KR20090071400A - Iron base sintered alloy for slide member - Google Patents

Iron base sintered alloy for slide member Download PDF

Info

Publication number
KR20090071400A
KR20090071400A KR1020080129150A KR20080129150A KR20090071400A KR 20090071400 A KR20090071400 A KR 20090071400A KR 1020080129150 A KR1020080129150 A KR 1020080129150A KR 20080129150 A KR20080129150 A KR 20080129150A KR 20090071400 A KR20090071400 A KR 20090071400A
Authority
KR
South Korea
Prior art keywords
mns
phase
alloy
sintered alloy
slide member
Prior art date
Application number
KR1020080129150A
Other languages
Korean (ko)
Other versions
KR101087376B1 (en
Inventor
다케시 야나세
가즈오 마루야마
Original Assignee
히다치 훈마츠 야킨 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 히다치 훈마츠 야킨 가부시키가이샤 filed Critical 히다치 훈마츠 야킨 가부시키가이샤
Publication of KR20090071400A publication Critical patent/KR20090071400A/en
Application granted granted Critical
Publication of KR101087376B1 publication Critical patent/KR101087376B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2200/00Crystalline structure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Sliding-Contact Bearings (AREA)
  • Powder Metallurgy (AREA)

Abstract

An iron base sintered alloy for slide member is provided to reduce the content of copper while ensuring its functional effect and to thereby reduce dimension variation in sintering. An iron base sintered alloy for slide member comprises C: 0.6~1.2%, Cu: 3.5~9.0%, Mn: 0.6~2.2%, S: 0.4~1.3%, and the remnant Fe and inevitable impurities. In the alloy structure, at least one of isolated Cu phase or isolated Cu~Fe alloy phase is spread and MnS phase of 2~100mum is spread by 1.0~3.5 mass% in martensite base.

Description

슬라이드 부재용 철기 소결 합금{IRON BASE SINTERED ALLOY FOR SLIDE MEMBER}Iron-based sintered alloy for slide members {IRON BASE SINTERED ALLOY FOR SLIDE MEMBER}

본 발명은, 내주면에 높은 면압이 작용하는 베어링에 이용하기에 적합한 슬라이드 부재용 철기(iron-base) 소결 합금에 관한 것으로, 특히, 소결 시의 치수 변화가 적고, 또한 뛰어난 내소부(耐燒付)성을 나타내는 슬라이드 부재용 철기 소결 합금에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an iron-base sintered alloy for slide members suitable for use in bearings having a high surface pressure on an inner circumferential surface. In particular, the present invention has a small dimensional change at the time of sintering and an excellent burn-out portion. The present invention relates to an iron-based sintered alloy for a slide member exhibiting properties.

예를 들어, 차량, 공작 기계, 산업 기계 등의 구동 부위나 슬라이드 부위와 같이 슬라이드면에 높은 면압이 작용하는 슬라이드 부재로는, 탄소강을 절삭 가공하여 담금질, 템퍼링한 것이나, 소결 합금제인 것이 사용되고 있다. 특히, 소결 합금은 함침된 윤활유에 의한 자기 윤활성을 부여할 수 있으므로, 내소부성과 내마모성이 양호하여 폭넓게 이용되고 있다. 예를 들어 일본국 특개평 11-117940호 공보에는, Cu:10∼30%, 잔부:Fe로 이루어지는 철계 소결 합금층을 슬라이드면에 구비한 베어링이 개시되어 있다.For example, as a slide member which high surface pressure acts on a slide surface, such as a drive part of a vehicle, a machine tool, an industrial machine, or a slide part, carbon steel is cut and quenched and tempered, or what is made of a sintered alloy is used. . In particular, since the sintered alloy can impart self-lubrication property by the impregnated lubricating oil, it has been widely used because it has good baking resistance and wear resistance. For example, Japanese Patent Laid-Open No. 11-117940 discloses a bearing having a slide surface with an iron-based sintered alloy layer made of Cu: 10 to 30% and the balance: Fe.

