばかり
でなく、固溶Crによって硬質にして微細なパーライト
主体相となることから、この鉄系焼結材料で構成された
軸受は、高面圧下でも前記気孔内に存在する析出遊離黒
鉛による潤滑性向上効果と相まって、すぐれた耐摩耗性
を発揮するようになるという研究結果を得たのである。
Therefore, the present inventors have
From the above viewpoints, as a result of research to develop a graphite precipitation-sintered material bearing that exhibits excellent wear resistance even under high surface pressure, as a result, it was basically Fe as a raw material powder and S as an alloy component. (Sulfur) component, or also Cr and Mn
And an S component, and further an atomized Fe alloy powder containing a predetermined amount of each of the S component and Ni and / or Mo components as necessary, and hexagonal boron nitride (hereinafter, h-BN).
Powder) and / or boric acid powder, and further using Cr powder, Cu powder, Mn powder, S (sulfur) powder, and graphite powder, and optionally Ni powder and Mo powder,
These raw material powders are mixed in a predetermined composition, mixed under normal conditions, and pressed into a green compact, and the green compact has a relatively high sintering temperature in a reducing atmosphere.
After heating to a predetermined temperature within the range of 0 to 1250 ° C. and holding for a predetermined time, a relatively slow cooling rate, that is, 5 to 40 ° C.
/ Min Cooling rate (Martensite phase and bainite phase appear at cooling rates exceeding 40 ° C / min, and the aggressiveness of the opponent increases sharply, while pearlite phase at cooling rates of less than 5 ° C / min. The reason for this is that the sintering is significantly increased), and is preferably sintered at a cooling rate of 10 to 35 ° C./min and cooled to at least 600 ° C., and C: 1 to 3%, S: 0.05 to 1%, B: 0.05 to 1%, Cr: 0.5 to 5%, Cu: 0.5 to 4%, Mn: 0.2 to 1%, and, if necessary, Ni. : 1 to 5%, Mo: 0.5 to 2%, the balance of which is Fe and inevitable impurities, and preferably a density of 6.0 to 7.2 g / cm 3 .
Furthermore, in other words, when an iron-based sintered material having a theoretical density ratio of 80 to 95% is formed, in this iron-based sintered material, the C component ( Graphite powder) forms a solid solution, and this solid solution C component is combined with the B component of the above-mentioned h-BN powder and boric acid powder, together with the effect of suppressing the precipitation of free graphite in the matrix by the Cr component that is also solid solution in the matrix. Due to the action of the solid solution S component in the Fe alloy powder, it precipitates as free graphite in the pores during the cooling process and grows. As a result, the precipitated free graphite exists substantially only in the pores. Since the matrix is not substantially free of precipitated free graphite, it is not only remarkably strengthened, but it is hardened by solid solution Cr and becomes a fine pearlite-based phase, so it is composed of this iron-based sintered material. Bearings have high surface pressure Also coupled with lubricity improving effect due to precipitation of free graphite present in the pores, it is to obtain a finding that comes to exhibit excellent wear resistance.

【0005】この発明は、上記の研究結果にもとづいて
なされたものであって、 C:1〜3%、 S :0.05〜1%、 B:0.05〜1%、 Cr:0.5〜5%、 Cu:0.5〜4%、 Mn:0.2〜1%、 を含有し、さらに必要に応じて、 Ni:1〜5%および/またはMo:0.5〜2%、 を含有し、残りがFeと不可避不純物からなる組成、並
びにSおよびB成分の作用で遊離黒鉛がパーライトの素
地中に分散分布する気孔内に析出して成長し、かつ同C
r成分の作用で前記素地には析出遊離黒鉛が存在しない
組織を有する黒鉛析出焼結材料で構成してなる、高面圧
下ですぐれた耐摩耗性を発揮する黒鉛析出焼結材料軸受
に特徴を有するものである。
The present invention was made based on the above-mentioned research results. C: 1 to 3%, S: 0.05 to 1%, B: 0.05 to 1%, Cr: 0. 5 to 5%, Cu: 0.5 to 4%, Mn: 0.2 to 1%, and, if necessary, Ni: 1 to 5% and / or Mo: 0.5 to 2%. , And the balance consisting of Fe and unavoidable impurities , and the free graphite being a pearlite element due to the action of the S and B components.
Precipitates and grows in the pores dispersedly distributed in the ground, and
Precipitated free graphite does not exist in the substrate due to the action of r component
The present invention is characterized by a graphite-precipitated-sintered material bearing formed of a graphite-precipitated-sintered material having a structure and exhibiting excellent wear resistance under high surface pressure.

【0006】つぎに、この発明の黒鉛析出焼結材料軸受
において、これを構成する黒鉛析出焼結材料の成分組成
を上記の通りに限定した理由を説明する。 (a) C C成分には、素地のパーライト相を形成して耐摩耗性を
向上させるほか、BおよびS成分の共存作用で気孔内に
遊離黒鉛として析出して潤滑性を向上させる作用がある
が、その含有量が1%未満では、前記作用に所望の効果
が得られず、一方その含有量が3%を越えると強度に急
激な低下傾向が現れるようになることから、その含有量
を1〜3%と定めた。
Next, the reason why the component composition of the graphite precipitating sintered material constituting the graphite precipitating sintered material bearing of the present invention is limited as described above will be explained. (A) C C component has a function of forming a pearlite phase of the base material to improve wear resistance and also a function of coexisting action of B and S components to precipitate as free graphite in pores to improve lubricity. However, if the content is less than 1%, the desired effect cannot be obtained, and if the content exceeds 3%, the strength tends to decrease sharply. It was set to 1-3%.

【0007】(b) SおよびB これらの成分は、共働作用により固溶した黒鉛を冷却過
程で微細な遊離黒鉛として気孔内に積極的に析出させ、
成長させる作用をもち、このような黒鉛化作用は、S成
分については、原則として予めFe、Fe−Cr合金、
およびFe−Cr−Mn合金、さらに必要に応じてFe
−Ni合金、Fe−Mo合金、およびFe−Ni−Mo
合金にそれぞれ所定量のS成分を含有させた溶湯をアト
マイズして形成したFe合金粉末、また、B成分につい
ては、ほう素源としてh−BN粉末およびほう酸粉末を
それぞれ原料粉末として用いることにより一段と促進さ
れるものであるが、その含有量が、SおよびB成分のい
ずれかでも0.05%未満になると、上記の気孔内への
黒鉛化を十分満足に発揮させることができず、この結果
遊離黒鉛が素地中にも析出するようになって素地の強化
が不十分になるばかりでなく、硬質のセメンタイト(F
3 C)が析出するようになって、相手攻撃性が増大す
るようになり、一方その含有量が、SおよびB成分のい
ずれかでも1%を越えると、焼結性が低下し、所望の強
度を確保することができなくなるばかりでなく、素地に
フェライト相が出現するようになって所望の耐摩耗性を
確保することができなくなることから、その含有量を、
それぞれS:0.05〜1%、望ましくは0.1〜0.
5%、B:0.05〜1%、望ましくは0.1〜0.5
%と定めた。
(B) S and B These components positively precipitate the graphite solid-solved by synergistic action in the pores as fine free graphite in the cooling process,
It has a function of growing, and such a graphitization function has, in principle, Fe, Fe--Cr alloy,
And Fe-Cr-Mn alloy, and optionally Fe
-Ni alloy, Fe-Mo alloy, and Fe-Ni-Mo
Fe alloy powder formed by atomizing a molten metal containing a predetermined amount of S component in the alloy, and for the B component, by using h-BN powder and boric acid powder as the boron source, respectively, as a raw material powder, further. Although it is promoted, if the content of any of the S and B components is less than 0.05%, the above graphitization into the pores cannot be sufficiently exhibited. Not only does the free graphite become precipitated in the matrix and the matrix becomes insufficiently strengthened, but also hard cementite (F
e 3 C) is precipitated, and the attacking property against the other party is increased. On the other hand, if the content of either S or B exceeds 1%, the sinterability decreases and the desired It is not possible to ensure the strength of the steel, but it becomes impossible to secure the desired wear resistance due to the appearance of the ferrite phase in the base material.
S: 0.05 to 1%, preferably 0.1 to 0.
5%, B: 0.05 to 1%, preferably 0.1 to 0.5
Defined as%.