그러나, 최근, 구리의 가격이 높아지고 있으므로, 일본국 특개평 11-117940호 공보와 같이 구리를 10∼30% 사용하는 기술에서는 제조 비용이 비교적 높아 실 용적이지 않다. 또한, 융점이 낮은 구리가 소결 시에 액상이 되므로, 소결 후의 치수 변화량이 크다는 결점도 있다. 이 때문에, 요구 정밀도를 만족하기 위해서 기계 가공이 필요하고, 제조 비용이 더욱 고가로 된다.However, in recent years, since the price of copper is increasing, in the technique which uses 10 to 30% of copper as in Unexamined-Japanese-Patent No. 11-117940, manufacturing cost is comparatively high and it is not practical. In addition, since copper having a low melting point becomes a liquid phase at the time of sintering, there is also a disadvantage that the amount of dimensional change after sintering is large. For this reason, machining is required in order to satisfy the required precision, and manufacturing cost becomes more expensive.

한편, 소결 합금 중에 구리를 함유함으로써, 기지 내에 연질의 Cu상 또는 Cu 합금상이 분산하고, 이에 따라, 상대 부재로의 공격성이 완화됨과 더불어 적당히 변형됨에 의한 상대 부재와의 융합성이 향상된다. 이 때문에, 구리의 함유량을 적게하면, 내마모성이 저하함과 더불어 상대 부재로의 공격성이 높아짐과 함께, 윤활유가 불충분하면 울음 소리가 발생하는 등의 문제가 생긴다.On the other hand, by containing copper in the sintered alloy, the soft Cu phase or the Cu alloy phase is dispersed in the matrix, whereby the aggression to the counterpart member is alleviated and the compatibility with the counterpart member by moderate deformation is improved. For this reason, when the copper content is reduced, the wear resistance decreases, the aggression to the counterpart member increases, and when lubricating oil is insufficient, a crying sound occurs.

따라서, 본 발명은, 구리를 함유함에 의한 뛰어난 성능을 유지하면서, 구리의 사용량을 저감하여 제조 비용을 저감할 수 있는 슬라이드 부재용 철기 소결 합금을 제공하는 것을 목적으로 한다.Accordingly, an object of the present invention is to provide an iron-based sintered alloy for a slide member which can reduce the amount of copper used and reduce manufacturing costs while maintaining excellent performance by containing copper.

본 발명의 슬라이드 부재용 철기 소결 합금은, 전체 조성이, 질량비로, C:0.6∼1.2%, Cu : 3.5∼9.0%, Mn:0.6∼2.2%, S:0.4∼1.3%, 잔부:Fe 및 불가피 불순물로 이루어지고, 그 합금 조직이, 마텐자이트 기지 내에, 유리된 Cu상 또는 유리된 Cu-Fe 합금상 중 적어도 하나가 분산함과 더불어, MnS상이 1.0∼3.5질량% 분산하고 있는 것을 특징으로 한다.The iron-based sintered alloy for the slide member of the present invention has a total composition of C: 0.6 to 1.2%, Cu: 3.5 to 9.0%, Mn: 0.6 to 2.2%, S: 0.4 to 1.3%, and the balance: Fe and It is made of inevitable impurities, the alloy structure is dispersed in the martensite matrix, at least one of the free Cu phase or the free Cu-Fe alloy phase, and the MnS phase is 1.0 to 3.5% by mass dispersed It is done.

기지 내에 분산된 MnS는 고체 윤활제로서 작용하고, 윤활유가 불충분한 조건하에서도 부재끼리 금속 접촉을 방지하여 울움 소리의 발생을 방지한다. 또한, MnS가 상대 부재로의 공격성을 완화함과 함께, 상대 부재와의 뛰어난 융합성을 얻을 수 있다. 이하, 본 발명의 한정의 근거를 본 발명의 작용과 함께 설명한다. 또한, 이하의 설명에 있어서 「%」는 질량%의 의미이다.MnS dispersed in the matrix acts as a solid lubricant and prevents the occurrence of crying sounds by preventing metal contact between members even under conditions in which lubricant is insufficient. In addition, while MnS alleviates the aggression to the opponent member, excellent fusion with the opponent member can be obtained. EMBODIMENT OF THE INVENTION Hereinafter, the basis of limitation of this invention is demonstrated with the action of this invention. In addition, in the following description, "%" means the mass%.

〈기지(基地)〉〈Base base〉

고면압 하에서 사용되어 내마모성을 발휘할 수 있도록, 기지는 높은 경도와 강도를 가지는 마텐자이트로 한다.The base is made of martensite having high hardness and strength so that it can be used under high surface pressure and exhibit wear resistance.