【0008】(c)Cr Cr成分には、素地に固溶して、これの硬さを高めると
共に、素地を構成するパーライト相を微細化し、かつ遊
離黒鉛が素地中に析出するのを抑制し、もってSおよび
B成分の作用で気孔内に析出し成長した遊離黒鉛による
潤滑性向上と相まって、高面圧下ですぐれた耐摩耗性を
発揮せしめる作用があるが、その含有量が0.5%未満
では前記作用に所望の効果が得られず、一方その含有量
が5%を越えると、SおよびB成分による黒鉛の析出お
よび成長作用が抑制されるようになることから、その含
有量を0.5〜5%、望ましくは1〜3%と定めた。
(C) Cr The Cr component is solid-solved in the base material to increase the hardness of the base material, refines the pearlite phase constituting the base material, and suppresses free graphite from precipitating in the base material. Due to the action of the S and B components, the free graphite that has precipitated and grown in the pores improves the lubricity, and it has the action of exhibiting excellent wear resistance under high surface pressure, but its content is 0.5%. If less than 5%, the desired effect cannot be obtained. On the other hand, if the content exceeds 5%, the precipitation and growth of graphite by S and B components will be suppressed. It was set to 0.5 to 5%, preferably 1 to 3%.

【0009】(d)Cu Cu成分は、所定の強度を確保するのに不可欠な液相焼
結のために必要な成分であるが、その含有量が0.5%
未満では十分な焼結性が得られず、したがって所望の強
度を確保することができず、一方所望の良好な焼結性は
4%までの含有で十分であることから、その含有量を
0.5〜4%、望ましくは1〜3%と定めた。
(D) Cu The Cu component is a component necessary for liquid phase sintering which is indispensable for ensuring a predetermined strength, but its content is 0.5%.
If the content is less than the above, sufficient sinterability cannot be obtained, and therefore desired strength cannot be ensured. On the other hand, the desired good sinterability is sufficient if the content is up to 4%. It was set to 0.5 to 4%, preferably 1 to 3%.

【0010】(e)Mn Mn成分は、素地に固溶して強度を向上させる作用をも
つが、その含有量が0.2%未満では所望の強度向上効
果が得られず、一方その含有量が1%を越えると、B成
分およびS成分による黒鉛化が著しく阻害されるように
なることから、その含有量を0.2〜1%、望ましくは
0.4〜0.8%と定めた。
(E) Mn The Mn component has the function of forming a solid solution in the matrix to improve the strength, but if its content is less than 0.2%, the desired strength-improving effect cannot be obtained. When the content exceeds 1%, the graphitization by the B component and the S component becomes significantly impaired. Therefore, the content is set to 0.2 to 1%, preferably 0.4 to 0.8%. .

【0011】(f)Ni Ni成分には、素地に固溶して靭性を向上させる作用が
あるので、必要に応じて含有されるが、その含有量が1
%未満では所望の靭性向上効果が得られず、一方その含
有量が5%を越えると、オーステナイト相が出現するよ
うになって耐摩耗性の低下が避けられなくなることか
ら、その含有量を1〜5%、望ましくは1〜4%と定め
た。
(F) Ni The Ni component has the action of forming a solid solution in the matrix to improve the toughness, so it is contained if necessary, but the content is 1
If the content is less than 5%, the desired effect of improving toughness cannot be obtained. On the other hand, if the content exceeds 5%, the austenite phase appears and the deterioration of wear resistance cannot be avoided. .About.5%, preferably 1 to 4%.

【0012】(g) Mo Mo成分には、素地に固溶してこれの硬さを高め、もっ
て耐摩耗性の向上に寄与する作用があるので、必要に応
じて含有されるが、その含有量が0.5%未満では前記
作用に所望の効果が得られず、一方その含有量が2%を
越えると、原料粉末(混合粉末)のプレス成形性(圧縮
性)が低下し、この結果焼結材料の密度が6.0g/c
3 未満となってしまい、望ましい密度である6.0〜
7.2g/cm3 の密度が得られず、所望の強度を確保
することができなくなることから、その含有量を0.5
〜2%、望ましくは1〜1.5%と定めた。
(G) Mo Mo The Mo component has a function of forming a solid solution in the base material to increase the hardness of the base material, and thus contributes to the improvement of wear resistance. Therefore, it is contained if necessary. If the amount is less than 0.5%, the desired effect cannot be obtained, while if the content exceeds 2%, the press moldability (compressibility) of the raw material powder (mixed powder) is deteriorated. Density of sintered material is 6.0g / c
The density is less than m 3 , which is a desirable density of 6.0.
Since the density of 7.2 g / cm 3 cannot be obtained and the desired strength cannot be secured, the content thereof is set to 0.5.
.About.2%, preferably 1 to 1.5%.

【0013】なお、軸受を構成する黒鉛析出焼結材料
は、理論密度比を上記の通り80〜95%、言い換えれ
ば気孔割合を光学顕微鏡による組織観察で2〜15面積
%とするのが望ましく、これは、その割合が15面積%
を越えると軸受の強度が急激に低下するようになり、一
方その割合を2面積%未満にすることはプレス成形だけ
では技術的に困難であるという理由にもとずくものであ
り、さらに望ましくは2〜10面積%とするのがよく、
またこの気孔割合は原則として圧粉体のプレス成形圧力
によって調整することができる。
The graphite-precipitated sintered material constituting the bearing preferably has a theoretical density ratio of 80 to 95% as described above, in other words, a pore ratio of 2 to 15 area% by microscopic observation with an optical microscope. This is 15% by area
If it exceeds, the strength of the bearing will suddenly decrease. On the other hand, it is technically difficult to reduce the proportion to less than 2 area%, because it is technically difficult only by press molding. 2-10% by area,
The porosity can be adjusted in principle by the press molding pressure of the green compact.

【0014】[0014]

【発明の実施の形態】ついで、この発明の黒鉛析出焼結
材料軸受を実施例により具体的に説明する。原料粉末と
して、いずれも10〜150μmの範囲内の所定の平均
粒径を有するアトマイズFe−S合金粉末(S:0.3
2%含有)、アトマイズFe−Cr−S合金粉末(C
r:2.1%、S:0.22%含有)、アトマイズFe
−Cr−Mn−S合金粉末(Cr:2.2%、Mn:
0.7%、S:0.21%含有)、アトマイズFe−N
i−S合金粉末(Ni:4.4%、S:0.12%含
有)、アトマイズFe−Mo−S合金粉末(Mo:1.
3%、S:0.15%含有)、アトマイズFe−Ni−
Mo−S合金粉末(Ni:4.2%、Mo:1.5%、
S:0.13%含有)、Cr粉末、Cu粉末、Ni粉
末、Mo粉末、S(硫黄)粉末、黒鉛粉末、h−BN粉
末、およびほう酸粉末を用意し、これら原料粉末を表
1、2に示される配合組成に配合し、潤滑材としてステ
アリン酸亜鉛を0.75%添加してV型ミキサーで30
分間混合し、5〜7ton/cm2 の圧力で圧粉体にプ
レス成形し、この圧粉体を、メッシュベルト式焼結炉に
て、アンモニア分解ガス雰囲気中、1100〜1250
℃の範囲内の所定温度に25分間保持した後、5〜40
℃/分の範囲内の所定の冷却速度で550℃まで徐冷後
放冷の条件で焼結することにより、実質的に上記配合組
成と同じ成分組成、並びに光学顕微鏡(倍率:100
倍)で観察した組織写真による計測で表1,2に示され
る組織[素地に占めるパーライト相の割合および気孔
(遊離黒鉛)割合]を有する黒鉛析出焼結材料で構成さ
れた、JIS・Z2550に規定される寸法の引張試験
片および外径:18mm×内径:8mm×長さ:8mm
の寸法をもった本発明黒鉛析出焼結材料軸受(以下、本
発明軸受という)1〜21、および合金成分としてCr
を含有せず、これによって素地中に析出遊離黒鉛が分散
分布してなる黒鉛析出焼結材料で構成された従来黒鉛析
出焼結材料軸受(以下、従来軸受という)をそれぞれ製
造した。
BEST MODE FOR CARRYING OUT THE INVENTION Next, the graphite-precipitated sintered material bearing of the present invention will be specifically described with reference to Examples. As the raw material powder, atomized Fe-S alloy powder (S: 0.3) having a predetermined average particle diameter in the range of 10 to 150 μm
2% content), atomized Fe-Cr-S alloy powder (C
r: 2.1%, S: 0.22% included), atomized Fe
-Cr-Mn-S alloy powder (Cr: 2.2%, Mn:
0.7%, S: 0.21% included), atomized Fe-N
i-S alloy powder (Ni: 4.4%, S: 0.12% content), atomized Fe-Mo-S alloy powder (Mo: 1.
3%, S: 0.15% content), atomized Fe-Ni-
Mo-S alloy powder (Ni: 4.2%, Mo: 1.5%,
S: 0.13% content), Cr powder, Cu powder, Ni powder, Mo powder, S (sulfur) powder, graphite powder, h-BN powder, and boric acid powder are prepared, and these raw material powders are shown in Tables 1 and 2. Blended to the blending composition shown in, and added 0.75% of zinc stearate as a lubricant,
It is mixed for 1 minute and press-formed into a green compact at a pressure of 5 to 7 ton / cm 2 , and the green compact is 1100 to 1250 in an ammonia decomposition gas atmosphere in a mesh belt type sintering furnace.
After maintaining at a predetermined temperature in the range of ℃ for 25 minutes, 5-40
By gradually cooling to 550 ° C. at a predetermined cooling rate within the range of ° C./min and then sintering under the conditions of standing cooling, the component composition substantially the same as the above-mentioned composition and an optical microscope (magnification: 100
JIS Z2550, which is composed of a graphite-precipitated sintered material having the structure shown in Tables 1 and 2 [percentage of pearlite phase in the matrix and percentage of pores (free graphite)] measured by micrographs. Tensile test piece with specified dimensions and outer diameter: 18 mm × inner diameter: 8 mm × length: 8 mm
Inventive graphite precipitation sintered material bearings (hereinafter referred to as invented bearings) 1 to 21 having the dimensions of, and Cr as an alloy component
A conventional graphite-precipitated sintered material bearing (hereinafter, referred to as a conventional bearing) containing no graphite and composed of a graphite-precipitated sintered material in which precipitated free graphite is dispersed and distributed in the matrix was manufactured.