<C:0.6∼1.2%><C: 0.6 to 1.2%>

C의 함유량이 0.6%를 밑돌면, 경도 및 강도가 불충분하게 되어, 마모량이 증대한다. 한편, C의 함유량이 1.2%를 넘으면, 기지가 약해져 마모량이 증대한다. 또한, C는 소결이나 담금질 등의 가열에 의해 탈탄(脫炭)되어, 원료 분말에 있어서의 함유량에 대해서 감소하거나 혹은 침탄(浸炭)에 의해 증가하기도 한다. 본 발명에 있어서의 C의 함유량은, 최종적인 열처리가 종료한 후의 함유량을 말한다.If the content of C is less than 0.6%, the hardness and strength become insufficient, and the amount of wear increases. On the other hand, if the content of C exceeds 1.2%, the matrix becomes weak and the amount of wear increases. In addition, C is decarburized by heating, such as sintering or quenching, and decreases with respect to content in raw material powder, or it may increase by carburization. Content of C in this invention means content after final heat processing is complete | finished.

<Cu:3.5∼9.0%><Cu: 3.5 to 9.0%>

Cu의 함유량이 3.5%를 밑돌면, 기지 내에 분산하는 유리된 Cu상이나 Cu-Fe상의 양이 불충분하게 되어, 상대 부재와의 응착이 발생하기 쉬워진다. 한편, Cu의 함유량이 9.0%를 넘으면, 소결 시에 액상이 생겨 소결 후의 치수 변화량이 증대한다.If the content of Cu is less than 3.5%, the amount of free Cu phase or Cu-Fe phase dispersed in the matrix becomes insufficient, and adhesion with the mating member is likely to occur. On the other hand, when the content of Cu exceeds 9.0%, a liquid phase occurs during sintering, and the amount of dimensional change after sintering increases.

〈고체 윤활제〉<Solid lubricant>

기름에 의한 윤활이 불충분한 조건 하에서의 마찰 계수의 저감, 상대 부재에의 공격성의 저감, 상대 부재와의 친밀성의 향상이 가능하도록, 기지 내에 고체 윤활제를 분산시킨다. 대표적인 고체 윤활제로는, 흑연, MoS2, FeS, CuS, WS2, MnS 등이 있는데, 흑연은 소결 시에 철 중에 확산하기 때문에, 유리시켜 기지 내에 분산시키는 것이 어렵고, 또한 흑연이 유리될 정도로 첨가량을 많게 하면 기지 내에 시멘타이트가 석출되어 약해짐과 더불어 상대 공격성이 증대하여, 바람직하지 않다. MoS2, FeS, CuS, WS2,는 소결 시에 분해되기 쉬우므로, 소결 후의 기지 내의 분산 상태가 흩어지기 쉽고, 분산량을 확보하기 위해서 첨가량을 많게 하면 재료 비용의 상승과 강도의 저하를 초래하게 되어, 바람직하지 않다. 그 점에서, MnS는 매우 안정되고, 뛰어난 윤활 특성과 강도 특성을 겸비하는 슬라이드 부재용 철계 소결 합금을 얻기 위해서 기지 내에 분산시키는 고체 윤활제로서 바람직하다.The solid lubricant is dispersed in the matrix to enable the reduction of the friction coefficient under the conditions in which lubrication with oil is insufficient, the reduction in the aggressiveness to the counterpart member, and the improvement of the intimacy with the counterpart member. Typical solid lubricants include graphite, MoS 2 , FeS, CuS, WS 2 , and MnS. Since graphite diffuses in iron at the time of sintering, it is difficult to liberate and disperse in the matrix, and the amount of graphite is liberated. A large amount of cement precipitates and weakens cementite in the base, and increases the relative aggression, which is undesirable. Since MoS 2 , FeS, CuS, WS 2 , are easily decomposed during sintering, the dispersion state in the matrix after sintering is easy to disperse, and increasing the addition amount to secure the dispersion amount increases the material cost and decreases the strength. This is undesirable. In view of this, MnS is very stable and is preferable as a solid lubricant to be dispersed in a matrix in order to obtain an iron-based sintered alloy for a slide member having excellent lubrication characteristics and strength characteristics.