【0015】ついで、上記の各種軸受のそれぞれに直
径:8mm×長さ:50mmの寸法をもったS45Cの
炭素鋼製軸を挿通し(軸受と軸間のクリアランス:約2
5μm)、前記軸の両端部を前記軸受端面からそれぞれ
5mmの間隔をもって支持し、前記軸受には直下より1
48kgf /cm2 の面圧で高負荷をかけて定置し、
潤滑剤としてグリースを使用し、前記軸の周速を120
m/min.とする高面圧条件で摩耗試験を60分間行
い、耐摩耗性を評価した。耐摩耗性の評価は、試験後の
軸受を長さ方向に横断し、下半部の軸受面における垂直
面にそった摩耗量を連続的に測定し、最大摩耗量と最小
摩耗量をピックアップした。これらの結果を表1、2に
示した。また、表1、2には55mm×10mm×10
mmの寸法をもった試験片を用いて行った引張試験結果
(引張強さ)も合わせて示した。
Then, an S45C carbon steel shaft having a diameter of 8 mm and a length of 50 mm is inserted into each of the above-mentioned various bearings (clearance between the bearing and the shaft: about 2).
5 μm), and both ends of the shaft are supported at a distance of 5 mm from the end face of the bearing.
Placed under a high load with a surface pressure of 48 kgf / cm 2 ,
Grease is used as a lubricant, and the peripheral speed of the shaft is 120
m / min. The wear resistance was evaluated by performing a wear test for 60 minutes under the high surface pressure condition. To evaluate the wear resistance, the bearing after the test was traversed in the longitudinal direction, the amount of wear along the vertical surface of the lower half bearing surface was continuously measured, and the maximum amount of wear and the minimum amount of wear were picked up. . The results are shown in Tables 1 and 2. Further, in Tables 1 and 2, 55 mm × 10 mm × 10
The results of tensile tests (tensile strength) performed using test pieces having a size of mm are also shown.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】[0018]

【発明の効果】表1、2に示される結果から、本発明軸
受1〜21は、いずれもCr固溶によって強化された実
質的にパーライト主体相の素地と、前記素地に分散分布
する気孔内に遊離黒鉛が析出して成長し、前記素地には
同じくCr固溶によって遊離黒鉛の析出のない組織を有
する黒鉛析出焼結材料で構成されているので、高面圧下
での摩耗条件にもかかわらず、軸受面における最大摩耗
量と最小摩耗量の値が相対的に小さく、かつその差もき
わめて小さく、これは均等な摩耗で、すぐれた耐摩耗性
を発揮することを示すものであり、一方従来軸受は、実
質的に素地はパーライト主体相からなるが、前記素地中
に遊離黒鉛が析出して成長し、気孔内には遊離黒鉛の析
出が見られない組織を有する黒鉛析出焼結材料で構成さ
れているので、高面圧下での摩耗条件では析出遊離黒鉛
による素地の強度低下が原因で局部的に摩耗にバラツキ
が生ずるばかりでなく、摩耗進行がきわめて速く、使用
寿命の短命化か避けられないことが明らかである。上述
のように、この発明の黒鉛析出焼結材料軸受は、高面圧
下においてもすぐれた耐摩耗性を示し、すぐれた軸受特
性を長期に亘って発揮するので、各種駆動装置の高出力
化および高速化に満足に対応し、かつ省力化にも役立つ
など工業上有用な特性を有するのである。
From the results shown in Tables 1 and 2, all of the bearings 1 to 21 of the present invention are substantially pearlite-based phase base material strengthened by Cr solid solution and pores dispersedly distributed in the base material. Since free graphite is precipitated and grows on the base metal and is composed of a graphite precipitation sintered material having a structure in which the free graphite does not precipitate due to the solid solution of Cr as well, it does not matter even under wear conditions under high surface pressure. However, the values of the maximum wear amount and the minimum wear amount on the bearing surface are relatively small, and the difference between them is also extremely small, which shows that even wear is excellent in wear resistance. A conventional bearing is a graphite precipitation sintered material having a structure in which the matrix is composed mainly of a pearlite-based phase, but free graphite precipitates and grows in the matrix and no precipitation of free graphite is observed in the pores. Configured so high Not only variation occurs locally worn due to strength reduction of the matrix due to precipitation free graphite in the wear conditions at pressure, wear progresses very fast, it is clear that the inevitable or shortening of the service life. As described above, the graphite-precipitated sintered material bearing of the present invention exhibits excellent wear resistance even under high surface pressure, and exhibits excellent bearing characteristics for a long period of time, so that high output of various drive devices and It has industrially useful properties, such as satisfying high speed and labor saving.

フロントページの続き (72)発明者 桜田 徹 東京都港区芝5丁目33−8 三菱自動車 工業株式会社内 (72)発明者 河原 利英 東京都港区芝5丁目33−8 三菱自動車 工業株式会社内 (56)参考文献 特開 昭64−15350(JP,A) 特開 平8−209202(JP,A) 特開 平9−49064(JP,A) 特開 平8−41610(JP,A) 特開 平9−41071(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 304 C22C 37/00 C22C 38/32 F16C 33/10 F16C 33/12 Front page continued (72) Inventor Toru Sakurada 5-3-8 Shiba, Minato-ku, Tokyo Within Mitsubishi Motors Corporation (72) Inventor Toshihide Kawahara 5-33-8 Shiba, Minato-ku, Tokyo Mitsubishi Motors Corporation (56) References JP 64-15350 (JP, A) JP 8-209202 (JP, A) JP 9-49064 (JP, A) JP 8-41610 (JP, A) JP-A-9-41071 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C22C 38/00 304 C22C 37/00 C22C 38/32 F16C 33/10 F16C 33/12