<MnS:1.0∼3.5%><MnS: 1.0 to 3.5%>

MnS의 함유량이 1.0%를 밑돌면, 고체 윤활제로서의 작용이 불충분해진다. 한편, MnS의 함유량이 3.5%를 넘으면, 기지의 강도가 저하하여 면압이 높은 조건 하에서는 마모량이 증대한다.When the content of MnS is less than 1.0%, the action as a solid lubricant is insufficient. On the other hand, when the content of MnS exceeds 3.5%, the known strength decreases and the amount of wear increases under conditions with high surface pressure.

<MnS상의 크기:2∼100㎛><MnS phase size: 2 to 100 µm>

MnS상의 크기가 2㎛를 밑돌면, 고체 윤활제로서의 작용이 불충분해진다. 한편, MnS상의 크기가 100㎛를 넘으면, 기지의 강도가 저하한다.If the size of the MnS phase is less than 2 µm, the function as a solid lubricant is insufficient. On the other hand, when the size of MnS phase exceeds 100 micrometers, a known intensity | strength will fall.

MnS상은, 재료 분말 중에 MnS 분말을 첨가함으로써 생성하는 것이 바람직하다. MnS는, MoS2나 흑연에 비해 안정되므로 소결 시에 분해하기 어렵다. 따라서, 적은 첨가량으로 충분한 효과를 얻을 수 있음과 더불어, 기지로의 분산량을 제어하기 쉬워 슬라이드 부재의 성능을 안정시킬 수가 있다. 또한, MnS 분말은, 입경이 15㎛ 이하인 입자가 90질량% 이상 포함되는 것이 바람직하다. 이와 같이 미분의 MnS 분말로 첨가함으로써, 기지로의 분산성이 양호해진다. 또한, MnS 입자가 서로 응집한 형태로 기지 내에 분산하는 경우가 있는데, 슬라이드 부재의 성능상 문제는 없다.It is preferable to produce a MnS phase by adding MnS powder in material powder. Since MnS is more stable than MoS 2 and graphite, it is difficult to decompose during sintering. Therefore, while a sufficient effect can be obtained with a small addition amount, it is easy to control the dispersion amount to a base, and the performance of a slide member can be stabilized. Moreover, it is preferable that MnS powder contains 90 mass% or more of particle | grains whose particle diameter is 15 micrometers or less. By adding in finely divided MnS powder in this way, the dispersibility to a matrix becomes favorable. Moreover, although MnS particle may disperse | distribute in a matrix in the form which aggregated with each other, there is no problem in the performance of a slide member.

본 발명에 의하면, MnS가 Cu에 의한 작용을 보충하기 때문에, 구리를 함유함에 의한 뛰어난 성능을 유지하면서, 구리의 사용량을 저감할 수 있다. 이에 따라, 소결 시의 치수 변화량을 저감할 수 있으므로, 재료비에 더하여 가공 비용을 저감할 수 있는 등의 효과가 얻어진다.According to this invention, since MnS supplements the effect | action by Cu, the usage-amount of copper can be reduced, maintaining the outstanding performance by containing copper. Thereby, since the amount of dimensional change at the time of sintering can be reduced, the effect of reducing processing cost in addition to material cost is acquired.

이하, 본 발명을 실시예에 의해 더욱 상세하게 설명한다.Hereinafter, an Example demonstrates this invention further in detail.

베어링의 소결 합금을 제작하기 위해서 하기의 원료 분말을 준비했다.In order to manufacture the sintered alloy of the bearing, the following raw material powder was prepared.

1. 애토마이즈(atomize) 철분(고베제강소 제 아트멜 300M)1.Atomize Iron (Kobe Steel Mill Atmel 300M)

2. 전해 구리분말(후쿠다 금속박분 공업 제 CE15)2. Electrolytic Copper Powder (CE15, Fukuda Metal Foil Industry)

3. 천연 흑연분말(일본 흑연 제 JCPB)3. Natural Graphite Powder (Japan Graphite JCPB)

4. 황화망간분말(헤가네스사 제 MnS-E)4. Manganese Sulfide Powder (MnS-E manufactured by Heganes)

5. 스테아르산아연(ADEKA 케미컬 서플라이 제 에프코켐 ZNS730)5. Zinc stearate (Fedecochem ZNS730 manufactured by ADEKA Chemical Supply)

이들 분말을 전체 조성이 표 1에 나타내는 비율이 되도록 배합했다. 또한, 스테아르산아연은, 성형 시의 윤활을 위해서 첨가하는 것이며, 이를 제외하는 혼합 분말을 100%로 했을 때에, 모든 혼합 분말에 대해 0.75% 첨가했다.These powders were mix | blended so that the whole composition might become the ratio shown in Table 1. In addition, zinc stearate is added for lubrication at the time of shaping | molding, and when the mixed powder except this was made into 100%, 0.75% was added with respect to all the mixed powders.

Figure 112008086983815-PAT00001
Figure 112008086983815-PAT00001

상기와 같이 배합한 분말을 V형 혼합기에서 30분간 혼합하고, 혼합 분말에 대해서 밀도 6.2g/㎠, 밀도비 80%의 베어링 원통 형상으로 압축 성형하고, 성형체를 1130℃에서 20분간 소결했다. 이어서, 소결체를 850℃에서 침탄 담금질하고, 180℃에서 탬퍼링했다. 그리고, 절삭 가공에 의해 내경:30㎜, 외경:36㎜, 길이:25㎜로 마무리한 후, 소결체의 기공(氣孔)에 윤활유(ISO VG460 상당의 기어유(gear oil))를 함침시켜, 시료 No.1∼16을 얻었다. 또한, 비교를 위해서 MnS 분말을 대신해 MoS2를 표 1에 표시하는 비율로 배합하고, 그 외는 시료 No.1∼16과 동일한 조건으로 시료 No.17을 얻었다.The powder blended as described above was mixed in a V-type mixer for 30 minutes, compression molded into a bearing cylindrical shape having a density of 6.2 g / cm 2 and a density ratio of 80% with respect to the mixed powder, and the molded body was sintered at 1130 ° C. for 20 minutes. Subsequently, the sintered compact was carburized and quenched at 850 ° C, and tampered at 180 ° C. Then, after finishing with an inner diameter of 30 mm, an outer diameter of 36 mm, and a length of 25 mm by cutting, the pores of the sintered body were impregnated with lubricating oil (gear oil equivalent to ISO VG460), and a sample was obtained. Nos. 1 to 16 were obtained. Further, for the comparison instead of the MnS powder is blended in the ratio indicating the MoS 2 in Table 1, except that the sample was obtained under the same conditions as in sample No.17 No.1~16.

표 1에, 시료 No.1∼17의 소결 후의 치수 변화를 타원량으로 표시했다. 타원량은, 시료의 내경의 최대 측정값으로부터 최소 측정값을 뺀 값이다. 표 1에서는, 본 발명에서 규정하는 범위를 일탈하는 값과 불합격으로 인정되는 특성값에 밑줄이 그어져 있다.In Table 1, the dimensional change after sintering of sample No.1-17 was shown by ellipse amount. The ellipse amount is a value obtained by subtracting the minimum measured value from the maximum measured value of the inner diameter of the sample. In Table 1, the value which deviates from the range prescribed | regulated by this invention, and the characteristic value recognized as fail are underlined.

표 1에 나타내는 바와같이, Cu의 함유량이 본 발명의 상한(9%)을 넘는 시료 No.16에서는, 타원량이 매우 크고, 소결 시의 치수 변화가 격심한 것을 알 수 있다. 또한, 시료 No.1∼17의 압환(壓環) 강도를 표 1에 표시한다. 표 1에 나타내는 바와같이, MnS의 함유량이 본 발명의 상한치(3.5%)를 넘는 시료 No.8, C의 함유량이 본발명의 하한치(0.6%)를 밑도는 시료 No.10에서는 강도가 낮기 때문에, C의 함유량이 본 발명의 상한치(1.2%)를 넘는 시료 No.14에서는 기지가 약해졌으므로, 압환 강도가 낮았다.As shown in Table 1, in sample No. 16 in which the Cu content exceeds the upper limit (9%) of the present invention, it is understood that the elliptic amount is very large and the dimensional change during sintering is severe. In addition, the rolling strength of Sample No. 1-17 is shown in Table 1. As shown in Table 1, the sample No. 8 and the content of MnS exceeding the upper limit (3.5%) of the present invention, and the sample No. 10 whose C content is lower than the lower limit (0.6%) of the present invention, Since sample became weak in sample No. 14 whose content of C exceeds the upper limit (1.2%) of this invention, the rolling strength was low.

다음에, 시료 No.1∼17에 대해서 베어링 시험을 행했다. 베어링 시험은, 시료를 시험기의 하우징에 고정하고, 시료의 구멍에 S45C 담금질강의 축을 장착하여 축심과 직각 방향으로 균등하게 하중을 가하고, 면압 25MPa의 상태에서 100rpm으로 200시간 회전시켜 행했다. 표 1에 운전 초기의 마찰 계수와 200시간 운전 후의 마모량을 나타낸다.Next, the bearing test was done about sample No.1-17. The bearing test was carried out by fixing the sample to the housing of the tester, attaching the shaft of the S45C quenched steel to the hole of the sample, applying a load evenly in the direction perpendicular to the axis center, and rotating it at 100 rpm for 200 hours at a surface pressure of 25 MPa. Table 1 shows the friction coefficient at the beginning of operation and the amount of wear after operation for 200 hours.

표 1에 나타내는 바와같이, Cu의 함유량이 본 발명의 하한치(3.5%)를 밑도는 시료 No. 2, 3에서는, 마찰 계수가 높고, 그 결과, 상대재의 마모량이 커졌다. 특히, Cu의 함유량이 본 발명의 하한치를 밑도는 시료 No.1에서는, 상대재와의 소부(燒付)가 생겨 베어링 시험을 중단했다. 또한, MnS의 함유량이 본 발명의 하한치(1.0%)를 밑도는 시료 No.4에서는, 마찰 계수가 높고, 그 결과, 상대재의 마모량이 커졌다. 한편, MnS의 함유량이 본 발명의 상한치(3.5%)를 넘는 시료 No.8에서는, 기지의 강도가 저하하여, 시료의 마모량이 증대했다.As shown in Table 1, the sample No. below which the Cu content is below the lower limit (3.5%) of the present invention. In 2 and 3, the friction coefficient was high and as a result, the wear amount of the counterpart material increased. In particular, in sample No. 1 in which the content of Cu was below the lower limit of the present invention, baking with the counterpart occurred, and the bearing test was stopped. In addition, in Sample No. 4 in which the content of MnS was below the lower limit (1.0%) of the present invention, the friction coefficient was high, and as a result, the amount of wear of the counterpart material increased. On the other hand, in sample No. 8 in which the content of MnS exceeded the upper limit (3.5%) of the present invention, the known strength decreased, and the amount of wear of the sample increased.

C의 함유량이 본 발명의 하한치(0.6%)를 밑도는 시료 No.10에서는, 경도 및 강도가 낮기 때문에, 시료의 마모량이 증대했다. 한편, C의 함유량이 본 발명의 상한치(1.2%)를 넘는 시료 No.14에서는, 기지가 약해져 시료의 마모량이 증대했다. 또한, MnS 분말을 대신하여 MoS2 분말을 첨가한 시료 No.17에서는 소결에 의해 MoS2가 분해되어 Mo가 기지에 고용하고, 그 결과, 윤활 부족때문에 초기 마찰 계수가 높고, 또한, 기지가 경화(硬化)되었으므로 상대재의 마모량이 증대했다.In sample No. 10 where the content of C was below the lower limit (0.6%) of the present invention, since the hardness and the strength were low, the amount of abrasion of the sample increased. On the other hand, in sample No. 14 in which the C content exceeded the upper limit (1.2%) of the present invention, the matrix became weak and the amount of abrasion of the sample increased. In addition, in Sample No. 17 in which MoS 2 powder was added in place of MnS powder, MoS 2 was decomposed by sintering and Mo was dissolved in the matrix. As a result, the initial friction coefficient was high due to lack of lubrication, and the matrix was cured. As it became finer, the amount of wear of the counterpart increased.

이상의 비교예에 대해서 본 발명의 실시예에서는, 마찰 계수, 강도 및 치수 변화의 어느 것에서나 뛰어난 값을 나타내고, 또한, 베어링 시험에 있어서도 시료 및 상대재 모두 마모량이 적었다.Regarding the above comparative examples, in the examples of the present invention, the friction coefficient, the strength and the dimensional change were all excellent, and in the bearing test, both the sample and the counterpart had little wear.

본 발명의 슬라이드 부재용 철기 소결 합금은, 차량, 공작 기계, 산업 기계 등의 구동 부위나 슬라이드 부위와 같이 슬라이드면에 높은 면압이 작용하는 슬라이드 부재에 이용하기에 적합하다. 구체적으로는, 예를 들면 프레스 기계용 베어링, 차량 등의 제동 장치 링크용 베어링, 힌지용 베어링, 산업용 로봇 등의 관절용 베어링, 캐스터(caster)용 베어링 등을 들 수 있다.The iron-based sintered alloy for a slide member of the present invention is suitable for use in a slide member in which high surface pressure acts on the slide surface, such as a drive portion or a slide portion of a vehicle, a machine tool, an industrial machine, or the like. Specifically, bearings for press machines, bearings for linkages of brake devices such as vehicles, bearings for hinges, bearings for joints such as industrial robots, bearings for casters, and the like can be given.

Claims (3)

전체 조성이, 질량비로, C:0.6∼1.2%, Cu:3.5∼9.0%, Mn:0.6∼2.2%, S:0.4∼1.3%, 잔부:Fe 및 불가피 불순물로 이루어지고, 그 합금 조직이, 마텐자이트 기지 중에, 유리(遊離)된 Cu상 또는 유리된 Cu-Fe 합금상의 적어도 한쪽이 분산되어 있음과 더불어, MnS상이 1.0∼3.5질량% 분산되어 있는 것을 특징으로 하는 슬라이드 부재용 철기(鐵基 : iron-base) 소결 합금.The total composition is composed of C: 0.6 to 1.2%, Cu: 3.5 to 9.0%, Mn: 0.6 to 2.2%, S: 0.4 to 1.3%, balance: Fe and inevitable impurities, and the alloy structure thereof, At least one of the free Cu phase or the free Cu-Fe alloy phase is dispersed in the martensite matrix, and 1.0 to 3.5% by mass of the MnS phase is dispersed.基: iron-base) Sintered alloy. 청구항 1에 있어서,The method according to claim 1, 분산되어 있는 상기 MnS상의 크기는 2∼100㎛인 것을 특징으로 하는 슬라이드 부재용 철기 소결 합금.An iron-based sintered alloy for a slide member, wherein the dispersed MnS phase has a size of 2 to 100 µm. 청구항 1 또는 청구항 2에 있어서,The method according to claim 1 or 2, 상기 MnS상은, 재료 분말 중에 MnS 분말을 첨가함으로써 생성되고, 상기 MnS 분말은, 입경이 15㎛ 이하인 입자가 90질량% 이상 포함되는 것을 특징으로 하는 슬라이드 부재용 철기 소결 합금.The said MnS phase is produced by adding MnS powder to a material powder, The said MnS powder contains 90 mass% or more of particle | grains whose particle diameter is 15 micrometers or less, The iron-based sintering alloy for slide members.
KR1020080129150A 2007-12-27 2008-12-18 Iron base sintered alloy for slide member KR101087376B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007336145A JP5096130B2 (en) 2007-12-27 2007-12-27 Iron-based sintered alloy for sliding members
JPJP-P-2007-336145 2007-12-27

Publications (2)

Publication Number Publication Date
KR20090071400A true KR20090071400A (en) 2009-07-01
KR101087376B1 KR101087376B1 (en) 2011-11-25

Family

ID=40827195

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080129150A KR101087376B1 (en) 2007-12-27 2008-12-18 Iron base sintered alloy for slide member

Country Status (3)

Country Link
JP (1) JP5096130B2 (en)
KR (1) KR101087376B1 (en)
CN (1) CN101469393B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150086245A (en) * 2012-09-25 2015-07-27 히타치가세이가부시끼가이샤 Sliding bearing assembly

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5773267B2 (en) * 2011-09-30 2015-09-02 日立化成株式会社 Iron-based sintered sliding member and manufacturing method thereof
JP5442145B1 (en) * 2012-10-24 2014-03-12 Ntn株式会社 Sintered bearing
JP6112473B2 (en) 2013-03-13 2017-04-12 日立化成株式会社 Iron-based sintered sliding member
JP6142987B2 (en) 2013-03-19 2017-06-07 日立化成株式会社 Iron-based sintered sliding member
JP6194613B2 (en) 2013-03-29 2017-09-13 日立化成株式会社 Iron-based sintered alloy for sliding member and manufacturing method thereof
CN103451575B (en) * 2013-08-23 2015-07-01 苏州长盛机电有限公司 Copper-iron alloy material
CN104653458A (en) * 2014-12-11 2015-05-27 广东美芝制冷设备有限公司 Compressor, slip sheet of compressor and preparation method of bearing
CN105986203A (en) * 2015-10-21 2016-10-05 李学峰 High-toughness iron-base powder metallurgy forging automobile connecting rod and preparation method thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5156713A (en) * 1974-11-13 1976-05-18 Tokyo Sintered Metal Co Ltd TAINETSUTAIMAMOSEISHOKETSU GOKIN
JPS6415350A (en) * 1987-07-07 1989-01-19 Mitsubishi Metal Corp Fe-base sintered alloy excellent in sliding characteristic
JPH0293042A (en) * 1988-09-29 1990-04-03 Komatsu Ltd Seizure-resistant iron-series sliding material
JPH06158218A (en) * 1992-11-16 1994-06-07 Mitsubishi Materials Corp Valve guide member made of fe-based sintered alloy excellent in wear resistance
JPH06346180A (en) * 1993-06-07 1994-12-20 Mitsubishi Materials Corp Valve guide member made of fe-base sintered alloy, excellent in wear resistance
JP3784276B2 (en) * 2001-05-14 2006-06-07 日立粉末冶金株式会社 Free-cutting sintered member and manufacturing method thereof
JP3865293B2 (en) * 2001-05-30 2007-01-10 日立粉末冶金株式会社 Abrasion resistant hard phase forming alloy powder and method for producing wear resistant sintered alloy using the same
JP4744011B2 (en) * 2001-06-27 2011-08-10 日新製鋼株式会社 Fe-Cr-Ni-Cu alloy for sliding member
JP2003014120A (en) * 2001-06-29 2003-01-15 Nippon Piston Ring Co Ltd Wear-resistant ring and manufacturing method therefor
JP3809944B2 (en) 2001-11-29 2006-08-16 株式会社リケン Hard particle dispersed sintered alloy and method for producing the same
JP4193969B2 (en) * 2002-01-11 2008-12-10 日立粉末冶金株式会社 Valve guide for internal combustion engine made of iron-based sintered alloy
JP3926320B2 (en) * 2003-01-10 2007-06-06 日本ピストンリング株式会社 Iron-based sintered alloy valve seat and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150086245A (en) * 2012-09-25 2015-07-27 히타치가세이가부시끼가이샤 Sliding bearing assembly

Also Published As

Publication number Publication date
CN101469393A (en) 2009-07-01
KR101087376B1 (en) 2011-11-25
JP2009155696A (en) 2009-07-16
JP5096130B2 (en) 2012-12-12
CN101469393B (en) 2011-05-18

Similar Documents

Publication Publication Date Title
KR101087376B1 (en) Iron base sintered alloy for slide member
EP2087250B1 (en) Bearing having improved consume resistivity and manufacturing method thereof
JP4887287B2 (en) Sintered metal parts and manufacturing method thereof
CN101251152B (en) Oil impregnated sintered bearing and method for manufacturing same
EP2357258B1 (en) Sliding bearing with improved wear resistance and method of manufacturing same
JP5308123B2 (en) High-strength composition iron powder and sintered parts using it
JP6194613B2 (en) Iron-based sintered alloy for sliding member and manufacturing method thereof
KR101066789B1 (en) Sinter bearing and maufacturing method thereof
JP5613973B2 (en) Copper-based sintered sliding member
JP6112473B2 (en) Iron-based sintered sliding member
CN107245601B (en) Sintered alloy with excellent wear resistance
KR100263283B1 (en) Iron-based powder containing chromium, molybdenium and manganese
KR101699189B1 (en) Sliding bearing assembly
JP2019065323A (en) Iron-based sintered shaft bearing, and iron-based sintered oil-containing shaft bearing
JP4770667B2 (en) Iron-based powder mixture for warm mold lubrication molding
JP3835915B2 (en) Copper-based sintered bearing material and manufacturing method thereof
WO2020044468A1 (en) Iron-based sintered sliding member and method for producing same
JP2001003123A (en) Sintered alloy for oilless bearing, and its manufacture
JP2004018940A (en) Method for manufacturing ferrous sintered sliding member, and ferrous sintered sliding member
JP3795391B2 (en) Cast iron-based sintered sliding member and manufacturing method thereof
WO2020045505A1 (en) Iron-based sintered sliding member and method for manufacturing same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20141118

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20161111

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20171110

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20181113

Year of fee payment: 8