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%(質量%)で、 C:1〜3%、 S :0.05〜1%、 B:0.05〜1%、 Cr:0.5〜5%、 Cu:0.5〜4%、 Mn:0.2〜1%、 を含有し、残りがFeと不可避不純物からなる組成、並
びにSおよびB成分の作用で遊離黒鉛がパーライトの素
地中に分散分布する気孔内に析出して成長し、かつ同C
r成分の作用で前記素地には析出遊離黒鉛が存在しない
組織を有する遊離黒鉛析出鉄系焼結材料で構成したこと
を特徴とする高面圧下ですぐれた耐摩耗性を発揮する遊
離黒鉛析出鉄系焼結材料製軸受。
1. By weight% (mass%), C: 1-3%, S: 0.05-1%, B: 0.05-1%, Cr: 0.5-5%, Cu: 0. 0.5 to 4%, Mn: 0.2 to 1%, the balance consisting of Fe and unavoidable impurities , and free graphite due to the action of S and B components.
Precipitates and grows in the pores dispersedly distributed in the ground, and
Precipitated free graphite does not exist in the substrate due to the action of r component
A bearing made of a free graphite-precipitated iron-based sintered material exhibiting excellent wear resistance under high surface pressure, which is composed of a free graphite-precipitated iron-based sintered material having a structure.
【請求項2】 重量%(質量%)で、 C:1〜3%、 S :0.05〜1%、 B:0.05〜1%、 Cr:0.5〜5%、 Cu:0.5〜4%、 Mn:0.2〜1%、 を含有し、さらに、 Ni:1〜5%、 を含有し、残りがFeと不可避不純物からなる組成、並
びにSおよびB成分の作用で遊離黒鉛がパーライトの素
地中に分散分布する気孔内に析出して成長し、かつ同C
r成分の作用で前記素地には析出遊離黒鉛が存在しない
組織を有する遊離黒鉛析出鉄系焼結材料で構成したこと
を特徴とする高面圧下ですぐれた耐摩耗性を発揮する遊
離黒鉛析出鉄系焼結材料製軸受。
2. In weight% (mass%), C: 1-3%, S: 0.05-1%, B: 0.05-1%, Cr: 0.5-5%, Cu: 0. 0.5 to 4%, Mn: 0.2 to 1%, Ni: 1 to 5%, and the balance of Fe and inevitable impurities, and S and Free graphite is a pearlite element due to the action of the B component.
Precipitates and grows in the pores dispersedly distributed in the ground, and
Precipitated free graphite does not exist in the substrate due to the action of r component
A bearing made of a free graphite-precipitated iron-based sintered material exhibiting excellent wear resistance under high surface pressure, which is composed of a free graphite-precipitated iron-based sintered material having a structure.
【請求項3】 重量%(質量%)で、 C:1〜3%、 S :0.05〜1%、 B:0.05〜1%、 Cr:0.5〜5%、 Cu:0.5〜4%、 Mn:0.2〜1%、 を含有し、さらに、 Mo:0.5〜2%、 を含有し、残りがFeと不可避不純物からなる組成、並
びにSおよびB成分の作用で遊離黒鉛がパーライトの素
地中に分散分布する気孔内に析出して成長し、か つ同C
r成分の作用で前記素地には析出遊離黒鉛が存在しない
組織を有する遊離黒鉛析出鉄系焼結材料で構成したこと
を特徴とする高面圧下ですぐれた耐摩耗性を発揮する遊
離黒鉛析出鉄系焼結材料製軸受。
3. In weight% (mass%), C: 1-3%, S: 0.05-1%, B: 0.05-1%, Cr: 0.5-5%, Cu: 0. 0.5 to 4%, Mn: 0.2 to 1%, Mo: 0.5 to 2%, and the balance of Fe and inevitable impurities, and Due to the action of the S and B components, free graphite becomes a pearlite element
Deposited in the pores of dispersion distribution in the ground to grow, or One same C
Precipitated free graphite does not exist in the substrate due to the action of r component
A bearing made of a free graphite-precipitated iron-based sintered material exhibiting excellent wear resistance under high surface pressure, which is composed of a free graphite-precipitated iron-based sintered material having a structure.
【請求項4】 重量%(質量%)で、 C:1〜3%、 S :0.05〜1%、 B:0.05〜1%、 Cr:0.5〜5%、 Cu:0.5〜4%、 Mn:0.2〜1%、 を含有し、さらに、 Ni:1〜5%、 Mo:0.5〜2%、 を含有し、残りがFeと不可避不純物からなる組成、並
びにSおよびB成分の作用で遊離黒鉛がパーライトの素
地中に分散分布する気孔内に析出して成長し、かつ同C
r成分の作用で前記素地には析出遊離黒鉛が存在しない
組織を有する遊離黒鉛析出鉄系焼結材料で構成したこと
を特徴とする高面圧下ですぐれた耐摩耗性を発揮する遊
離黒鉛析出鉄系焼結材料製軸受。
4. By weight% (mass%), C: 1-3%, S: 0.05-1%, B: 0.05-1%, Cr: 0.5-5%, Cu: 0. 0.5 to 4%, Mn: 0.2 to 1%, Ni: 1 to 5%, Mo: 0.5 to 2%, and the balance of Fe and inevitable impurities. , And by the action of the S and B components, the free graphite becomes a pearlite element.
Precipitates and grows in the pores dispersedly distributed in the ground, and
Precipitated free graphite does not exist in the substrate due to the action of r component
A bearing made of a free graphite-precipitated iron-based sintered material exhibiting excellent wear resistance under high surface pressure, which is composed of a free graphite-precipitated iron-based sintered material having a structure.
JP14103098A 1998-05-22 1998-05-22 Bearings made of free graphite-precipitated iron-based sintered material exhibiting excellent wear resistance under high surface pressure Expired - Fee Related JP3381626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14103098A JP3381626B2 (en) 1998-05-22 1998-05-22 Bearings made of free graphite-precipitated iron-based sintered material exhibiting excellent wear resistance under high surface pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14103098A JP3381626B2 (en) 1998-05-22 1998-05-22 Bearings made of free graphite-precipitated iron-based sintered material exhibiting excellent wear resistance under high surface pressure

Publications (2)

Publication Number Publication Date
JPH11335798A JPH11335798A (en) 1999-12-07
JP3381626B2 true JP3381626B2 (en) 2003-03-04

Family

ID=15282593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14103098A Expired - Fee Related JP3381626B2 (en) 1998-05-22 1998-05-22 Bearings made of free graphite-precipitated iron-based sintered material exhibiting excellent wear resistance under high surface pressure

Country Status (1)

Country Link
JP (1) JP3381626B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020073647A (en) * 2001-03-15 2002-09-28 이우천 Wear-resistant sliding bearing for heavy load
DE102020202738A1 (en) 2020-03-04 2021-09-09 Mahle International Gmbh Plain bearing, method for producing a plain bearing, internal combustion engine with plain bearing and electrical machine with plain bearing
DE102020202739A1 (en) * 2020-03-04 2021-09-09 Mahle International Gmbh Sintered bearing bushing material, plain bearings, internal combustion engines and electrical machines

Also Published As

Publication number Publication date
JPH11335798A (en) 1999-12-07

Similar Documents

Publication Publication Date Title
TW201107495A (en) High strength low alloyed sintered steel
JP6194613B2 (en) Iron-based sintered alloy for sliding member and manufacturing method thereof
GB2073247A (en) Anti-wear sintered alloy
JP3865293B2 (en) Abrasion resistant hard phase forming alloy powder and method for producing wear resistant sintered alloy using the same
AU696267B2 (en) Wear-resistant sintered ferrous alloy for valve seat
JP3342972B2 (en) Wear-resistant sintered alloy for oil-impregnated bearings
JP4201830B2 (en) Iron-based powder containing chromium, molybdenum and manganese and method for producing sintered body
JPH11117044A (en) Bearing made of free-graphite-precipitation-type ferrous sintered material, excellent in initial conformability
JPH07300656A (en) Sintered bearing alloy for high temperature use and its production
JP3381626B2 (en) Bearings made of free graphite-precipitated iron-based sintered material exhibiting excellent wear resistance under high surface pressure
JP4051167B2 (en) Wear-resistant iron-based sintered alloy
JP2001131611A (en) Bearing made of free graphite-precipitated ferrous sintered material exhibiting excellent wear resistance under high specific pressure
JPS5985847A (en) Fe-base sintered material for sliding member of internal-combustion engine
JP3475545B2 (en) Mixed steel powder for powder metallurgy and sintering material containing it
JP3303026B2 (en) High strength iron-based sintered alloy and method for producing the same
JPH10501299A (en) Iron-based powder containing Mo, P, C
JP3257349B2 (en) Iron-based sintered alloy with excellent strength and wear resistance
JP2004018940A (en) Method for manufacturing ferrous sintered sliding member, and ferrous sintered sliding member
JPH0931612A (en) Iron-base sintered alloy excellent in strength and wear resistance
JP2000337511A (en) Piston-ring abrasion-resistant ring made of free-graphite precipitated iron system sintered material excellent in abrasion resistance and heat conductivity
JP3257196B2 (en) Iron-based sintered alloy for sliding members with excellent strength and wear resistance
JP2000355741A (en) Ball stud sheet made of free graphite precipitated ferrous sintering material exhibiting excellent wear resistance under high facial pressure
JP2000355742A (en) Ball stud sheet made of free graphite precipitated ferrous sintered material exhibiting excellent wear resistance under high facial pressure
JPS60159154A (en) Wear resistant sintered sliding material
JP3763605B2 (en) Sintered alloy material for valve seats

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021119

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091220

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees