JP2009134238A - ハードコートフィルム、反射防止フィルム、偏光板及び表示装置 - Google Patents

ハードコートフィルム、反射防止フィルム、偏光板及び表示装置 Download PDF

Info

Publication number
JP2009134238A
JP2009134238A JP2008119600A JP2008119600A JP2009134238A JP 2009134238 A JP2009134238 A JP 2009134238A JP 2008119600 A JP2008119600 A JP 2008119600A JP 2008119600 A JP2008119600 A JP 2008119600A JP 2009134238 A JP2009134238 A JP 2009134238A
Authority
JP
Japan
Prior art keywords
group
film
hard coat
layer
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008119600A
Other languages
English (en)
Inventor
Masaru Okano
賢 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2008119600A priority Critical patent/JP2009134238A/ja
Publication of JP2009134238A publication Critical patent/JP2009134238A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Thiazole And Isothizaole Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

【課題】本発明の目的は、硬度に優れ、密着性及び耐薬品性が改良されたハードコートフィルム、反射防止フィルム、及びそれを用いた偏光板、表示装置を提供することにある。
【解決手段】透明フィルム基材とハードコート層との間に中間層を有するハードコートフィルムにおいて、該中間層が、少なくともHLB値が3〜18の化合物を含有することを特徴とするハードコートフィルム。
【選択図】なし

Description

本発明は、ハードコートフィルム、反射防止フィルム、偏光板及び表示装置に関し、より詳しくは硬度に優れ、密着性及び耐薬品性が改良されたハードコートフィルム、反射防止フィルム、及びそれを用いた偏光板、表示装置に関する。
一般に、陰極管表示装置(CRT)、プラズマディスプレイ(PDP)、エレクトロルミネッセンスディスプレイ(ELD)、液晶表示装置(LCD)のような表示装置において、表面保護や、視認性を高めることを目的に、最表面にハードコートフィルムを設けることが行われている。このようなハードコートフィルムは、セルロースアセテート系樹脂(主にトリアセチルセルロース)、ポリエチレンテレフタレート、アクリル系樹脂等の透明基材フィルム上に、熱硬化性樹脂、或いは紫外線硬化性樹脂等の光重合性樹脂からなるハードコート層を設けることで作製される。
通常ハードコートフィルムは、機械的強度(鉛筆硬度、擦傷性)の点から、ハードコート層の膜厚がある程度必要で、近年、鉛筆硬度の高い(高硬度)フィルムが望まれている。しかしながら高硬度を付与するため、膜厚を厚くしていくと鉛筆硬度は向上するものの、ハードコート層と透明基材フィルムとの密着性が得られないという問題があった。
一方、液晶表示装置用部材としてハードコートフィルムは、延伸配向した偏光膜基材フィルムにヨウ素や二色性染料を吸着させて偏光膜を形成した後、その両面に保護フィルムとして貼合される偏光板保護フィルムとして用いられる。
具体的には、保護膜として一般的に用いられるトリアセテートフィルム等のセルロースエステルフィルムの最上層に、ハードコート層を設けることでハードコートフィルムが得られる。
偏光膜基材としては、主としてポリビニルアルコール(以下PVAとする)及びその誘導体フィルムが使用される。偏光フィルムは、生産工程において、高品質の製品をより効率的に、すなわち、高速性、量産性があり、歩留りよく、低コストで生産するため、ハードコート層を形成したトリアセテートフィルム等のセルロースエステルフィルムと偏光膜を積層形成するのではなく、先にトリアセテートフィルム等のセルロースエステルフィルムにハードコート層を形成しておき、これを偏光膜に積層する方法が一般的に行われている。また、偏光膜に積層する場合、偏光膜基材フィルムであるPVAとの密着性を向上するため、ハードコート層を形成したトリアセテートフィルム等のセルロースエステルフィルムをアルカリ鹸化処理しておいてから積層する。
上記のようなアルカリ鹸化処理後のハードコートフィルムを屋外や室内での長期使用を想定した耐光性試験後において、特にハードコート層と透明基材フィルムとの密着性が劣化し、また、耐薬品性も劣化するという問題があった。
上記問題に対して、光透過性樹脂基材上に、ハードコート層を備えてなる光学積層体であって、前記ハードコート層が、(1)重量平均分子量が1000以上100000以下であり、且つ、2以上のラジカル重合性官能基を有する樹脂と、(2)重量平均分子量が100以上1000以下であり、且つ、1以上のカチオン重合性官能基を有する樹脂とを含有して硬化している層であり、且つ、前記光透過性樹脂基材に前記樹脂(2)が浸透して硬化している光学積層体(特許文献1)が開示されている。
前記技術によれば、界面反射と干渉縞が防止され、且つ光透過性樹脂基材の収縮皺が抑制されて、視認性が向上し、更に、充分な耐擦傷性を有しつつ、カールが抑えられ、光透過性樹脂基材−ハードコート層間の密着性に優れる。しかしながら、前記技術では、アルカリ鹸化処理後の耐光性試験後の密着性については、未だ不十分であった。
耐薬品性に関する技術については、ハードコートフィルムのハードコート層のコート面同士の静摩擦係数が0.1〜0.8の範囲であることを特徴とするハードコートフィルム(特許文献2)が開示されている。前記技術では、アルカリ鹸化処理後の耐光性試験後の耐薬品性については、未だ不十分であった。また、前記技術等には本発明に関する中間層にHLB値が特定範囲の化合物を用いる技術については何ら言及及び示唆もされていない。
特開2007−237483号公報 特開平8−286001号公報
従って本発明の目的は、硬度に優れ、密着性及び耐薬品性が改良されたハードコートフィルム、及びそれを用いた耐久性に優れた偏光板、表示装置を提供することにある。
本発明の上記課題は以下の構成により達成される。
1.透明フィルム基材とハードコート層との間に中間層を有するハードコートフィルムにおいて、該中間層が、少なくともHLB値が3〜18の化合物を含有することを特徴とするハードコートフィルム。
2.前記HLB値が8〜14の化合物を含有することを特徴とする前記1に記載のハードコートフィルム。
3.前記中間層表面の対水接触角が65°〜90°であることを特徴とする前記1または2項に記載のハードコートフィルム。
4.前記中間層が紫外線硬化性樹脂を含有することを特徴とする前記1〜3のいずれか1項に記載のハードコートフィルム。
5.前記中間層が導電性化合物を含有することを特徴とする前記1〜4のいずれか1項に記載のハードコートフィルム。
6.前記中間層の膜厚が0.1μm〜2μmであることを特徴とする前記1〜5のいずれか1項に記載のハードコートフィルム。
7.前記透明フィルム基材がセルロースエステルフィルムであることを特徴とする前記1〜6のいずれか1項に記載のハードコートフィルム。
8.前記中間層が下記一般式(A−1)〜(A−3)で表される化合物を含有することを特徴とする前記1〜7のいずれか1項に記載のハードコートフィルム。
Figure 2009134238
〔式中、Rはアルキル基、シクロアルキル基、アリール基、ヒドロキシル基、アルコキシカルボニル基、アミノ基、カルボキシル基(その塩を含む)またはスルホ基(その塩を含む)を表す。R及びRはそれぞれ水素原子、ハロゲン原子、アミノ基、ニトロ基、ヒドロキシル基、アルコキシカルボニル基、カルボキシル基(その塩を含む)またはスルホ基(その塩を含む)を表す。Mは水素原子、アルカリ金属原子またはアンモニウム基を表す。〕
Figure 2009134238
〔式中、Rは水素原子、ハロゲン原子、アルキル基、アリール基、ハロゲン化アルキル基、−R12−OR13、−CONHR14(ここでR12はアルキレン基を表し、R13及びR14はそれぞれ水素原子、アルキル基またはアリールアルキル基を表す)またはアリールアルキル基を表し、R及びRはそれぞれ水素原子、ハロゲン原子、ハロゲン化アルキル基またはアルキル基を表し、Rは水素原子、ハロゲン原子、アルキル基、アリール基、ハロゲン化アルキル基、アリールアルキル基、−R15−OR16または−CONHR17(ここでR15はアルキレン基を表し、R16及びR17はともに水素原子またはアルキル基を表す)を表し、R、R、R10及びR11はそれぞれ水素原子、ハロゲン原子、ヒドロキシル基、アルキル基、アミノ基またはニトロ基を表す。〕
9.前記1〜8のいずれか1項に記載のハードコートフィルムのハードコート層上に、直接又は他の層を介して低屈折率層が積層されていることを特徴とする反射防止フィルム。
10.前記1〜8のいずれか1項に記載のハードコートフィルム、または前記9に記載の反射防止フィルムを、少なくとも一方の面に有することを特徴とする偏光板。
11.前記1〜8のいずれか1項に記載のハードコートフィルム、前記9に記載の反射防止フィルムまたは前記10に記載の偏光板を有することを特徴とする表示装置。
本発明によれば、硬度に優れ、密着性及び耐薬品性が改良されたハードコートフィルム、反射防止フィルム及びそれらを用いた耐久性に優れた偏光板、表示装置を提供することができる。
以下本発明を実施するための最良の形態について詳細に説明するが、本発明はこれらに限定されるものではない。
本発明のハードコートフィルムは、透明フィルム基材とハードコート層との間に中間層を有するハードコートフィルムであり、該中間層が、少なくともHLB値が3〜18の化合物を含有することを特徴とする。
ハードコートフィルムは、鉛筆硬度が3H〜8HであるとLCD等の表示装置の表面における使用や偏光板化工程において傷が付きにくいことから好ましく、本発明のハードコートフィルムの鉛筆硬度は3H〜8Hになるように構成される。特に好ましくは3H〜6Hである。鉛筆硬度は、作製したハードコートフィルム試料を温度25℃、相対湿度60%の条件で2時間調湿した後、JIS S 6006が規定する試験用鉛筆を用いて、JIS K 5400が規定する鉛筆硬度評価方法に従い測定した値である。
従来、ハードコート層を形成する際、熱硬化性樹脂或いは光重合性樹脂等の硬化性樹脂を塗布性の点から溶媒に溶解したのち、塗工して塗膜形成される。また、一般的に溶媒は硬化樹脂や透明フィルム基材と相溶性が高いものが用いられる。
一方、透明フィルム基材には後述する可塑剤や紫外線吸収剤等の添加剤が含有される。これら添加剤も溶媒との相溶性が通常高い。このため、塗工して塗膜形成される際、溶媒がフィルム基材に浸透し、可塑剤や紫外線吸収剤等の添加剤がハードコート層に抽出され、密着性の阻害や、耐薬品性が劣化するものと推定している。
従って、本発明者らは上記課題につき検討した結果、フィルム基材に浸透しにくく、かつハードコート層の塗布性等への影響を与えにくい化合物である、HLB値が特定の範囲の化合物を見出し、該化合物を含有する中間層を透明フィルム基材とハードコート層との間に設けたことで、上記添加剤の抽出を抑制でき、密着性や耐薬品性の改良が達成できることを見出したものである。
《中間層》
最初に、本発明の特徴である中間層について説明する。
HLB値とは、Hydrophile−Lipophile−Balance、親水性−親油性−バランスのことであり、化合物の親水性又は親油性の大きさを示す値である。HLB値が小さいほど親油性が高く、値が大きいほど親水性が高くなる。
また、HLB値は以下のような計算式によって求めることができる。
HLB=7+11.7Log(Mw/Mo)
式中、Mwは親水基の分子量、Moは親油基の分子量を表し、Mw+Mo=M(化合物の分子量)である。
或いはグリフィン法によれば、HLB値=20×親水部の式量の総和/分子量(J.Soc.Cosmetic Chem.,5(1954),294)等が挙げられる。
HLB値が3〜18の化合物の具体的化合物を下記に挙げるが、本発明はこれに限定されるものでない。( )内はHLB値を示す。
花王株式会社製:エマルゲン102KG(6.3)、エマルゲン103(8.1)、エマルゲン104P(9.6)、エマルゲン105(9.7)、エマルゲン106(10.5)、エマルゲン108(12.1)、エマルゲン109P(13.6)、エマルゲン120(15.3)、エマルゲン123P(16.9)、エマルゲン147(16.3)、エマルゲン210P(10.7)、エマルゲン220(14.2)、エマルゲン306P(9.4)、エマルゲン320P(13.9)、エマルゲン404(8.8)、エマルゲン408(10.0)、エマルゲン409PV(12.0)、エマルゲン420(13.6)、エマルゲン430(16.2)、エマルゲン705(10.5)、エマルゲン707(12.1)、エマルゲン709(13.3)、エマルゲン1108(13.5)、エマルゲン1118S−70(16.4)、エマルゲン1135S−70(17.9)、エマルゲン2020G−HA(13.0)、エマルゲン2025G(15.7)、エマルゲンLS−106(12.5)、エマルゲンLS−110(13.4)、エマルゲンLS−114(14.0)、エマルゲンMS−110(12.7)、エマルゲンA−60(12.8)、エマルゲンA−90(14.5)、エマルゲンA−500(18.0)、エマルゲンB−66(13.2)、ラテムルPD−420(12.6)、ラテムルPD−430(14.4)、ラテムルPD−430S(14.4)、ラテムルPD−450(16.2)、レオドールSP−L10(8.6)、レオドールSP−P10(6.7)、レオドールSP−S10V(4.7)、レオドールSP−S20(4.4)、レオドールSP−O10V(4.3)、レオドールスーパーSP−L10(8.6)、レオドールAS10V(4.7)、レオドールAO−10V(4.3)、レオドールAO−15V(3.7)、エマゾールL−10V(8.6)、エマゾールP−10V(6.7)、エマゾールS−10V(4.7)、エマゾールO−10V(4.3)、レオドールTW−L120(16.7)、レオドールTW−L106(13.3)、レオドールTW−P120(15.6)、レオドールTW−S120V(14.9)、レオドールTW−S106V(9.6)、レオドールTW−S320V(10.5)、レオドールTW−O120V(15.0)、レオドールTW−O106V(10.0)、レオドールTW−O320V(11.0)、レオドールスーパーTW−L120(16.7)、レオドール430V(10.5)、レオドール440V(11.8)、レオドール460V(13.8)、レオドールMS−60(3.5)、レオドールMS−165V(11.0)、エキセルT−95(3.8)、エキセルVS−95(3.8)、エキセルO−95R(3.5)、エキセル200(3.5)、エキセル122V(3.5)、エマノーン1112(13.7)、エマノーン4110(11.6)、エマノーンCH−25(10.7)、エマノーンCH−40(12.5)、エマノーンCH−60(K)(14.0)、エマノーンCH−80(15.0)、アミート102(6.3)、アミート105(9.8)、アミート105A(10.8)、アミート302(5.1)、アミート320(15.4)、アミノーンPK−02S(5.5)、アミノーンL−02(5.8)
日信化学工業株式会社製:サーフィノール104E(4)、サーフィノール104H(4)、サーフィノール104A(4)、サーフィノール104BC(4)、サーフィノール104DPM(4)、サーフィノール104PA(4)、サーフィノール104PG−50(4)、サーフィノール104S(4)、サーフィノール420(4)、サーフィノール440(8)、サーフィノール465(13)、サーフィノール485(17)、サーフィノールSE(6)、サーフィノールSE−F(6)、サーフィノール61(6)、サーフィノール604(8)、サーフィノール2502(8)、サーフィノール82(4)、サーフィノールDF110D(3)、サーフィノールCT111(8〜11)、サーフィノールCT121(11〜15)、サーフィノールCT136(13)、サーフィノールTG(9)、サーフィノールGA(13)、オルフィンSTG(9〜10)、オルフィンE1004(7〜9)、オルフィンE1010(13〜14)
信越化学工業株式会社製:X−22−4272(7)、X−22−6266(8)、KF−351(12)、KF−352(7)、KF−353(10)、KF−354L(16)、KF−355A(12)、KF−615A(10)、KF−945(4)、KF−618(11)、KF−6011(12)、KF−6015(4)、KF−6004(5)
HLB値が3〜18の化合物の中でも本発明の目的効果の点からはHLB値が8〜14の化合物が好ましい。HLB値が3〜18の化合物は、中間層組成物の固形分中の0.01質量%以上、50質量%未満で用いることが好ましい。
また、中間層には、本発明の目的効果がより良く発揮される点から、紫外線硬化樹脂を含有する事が好ましい。
紫外線硬化樹脂の具体的化合物としては、多官能アクリレートを挙げる事ができる。
多官能アクリレートは、ペンタエリスリトール多官能アクリレート、ジペンタエリスリトール多官能アクリレート、ペンタエリスリトール多官能メタクリレート、及びジペンタエリスリトール多官能メタクリレートよりなる群から選ばれることが好ましい。ここで、多官能アクリレートとは、分子中に2個以上のアクリロイルオキシ基及び/またはメタクロイルオキシ基を有する化合物である。
多官能アクリレートのモノマーとしては、例えばエチレングリコールジアクリレート、ジエチレングリコールジアクリレート、1,6−ヘキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールエタントリアクリレート、テトラメチロールメタントリアクリレート、テトラメチロールメタンテトラアクリレート、ペンタグリセロールトリアクリレート、ペンタエリスリトールジアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、グリセリントリアクリレート、ジペンタエリスリトールトリアクリレート、ジペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、トリス(アクリロイルオキシエチル)イソシアヌレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、1,6−ヘキサンジオールジメタクリレート、ネオペンチルグリコールジメタクリレート、トリメチロールプロパントリメタクリレート、トリメチロールエタントリメタクリレート、テトラメチロールメタントリメタクリレート、テトラメチロールメタンテトラメタクリレート、ペンタグリセロールトリメタクリレート、ペンタエリスリトールジメタクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、グリセリントリメタクリレート、ジペンタエリスリトールトリメタクリレート、ジペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールペンタメタクリレート、ジペンタエリスリトールヘキサメタクリレート、イソボロニルアクリレート等が好ましく挙げられる。これらの化合物は、それぞれ単独または2種以上を混合して用いられる。また、上記モノマーの2量体、3量体等のオリゴマーであってもよい。
紫外線硬化樹脂の添加量は、中間層組成物では固形分中の15質量%以上70質量%未満であることが好ましい。
また、紫外線硬化樹脂の硬化促進のために、光重合開始剤と分子中に重合可能な不飽和結合を2個以上有するアクリル系化合物とを質量比で20:100〜0.01:100含有しても良い。
光重合開始剤としては、具体的には、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーケトン、α−アミロキシムエステル、チオキサントン等及びこれらの誘導体を挙げることができるが、特にこれらに限定されるものではない。
紫外線硬化型樹脂の市販品としては、アデカオプトマーKR・BYシリーズ:KR−400、KR−410、KR−550、KR−566、KR−567、BY−320B(旭電化(株)製);コーエイハードA−101−KK、A−101−WS、C−302、C−401−N、C−501、M−101、M−102、T−102、D−102、NS−101、FT−102Q8、MAG−1−P20、AG−106、M−101−C(広栄化学(株)製);セイカビームPHC2210(S)、PHC X−9(K−3)、PHC2213、DP−10、DP−20、DP−30、P1000、P1100、P1200、P1300、P1400、P1500、P1600、SCR900(大日精化工業(株)製);KRM7033、KRM7039、KRM7130、KRM7131、UVECRYL29201、UVECRYL29202(ダイセル・ユーシービー(株)製);RC−5015、RC−5016、RC−5020、RC−5031、RC−5100、RC−5102、RC−5120、RC−5122、RC−5152、RC−5171、RC−5180、RC−5181(大日本インキ化学工業(株)製);オーレックスNo.340クリヤ(中国塗料(株)製);サンラッドH−601、RC−750、RC−700、RC−600、RC−500、RC−611、RC−612(三洋化成工業(株)製);SP−1509、SP−1507(昭和高分子(株)製);RCC−15C(グレース・ジャパン(株)製)、アロニックスM−6100、M−8030、M−8060(東亞合成(株)製);B420(新中村化学工業(株)製)等を適宜選択して利用できる。
その他中間層には、公知の熱可塑性樹脂、熱硬化性樹脂またはゼラチン等の親水性樹脂等のバインダーを使用しても良い。これらの樹脂は、その分子中に極性基を持っていることが好ましい。極性基としては、−COOM、−OH、−NR、−NRX、−SOM、−OSOM、−PO、−OPOM(ここで、Mは水素原子、アルカリ金属またはアンモニウム基を、Xはアミン塩を形成する酸を、Rは水素原子、アルキル基を表す)等を挙げることができる。
また熱可塑性樹脂としては、例えば、アクリル樹脂が挙げられる。アクリル樹脂としては、重量平均分子量が100万以下であるアクリル樹脂が好ましい。ガラス転移点は110℃以下、更に好ましくは90℃以下である。
市販品としては、アクリペットMD、VH、MF、V(三菱レイヨン(株)製)、ハイパールM−4003、M−4005、M−4006、M−4202、M−5000、M−5001、M−4501(根上工業株式会社製)、ダイヤナールBR−50、BR−52、BR−53、BR−60、BR−64、BR−73、BR−75、BR−77、BR−79、BR−80、BR−82、BR−83、BR−85、BR−87、BR−88、BR−90、BR−93、BR−95、BR−100、BR−101、BR−102、BR−105、BR−106、BR−107、BR−108、BR−112、BR−113、BR−115、BR−116、BR−117、BR−118等(三菱レイヨン(株)製)のアクリル及びメタクリル系モノマーを原料として製造した各種ホモポリマー並びにコポリマーなどが市販されている。
熱硬化性樹脂としては、不飽和ポリエステル樹脂、エポキシ樹脂、ビニルエステル樹脂、フェノール樹脂、熱硬化性ポリイミド樹脂、ウレタン樹脂、熱硬化性ポリアミドイミドなどを挙げることが出来る。
不飽和ポリエステル樹脂としては、例えば、オルソフタル酸系樹脂、イソフタル酸系樹脂、テレフタル酸系樹脂、ビスフェノール系樹脂、プロピレングリコール−マレイン酸系樹脂、ジシクロペンタジエンないしその誘導体を不飽和ポリエステル組成に導入して低分子量化した、或いは被膜形成性のワックスコンパウンドを添加した低スチレン揮発性樹脂、熱可塑性樹脂(ポリ酢酸ビニル樹脂、スチレン・ブタジエン共重合体、ポリスチレン、飽和ポリエステルなど)を添加した低収縮性樹脂、不飽和ポリエステルを直接Brでブロム化する、或いはヘット酸、ジブロムネオペンチルグリコールを共重合するなどした反応性タイプ、塩素化パラフィン、テトラブロムビスフェノール等のハロゲン化物と三酸化アンチモン、燐化合物の組み合わせや水酸化アルミニウムなどを添加剤として用いる添加タイプの難燃性樹脂、ポリウレタンやシリコーンとハイブリッド化、またはIPN化した強靭性(高強度、高弾性率、高伸び率)の強靭性樹脂等がある。
エポキシ樹脂としては、例えば、ビスフェノールA型、ノボラックフェノール型、ビスフェノールF型、臭素化ビスフェノールA型を含むグリシジルエーテル系エポキシ樹脂、グリシジルアミン系、グリシジルエステル系、環式脂肪系、複素環式エポキシ系を含む特殊エポキシ樹脂等を挙げることが出来る。
ビニルエステル樹脂としては、例えば、普通エポキシ樹脂とメタクリル酸等の不飽和一塩基酸とを開環付加反応して得られるオリゴマーをスチレン等のモノマーに溶解した物である。また、分子末端や側鎖にビニル基を持ちビニルモノマーを含有する等の特殊タイプもある。グリシジルエーテル系エポキシ樹脂のビニルエステル樹脂としては、例えば、ビスフェノール系、ノボラック系、臭素化ビスフェノール系等があり、特殊ビニルエステル樹脂としてはビニルエステルウレタン系、イソシアヌル酸ビニル系、側鎖ビニルエステル系等がある。
フェノール樹脂は、フェノール類とホルムアルデヒド類を原料として重縮合して得られ、レゾール型とノボラック型がある。
熱硬化性ポリイミド樹脂としては、例えば、マレイン酸系ポリイミド、例えばポリマレイミドアミン、ポリアミノビスマレイミド、ビスマレイミド・O,O′−ジアリルビスフェノール−A樹脂、ビスマレイミド・トリアジン樹脂等、またナジック酸変性ポリイミド、及びアセチレン末端ポリイミド等がある。
熱硬化性ウレタン樹脂としては、ポリイソシアネートと水、ポリオール、ジカルボン酸、ポリアミン、及びポリチオール等との重付加物などが挙げられる。市販品としては、U−333A/B、U−380A/B以上日本合成化工株式会社製等が挙げられる。
中間層には、本発明の目的効果の点から下記一般式(A−1)〜(A−3)で表される化合物を含有する事が好ましい。
Figure 2009134238
〔式中、Rはアルキル基、シクロアルキル基、アリール基、ヒドロキシル基、アルコキシカルボニル基、アミノ基、カルボキシル基(その塩を含む)またはスルホ基(その塩を含む)を表す。R及びRはそれぞれ水素原子、ハロゲン原子、アミノ基、ニトロ基、ヒドロキシル基、アルコキシカルボニル基、カルボキシル基(その塩を含む)またはスルホ基(その塩を含む)を表す。Mは水素原子、アルカリ金属原子またはアンモニウム基を表す。〕
Figure 2009134238
〔式中、Rは水素原子、ハロゲン原子、アルキル基、アリール基、ハロゲン化アルキル基、−R12−OR13、−CONHR14(ここでR12はアルキレン基を表し、R13及びR14はそれぞれ水素原子、アルキル基またはアリールアルキル基を表す)またはアリールアルキル基を表し、R及びRはそれぞれ水素原子、ハロゲン原子、ハロゲン化アルキル基またはアルキル基を表し、Rは水素原子、ハロゲン原子、アルキル基、アリール基、ハロゲン化アルキル基、アリールアルキル基、−R15−OR16または−CONHR17(ここでR15はアルキレン基を表し、R16及びR17はともに水素原子またはアルキル基を表す)を表し、R、R、R10及びR11はそれぞれ水素原子、ハロゲン原子、ヒドロキシル基、アルキル基、アミノ基またはニトロ基を表す。〕
前記一般式(A−1)において、Rはアルキル基、シクロアルキル基、アリール基、ヒドロキシル基、アルコキシカルボニル基、アミノ基、カルボキシル基(その塩を含む)またはスルホ基(その塩を含む)を表す。R及びRはそれぞれ水素原子、ハロゲン原子、アミノ基、ニトロ基、ヒドロキシル基、アルコキシカルボニル基、カルボキシル基(その塩を含む)またはスルホ基(その塩を含む)を表す。Mは水素原子、アルカリ金属原子またはアンモニウム基を表す。
前記一般式(A−2)、一般式(A−3)において、Rは水素原子、ハロゲン原子、アルキル基、アリール基、ハロゲン化アルキル基、−R12−OR13、−CONHR14(ここでR12はアルキレン基を表し、R13及びR14はそれぞれ水素原子、アルキル基またはアリールアルキル基を表す)またはアリールアルキル基を表し、R及びRはそれぞれ水素原子、ハロゲン原子、ハロゲン化アルキル基またはアルキル基を表し、Rは水素原子、ハロゲン原子、アルキル基、アリール基、ハロゲン化アルキル基、アリールアルキル基、−R15−OR16または−CONHR17(ここでR15はアルキレン基を表し、R16及びR17はともに水素原子またはアルキル基を表す)を表し、R、R、R10及びR11はそれぞれ水素原子、ハロゲン原子、ヒドロキシル基、アルキル基、アミノ基またはニトロ基を表す。
一般式(A−1)で表される化合物の具体例としては、下記の例示化合物が挙げられるが、本発明ではこれら例示した化合物に限定されるものではない。
Figure 2009134238
Figure 2009134238
また、上記一般式(A−1)で表される化合物は市販されているものもあり、Preventol(バイエル(株)製)、メチルパラペン(高砂香料(株)製)、PCMX(ナガセ化成工業(株)製)の商品名で入手することが可能である。
上記例示化合物のうち好ましい化合物としては(A−1−1)、(A−1−2)、(A−1−3)及び(A−1−13)が挙げられる。
次に、前記一般式(A−2)または(A−3)で表される化合物の具体的な化合物例を以下に記載するが、これらに限定されるものではない。
A−2−1:2−メチル−4−イソチアゾリン−3−オン
A−2−2:5−クロロ−2−メチル−4−イソチアゾリン−3−オン
A−2−3:2−メチル−5−フェニル−4−イソチアゾリン−3−オン
A−2−4:4−ブロモ−5−クロロ−2−メチル−4−イソチアゾリン−3−オン
A−2−5:2−ヒドロキシメチル−4−イソチアゾリン−3−オン
A−2−6:2−(2−エトキシエチル)−4−イソチアゾリン−3−オン
A−2−7:2−(N−メチル−カルバモイル)−4−イソチアゾリン−3−オン
A−2−8:5−ブロモメチル−2−(N−ジクロロフェニル−カルバモイル)−4−イソチアゾリン−3−オン
A−2−9:5−クロロ−2−(2−フェニルエチル)−4−イソチアゾリン−3−オン
A−2−10:4−メチル−2−(3,4−ジクロロフェニル)−4−イソチアゾリン−3−オン
A−2−11:2−オクチル−4−イソチアゾリン−3−オン
A−3−1:1,2−ベンズイソチアゾリン−3−オン
A−3−2:2−(2−ブロモエチル)−1,2−ベンズイソチアゾリン−3−オン
A−3−3:2−メチル−1,2−ベンズイソチアゾリン−3−オン
A−3−4:2−エチル−5−ニトロ−1,2−ベンズイソチアゾリン−3−オン
A−3−5:2−ベンジル−1,2−ベンズイソチアゾリン−3−オン
A−3−6:5−クロロ−1,2−ベンズイソチアゾリン−3−オン
A−3−7:5−クロロ−1,2−ベンズイソチアゾリン−3−オン
これら例示した化合物は、例えば、米国特許第2,767,172号明細書、米国特許第2,767,173号明細書、米国特許第2,767,174号明細書、米国特許第2,870,015号明細書、英国特許第848,130号明細書、フランス国特許第1,555,416号明細書等に記載の合成法に準じ得ることができる。又、前記一般式(A−2)または(A−3)で表される化合物は市販されているものもあり、例えば、トップサイド300(パーマケムアジア(株)製)、トップサイド600(パーマケムアジア(株)製)、ファインサイドJ−700(東京ファインケミカル(株)製)、Proxel GXL(I.C.I.(株)製)の商品名で入手することが可能である。
また、一般式(A−1)〜(A−3)で表される化合物は中間層組成物の固形分中の0.01質量%以上、50質量%未満で用いることが好ましい。
中間層には無機微粒子、及び有機微粒子を含有してもよい。無機微粒子としては、酸化珪素、酸化チタン、酸化アルミニウム、酸化スズ、酸化インジウム、ITO、酸化亜鉛、酸化ジルコニウム、酸化マグネシウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウムを挙げることができる。特に、酸化珪素、酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化マグネシウム等が好ましく用いられる。また、酸化珪素微粒子の中では、コロイダルシリカが好ましい。コロイダルシリカとは、二酸化ケイ素をコロイド状に水または有機溶媒に分散させたものであり、特に限定はされないが球状、針状または数珠状である。コロイダルシリカの平均粒径は5〜300nmの範囲が好ましく用いられる。コロイダルシリカの粒径は変動係数が1〜40%の単分散であることが好ましい。平均粒径は、走査電子顕微鏡(SEM)等による電子顕微鏡写真から計測することができる。動的光散乱法や静的光散乱法等を利用する粒度分布計等によって計測してもよい。
このようなコロイダルシリカは市販されており、例えば、日産化学工業社のスノーテックスシリーズ、触媒化成工業社のカタロイド−Sシリーズ、バイエル社のレバシルシリーズ等が挙げられる。また、アルミナゾルや水酸化アルミニウムでカチオン変性したコロイダルシリカやシリカの一次粒子を2価以上の金属イオンで粒子間を結合し数珠状に連結した数珠状コロイダルシリカも好ましく用いられる。数珠状コロイダルシリカは、日産化学工業社のスノーテックス−AKシリーズ、スノーテックス−PSシリーズ、スノーテックス−UPシリーズ等があげられ、具体的には、IPS−ST−L(イソプロパノールシリカゾル、粒子径40〜50nm、シリカ濃度30%)、MEK−ST−MS(メチルエチルケトンシリカゾル、粒子径17〜23nm、シリカ濃度35%)等、MEK−ST(メチルエチルケトンシリカゾル、粒子径10〜15nm、シリカ濃度30%)、MEK−ST−L(メチルエチルケトンシリカゾル、粒子径40〜50nm、シリカ濃度30%)、MEK−ST−UP(メチルエチルケトンシリカゾル、粒子径9〜15nm(鎖状構造)、シリカ濃度20%)等が挙げられる。
有機微粒子としては、ポリメタアクリル酸メチルアクリレート樹脂粉末、アクリルスチレン系樹脂粉末、ポリメチルメタクリレート樹脂粉末、シリコン系樹脂粉末、ポリスチレン系樹脂粉末、ポリカーボネート樹脂粉末、ベンゾグアナミン系樹脂粉末、メラミン系樹脂粉末、ポリオレフィン系樹脂粉末、ポリエステル系樹脂粉末、ポリアミド系樹脂粉末、ポリイミド系樹脂粉末、またはポリ弗化エチレン系樹脂粉末等紫外線硬化性樹脂組成物を加えることができる。これら微粒子粉末の中でも、特に好ましくは、架橋ポリスチレン粒子(例えば、綜研化学製SX−130H、SX−200H、SX−350H)、ポリメチルメタクリレート系粒子(例えば、綜研化学製MX150、MX300)、フッ素含有アクリル樹脂微粒子が挙げられる。フッ素含有アクリル樹脂微粒子としては、例えば日本ペイント製:FS−701等の市販品が挙げられる。また、アクリル粒子として、例えば日本ペイント製:S−4000,アクリル−スチレン粒子として、例えば日本ペイント製:S−1200、MG−251等が挙げられる。
これらの微粒子粉末の平均粒径としては、0.01〜5μmが好ましく0.1〜5.0μm、更に、0.1〜4.0μmであることが特に好ましい。また、粒径の異なる2種以上の微粒子を含有することが好ましい。微粒子の添加量は、中間層塗布組成物中の固形分濃度として、0.1〜30質量部となるように配合することが望ましい。
中間層には耐熱性を高めるために、光硬化反応を抑制しないような酸化防止剤を用いることもできる。例えば、ヒンダードフェノール誘導体、チオプロピオン酸誘導体、ホスファイト誘導体等を挙げることができる。具体的には、例えば、4,4′−チオビス(6−tert−3−メチルフェノール)、4,4′−ブチリデンビス(6−tert−ブチル−3−メチルフェノール)、1,3,5−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)イソシアヌレート、2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)メシチレン、ジ−オクタデシル−4−ヒドロキシ−3,5−ジ−tert−ブチルベンジルホスフェート等を挙げることができる。
中間層を塗工して塗膜形成させる際、塗工組成物には溶媒が含まれても良い。溶媒としては有機溶媒が好ましい。有機溶媒としては、例えば、炭化水素類(トルエン、キシレン、)、アルコール類(メタノール、エタノール、イソプロパノール、ブタノール、シクロヘキサノール)、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン)、エステル類(酢酸メチル、酢酸エチル、乳酸メチル)、グリコールエーテル類、その他の有機溶媒の中から適宜選択し、またはこれらを混合し利用できる。プロピレングリコールモノアルキルエーテル(アルキル基の炭素原子数として1〜4)またはプロピレングリコールモノアルキルエーテル酢酸エステル(アルキル基の炭素原子数として1〜4)等を5質量%以上、より好ましくは5〜80質量%以上含有する上記有機溶媒を用いるのが好ましい。
また、中間層表面の水に対する接触角(対水接触角)は、40°〜90°が本発明の目的効果がより良く発揮される点から好ましい。更に好ましくは65°〜90°である。なお、本発明において接触角測定に用いる水は、純水である。また、接触角は市販の装置を用いて、測定する事が出来る。
中間層の膜厚は本発明の目的効果がより良く発揮される点から、0.1μm〜2μmが好ましい。中間層は、2層以上の重層構造を有していてもよい。
また、本発明の中間層の屈折率は、波長550nm測定で、1.45〜1.60の範囲であることが好ましい。
また中間層は以下にする導電性化合物を含有しても良く、これら導電性化合物を含有する事で、本発明の目的効果がより良く発揮されるばかりか、防塵性にも優れる点で好ましい。中間層が導電性化合物を含有した場合の表面比抵抗は1013Ω/cm(25℃、55%RH)以下が好ましく、更に好ましくは1010Ω/cm(25℃、55%RH)以下であり、特に好ましくは、10Ω/cm(25℃、55%RH)以下である。
ここで、表面比抵抗の測定は、試料を25℃、55%RHの条件にて24時間調湿し、三菱化学株式会社製ハイレスターUP MCP−HT450を用いて測定した値である。導電性化合物としては、金属酸化物微粒子又はπ共役系導電性ポリマー、イオン性化合物が好ましい化合物である。
次に金属酸化物微粒子について説明する。金属酸化物微粒子は特に限定されるものではなく、Ti、Zr、Sn、Sb、Cu、Fe、Mn、Pb、Cd、As、Cr、Hg、Zn、Al、Mg、Si、P及びSから選択される少なくとも一種の元素を有する金属酸化物を用いることができ、これらの金属酸化物微粒子はAl、In、Sn、Sb、Nb、ハロゲン元素、Ta等の微量の原子をドープしてあってもよい。また、これらの混合物でもよい。本発明においては、中でも酸化ジルコニウム、酸化アンチモン、酸化錫、酸化亜鉛、酸化インジウム−スズ(ITO)、アンチモンドープ酸化スズ(ATO)、及びアンチモン酸亜鉛から選ばれる少なくとも1種の金属酸化物微粒子を主成分として用いることが好ましく、特に好ましくはアンチモンドープ酸化スズ(ATO)、アンチモン酸亜鉛といったアンチモン化合物である。
これら金属酸化物微粒子の一次粒子の平均粒径は10〜200nmが好ましく、10〜150nmがより好ましい。金属酸化物微粒子の平均粒径は、走査電子顕微鏡(SEM)等による電子顕微鏡写真から計測することができる。動的光散乱法や静的光散乱法等を利用する粒度分布計等によって計測してもよい。粒径が小さ過ぎると凝集しやすくなり、分散性が劣化する。粒径が大き過ぎるとヘーズが著しく上昇し好ましくない。金属酸化物微粒子の形状は、米粒状、球状、立方体状、紡錘形状、針状あるいは不定形状であることが好ましい。
次にπ共役系導電性ポリマーについて説明する。π共役系導電性ポリマーとは、主鎖がπ共役系で構成されている有機高分子であれば使用することができる。例えば、ポリチオフェン類、ポリピロール類、ポリアニリン類、ポリフェニレン類、ポリアセチレン類、ポリフェニレンビニレン類、ポリアセン類、ポリチオフェンビニレン類、及びこれらの共重合体が挙げられる。重合の容易さ、安定性、及び本発明の目的効果の点からは、ポリチオフェン類、ポリアニリン類、ポリアセチレン類が好ましい。
π共役系導電性ポリマーは、無置換のままでも十分な導電性やバインダー樹脂への溶解性が得られるが、導電性や溶解性をより高めるために、アルキル基、カルボキシ基、スルホ基、アルコキシ基、ヒドロキシ基、シアノ基等の官能基を導入してもよい。
このようなπ共役系導電性ポリマーの具体例としては、ポリチオフェン、ポリ(3−メチルチオフェン)、ポリ(3−エチルチオフェン)、ポリ(3−プロピルチオフェン)、ポリ(3−ブチルチオフェン)、ポリ(3−ヘキシルチオフェン)、ポリ(3−オクチルチオフェン)、ポリ(3−デシルチオフェン)、ポリ(3−ドデシルチオフェン)、ポリ(3−ブロモチオフェン)、ポリ(3−クロロチオフェン)、ポリ(3−シアノチオフェン)、ポリ(3−フェニルチオフェン)、ポリ(3,4−ジメチルチオフェン)、ポリ(3,4−ジブチルチオフェン)、ポリ(3−ヒドロキシチオフェン)、ポリ(3−メトキシチオフェン)、ポリ(3−エトキシチオフェン)、ポリ(3−ブトキシチオフェン)、ポリ(3−ヘキシルオキシチオフェン)、ポリ(3−オクチルオキシチオフェン)、ポリ(3−デシルオキシチオフェン)、ポリ(3−ドデシルオキシチオフェン)、ポリ(3,4−ジヒドロキシチオフェン)、ポリ(3,4−ジメトキシチオフェン)、ポリ(3,4−ジエトキシチオフェン)、ポリ(3,4−ジプロポキシチオフェン)、ポリ(3,4−ジブトキシチオフェン)、ポリ(3,4−ジヘキシルオキシチオフェン)、ポリ(3,4−ジオクチルオキシチオフェン)、ポリ(3,4−ジデシルオキシチオフェン)、ポリ(3,4−ジドデシルオキシチオフェン)、ポリ(3,4−エチレンジオキシチオフェン)、ポリ(3,4−プロピレンジオキシチオフェン)、ポリ(3,4−ブテンジオキシチオフェン)、ポリ(3−メチル−4−メトキシチオフェン)、ポリ(3−メチル−4−エトキシチオフェン)、ポリ(3−カルボキシチオフェン)、ポリ(3−メチル−4−カルボキシチオフェン)、ポリ(3−メチル−4−カルボキシエチルチオフェン)、ポリ(3−メチル−4−カルボキシブチルチオフェン)、ポリピロール、ポリ(N−メチルピロール)、ポリ(3−メチルピロール)、ポリ(3−エチルピロール)、ポリ(3−N−プロピルピロール)、ポリ(3−ブチルピロール)、ポリ(3−オクチルピロール)、ポリ(3−デシルピロール)、ポリ(3−ドデシルピロール)、ポリ(3,4−ジメチルピロール)、ポリ(3,4−ジブチルピロール)、ポリ(3−カルボキシピロール)、ポリ(3−メチル−4−カルボキシピロール)、ポリ(3−メチル−4−カルボキシエチルピロール)、ポリ(3−メチル−4−カルボキシブチルピロール)、ポリ(3−ヒドロキシピロール)、ポリ(3−メトキシピロール)、ポリ(3−エトキシピロール)、ポリ(3−ブトキシピロール)、ポリ(3−ヘキシルオキシピロール)、ポリ(3−メチル−4−ヘキシルオキシピロール)、ポリアニリン、ポリ(2−メチルアニリン)、ポリ(3−イソブチルアニリン)、ポリ(2−アニリンスルホン酸)、ポリ(3−アニリンスルホン酸)、ポリフェニルアセチレン等が挙げられる。これらはそれぞれ単独でも良いし、2種からなる共重合体でも好適に用いることができる。
これらのπ共役系導電性ポリマーには、ドーパント成分が添加されていても良い。ドーパント成分としては、例えば、ハロゲン類、ルイス酸、プロトン酸、遷移金属ハライドなどの低分子量ドーパントや、ポリアニオンのようなポリマー等が挙げられる。
ポリアニオンとは、π共役系導電性ポリマーに対するドーパントとして機能するアニオン基を有する高分子であり、置換もしくは未置換のポリアルキレン、置換もしくは未置換のポリアルケニレン、置換もしくは未置換のポリイミド、置換もしくは未置換のポリアミド、置換もしくは未置換のポリエステル及びこれらの共重合体であって、アニオン基を有する構成単位とアニオン基を有さない構成単位からなるものである。
ポリアルキレンとは主鎖がメチレンの繰り返しで構成されているポリマーであり、例えば、ポリエチレン、ポリプロピレン、ポリブテン、ポリペンテン、ポリヘキセン、ポリビニルアルコール、ポリビニルフェノール、ポリアクリロニトリル、ポリアクリレート、ポリスチレン等が挙げられる。
ポリアルケニレンとは主鎖に不飽和結合が1個以上含まれる構成単位からなるポリマーであり、例えば、プロペニレン、1−メチルプロペニレン、1−ブチルプロペニレン、1−デシルプロペニレン、1−シアノプロペニレン、1−フェニルプロペニレン、1−ヒドロキシプロペニレン、1−ブテニレン、1−メチル−1−ブテニレン、1−エチル−1−ブテニレン、1−オクチル−1−ブテニレン、2−メチル−1−ブテニレン、2−エチル−1−ブテニレン、2−ブチル−1−ブテニレン、2−ヘキシル−1−ブテニレン、2−オクチル−1−ブテニレン、2−デシル−1−ブテニレン、2−フェニル−1−ブテニレン、2−ブテニレン、1−メチル−2−ブテニレン、1−エチル−2−ブテニレン、1−オクチル−2−ブテニレン、2−メチル−2−ブテニレン、2−エチル−2−ブテニレン、2−ブチル−2−ブテニレン、2−ヘキシル−2−ブテニレン、2−オクチル−2−ブテニレン、2−デシル−2−ブテニレン、2−フェニル−2−ブテニレン、2−プロピレンフェニル−2−ブテニレン、2−ペンテニレン、4−エチル−2−ペンテニレン、4−プロピル−2−ペンテニレン、4−ブチル−2−ペンテニレン、4−ヘキシル−2−ペンテニレン、4−シアノ−2−ペンテニレン、3−メチル−2−ペンテニレン、3−フェニル−2−ペンテニレン、4−ヒドロキシ−2−ペンテニレン、ヘキセニレン等から選ばれる1種以上の構成単位を含む重合体が挙げられる。
ポリイミドとしてはピロメリット酸二無水物、ビフェニルテトラカルボン酸二無水物、ベンゾフェノンテトラカルボン酸二無水物、2,2′,3,3′−テトラカルボキシジフェニルエーテル二無水物、2,2′−[4,4′−ジ(ジカルボキシフェニルオキシ)フェニル]プロパン二無水物等の無水物と、オキシジアミン、パラフェニレンジアミン、メタフェニレンジアミン、ベンゾフェノンジアミン等のジアミンとからなるポリイミドが挙げられる。
ポリアミドとしてはポリアミド6、ポリアミド6,6、ポリアミド6,10等が挙げられる。ポリエステルとしてはポリエチレンテレフタレート、ポリブチレンテレフタレート等が挙げられる。
ポリアニオンのアニオン基としては、π共役系導電性ポリマーへの化学酸化ドープが起こりうる官能基であれば良いが、製造の容易さや安定性の観点から、
一置換硫酸エステル基、一置換リン酸エステル基、リン酸基、カルボキシ基、スルホ基等が好ましい。さらに、官能基のπ共役系導電性ポリマーへのドープ効果の観点から、スルホ基、一置換硫酸エステル基、カルボキシ基がより好ましい。
ポリアニオンの具体例としては、ポリビニルスルホン酸、ポリスチレンスルホン酸、ポリアリルスルホン酸、ポリアクリル酸エチルスルホン酸、ポリアクリル酸ブチルスルホン酸、ポリ(2−アクリルアミド−2−メチルプロパンスルホン酸)、ポリイソプレンスルホン酸、ポリビニルカルボン酸、ポリスチレンカルボン酸、ポリアリルカルボン酸、ポリアクリルカルボン酸、ポリメタクリルカルボン酸、ポリ(2−アクリルアミド−2−メチルプロパンカルボン酸)、ポリイソプレンカルボン酸、ポリアクリル酸等が挙げられる。これらの単独重合体でも良く、2種以上の共重合体でも良い。これらのうち、ポリスチレンスルホン酸、ポリイソプレンスルホン酸、ポリアクリル酸エチルスルホン酸、ポリアクリル酸ブチルスルホン酸が好ましい。これらのポリアニオンは、バインダー樹脂との相溶性が高く、得られる導電層の導電性をより高めることができる。
ポリアニオンの他にも、π共役系導電性ポリマーを酸化還元することができれば、以下のようなドナー性あるいはアクセプタ性のドーパントを用いることができる。
ドナー性ドーパントとしては、ナトリウム、カリウム等のアルカリ金属、カルシウム、マグネシウム等のアルカリ土類金属、テトラメチルアンモニウム、テトラエチルアンモニウム、テトラプロピルアンモニウム、テトラブチルアンモニウム、メチルトリエチルアンモニウム、ジメチルジエチルアンモニウム等の4級アミン化合物等が挙げられる。アクセプタ性ドーパントとしては、Cl、Br、I、ICl、IBr、IF等のハロゲン化合物、PF、AsF、SbF、BF、BCl、BBr、SO等のルイス酸、テトラシアノエチレン、テトラシアノエチレンオキサイド、テトラシアノベンゼン、ジクロロジシアノベンゾキノン、テトラシアノキノジメタン、テトラシアノアザナフタレン等の有機シアノ化合物、プロトン酸、有機金属化合物、フラーレン、水素化フラーレン、水酸化フラーレン、カルボン酸化フラーレン、スルホン酸化フラーレン等を使用できる。
プロトン酸としては無機酸、有機酸が挙げられる。無機酸としては、例えば塩酸、硫酸、硝酸、リン酸、フッ化水素酸、過塩素酸等が挙げられる。また、有機酸としては、有機カルボン酸、有機スルホン酸等が挙げられる。
有機カルボン酸としては、脂肪族、芳香族、環状脂肪族等にカルボキシ基を1つまたは2つ以上を含むものを使用できる。例えば、ギ酸、酢酸、シュウ酸、安息香酸、フタル酸、マレイン酸、フマル酸、マロン酸、酒石酸、クエン酸、乳酸、コハク酸、モノクロロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロ酢酸、ニトロ酢酸、トリフェニル酢酸等が挙げられる。
有機スルホン酸としては、脂肪族、芳香族、環状脂肪族等にスルホ基を1つまたは2つ以上含むもの、またはスルホ基を含む高分子を使用できる。
スルホ基を1つ含むものとしては、例えば、メタンスルホン酸、エタンスルホン酸、1−プロパンスルホン酸、1−ブタンスルホン酸、1−ヘキサンスルホン酸、1−ヘプタンスルホン酸、1−オクタンスルホン酸、1−ノナンスルホン酸、1−デカンスルホン酸、1−ペンタデカンスルホン酸、2−ブロモエタンスルホン酸、3−クロロ−2−ヒドロキシプロパンスルホン酸、トリフルオロメタンスルホン酸、トリフルオロエタンスルホン酸、コリスチンメタンスルホン酸、2−アクリルアミド−2−メチルプロパンスルホン酸、アミノメタンスルホン酸、1−アミノ−2−ナフトール−4−スルホン酸、2−アミノ−5−ナフトール−7−スルホン酸、3−アミノプロパンスルホン酸、N−シクロヘキシル−3−アミノプロパンスルホン酸、ベンゼンスルホン酸、アルキルベンゼンスルホン酸、p−トルエンスルホン酸、キシレンスルホン酸、エチルベンゼンスルホン酸、プロピルベンゼンスルホン酸、ブチルベンゼンスルホン酸、ペンチルベンゼンスルホン酸、ヘキシルベンゼンスルホン酸、ヘプチルベンゼンスルホン酸、オクチルベンゼンスルホン酸、ノニルベンゼンスルホン酸、デシルベンゼンスルホン酸、ヘキサデシルベンゼンスルホン酸、2,4−ジメチルベンゼンスルホン酸、ジプロピルベンゼンスルホン酸、4−アミノベンゼンスルホン酸、o−アミノベンゼンスルホン酸、m−アミノベンゼンスルホン酸、4−アミノ−2−クロロトルエン−5−スルホン酸、4−アミノ−3−メチルベンゼン−1−スルホン酸、4−アミノ−5−メトキシ−2−メチルベンゼンスルホン酸、2−アミノ−5−メチルベンゼン−1−スルホン酸、4−アミノ−2−メチルベンゼン−1−スルホン酸、5−アミノ−2−メチルベンゼン−1−スルホン酸、4−アミノ−3−メチルベンゼン−1−スルホン酸、4−アセトアミド−3−クロロベンゼンスルホン酸、4−クロロ−3−ニトロベンゼンスルホン酸、p−クロロベンゼンスルホン酸、ナフタレンスルホン酸、メチルナフタレンスルホン酸、プロピルナフタレンスルホン酸、ブチルナフタレンスルホン酸、ペンチルナフタレンスルホン酸、4−アミノ−1−ナフタレンスルホン酸、8−クロロナフタレン−1−スルホン酸、ナフタレンスルホン酸ホルマリン重縮合物、メラミンスルホン酸ホルマリン重縮合物、アントラキノンスルホン酸、ピレンスルホン酸等が挙げられる。また、これらの金属塩も使用できる。
スルホ基を2つ以上含むものとしては、例えば、エタンジスルホン酸、ブタンジスルホン酸、ペンタンジスルホン酸、デカンジスルホン酸、o−ベンゼンジスルホン酸、m−ベンゼンジスルホン酸、p−ベンゼンジスルホン酸、トルエンジスルホン酸、キシレンジスルホン酸、クロロベンゼンジスルホン酸、フルオロベンゼンジスルホン酸、ジメチルベンゼンジスルホン酸、ジエチルベンゼンジスルホン酸、アニリン−2,4−ジスルホン酸、アニリン−2,5−ジスルホン酸、3,4−ジヒドロキシ−1,3−ベンゼンジスルホン酸、ナフタレンジスルホン酸、メチルナフタレンジスルホン酸、エチルナフタレンジスルホン酸、ペンタデシルナフタレンジスルホン酸、3−アミノ−5−ヒドロキシ−2,7−ナフタレンジスルホン酸、1−アセトアミド−8−ヒドロキシ−3,6−ナフタレンジスルホン酸、2−アミノ−1,4−ベンゼンジスルホン酸、1−アミノ−3,8−ナフタレンジスルホン酸、3−アミノ−1,5−ナフタレンジスルホン酸、8−アミノ−1−ナフトール−3,6−ジスルホン酸、4−アミノ−5−ナフトール−2,7−ジスルホン酸、4−アセトアミド−4′−イソチオシアノトスチルベン−2,2′−ジスルホン酸、4−アセトアミド−4′−マレイミジルスチルベン−2,2′−ジスルホン酸、ナフタレントリスルホン酸、ジナフチルメタンジスルホン酸、アントラキノンジスルホン酸、アントラセンスルホン酸等が挙げられる。また、これらの金属塩も使用できる。
イオン性化合物としては、特公昭49−23828号、同49−23827号、同47−28937号にみられるようなアニオン性高分子化合物、特公昭55−734号、特開昭50−54672号、特公昭59−14735号、同57−18175号、同57−18176号、同57−56059号などにみられるような、主鎖中に解離基を持つアイオネン型ポリマー、特公昭53−13223号、同57−15376号、特公昭53−45231号、同55−145783号、同55−65950号、同55−67746号、同57−11342号、同57−19735号、特公昭58−56858号、特開昭61−27853号、同62−9346号にみられるような、側鎖中にカチオン性解離基を持つカチオン性ペンダント型ポリマー等を挙げることが出来る。また、特開平9−203810号に記載されているアイオネン導電性ポリマー或いは分子間架橋を有する第4級アンモニウムカチオン導電性ポリマーなどを含有することも望ましい。
上記ポリマー化合物は、一般に約0.05μm〜0.5μmの粒子サイズ範囲にあり、好ましくは0.05μm〜0.2μmの範囲の粒子サイズである。該ポリマーとバインダーの比率はポリマー1質量部に対して、バインダーが0.1〜4質量部が基材フィルムとの密着性の点で好ましく、特に好ましくは、ポリマー1質量部に対して、バインダーが1〜2質量部である。
また、イミダゾリウム系、ピリジウム系、脂環式アミン系、脂肪族アミン系、脂肪族ホスホニウム系の陽イオンとBF 、PF 等の無機イオン系、CFSO 、(CFSO、CFCO 等のフッ素系の陰イオンとからなる化合物等も挙げられる。
導電性化合物の添加量は、中間層形成組成物中の固形分濃度として、0.01質量%以上、50質量%未満であることが、組成物中で安定に存在し、防塵性も良好に得られる事から好ましい。
中間層を塗膜形成する塗工方法は、特に限定されるものではなく、使用する塗布組成物や塗布工程の状況に応じて適宜選択される。例えばスピンコーティング、ロールコーティング、スクリーン印刷、スプレーコーティング、グラビアコーティング、インクジェット法等の種々の塗工方法を採用することができる。また、塗工後、加熱乾燥し、紫外線照射等の硬化処理を行うこともできる。
硬化処理方法としては、加熱することによって熱硬化させる方法、紫外線等の光照射によって硬化させる方法などが挙げられる。熱硬化させる場合は、加熱温度は50〜300℃が好ましく、好ましくは60〜250℃、さらに好ましくは80〜150℃である。加熱時間は加熱温度により変化するが、3〜300分の範囲が適当である。また、光照射によって硬化させる場合は、照射光の露光量は10mJ/cm〜10J/cmであることが好ましく、100mJ/cm〜500mJ/cmがより好ましい。ここで照射される光の波長域としては特に限定されないが、紫外線領域の波長を有する光が好ましく用いられる。具体的には、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることができる。
照射条件はそれぞれのランプによって異なるが、照射量は、通常5〜500mJ/cm、好ましくは5〜150mJ/cmであるが、特に好ましくは20〜100mJ/cmである。
また、光照射する際には、フィルムの搬送方向に張力を付与しながら行うことが好ましく、さらに好ましくは幅方向にも張力を付与しながら行うことである。付与する張力は30〜500N/mが好ましい。張力を付与する方法は特に限定されず、バックロール上で搬送方向に張力を付与してもよく、テンターにて幅方向、または2軸方向に張力を付与してもよい。これによってさらに平面性優れたフィルムを得ることができる。
《ハードコート層》
次に、中間層上層に設けるハードコート層について説明する。
(多官能アクリレート)
ハードコート層は一般に紫外線のような活性光線硬化性樹脂より構成されるが、このような活性光線硬化性樹脂としては、多官能アクリレートが好ましい。該多官能アクリレートとしては、ペンタエリスリトール多官能アクリレート、ジペンタエリスリトール多官能アクリレート、ペンタエリスリトール多官能メタクリレート、及びジペンタエリスリトール多官能メタクリレートよりなる群から選ばれることが好ましい。ここで、多官能アクリレートとは、分子中に2個以上のアクリロイルオキシ基及び/またはメタクロイルオキシ基を有する化合物である。
多官能アクリレートのモノマーとしては、例えばエチレングリコールジアクリレート、ジエチレングリコールジアクリレート、1,6−ヘキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールエタントリアクリレート、テトラメチロールメタントリアクリレート、テトラメチロールメタンテトラアクリレート、ペンタグリセロールトリアクリレート、ペンタエリスリトールジアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、グリセリントリアクリレート、ジペンタエリスリトールトリアクリレート、ジペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、トリス(アクリロイルオキシエチル)イソシアヌレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、1,6−ヘキサンジオールジメタクリレート、ネオペンチルグリコールジメタクリレート、トリメチロールプロパントリメタクリレート、トリメチロールエタントリメタクリレート、テトラメチロールメタントリメタクリレート、テトラメチロールメタンテトラメタクリレート、ペンタグリセロールトリメタクリレート、ペンタエリスリトールジメタクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、グリセリントリメタクリレート、ジペンタエリスリトールトリメタクリレート、ジペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールペンタメタクリレート、ジペンタエリスリトールヘキサメタクリレート、イソボロニルアクリレート等が好ましく挙げられる。これらの化合物は、それぞれ単独または2種以上を混合して用いられる。また、上記モノマーの2量体、3量体等のオリゴマーであってもよい。
活性光線硬化性樹脂の添加量は、ハードコート層形成組成物中では、固形分中の15質量%以上70質量%未満であることが好ましい。
また、ハードコート層には活性光線硬化性樹脂の硬化促進のため、光重合開始剤を含有することが好ましい。光重合開始剤量としては、質量比で、光重合開始剤;活性光線硬化性樹脂=20:100〜0.01:100で含有することが好ましい。
光重合開始剤としては、具体的には、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーケトン、α−アミロキシムエステル、チオキサントン等及びこれらの誘導体を挙げることができるが、特にこれらに限定されるものではない。
ハードコート層には、中間層に用いる熱可塑性樹脂、熱硬化性樹脂またはゼラチン等の親水性樹脂等のバインダーを上記活性光線硬化性樹脂に混合して使用することもできる。また、ハードコート層には耐傷性、滑り性や屈折率を調整するために無機化合物または有機化合物の微粒子を含んでもよい。
ハードコート層に使用される無機微粒子としては、酸化珪素、酸化チタン、酸化アルミニウム、酸化スズ、酸化インジウム、ITO、酸化亜鉛、酸化ジルコニウム、酸化マグネシウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウムを挙げることができる。特に、酸化珪素、酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化マグネシウム等が好ましく用いられる。
また有機粒子としては、ポリメタアクリル酸メチルアクリレート樹脂粉末、アクリルスチレン系樹脂粉末、ポリメチルメタクリレート樹脂粉末、シリコン系樹脂粉末、ポリスチレン系樹脂粉末、ポリカーボネート樹脂粉末、ベンゾグアナミン系樹脂粉末、メラミン系樹脂粉末、ポリオレフィン系樹脂粉末、ポリエステル系樹脂粉末、ポリアミド系樹脂粉末、ポリイミド系樹脂粉末、またはポリ弗化エチレン系樹脂粉末等紫外線硬化性樹脂組成物を加えることができる。特に好ましくは、架橋ポリスチレン粒子(例えば、綜研化学製SX−130H、SX−200H、SX−350H)、ポリメチルメタクリレート系粒子(例えば、綜研化学製MX150、MX300)、フッ素含有アクリル樹脂微粒子が挙げられる。フッ素含有アクリル樹脂微粒子としては、例えば日本ペイント製:FS−701等の市販品が挙げられる。また、アクリル粒子として、例えば日本ペイント製:S−4000,アクリル−スチレン粒子として、例えば日本ペイント製:S−1200、MG−251等が挙げられる。
これらの微粒子粉末の平均粒径としては、0.01〜5μmが好ましく0.1〜5.0μm、更に、0.1〜4.0μmであることが特に好ましい。また、粒径の異なる2種以上の微粒子を含有することが好ましい。硬化性樹脂組成物と微粒子の割合は、硬化性樹脂組成物100質量部に対して、0.1〜30質量部となるように配合することが望ましい。
ハードコート層の耐熱性を高めるために、光硬化反応を抑制しないような酸化防止剤を選んで用いることができる。例えば、ヒンダードフェノール誘導体、チオプロピオン酸誘導体、ホスファイト誘導体等を挙げることができる。具体的には、例えば、4,4′−チオビス(6−tert−3−メチルフェノール)、4,4′−ブチリデンビス(6−tert−ブチル−3−メチルフェノール)、1,3,5−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)イソシアヌレート、2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)メシチレン、ジ−オクタデシル−4−ヒドロキシ−3,5−ジ−tert−ブチルベンジルホスフェート等を挙げることができる。
これらのハードコート層はグラビアコーター、ディップコーター、リバースコーター、ワイヤーバーコーター、ダイコーター、インクジェット法等公知の方法で塗設することができる。塗布後、加熱乾燥し、UV硬化処理を行う。
ハードコート層形成組成物(以下、ハードコート層塗布液とも言う。)には、溶媒が含まれていてもよく、必要に応じて適宜含有し、希釈されたものであってもよい。塗布液に含有される有機溶媒としては、例えば、炭化水素類(トルエン、キシレン、)、アルコール類(メタノール、エタノール、イソプロパノール、ブタノール、シクロヘキサノール)、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン)、エステル類(酢酸メチル、酢酸エチル、乳酸メチル)、グリコールエーテル類、その他の有機溶媒の中から適宜選択し、またはこれらを混合し利用できる。プロピレングリコールモノアルキルエーテル(アルキル基の炭素原子数として1〜4)またはプロピレングリコールモノアルキルエーテル酢酸エステル(アルキル基の炭素原子数として1〜4)等を5質量%以上、より好ましくは5〜80質量%以上含有する上記有機溶媒を用いるのが好ましい。
ハードコート層は、JIS B 0601で規定される中心線平均粗さ(Ra)が0.001〜0.1μmのクリアハードコート層、または微粒子等を添加しRaが0.1〜1μmに調整された防眩性ハードコート層であってもよい。中心線平均粗さ(Ra)は光干渉式の表面粗さ測定器で測定することが好ましく、例えばWYKO社製非接触表面微細形状計測装置WYKO NT−2000を用いて測定することができる。
更にハードコート層には、シリコーン系界面活性剤或いはポリオキシエーテル化合物を含有させることが好ましい。シリコーン系界面活性剤としては、ポリエーテル変性シリコーンが好ましく、具体的には、BYK−UV3500,BYK−UV3510、BYK−333、BYK−331、BYK−337(ビックケミ−ジャパン社製)、TSF4440、TSF4445、TSF4446、TSF4452、TSF4460(GE東芝シリコーン製)、KF−351、KF−351A、KF−352、KF−353、KF−354、KF−355、KF−615、KF−618、KF−945、KF−6004(ポリエーテル変性シリコーンオイル;信越化学工業社製)等が挙げられるがこれらに限定されない。
また、ポリオキシエーテル化合物の中では、好ましくはポリオキシエチレンオレイルエーテル化合物であり、一般的に一般式(α)で表される化合物である。
一般式(α) C1835−O(CO)nH
式中、nは2〜40を表す。
オレイル部分に対するエチレンオキシドの平均付加個数(n)は、2〜40であり、好ましくは2〜10、より好ましくは2〜9、さらに好ましくは2〜8である。また一般式(α)の化合物はエチレンオキシドとオレイルアルコールとを反応させて得られる。
具体的商品としては、エマルゲン404(ポリオキシエチレン(4)オレイルエーテル)、エマルゲン408(ポリオキシエチレン(8)オレイルエーテル)、エマルゲン409P(ポリオキシエチレン(9)オレイルエーテル)、エマルゲン420(ポリオキシエチレン(13)オレイルエーテル)、エマルゲン430(ポリオキシエチレン(30)オレイルエーテル)以上花王社製、日本油脂製NOFABLEEAO−9905(ポリオキシエチレン(5)オレイルエーテル)等が挙げられる。
尚、( )がnの数字を表す。非イオン性のポリオキシエーテル化合物は単独或いは2種以上を併用しても良い。
これらは塗布性を高め、これらの成分は、塗布液中の固形分成分に対し、0.01〜3質量%の範囲で添加することが好ましい。
また、ハードコート層にはフッ素−シロキサングラフトポリマーを含有しても良い。
フッ素−シロキサングラフトポリマーとは、少なくともフッ素系樹脂に、シロキサン及び/またはオルガノシロキサン単体を含むポリシロキサン及び/またはオルガノポリシロキサンをグラフト化等の複合させて得られる共重合体のポリマーをいう。市販品としては、富士化成工業株式会社製のZX−022H、ZX−007C、ZX−049、ZX−047−D等を挙げることができる。またこれら化合物は混合して用いても良い。フッ素−シロキサングラフトポリマーは活性光線硬化性樹脂との含有質量比率をフッ素−シロキサングラフトポリマー:活性光線硬化樹脂=0.05:100〜5.00:100で用いることがハードコート層形成組成物中での安定性から好ましい。
また、ハードコート層は、2層以上の重層構造を有していてもよい。その中の1層は例えば導電性微粒子、π共役系導電性ポリマー、または、イオン性ポリマーを含有する所謂導電性層としてもよい。π共役系導電性ポリマーとしては、ポリチオフェン、ポリ(3−メチルチオフェン)、ポリ(3−エチルチオフェン)、ポリ(3−プロピルチオフェン)、ポリ(3−ブチルチオフェン)、ポリ(3−ヘキシルチオフェン)、ポリ(3−オクチルチオフェン)、ポリ(3−デシルチオフェン)、ポリ(3−ドデシルチオフェン)、ポリ(3−ブロモチオフェン)、ポリ(3−クロロチオフェン)、ポリ(3−シアノチオフェン)、ポリ(3−フェニルチオフェン)、ポリ(3,4−ジメチルチオフェン)、ポリ(3,4−ジブチルチオフェン)、ポリ(3−ヒドロキシチオフェン)、ポリ(3−メトキシチオフェン)、ポリ(3−エトキシチオフェン)、ポリ(3−ブトキシチオフェン)、ポリ(3−ヘキシルオキシチオフェン)、ポリ(3−オクチルオキシチオフェン)、ポリ(3−デシルオキシチオフェン)、ポリ(3−ドデシルオキシチオフェン)、ポリ(3,4−ジヒドロキシチオフェン)、ポリ(3,4−ジメトキシチオフェン)、ポリ(3,4−ジエトキシチオフェン)、ポリ(3,4−ジプロポキシチオフェン)、ポリ(3,4−ジブトキシチオフェン)、ポリ(3,4−ジヘキシルオキシチオフェン)、ポリ(3,4−ジオクチルオキシチオフェン)、ポリ(3,4−ジデシルオキシチオフェン)、ポリ(3,4−ジドデシルオキシチオフェン)、ポリ(3,4−エチレンジオキシチオフェン)、ポリ(3,4−プロピレンジオキシチオフェン)、ポリ(3,4−ブテンジオキシチオフェン)、ポリ(3−メチル−4−メトキシチオフェン)、ポリ(3−メチル−4−エトキシチオフェン)、ポリ(3−カルボキシチオフェン)、ポリ(3−メチル−4−カルボキシチオフェン)、ポリ(3−メチル−4−カルボキシエチルチオフェン)、ポリ(3−メチル−4−カルボキシブチルチオフェン)、ポリピロール、ポリ(N−メチルピロール)、ポリ(3−メチルピロール)、ポリ(3−エチルピロール)、ポリ(3−N−プロピルピロール)、ポリ(3−ブチルピロール)、ポリ(3−オクチルピロール)、ポリ(3−デシルピロール)、ポリ(3−ドデシルピロール)、ポリ(3,4−ジメチルピロール)、ポリ(3,4−ジブチルピロール)、ポリ(3−カルボキシピロール)、ポリ(3−メチル−4−カルボキシピロール)、ポリ(3−メチル−4−カルボキシエチルピロール)、ポリ(3−メチル−4−カルボキシブチルピロール)、ポリ(3−ヒドロキシピロール)、ポリ(3−メトキシピロール)、ポリ(3−エトキシピロール)、ポリ(3−ブトキシピロール)、ポリ(3−ヘキシルオキシピロール)、ポリ(3−メチル−4−ヘキシルオキシピロール)、ポリアニリン、ポリ(2−メチルアニリン)、ポリ(3−イソブチルアニリン)、ポリ(2−アニリンスルホン酸)、ポリ(3−アニリンスルホン酸)等が挙げられる。これらはそれぞれ単独でも良いし、2種からなる共重合体でも好適に用いることができる。
また、イオン性ポリマーは種々の表示素子に対する色補正用フィルターとして色調調整機能を有する色調調整剤(染料もしくは顔料等)を含有させてもよいし、また電磁波遮断剤または赤外線吸収剤等を含有させそれぞれの機能を有するようにすることは好ましい。
ハードコート層塗布液の塗布方法としては、前述のものを用いることができる。塗布量はウェット膜厚として0.1〜40μmが適当で、好ましくは、0.5〜30μmである。また、ドライ膜厚としては平均膜厚0.1〜30μm、好ましくは1〜20μmである。
ハードコート層は塗布乾燥後に、紫外線を照射するのがよく、必要な活性光線の照射量を得るための照射時間としては、0.1秒〜1分程度がよく、紫外線硬化性樹脂の硬化効率または作業効率の観点から0.1〜10秒がより好ましい。
また、これら活性光線照射部の照度は0.05〜0.2W/mであることが好ましい。
また、本発明のハードコートフィルムのヘーズ(雲価)は、2%を超えると液晶表示装置の表示画像に影響を与えるため、好ましくは、1%未満、より好ましくは0.5%未満である。また着色性の指標としては黄色度(イエローインデックス、YI)を用いることができ、好ましくは3.0以下、より好ましくは1.0以下である。また、本発明のハードコートフィルムは、全光線透過率は85%以上であることが好ましい。
また、ハードコート層は、更にその上に、反射防止層(高屈折率層、低屈折率層等)等の機能性層設けても良い。次に機能性層である反射防止層について説明する。
《反射防止層》
反射防止層は、光学干渉によって反射率が減少するように屈折率、膜厚、層の数、層順等を考慮して積層されていることが好ましい。反射防止層は、支持体よりも屈折率の低い低屈折率層、もしくは支持体よりも屈折率の高い高屈折率層と低屈折率層を組み合わせて構成されていることが外光反射防止機能が、より得られる点から、好ましい。特に好ましくは、2層以上の屈折率層から構成される反射防止層であり、支持体側から屈折率の異なる2層を、高屈折率層/低屈折率層の順に積層されているものが好ましく用いられる。また、支持体側から屈折率の異なる3層を、中屈折率層(支持体よりも屈折率が高く、高屈折率層よりも屈折率の低い層)/高屈折率層/低屈折率層の順に積層されているものも好ましく用いれ、更に、2層以上の高屈折率層と2層以上の低屈折率層とを交互に積層した4層以上の層構成の反射防止層も好ましく用いられる。
フィルムの層構成としては下記のような構成が考えられるが、これに限定されるものではない。
フィルム基材/中間層/ハードコート層
フィルム基材/中間層/ハードコート層/中屈折率層/低屈折率層
フィルム基材/中間層/ハードコート層/中屈折率層/高屈折率層/低屈折率層
フィルム基材/中間層/ハードコート層/低屈折率層
フィルム基材/中間層/ハードコート層/導電性層
フィルム基材/中間層/ハードコート層/導電性層/低屈折率層
フィルム基材/中間層/ハードコート層/高屈折率層(導電性層)/低屈折率層
フィルム基材/中間層/ハードコート層/防眩性層
フィルム基材/中間層/ハードコート層/防眩性層/低屈折率層
バックコート層/フィルム基材/中間層/ハードコート層
バックコート層/フィルム基材/中間層/ハードコート層/防眩性層
バックコート層/フィルム基材/中間層/ハードコート層/導電性層
バックコート層/フィルム基材/中間層/ハードコート層/低屈折率層
バックコート層/フィルム基材/中間層/ハードコート層/中屈折率層/低屈折率層
バックコート層/フィルム基材/中間層/ハードコート層/防眩性層/低屈折率層
バックコート層/フィルム基材/中間層/ハードコート層/導電性層/低屈折率層
〔低屈折率層〕
低屈折率層は、シリカ系微粒子を含有することが好ましく、その屈折率は、支持体であるフィルム基材の屈折率より低く、23℃、波長550nm測定で、1.30〜1.45の範囲であることが好ましい。
本発明の中間層を有するハードコートフィルムのハードコート層上に、直接又は他の層を介して低屈折率層が積層されている反射防止フィルムは、特に耐候性試験後の密着性及び耐薬品性に優れているため、好ましい。
低屈折率層の膜厚は、5nm〜0.5μmであることが好ましく、10nm〜0.3μmであることが更に好ましく、30nm〜0.2μmであることが最も好ましい。
低屈折率層形成用組成物については、シリカ系微粒子として、特に外殻層を有し内部が多孔質または空洞の粒子を少なくとも1種類以上含むことが好ましい。特に該外殻層を有し内部が多孔質または空洞である粒子が、中空シリカ系微粒子であることが好ましい。
なお、低屈折率層形成用組成物には、下記一般式(OSi−1)で表される有機珪素化合物もしくはその加水分解物、或いは、その重縮合物を併せて含有させても良い。
一般式(OSi−1):Si(OR)
前記一般式で表される有機珪素化合物は、式中、Rは炭素数1〜4のアルキル基を表す。具体的には、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン等が好ましく用いられる。
他に溶剤、必要に応じて、シランカップリング剤、硬化剤、界面活性剤等を添加してもよい。
(中空シリカ系微粒子)
中空シリカ系微粒子は、(I)多孔質粒子と該多孔質粒子表面に設けられた被覆層とからなる複合粒子、または(II)内部に空洞を有し、かつ内容物が溶媒、気体または多孔質物質で充填された空洞粒子である。なお、低屈折率層には(I)複合粒子または(II)空洞粒子のいずれかが含まれていればよく、また双方が含まれていてもよい。
なお、空洞粒子は内部に空洞を有する粒子であり、空洞は被覆層(粒子壁ともいう。)で覆われている。空洞内には、調製時に使用した溶媒、気体または多孔質物質等の内容物で充填されている。このような中空微粒子の平均粒子径が5〜300nm、好ましくは10〜200nmの範囲にあることが望ましい。使用される中空微粒子の平均粒子径は、形成される低屈折率層の平均膜厚の3/2〜1/10好ましくは2/3〜1/10の範囲にあることが望ましい。これらの中空微粒子は、低屈折率層の形成のため、適当な媒体に分散した状態で使用することが好ましい。分散媒としては、水、アルコール(例えば、メタノール、エタノール、イソプロピルアルコール)及びケトン(例えば、メチルエチルケトン、メチルイソブチルケトン)、ケトンアルコール(例えばジアセトンアルコール)、或いはこれらを含む混合溶媒が好ましい。
複合粒子の被覆層の厚さまたは空洞粒子の粒子壁の厚さは、1〜20nm、好ましくは2〜15nmの範囲にあることが望ましい。複合粒子の場合、被覆層の厚さが1nm未満の場合は、粒子を完全に被覆することができないことがあり、後述する塗布液成分である重合度の低いケイ酸モノマー、オリゴマー等が容易に複合粒子の内部の空隙部分に進入して粒子の屈折率を増加させ、低屈折率の効果が十分得られなくなることがある。また、被覆層の厚さが20nmを越えると、前記ケイ酸モノマー、オリゴマーが内部に進入することはないが、複合粒子の多孔性(細孔容積)が低下し低屈折率の効果が十分得られなくなることがある。また空洞粒子の場合、粒子壁の厚さが1nm未満の場合は、粒子形状を維持できないことがあり、また厚さが20nmを越えても、低屈折率の効果が十分に現れないことがある。
複合粒子の被覆層または空洞粒子の粒子壁は、シリカを主成分とすることが好ましい。また、シリカ以外の成分が含まれていてもよく、具体的には、Al、B、TiO、ZrO、SnO、CeO、P、Sb、MoO、ZnO、WO等が挙げられる。複合粒子を構成する多孔質粒子としては、シリカからなるもの、シリカとシリカ以外の無機化合物とからなるもの、CaF、NaF、NaAlF、MgF等からなるものが挙げられる。このうち特にシリカとシリカ以外の無機化合物との複合酸化物からなる多孔質粒子が好適である。シリカ以外の無機化合物としては、Al、B、TiO、ZrO、SnO、CeO、P、Sb、MoO、ZnO、WO等との1種または2種以上を挙げることができる。このような多孔質粒子では、シリカをSiOで表し、シリカ以外の無機化合物を酸化物換算(MO)で表したときのモル比MO/SiOが、0.0001〜1.0、好ましくは0.001〜0.3の範囲にあることが望ましい。多孔質粒子のモル比MO/SiOが0.0001未満のものは得ることが困難であり、得られたとしても細孔容積が小さく、屈折率の低い粒子が得られない。また、多孔質粒子のモル比MO/SiOが、1.0を越えると、シリカの比率が少なくなるので、細孔容積が大きくなり、更に屈折率が低いものを得ることが難しいことがある。
このような多孔質粒子の細孔容積は、0.1〜1.5ml/g、好ましくは0.2〜1.5ml/gの範囲であることが望ましい。細孔容積が0.1ml/g未満では、十分に屈折率の低下した粒子が得られず、1.5ml/gを越えると微粒子の強度が低下し、得られる被膜の強度が低下することがある。
なお、このような多孔質粒子の細孔容積は水銀圧入法によって求めることができる。また、空洞粒子の内容物としては、粒子調製時に使用した溶媒、気体、多孔質物質等が挙げられる。溶媒中には空洞粒子調製する際に使用される粒子前駆体の未反応物、使用した触媒等が含まれていてもよい。また多孔質物質としては、前記多孔質粒子で例示した化合物からなるものが挙げられる。これらの内容物は、単一の成分からなるものであってもよいが、複数成分の混合物であってもよい。
このような中空微粒子の製造方法としては、例えば特開平7−133105号公報の段落番号[0010]〜[0033]に開示された複合酸化物コロイド粒子の調製方法が好適に採用される。具体的に、複合粒子が、シリカ、シリカ以外の無機化合物とからなる場合、以下の第1〜第3工程から中空微粒子は製造される。
第1工程:多孔質粒子前駆体の調製
第1工程では、予め、シリカ原料とシリカ以外の無機化合物原料のアルカリ水溶液を個別に調製するか、または、シリカ原料とシリカ以外の無機化合物原料との混合水溶液を調製しておき、この水溶液を目的とする複合酸化物の複合割合に応じて、pH10以上のアルカリ水溶液中に攪拌しながら徐々に添加して多孔質粒子前駆体を調製する。
シリカ原料としては、アルカリ金属、アンモニウムまたは有機塩基のケイ酸塩を用いる。アルカリ金属のケイ酸塩としては、ケイ酸ナトリウム(水ガラス)やケイ酸カリウムが用いられる。有機塩基としては、テトラエチルアンモニウム塩等の第4級アンモニウム塩、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等のアミン類を挙げることができる。なお、アンモニウムのケイ酸塩または有機塩基のケイ酸塩には、ケイ酸液にアンモニア、第4級アンモニウム水酸化物、アミン化合物等を添加したアルカリ性溶液も含まれる。
また、シリカ以外の無機化合物の原料としては、アルカリ可溶の無機化合物が用いられる。具体的には、Al、B、Ti、Zr、Sn、Ce、P、Sb、Mo、Zn、W等から選ばれる元素のオキソ酸、該オキソ酸のアルカリ金属塩またはアルカリ土類金属塩、アンモニウム塩、第4級アンモニウム塩を挙げることができる。より具体的には、アルミン酸ナトリウム、四硼酸ナトリウム、炭酸ジルコニルアンモニウム、アンチモン酸カリウム、錫酸カリウム、アルミノケイ酸ナトリウム、モリブデン酸ナトリウム、硝酸セリウムアンモニウム、燐酸ナトリウムが適当である。
これらの水溶液の添加と同時に混合水溶液のpH値は変化するが、このpH値を所定の範囲に制御するような操作は特に必要ない。水溶液は、最終的に、無機酸化物の種類及びその混合割合によって定まるpH値となる。このときの水溶液の添加速度には特に制限はない。また、複合酸化物粒子の製造に際して、シード粒子の分散液を出発原料と使用することも可能である。当該シード粒子としては、特に制限はないが、SiO、Al、TiOまたはZrO等の無機酸化物またはこれらの複合酸化物の微粒子が用いられ、通常、これらのゾルを用いることができる。更に前記の製造方法によって得られた多孔質粒子前駆体分散液をシード粒子分散液としてもよい。シード粒子分散液を使用する場合、シード粒子分散液のpHを10以上に調整した後、該シード粒子分散液中に前記化合物の水溶液を、上記したアルカリ水溶液中に攪拌しながら添加する。この場合も、必ずしも分散液のpH制御を行う必要はない。このようにしてシード粒子を用いると、調製する多孔質粒子の粒径コントロールが容易であり、粒度の揃ったものを得ることができる。
上記したシリカ原料及び無機化合物原料はアルカリ側で高い溶解度を有する。しかしながら、この溶解度の大きいpH領域で両者を混合すると、ケイ酸イオン及びアルミン酸イオン等のオキソ酸イオンの溶解度が低下し、これらの複合物が析出して微粒子に成長したり、または、シード粒子上に析出して粒子成長が起る。従って、微粒子の析出、成長に際して、従来法のようなpH制御は必ずしも行う必要がない。
第1工程におけるシリカとシリカ以外の無機化合物との複合割合は、シリカに対する無機化合物を酸化物(MO)に換算し、MO/SiOのモル比が、0.05〜2.0、好ましくは0.2〜2.0の範囲内にあることが望ましい。この範囲内において、シリカの割合が少なくなる程、多孔質粒子の細孔容積が増大する。しかしながら、モル比が2.0を越えても、多孔質粒子の細孔の容積はほとんど増加しない。他方、モル比が0.05未満の場合は、細孔容積が小さくなる。空洞粒子を調製する場合、MO/SiOのモル比は、0.25〜2.0の範囲内にあることが望ましい。
第2工程:多孔質粒子からのシリカ以外の無機化合物の除去
第2工程では、前記第1工程で得られた多孔質粒子前駆体から、シリカ以外の無機化合物(珪素と酸素以外の元素)の少なくとも一部を選択的に除去する。具体的な除去方法としては、多孔質粒子前駆体中の無機化合物を鉱酸や有機酸を用いて溶解除去したり、または、陽イオン交換樹脂と接触させてイオン交換除去する。
なお、第1工程で得られる多孔質粒子前駆体は、珪素と無機化合物構成元素が酸素を介して結合した網目構造の粒子である。このように多孔質粒子前駆体から無機化合物(珪素と酸素以外の元素)を除去することにより、一層多孔質で細孔容積の大きい多孔質粒子が得られる。また、多孔質粒子前駆体から無機酸化物(珪素と酸素以外の元素)を除去する量を多くすれば、空洞粒子を調製することができる。
また、多孔質粒子前駆体からシリカ以外の無機化合物を除去するに先立って、第1工程で得られる多孔質粒子前駆体分散液に、シリカのアルカリ金属塩を脱アルカリして得られる、フッ素置換アルキル基含有シラン化合物を含有するケイ酸液または加水分解性の有機珪素化合物を添加してシリカ保護膜を形成することが好ましい。シリカ保護膜の厚さは0.5〜15nmの厚さであればよい。なおシリカ保護膜を形成しても、この工程での保護膜は多孔質であり厚さが薄いので、前記したシリカ以外の無機化合物を、多孔質粒子前駆体から除去することは可能である。
このようなシリカ保護膜を形成することによって、粒子形状を保持したまま、前記したシリカ以外の無機化合物を、多孔質粒子前駆体から除去することができる。また、後述するシリカ被覆層を形成する際に、多孔質粒子の細孔が被覆層によって閉塞されてしまうことがなく、このため細孔容積を低下させることなく後述するシリカ被覆層を形成することができる。なお、除去する無機化合物の量が少ない場合は粒子が壊れることがないので必ずしも保護膜を形成する必要はない。
また空洞粒子を調製する場合は、このシリカ保護膜を形成しておくことが望ましい。空洞粒子を調製する際には、無機化合物を除去すると、シリカ保護膜と、該シリカ保護膜内の溶媒、未溶解の多孔質固形分とからなる空洞粒子の前駆体が得られ、該空洞粒子の前駆体に後述の被覆層を形成すると、形成された被覆層が、粒子壁となり空洞粒子が形成される。
上記シリカ保護膜形成のために添加するシリカ源の量は、粒子形状を保持できる範囲で少ないことが好ましい。シリカ源の量が多過ぎると、シリカ保護膜が厚くなり過ぎるので、多孔質粒子前駆体からシリカ以外の無機化合物を除去することが困難となることがある。シリカ保護膜形成用に使用される加水分解性の有機珪素化合物としては、一般式RSi(OR′)4−n〔R、R′:アルキル基、アリール基、ビニル基、アクリル基等の炭化水素基、n=0、1、2または3〕で表されるアルコキシシランを用いることができる。特に、フッ素置換したテトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン等のテトラアルコキシシランが好ましく用いられる。
添加方法としては、これらのアルコキシシラン、純水、及びアルコールの混合溶液に触媒としての少量のアルカリまたは酸を添加した溶液を、前記多孔質粒子の分散液に加え、アルコキシシランを加水分解して生成したケイ酸重合物を無機酸化物粒子の表面に沈着させる。このとき、アルコキシシラン、アルコール、触媒を同時に分散液中に添加してもよい。アルカリ触媒としては、アンモニア、アルカリ金属の水酸化物、アミン類を用いることができる。また、酸触媒としては、各種の無機酸と有機酸を用いることができる。
多孔質粒子前駆体の分散媒が、水単独、または有機溶媒に対する水の比率が高い場合には、ケイ酸液を用いてシリカ保護膜を形成することも可能である。ケイ酸液を用いる場合には、分散液中にケイ酸液を所定量添加し、同時にアルカリを加えてケイ酸液を多孔質粒子表面に沈着させる。なお、ケイ酸液と上記アルコキシシランを併用してシリカ保護膜を作製してもよい。
第3工程:シリカ被覆層の形成
第3工程では、第2工程で調製した多孔質粒子分散液(空洞粒子の場合は空洞粒子前駆体分散液)に、フッ素置換アルキル基含有シラン化合物を含有する加水分解性の有機珪素化合物またはケイ酸液等を加えることにより、粒子の表面を加水分解性有機珪素化合物またはケイ酸液等の重合物で被覆してシリカ被覆層を形成する。
シリカ被覆層形成用に使用される加水分解性の有機珪素化合物としては、前記したような一般式RSi(OR′)4−n〔R、R′:アルキル基、アリール基、ビニル基、アクリル基等の炭化水素基、n=0、1、2または3〕で表されるアルコキシシランを用いることができる。特に、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン等のテトラアルコキシシランが好ましく用いられる。
添加方法としては、これらのアルコキシシラン、純水、及びアルコールの混合溶液に触媒としての少量のアルカリまたは酸を添加した溶液を、前記多孔質粒子(空洞粒子の場合は空洞粒子前駆体)分散液に加え、アルコキシシランを加水分解して生成したケイ酸重合物を多孔質粒子(空洞粒子の場合は空洞粒子前駆体)の表面に沈着させる。このとき、アルコキシシラン、アルコール、触媒を同時に分散液中に添加してもよい。アルカリ触媒としては、アンモニア、アルカリ金属の水酸化物、アミン類を用いることができる。また、酸触媒としては、各種の無機酸と有機酸を用いることができる。
多孔質粒子(空洞粒子の場合は空洞粒子前駆体)の分散媒が水単独、または有機溶媒との混合溶媒であって、有機溶媒に対する水の比率が高い混合溶媒の場合には、ケイ酸液を用いて被覆層を形成してもよい。ケイ酸液とは、水ガラス等のアルカリ金属ケイ酸塩の水溶液をイオン交換処理して脱アルカリしたケイ酸の低重合物の水溶液である。
ケイ酸液は、多孔質粒子(空洞粒子の場合は空洞粒子前駆体)分散液中に添加され、同時にアルカリを加えてケイ酸低重合物を多孔質粒子(空洞粒子の場合は空洞粒子前駆体)表面に沈着させる。なお、ケイ酸液を上記アルコキシシランと併用して被覆層形成用に使用してもよい。被覆層形成用に使用される有機珪素化合物またはケイ酸液の添加量は、コロイド粒子の表面を十分被覆できる程度であればよく、最終的に得られるシリカ被覆層の厚さが1〜20nmとなるような量で、多孔質粒子(空洞粒子の場合は空洞粒子前駆体)分散液中で添加される。また前記シリカ保護膜を形成した場合はシリカ保護膜とシリカ被覆層の合計の厚さが1〜20nmの範囲となるような量で、有機珪素化合物またはケイ酸液は添加される。
次いで、被覆層が形成された粒子の分散液を加熱処理する。加熱処理によって、多孔質粒子の場合は、多孔質粒子表面を被覆したシリカ被覆層が緻密化し、多孔質粒子がシリカ被覆層によって被覆された複合粒子の分散液が得られる。また空洞粒子前駆体の場合、形成された被覆層が緻密化して空洞粒子壁となり、内部が溶媒、気体または多孔質固形分で充填された空洞を有する空洞粒子の分散液が得られる。
このときの加熱処理温度は、シリカ被覆層の微細孔を閉塞できる程度であれば特に制限はなく、80〜300℃の範囲が好ましい。加熱処理温度が80℃未満ではシリカ被覆層の微細孔を完全に閉塞して緻密化できないことがあり、また処理時間に長時間を要してしまうことがある。また加熱処理温度が300℃を越えて長時間処理すると緻密な粒子となることがあり、低屈折率の効果が得られないことがある。
このようにして得られた無機微粒子の屈折率は、1.42未満と低い。このような無機微粒子は、多孔質粒子内部の多孔性が保持されているか、内部が空洞であるので、屈折率が低くなるものと推察される。なお、中空シリカ系微粒子は触媒化成(株)から市販されているものも好ましく利用することができる。
外殻層を有し、内部が多孔質または空洞である中空シリカ系微粒子の低屈折率層中の含有量は、10〜50質量%であることが好ましい。低屈折率の効果を得る上で、15質量%以上が好ましく、50質量%を超えるとバインダー成分が少なくなり膜強度が不十分となる。特に好ましくは20〜50質量%である。
低屈折率層への添加方法としては、例えば前記テトラアルコキシシラン、純水、及びアルコールの混合溶液に触媒としての少量のアルカリまたは酸を添加した溶液を、前記中空シリカ系微粒子の分散液に加え、テトラアルコキシシランを加水分解して生成したケイ酸重合物を中空シリカ系微粒子の表面に沈着させる。このとき、テトラアルコキシシラン、アルコール、触媒を同時に分散液中に添加してもよい。アルカリ触媒としては、アンモニア、アルカリ金属の水酸化物、アミン類を用いることができる。また、酸触媒としては、各種の無機酸と有機酸を用いることができる。
また、シリカ系微粒子は、国際公開2007/099814号パンフレットに記載の製造法により作製されたものを用いても良い。
低屈折率層には、下記一般式(OSi−2)で表されるフッ素置換アルキル基含有シラン化合物を含有させることもできる。
Figure 2009134238
前記一般式(OSi−2)で表されるフッ素置換アルキル基含有シラン化合物について説明する。
式中、R〜Rは炭素数1〜16、好ましくは1〜4のアルキル基、炭素数1〜6、好ましくは1〜4のハロゲン化アルキル基、炭素数6〜12、好ましくは6〜10のアリール基、炭素数7〜14、好ましくは7〜12のアルキルアリール基、アリールアルキル基、炭素数2〜8、好ましくは2〜6のアルケニル基、または炭素数1〜6、好ましくは1〜3のアルコキシ基、水素原子またはハロゲン原子を示す。
Rfは−(CaHbFc)−を表し、aは1〜12の整数、b+cは2aであり、bは0〜24の整数、cは0〜24の整数を示す。このようなRfとしては、フルオロアルキレン基とアルキレン基とを有する基が好ましい。具体的に、このような含フッ素シリコーン系化合物としては、(MeO)SiCSi(MeO)、(MeO)SiCSi(MeO)、(MeO)SiC12Si(MeO)、(HO)SiCSi(OC、(HO)SiC12Si(OCで表されるメトキシジシラン化合物等が挙げられる。
バインダーとして、フッ素置換アルキル基含有シラン化合物を含んでいると、形成される透明被膜自体が疎水性を有しているので、透明被膜が充分緻密化しておらず、多孔質であったり、またクラックやボイドを有している場合であっても、水分や酸・アルカリ等の薬品による透明被膜への進入が抑制される。更に、基板表面や下層である導電性層中に含まれる金属等の微粒子と水分や酸・アルカリ等の薬品とが反応することもない。このため、このような透明被膜は、優れた耐薬品性を有している。
また、バインダーとして、フッ素置換アルキル基含有シラン化合物を含んでいると、このような疎水性のみならず、滑り性がよく(接触抵抗が低く)、このためスクラッチ強度に優れた透明被膜を得ることができる。更に、バインダーが、このような構成単位を有するフッ素置換アルキル基含有シラン化合物を含んでいると、下層に導電性層が形成されている場合には、バインダーの収縮率が、導電性層と同等か近いものであるため導電性層と密着性に優れた透明被膜を形成することができる。更に、透明被膜を加熱処理する際に、収縮率の違いから、導電性層が剥離して、透明導電性層に電気的接触のない部分が生じることもない。このため、膜全体として充分な導電性を維持できる。
フッ素置換アルキル基含有シラン化合物と、前記外殻層を有し、内部が多孔質または空洞である中空シリカ系微粒子とを含む透明被膜は、スクラッチ強度が高い上に、消しゴム強度または爪強度で評価される膜強度が高く、鉛筆硬度も高く、強度の上で優れた透明被膜を形成することができる。
低屈折率層にはシランカップリング剤を含有してもよい。シランカップリング剤としては、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリメトキシエトキシシラン、メチルトリアセトキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、ビニルトリメトキシエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリアセトキシシラン、γ−クロロプロピルトリメトキシシラン、γ−クロロプロピルトリエトキシシラン、γ−クロロプロピルトリアセトキシシラン、3,3,3−トリフルオロプロピルトリメトキシシラン、γ−グリシジルオキシプロピルトリメトキシシラン、γ−グリシジルオキシプロピルトリエトキシシラン、γ−(β−グリシジルオキシエトキシ)プロピルトリメトキシシラン、β−(3,4−エポシシシクロヘキシル)エチルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン、γ−アクリロイルオキシプロピルトリメトキシシラン、γ−メタクリロイルオキシプロピルトリメトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルトリエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン及びβ−シアノエチルトリエトキシシランが挙げられる。
また、珪素に対して2置換のアルキル基を持つシランカップリング剤の例として、ジメチルジメトキシシラン、フェニルメチルジメトキシシラン、ジメチルジエトキシシラン、フェニルメチルジエトキシシラン、γ−グリシジルオキシプロピルメチルジエトキシシラン、γ−グリシジルオキシプロピルメチルジメトキシシラン、γ−グリシジルオキシプロピルフェニルジエトキシシラン、γ−クロロプロピルメチルジエトキシシラン、ジメチルジアセトキシシラン、γ−アクリロイルオキシプロピルメチルジメトキシシラン、γ−アクリロイルオキシプロピルメチルジエトキシシラン、γ−メタクリロイルオキシプロピルメチルジメトキシシラン、γ−メタクリロイルオキシプロピルメチルジエトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン、γ−メルカプトプロピルメチルジエトキシシラン、γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルメチルジエトキシシラン、メチルビニルジメトキシシラン及びメチルビニルジエトキシシランが挙げられる。
これらのうち、分子内に二重結合を有するビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、ビニルトリメトキシエトキシシラン、γ−アクリロイルオキシプロピルトリメトキシシラン及びγ−メタクリロイルオキシプロピルトリメトキシシラン、珪素に対して2置換のアルキル基を持つものとしてγ−アクリロイルオキシプロピルメチルジメトキシシラン、γ−アクリロイルオキシプロピルメチルジエトキシシラン、γ−メタクリロイルオキシプロピルメチルジメトキシシラン、γ−メタクリロイルオキシプロピルメチルジエトキシシラン、メチルビニルジメトキシシラン及びメチルビニルジエトキシシランが好ましく、γ−アクリロイルオキシプロピルトリメトキシシラン及びγ−メタクリロイルオキシプロピルトリメトキシシラン、γ−アクリロイルオキシプロピルメチルジメトキシシラン、γ−アクリロイルオキシプロピルメチルジエトキシシラン、γ−メタクリロイルオキシプロピルメチルジメトキシシラン及びγ−メタクリロイルオキシプロピルメチルジエトキシシランが特に好ましい。
2種類以上のカップリング剤を併用してもよい。上記に示されるシランカップリング剤に加えて、他のシランカップリング剤を用いてもよい。他のシランカップリング剤には、オルトケイ酸のアルキルエステル(例えば、オルトケイ酸メチル、オルトケイ酸エチル、オルトケイ酸n−プロピル、オルトケイ酸i−プロピル、オルトケイ酸n−ブチル、オルトケイ酸sec−ブチル、オルトケイ酸t−ブチル)及びその加水分解物が挙げられる。
また、低屈折率層にはCF(CF)nCHCHSi(OR1)で表される珪素化合物を含有しても良い。(式中、R1は、1〜5個の炭素原子を有するアルキル基を表し、そしてnは、0〜12の整数を表す。)具体的化合物としては、トリフルオロプロピルトリメトキシシラン、トリフルオロプロピルトリエトキシシラン、トリデカフルオロオクチルトリメトキシシラン、トリデカフルオロオクチルトリエトキシシラン、ヘプタデカフルオロデシルトリメトキシシラン、ヘプタデカフルオロデシルトリエトキシシランなどが挙げられ、これらは単独で又は二種以上組み合わせて用いることができる。
また、HNCONH(CH)mSi(OR2)で表される末端位にウレイド基(HNCONH−)を有する珪素化合物を含有しても良い。(式中、R2は、1〜5個の炭素原子を有するアルキル基を表し、mは、1〜5の整数を表す。)具体的化合物としては、γ−ウレイドプロピルトリメトキシシラン、γ−ウレイドプロピルトリエトキシシラン、γ−ウレイドプロピルトリプロポキシシランなどが挙げられる。これらの中でもγ−ウレイドプロピルトリメトキシシラン、γ−ウレイドプロピルトリエトキシシランなどが特に好ましい。
その他、低屈折率層はバインダーとして、例えば、ポリビニルアルコール、ポリオキシエチレン、ポリメチルメタクリレート、ポリメチルアクリレート、フルオロアクリレート、ジアセチルセルロース、トリアセチルセルロース、ニトロセルロース、ポリエステル、アルキド樹脂等を用いることが出来る。
その他、低屈折率層はバインダーとして例えば、ポリビニルアルコール、ポリオキシエチレン、ポリメチルメタクリレート、ポリメチルアクリレート、フルオロアクリレート、ジアセチルセルロース、トリアセチルセルロース、ニトロセルロース、ポリエステル、アルキド樹脂が挙げられる。
低屈折率層は、全体で5〜80質量%のバインダーを含むことが好ましい。バインダーは、中空シリカ系微粒子を接着し、空隙を含む低屈折率層の構造を維持する機能を有する。バインダーの使用量は、空隙を充填することなく低屈折率層の強度を維持できるように適宜調整する。
(溶媒)
低屈折率層は有機溶媒を含有することが好ましい。具体的な有機溶媒の例としては、アルコール(例、メタノール、エタノール、イソプロパノール、ブタノール、ベンジルアルコール)、ケトン(例、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン)、エステル(例、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、蟻酸メチル、蟻酸エチル、蟻酸プロピル、蟻酸ブチル)、脂肪族炭化水素(例、ヘキサン、シクロヘキサン)、ハロゲン化炭化水素(例、メチレンクロライド、クロロホルム、四塩化炭素)、芳香族炭化水素(例、ベンゼン、トルエン、キシレン)、アミド(例、ジメチルホルムアミド、ジメチルアセトアミド、n−メチルピロリドン)、エーテル(例、ジエチルエーテル、ジオキサン、テトラハイドロフラン)、エーテルアルコール(例、1−メトキシ−2−プロパノール)が挙げられる。中でも、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン及びブタノールが特に好ましい。
低屈折率層塗布組成物中の固形分濃度は1〜4質量%であることが好ましく、該固形分濃度が4質量%以下にすることによって、塗布ムラが生じにくくなり、1質量%以上にすることによって乾燥負荷が軽減される。
〔高屈折率層〕
反射防止層には上述の低屈折率層の他に、下記のような高屈折率層を有しても良い。
高屈折率層には金属酸化物微粒子が含有されることが好ましい。金属酸化物微粒子の種類は特に限定されるものではなく、Ti、Zr、Sn、Sb、Cu、Fe、Mn、Pb、Cd、As、Cr、Hg、Zn、Al、Mg、Si、P及びSから選択される少なくとも一種の元素を有する金属酸化物を用いることができ、これらの金属酸化物微粒子はAl、In、Sn、Sb、Nb、ハロゲン元素、Taなどの微量の原子をドープしてあっても良い。また、これらの混合物でもよい。本発明においては、中でも酸化ジルコニウム、酸化アンチモン、酸化錫、酸化亜鉛、酸化インジウム−スズ(ITO)、アンチモンドープ酸化スズ(ATO)、及びアンチモン酸亜鉛から選ばれる少なくとも1種の金属酸化物微粒子を主成分として用いることが特に好ましい。特にアンチモン酸亜鉛粒子を含有することが好ましい。
これら金属酸化物微粒子の一次粒子の平均粒子径は10nm〜200nmの範囲であり、10〜150nmであることが特に好ましい。金属酸化物微粒子の平均粒子径は、走査電子顕微鏡(SEM)等による電子顕微鏡写真から計測することができる。動的光散乱法や静的光散乱法等を利用する粒度分布計等によって計測してもよい。粒径が小さ過ぎると凝集しやすくなり、分散性が劣化する。粒径が大き過ぎるとヘイズが著しく上昇し好ましくない。金属酸化物微粒子の形状は、米粒状、球形状、立方体状、紡錘形状、針状或いは不定形状であることが好ましい。
高屈折率層の屈折率は、具体的には、支持体であるフィルムの屈折率より高く、23℃、波長550nm測定で、1.5〜2.2の範囲であることが好ましい。高屈折率層の屈折率を調整する手段は、金属酸化物微粒子の種類、添加量が支配的である為、金属酸化物微粒子の屈折率は1.80〜2.60であることが好ましく、1.85〜2.50であることが更に好ましい。
金属酸化物微粒子は有機化合物により表面処理してもよい。金属酸化物微粒子の表面を有機化合物で表面修飾することによって、有機溶媒中での分散安定性が向上し、分散粒径の制御が容易になるとともに、経時での凝集、沈降を抑えることもできる。このため、好ましい有機化合物での表面修飾量は金属酸化物粒子に対して0.1質量%〜5質量%、より好ましくは0.5質量%〜3質量%である。表面処理に用いる有機化合物の例には、ポリオール、アルカノールアミン、ステアリン酸、シランカップリング剤及びチタネートカップリング剤が含まれる。この中でもシランカップリング剤が好ましい。二種以上の表面処理を組み合わせてもよい。
前記金属酸化物微粒子を含有する高屈折率層の厚さは5nm〜1μmであることが好ましく、10nm〜0.2μmであることが更に好ましく、30nm〜0.1μmであることが最も好ましい。
使用する金属酸化物微粒子と後述する活性光線硬化性樹脂等のバインダーとの比は、金属酸化物微粒子の種類、粒子サイズなどにより異なるが体積比で前者1に対して後者2から前者2に対して後者1程度が好ましい。
本発明において用いられる金属酸化物微粒子の使用量は高屈折率層中に5質量%〜85質量%が好ましく、10質量%〜80質量%であることがより好ましく、20〜75質量%が最も好ましい。使用量が少ないと所望の屈折率や本発明の効果が得られず、多過ぎると膜強度の劣化などが発生する。
上記金属酸化物微粒子は、媒体に分散した分散体の状態で、高屈折率層を形成するための塗布液に供される。金属酸化物粒子の分散媒体としては、沸点が60〜170℃の液体を用いることが好ましい。分散溶媒の具体例としては、水、アルコール(例、メタノール、エタノール、イソプロパノール、ブタノール、ベンジルアルコール)、ケトン(例、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン)、ケトンアルコール(例、ジアセトンアルコール)、エステル(例、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、蟻酸メチル、蟻酸エチル、蟻酸プロピル、蟻酸ブチル)、脂肪族炭化水素(例、ヘキサン、シクロヘキサン)、ハロゲン化炭化水素(例、メチレンクロライド、クロロホルム、四塩化炭素)、芳香族炭化水素(例、ベンゼン、トルエン、キシレン)、アミド(例、ジメチルホルムアミド、ジメチルアセトアミド、n−メチルピロリドン)、エーテル(例、ジエチルエーテル、ジオキサン、テトラハイドロフラン)、エーテルアルコール(例、1−メトキシ−2−プロパノール)、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテートが挙げられる。中でも、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン及びブタノールが特に好ましい。
また金属酸化物微粒子は、分散機を用いて媒体中に分散することができる。分散機の例としては、サンドグラインダーミル(例、ピン付きビーズミル)、高速インペラーミル、ペッブルミル、ローラーミル、アトライター及びコロイドミルが挙げられる。サンドグラインダーミル及び高速インペラーミルが特に好ましい。また、予備分散処理を実施してもよい。予備分散処理に用いる分散機の例としては、ボールミル、三本ロールミル、ニーダー及びエクストルーダーが挙げられる。分散剤を含有させることも好ましい。
更にコア/シェル構造を有する金属酸化物微粒子を含有させてもよい。シェルはコアの周りに1層形成させてもよいし、耐光性を更に向上させるために複数層形成させてもよい。コアは、シェルにより完全に被覆されていることが好ましい。
コアは酸化チタン(ルチル型、アナターゼ型、アモルファス型等)、酸化ジルコニウム、酸化亜鉛、酸化セリウム、スズをドープした酸化インジウム、アンチモンをドープした酸化スズ等を用いることができるが、ルチル型の酸化チタンを主成分としてもよい。
シェルは酸化チタン以外の無機化合物を主成分とし、金属の酸化物または硫化物から形成することが好ましい。例えば、二酸化珪素(シリカ)、酸化アルミニウム(アルミナ)酸化ジルコニウム、酸化亜鉛、酸化スズ、酸化アンチモン、酸化インジウム、酸化鉄、硫化亜鉛等を主成分とした無機化合物が用いられる。この内アルミナ、シリカ、ジルコニア(酸化ジルコニウム)であることが好ましい。また、これらの混合物でもよい。
コアに対するシェルの被覆量は、平均の被覆量で2〜50質量%である。好ましくは3〜40質量%、更に好ましくは4〜25質量%である。シェルの被覆量が多いと微粒子の屈折率が低下し、被覆量が少な過ぎると耐光性が劣化する。二種以上の無機微粒子を併用してもよい。
コアとなる酸化チタンは、液相法または気相法で作製されたものを使用できる。また、シェルをコアの周りに形成させる手法としては、例えば、米国特許第3,410,708号、特公昭58−47061号、米国特許第2,885,366号、同第3,437,502号、英国特許第1,134,249号、米国特許第3,383,231号、英国特許第2,629,953号、同第1,365,999号に記載されている方法等を用いることができる。
高屈折率層もしくは前述の低屈折率層には、下記一般式(CL1)で表される化合物またはそのキレート化合物を含有することができ、硬度などの物性を改善させることができる。
一般式(CL1) AMBx−n
式中、Mは金属原子、Aは加水分解可能な官能基または加水分解可能な官能基を有する炭化水素基、Bは金属原子Mに共有結合またはイオン結合した原子団を表す。xは金属原子Mの原子価、nは2以上でx以下の整数を表す。
加水分解可能な官能基Aとしては、例えば、アルコキシル基、クロル原子等のハロゲン、エステル基、アミド基等が挙げられる。上記一般式(CL1)に属する金属化合物には、金属原子に直接結合したアルコキシル基を2個以上有するアルコキシド、または、そのキレート化合物が含まれる。好ましい金属化合物としては、チタンアルコキシド、ジルコニウムアルコキシドまたはそれらのキレート化合物を挙げることができる。チタンアルコキシドは反応速度が速くて屈折率が高く、取り扱いも容易であるが、光触媒作用があるため大量に添加すると耐光性が劣化する。ジルコニウムアルコキシドは屈折率が高いが白濁し易いため、塗布する際の露点管理等に注意しなければならない。また、チタンアルコキシドは紫外線硬化性樹脂、金属アルコキシドの反応を促進する効果があるため、少量添加するだけでも塗膜の物理的特性を向上させることができる。
チタンアルコキシドとしては、例えば、テトラメトキシチタン、テトラエトキシチタン、テトラ−iso−プロポキシチタン、テトラ−n−プロポキシチタン、テトラ−n−ブトキシチタン、テトラ−sec−ブトキシチタン、テトラ−tert−ブトキシチタン等が挙げられる。
ジルコニウムアルコキシドとしては、例えば、テトラメトキシジルコニウム、テトラエトキシジルコニウム、テトラ−iso−プロポキシジルコニウム、テトラ−n−プロポキシジルコニウム、テトラ−n−ブトキシジルコニウム、テトラ−sec−ブトキシジルコニウム、テトラ−tert−ブトキシジルコニウム等が挙げられる。
遊離の金属化合物に配位させてキレート化合物を形成するのに好ましいキレート化剤としては、ジエタノールアミン、トリエタノールアミン等のアルカノールアミン類、エチレングリコール、ジエチレングリコール、プロピレングリコール等のグリコール類、アセチルアセトン、アセト酢酸エチル等であって分子量1万以下のものを挙げることができる。これらのキレート化剤を用いることにより、水分の混入等に対しても安定で、塗膜の補強効果にも優れるキレート化合物を形成できる。
金属化合物の添加量は、高屈折率層に含まれる該金属化合物由来の金属酸化物の含有量が0.3〜5質量%であるように調整することが好ましい。0.3質量%未満では耐擦傷性が不足し、5質量%を超えると耐光性が劣化する傾向がある。
高屈折率層には、活性光線硬化性樹脂を、金属酸化物微粒子のバインダーとして、塗膜の製膜性や物理的特性の向上のために含有させることが好ましい。活性光線硬化性樹脂としては、紫外線や電子線のような活性光線の照射により直接、または光重合開始剤の作用を受けて間接的に重合反応を生じる官能基を2個以上有するモノマーまたはオリゴマーを用いることができる。本発明では、ポリオールアクリレート、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレートもしくはそれらの混合物が好ましく、例えば前記ハードコート層で説明した多官能アクリレート系化合物が好ましい。
活性光線硬化性樹脂の添加量は、高屈折率組成物では固形分中の15質量%以上50質量%未満であることが好ましい。
本発明に用いられる活性光線硬化性樹脂の硬化促進のために、光重合開始剤と分子中に重合可能な不飽和結合を2個以上有するアクリル系化合物とを質量比で3:7〜1:9含有することが好ましい。
光重合開始剤としては、具体的には、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーケトン、α−アミロキシムエステル、チオキサントン等及びこれらの誘導体を挙げることができるが、特にこれらに限定されるものではない。
高屈折率層をコーティングする際に用いられる有機溶媒としては、例えば、アルコール類(例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、セカンダリーブタノール、ターシャリーブタノール、ペンタノール、ヘキサノール、シクロヘキサノール、ベンジルアルコール等)、多価アルコール類(例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、ブチレングリコール、ヘキサンジオール、ペンタンジオール、グリセリン、ヘキサントリオール、チオジグリコール等)、多価アルコールエーテル類(例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、エチレングリコールモノメチルエーテルアセテート、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、エチレングリコールモノフェニルエーテル、プロピレングリコールモノフェニルエーテル等)、アミン類(例えば、エタノールアミン、ジエタノールアミン、トリエタノールアミン、N−メチルジエタノールアミン、N−エチルジエタノールアミン、モルホリン、N−エチルモルホリン、エチレンジアミン、ジエチレンジアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ポリエチレンイミン、ペンタメチルジエチレントリアミン、テトラメチルプロピレンジアミン等)、アミド類(例えば、ホルムアミド、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等)、複素環類(例えば、2−ピロリドン、N−メチル−2−ピロリドン、シクロヘキシルピロリドン、2−オキサゾリドン、1,3−ジメチル−2−イミダゾリジノン等)、スルホキシド類(例えば、ジメチルスルホキシド等)、スルホン類(例えば、スルホラン等)、尿素、アセトニトリル、アセトン等が挙げられるが、特に、アルコール類、多価アルコール類、多価アルコールエーテル類が好ましい。
〔導電性層〕
導電性層はフィルム基材上に設けることができ、例えばフィルム基材と前記ハードコート層との間、ハードコート層と反射防止層との間、または該反射防止層が設けられた側とは反対の面のフィルム基材上に塗設することができる。
導電性層は、支持体(樹脂フィルム等)の取扱の際に、ハードコートフィルムが帯電するのを防ぐ機能を付与するものであり、具体的には、イオン導電性物質や導電性微粒子を含有する層を設けることによって行う。ここでイオン導電性物質とは電気伝導性を示し、電気を運ぶ担体であるイオンを含有する物質のことであるが、例としてはイオン性高分子化合物を挙げることができる。
導電性層の表面比抵抗は1011Ω/□(25℃、55%RH)以下に調整されることが好ましく、更に好ましくは、1010Ω/□(25℃、55%RH)以下であり、特に好ましくは、10Ω/□(25℃、55%RH)以下である。
ここで、表面比抵抗値の測定の詳細は実施例に記載するが、試料を25℃、55%RHの条件にて24時間調湿し、川口電機株式会社製テラオームメーターモデルVE−30を用いて測定する。
また、導電性層上には、更にオーバーコート層を最表面層として設けるが、表面比抵抗値の測定は、導電性層が設けられている側の最表面層における表面比抵抗値を実質的に導電性層の表面比抵抗値として定義する。
導電性層の表面比抵抗値を上記記載の範囲に調整するためには、下記に示すような導電性材料が好ましく用いられる。
導電性材料としては、前述のπ共役系導電性ポリマー、イオン性高分子化合物、金属酸化物等が好ましく用いられる。
イオン性高分子化合物としては、特公昭49−23828号、同49−23827号、同47−28937号にみられるようなアニオン性高分子化合物;特公昭55−734号、特開昭50−54672号、特公昭59−14735号、同57−18175号、同57−18176号、同57−56059号などにみられるような、主鎖中に解離基をもつアイオネン型ポリマー;特公昭53−13223号、同57−15376号、特公昭53−45231号、同55−145783号、同55−65950号、同55−67746号、同57−11342号、同57−19735号、特公昭58−56858号、特開昭61−27853、同62−9346にみられるような、側鎖中にカチオン性解離基をもつカチオン性ペンダント型ポリマー;等を挙げることができる。
特に好ましいイオン性高分子化合物としては、下記一般式〔P〕及び〔Pa〕、〔Pb〕の構造のユニットを有するポリマーが挙げられる。
Figure 2009134238
Figure 2009134238
式中R、R、R、Rは炭素数1〜4の置換或いは未置換のアルキル基を表し、RとR及び/またはRとRが結合してピペラジンなどの含窒素複素環を形成してもよい。A、B及びDはそれぞれ炭素数2〜10の置換或いは未置換のアルキレン基、アリーレン基、アルケニレン基、アリーレンアルキレン基、−RCOR−、−RCOOR10OCOR11−、−R12OCR13COOR14−、−R15−(OR16)m−、−R17CONHR18NHCOR19−、−R20OCONHR21NHCOR22−または−R25NHCONHR24NHCONHR25−を表す。R、R、R、R1、R12、R14、R15、R16、R17、R19、R20、R22、R23及びR25はアルキレン基、R10、R13、R18、R21及びR24はそれぞれ置換または未置換のアルキレン基、アルケニレン基、アリーレン基、アリーレンアルキレン基、アルキレンアリーレン基から選ばれる連結基、mは1〜4の正の整数を表し、Xはアニオンを表す。
但し、Aがアルキレン基、ヒドロキシアルキレン基或いは、アリーレンアルキレン基である時には、Bがアルキレン基、ヒドロキシルアルキレン基或いはアリーレンアルキレン基ではないことが好ましい。
Eは単なる結合手、−NHCOR26CONH−またはDから選ばれる基を表す。R26は置換或いは未置換のアルキレン基、アルケニレン基、アリーレン基、アリーレンアルキレン基、またはアルキレンアリーレン基を表す。
、Zは−N=C−基は共に5員または6員環を形成するのに必要な非金属原子群(≡N[Xなる4級塩の形でEに連結してもよい)を表す。
nは5〜300の整数を表す。
中でも、分子架橋を有する4級アンモニウムカチオンポリマーが特に好ましく、ダイオキシンの発生防止等環境安全性の観点から、塩素イオンを含まず、かつ、分子架橋を有する4級アンモニウムカチオンポリマーが特に好ましく用いられる。
以下に、イオン性高分子化合物の具体例を挙げるが本発明はこれらに限定されない。
Figure 2009134238
Figure 2009134238
Figure 2009134238
Figure 2009134238
Figure 2009134238
Figure 2009134238
Figure 2009134238
イオン性高分子化合物は、これを単独で用いてもよいし、或いは数種類のイオン性高分子化合物を組み合わせて使用してもよい。本発明に用いられるイオン性高分子化合物の樹脂フィルム中の含有量は、0.02g〜1.0g/mが好ましく、特に好ましくは、0.02g〜0.5g/mである。
また、導電性材料としては、Sn、Ti、In、Al、Zn、Si、Mg、Ba、Mo、W及びVからなる群から選択される少なくとも一つの元素を主成分として含有し、かつ、体積抵抗率が10Ω・cm以下であるような導電性材料が好ましく用いられる。
前記導電性材料としては、上記の元素を有する金属酸化物、複合酸化物等が挙げられる。
金属酸化物の例としては、ZnO、TiO、SnO、Al、In、SiO、MgO、BaO、MoO、V等、或いはこれらの複合酸化物が好ましく、特にZnO、TiO及びSnOが好ましい。異種原子を含む例としては、例えばZnOに対してはAl、In等の添加、TiOに対してはNb、Ta等の添加、またSnOに対しては、Sb、Nb、ハロゲン元素等の添加が効果的である。これら異種原子の添加量は0.01〜25mol%の範囲が好ましいが、0.1〜15mol%の範囲が特に好ましい。
また、これらの導電性を有するこれら金属酸化物粉体の体積抵抗率は10Ω・cm以下、特に10Ω・cm以下である。
更に、導電性層には、微粒子を添加してもよい。例えば、シリカ、コロイダルシリカ、アルミナ、アルミナゾル、カオリン、タルク、マイカ、炭酸カルシウム等を構成成分として含有する微粒子を挙げることができる。
微粒子の平均粒径は、0.01μm〜10μmが好ましく、より好ましくは0.01μm〜5μm、また添加量は、塗布剤中の固形分に対して質量比で0.05部〜10部が好ましく、特に好ましいのは0.1部〜5部である。
また、導電性層が十分な帯電防止効果を示し、かつ、オーバーコート層との易接着性を保持するためには、セルロースエステル系樹脂またはアクリル系樹脂を含有することが好ましい。
セルロースエステル系樹脂としては、例えばセルロースジアセテート、セルローストリアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートフタレート、またはセルロースナイトレート等のセルロース誘導体が挙げられる。
また、アクリル系樹脂としては、例えば、アクリペットMD、VH、MF、V(三菱レーヨン(株)製)、ハイパールM−4003、M−4005、M−4006、M−4202、M−5000、M−5001、M−4501(根上工業株式会社製)、ダイヤナールBR−50、BR−52、BR−53、BR−60、BR−64、BR−73、BR−75、BR−77、BR−79、BR−80、BR−82、BR−83、BR−85、BR−87、BR−88、BR−90、BR−93、BR−95、BR−100、BR−101、BR−102、BR−105、BR−106、BR−107、BR−108、BR−112、BR−113、BR−115、BR−116、BR−117、BR−118等(三菱レーヨン(株)製)のアクリル及びメタクリル系モノマーを原料として製造した各種ホモポリマー並びにコポリマーなどが好ましく用いられる。
ここで使用する樹脂は、導電性層で使用している樹脂全体の60質量%以上、更に好ましくは80質量%以上であることが好ましく、必要に応じて活性光線硬化性樹脂或いは熱硬化樹脂を添加することもできる。これらの樹脂はバインダーとして下記のような溶剤に溶解した状態で塗設される。
導電性層を塗設するための塗布組成物には、次の溶剤が好ましく用いられる。溶剤としては、炭化水素、アルコール類、ケトン類、エステル類、グリコールエーテル類、その他の溶媒(メチレンクロライド)を適宜混合して使用することができるが特にこれらに限定されるものではない。
上記炭化水素類としては、ベンゼン、トルエン、キシレン、ヘキサン、シクロヘキサン等が挙げられ、アルコール類としては、メタノール、エタノール、n−プロピルアルコール、iso−プロピルアルコール、n−ブタノール、2−ブタノール、tert−ブタノール、ペンタノール、2−メチル−2−ブタノール、シクロヘキサノール等が挙げられ、ケトン類としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等が挙げられ、エステル類としては、蟻酸メチル、蟻酸エチル、酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸アミル、乳酸エチル、乳酸メチル等が挙げられ、グリコールエーテル(C1〜C4)類としては、メチルセルソルブ、エチルセルソルブ、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノエチルエーテル、プロピレングリコールモノ−n−プロピルエーテル、プロピレングリコールモノイソプロピルエーテル、プロピレングリコールモノブチルエーテル、またはプロピレングリコールモノ(C1〜C4)アルキルエーテルエステル類としては、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、その他の溶媒としてメチレンクロライド、N−メチルピロリドンなどが挙げられる。特にこれらに限定されるものではないが、これらを適宜混合した溶媒も好ましく用いられる。
導電性層塗布組成物の塗布方法としては、グラビアコーター、ディップコーター、ワイヤーバーコーター、リバースコーター、押し出しコーター等を用いて、塗布液膜厚(ウェット膜厚ということもある)を1〜100μmとすることが好ましく、特に5〜30μmが好ましい。
〔バックコート層〕
本発明のハードコートフィルムは、ハードコート層を設けた側と反対側の面にバックコート層を設けることが好ましい。バックコート層は、ハードコート層やその他の層を設けることで生じるカールを矯正するために設けられる。即ち、バックコート層を設けた面を内側にして丸まろうとする性質を持たせることにより、カールの度合いをバランスさせることができる。なお、バックコート層はブロッキング防止層を兼ねて塗設されることが好ましいが、その場合、バックコート層塗布組成物には、ブロッキング防止機能を持たせるために微粒子が添加されることが好ましい。
バックコート層に添加される微粒子としては無機化合物の例として、二酸化珪素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、酸化錫、酸化インジウム、酸化亜鉛、ITO、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウムを挙げることができる。
これらの微粒子は、例えば、アエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上日本アエロジル(株)製)の商品名で市販されており、使用することができる。酸化ジルコニウムの微粒子は、例えば、アエロジルR976及びR811(以上日本アエロジル(株)製)の商品名で市販されており、使用することができる。ポリマーの例として、シリコーン樹脂、フッ素樹脂及びアクリル樹脂を挙げることができる。シリコーン樹脂が好ましく、特に三次元の網状構造を有するものが好ましく、例えば、トスパール103、同105、同108、同120、同145、同3120及び同240(以上東芝シリコーン(株)製)の商品名で市販されており、使用することができる。
これらの中でもアエロジル200V、アエロジルR972Vがヘイズを低く保ちながら、ブロッキング防止効果が大きいため特に好ましく用いられる。本発明のハードコートフィルムは、活性光線硬化性樹脂層の裏面側の動摩擦係数が0.9以下、特に0.1〜0.9であることが好ましい。
バックコート層に含まれる微粒子は、バインダーに対して0.1〜50質量%含有されることが好ましく、0.1〜10質量%であることがより好ましい。バックコート層を設けた場合のヘイズの増加は1%以下であることが好ましく、0.5%以下であることがより好ましく、特に0.0〜0.1%であることが好ましい。
バックコート層の塗布に用いられる溶媒としては、例えば、ジオキサン、アセトン、メチルエチルケトン、メチルイソブチルケトン、N,N−ジメチルホルムアミド、酢酸メチル、酢酸エチル、トリクロロエチレン、メチレンクロライド、エチレンクロライド、テトラクロロエタン、トリクロロエタン、クロロホルム、水、メタノール、エタノール、n−プロピルアルコール、i−プロピルアルコール、n−ブタノール、シクロヘキサノン、シクロヘキサノール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、または炭化水素類(トルエン、キシレン)等があげられ、適宜組み合わされて用いられる。
これらの塗布組成物をグラビアコーター、ディップコーター、リバースコーター、ワイヤーバーコーター、ダイコーター、またはスプレー塗布、インクジェット塗布等を用いてハードコートフィルムの表面にウェット膜厚1〜100μmで塗布するのが好ましいが、特に5〜30μmであることが好ましい。
バックコート層のバインダーとして用いられる樹脂としては、例えば塩化ビニル−酢酸ビニル共重合体、塩化ビニル樹脂、酢酸ビニル樹脂、酢酸ビニルとビニルアルコールの共重合体、部分加水分解した塩化ビニル−酢酸ビニル共重合体、塩化ビニル−塩化ビニリデン共重合体、塩化ビニル−アクリロニトリル共重合体、エチレン−ビニルアルコール共重合体、塩素化ポリ塩化ビニル、エチレン−塩化ビニル共重合体、エチレン−酢酸ビニル共重合体等のビニル系重合体または共重合体、ニトロセルロース、セルロースアセテートプロピオネート(好ましくはアセチル基置換度1.8〜2.3、プロピオニル基置換度0.1〜1.0)、ジアセチルセルロース、セルロースアセテートブチレート樹脂等のセルロース誘導体、マレイン酸及び/またはアクリル酸の共重合体、アクリル酸エステル共重合体、アクリロニトリル−スチレン共重合体、塩素化ポリエチレン、アクリロニトリル−塩素化ポリエチレン−スチレン共重合体、メチルメタクリレート−ブタジエン−スチレン共重合体、アクリル樹脂、ポリビニルアルコール樹脂、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、ウレタン樹脂、ポリエステルポリウレタン樹脂、ポリエーテルポリウレタン樹脂、ポリカーボネートポリウレタン樹脂、ポリエステル樹脂、ポリエーテル樹脂、ポリアミド樹脂、アミノ樹脂、スチレン−ブタジエン樹脂、ブタジエン−アクリロニトリル樹脂等のゴム系樹脂、シリコーン系樹脂、フッ素系樹脂等を挙げることができるが、これらに限定されるものではない。例えば、アクリル樹脂としては、アクリペットMD、VH、MF、V(三菱レーヨン(株)製)、ハイパールM−4003、M−4005、M−4006、M−4202、M−5000、M−5001、M−4501(根上工業株式会社製)、ダイヤナールBR−50、BR−52、BR−53、BR−60、BR−64、BR−73、BR−75、BR−77、BR−79、BR−80、BR−82、BR−83、BR−85、BR−87、BR−88、BR−90、BR−93、BR−95、BR−100、BR−101、BR−102、BR−105、BR−106、BR−107、BR−108、BR−112、BR−113、BR−115、BR−116、BR−117、BR−118等(三菱レーヨン(株)製)のアクリル及びメタクリル系モノマーを原料として製造した各種ホモポリマー並びにコポリマー等が市販されており、この中から好ましいモノを適宜選択することもできる。例えば、バインダーとして用いられる樹脂としてはセルロースジアセテート、セルロースアセテートプロヒオネートなどのアセチル化セルロースとアクリル樹脂のブレンド物を用いることが好ましく、アクリル樹脂からなる微粒子を用いて、微粒子とバインダーとの屈折率差を0〜0.02未満とすることで透明性の高いバックコート層とすることができる。
バックコート層を塗設する順番は本発明のハードコートフィルムの活性光線硬化性樹脂層を塗設する前でも後でも構わないが、バックコート層がブロッキング防止層を兼ねる場合は先に塗設することが望ましい。または2回以上に分けてバックコート層を塗布することもできる。また、バックコート層は偏光子との接着性を改善するための易接着層を兼ねることも好ましい。
(反射防止層の反射率)
前記反射防止層の反射率は分光光度計により測定を行うことができる。その際、サンプルの測定側の裏面を粗面化処理した後、黒色のスプレーを用いて光吸収処理を行ってから、可視光領域(400〜700nm)の反射光を測定する。反射率は低いほど好ましいが、可視光領域の波長における平均値が1.5%以下であることが好ましく、最低反射率は0.8%以下であることが好ましい。また、可視光の波長領域において平坦な形状の反射スペクトルを有することが好ましい。
また、反射防止処理を施した表示装置表面の反射色相は、反射防止膜の設計上可視光領域において短波長域や長波長域の反射率が高くなることから赤や青に色づくことが多いが、反射光の色味は用途によって要望が異なり、薄型テレビ等の最表面に使用する場合にはニュートラルな色調が好まれる。この場合、一般に好まれる反射色相範囲は、XYZ表色系(CIE1931表色系)上で0.17≦x≦0.27、0.07≦y≦0.17である。
高屈折率層と低屈折率層の膜厚は、各々の層の屈折率より反射率、反射光の色味を考慮して常法に従って計算で求められる。
(表面処理及び塗設)
各層を塗布する前に表面処理することが好ましい。表面処理方法としては、洗浄法、アルカリ処理法、フレームプラズマ処理法、高周波放電プラズマ法、電子ビーム法、イオンビーム法、スパッタリング法、酸処理、コロナ処理法、大気圧グロー放電プラズマ法等が挙げられる。
反射防止層の各層は、フィルム基材上に、ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法、マイクログラビアコート法やエクストルージョンコート法を用いて、塗布により形成することができる。塗布に際しては、ハードコートフィルムが、幅が1.4〜4mでロール状に巻き取られた状態から繰り出して、上記塗布を行い、乾燥・硬化処理した後、ロール状に巻き取られることが好ましい。
更に、本発明のハードコートフィルムは、フィルム面上に前記ハードコート層、もしくは反射防止層を積層した後、ロール状に巻き取った状態で50〜160℃で加熱処理を行うことが好ましい。加熱処理の期間は、設定される温度によって適宜決定すればよく、例えば、50℃であれば、好ましくは3日間以上30日未満の期間、160℃であれば10分以上1日以下の範囲が好ましい。通常は、巻外部、巻中央部、巻き芯部の加熱処理効果が偏らないように、比較的低温に設定することが好ましく、50〜60℃付近で7日間程度行うことが好ましい。
《透明フィルム基材》
本発明のハードコートフィルムに用いられる基材フィルムとしては、製造が容易であること、ハードコート層または反射防止層等、光学的に等方性であること、光学的に透明性であることが好ましい。これらの性質を有していれば何れでもよく、例えば、セルロースジアセテートフィルム、セルロースアセテートブチレートフィルム、セルローストリアセテートフィルム等のセルロースエステル系フィルム、ポリエステル系フィルム、ポリカーボネート系フィルム、ポリアリレート系フィルム、ポリスルホン(ポリエーテルスルホンも含む)系フィルム、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステルフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、セロファン、ポリ塩化ビニリデンフィルム、ポリビニルアルコールフィルム、エチレンビニルアルコールフィルム、シンジオタクティックポリスチレン系フィルム、ノルボルネン樹脂系フィルム、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、ポリエーテルケトンイミドフィルム、ポリアミドフィルム、フッ素樹脂フィルム、ナイロンフィルム、シクロオレフィンポリマーフィルム、ポリメチルメタクリレートフィルムまたはアクリルフィルム等を挙げることができるが、これらに限定されるわけではない。これらの内セルロースエステルフィルム(例えば、コニカミノルタタックKC8UX2M、KC4UX2M、KC4UY、KC8UT、KC5UN、KC12UR、KC8UCR−3、KC8UCR−4(以上、コニカミノルタオプト(株)製))、ポリカーボネートフィルム、ポリスルホン(ポリエーテルスルホンを含む)フィルム、シクロオレフィンポリマーフィルムが好ましい。
特に好ましくは、本発明の目的効果がより良く発揮されること、製造上、コスト面、透明性、等方性、接着性等の面から、セルローストリアセテートフィルム、セルロースアセテートプロピオネートフィルム等のセルロースエステルフィルムである。
セルロースエステルフィルムを作製する際には、セルロースエステルや添加剤をメチレンクロライド等の有機ハロゲン化合物やジオキソラン類、アセトン、酢酸メチル、アセト酢酸メチル等の溶媒に溶解してからフィルム製膜する溶液流延方法、またはセルロースエステルや添加剤を加熱溶融して流延する溶融流延製膜法のどちらで作製することもできる。設備の小型化や環境付加等を考慮すると溶融流延製膜法で作製することが好ましい。
〔溶融流延法〕
溶融流延法について説明する。
加熱溶融する成形法は、更に詳細には、溶融押出成形法、プレス成形法、インフレーション法、射出成形法、ブロー成形法、延伸成形法などに分類できる。これらの中で、機械的強度及び表面精度などに優れるハードコートフィルムを得るためには、溶融押出し法が優れている。
ここでフィルム形成材料が加熱されて、その流動性を発現させた後ドラム上またはエンドレスベルト上に押出し製膜する方法が溶融流延製膜法として本発明でいう溶融流延法に含まれる。
(セルロースエステル)
セルロース樹脂は、セルロースエステルの構造を示し、脂肪酸アシル基、置換もしくは無置換の芳香族アシル基の中から少なくとも何れかの構造を含む、セルロースの前記単独または混合酸エステルである。
本発明の透明フィルム基材を構成する前記セルロースエステルとしては、セルロースアセテート、セルロースプロピオネート、セルロースブチレート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートフタレート、及びセルロースフタレートから選ばれる少なくとも1種であることが好ましい。
これらの中で特に好ましいセルロースエステルは、セルロースアセテート、セルロースプロピオネート、セルロースブチレート、セルロースアセテートプロピオネートやセルロースアセテートブチレートが挙げられる。
混合脂肪酸エステルの置換度として、更に好ましいセルロースアセテートプロピオネートやセルロースアセテートブチレートの低級脂肪酸エステルは、炭素原子数2〜4のアシル基を置換基として有し、アセチル基の置換度をXとし、プロピオニル基またはブチリル基の置換度をYとしたとき、下記式(I)及び(II)を同時に満たすセルロースエステルを含むセルロース樹脂である。
式(I) 2.6≦X+Y≦3.0
式(II) 0≦X≦2.5
この中で、特にセルロースアセテートプロピオネートが好ましく用いられ、中でも1.9≦X≦2.5であり、0.1≦Y≦0.9であることが好ましい。上記アシル基で置換されていない部分は通常水酸基として存在している。これらは公知の方法で合成することができる。
更に、セルロースエステルの平均分子量は数平均分子量(Mn)で70000〜200000のものが好ましく、100000〜200000のものが更に好ましい。また、重量平均分子量Mw/数平均分子量Mn比が1.5〜5.5のものが好ましく用いられ、特に好ましくは2.0〜5.0であり、更に好ましくは2.5〜5.0であり、更に好ましくは3.0〜5.0のセルロースエステルが好ましく用いられる。
セルロースエステルの平均分子量及び分子量分布は、高速液体クロマトグラフィーを用い測定できるので、これを用いて数平均分子量(Mn)、質量平均分子量(Mw)を算出し、その比を計算することができる。
測定条件は以下の通りである。
溶媒: メチレンクロライド
カラム: Shodex K806、K805、K803G(昭和電工(株)製を3本接続して使用した)
カラム温度:25℃
試料濃度: 0.1質量%
検出器: RI Model 504(GLサイエンス社製)
ポンプ: L6000(日立製作所(株)製)
流量: 1.0ml/min
校正曲線: 標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)Mw=1,000,000〜500迄の13サンプルによる校正曲線を使用した。13サンプルは、ほぼ等間隔に用いることが好ましい。
〔原料セルロース〕
セルロースエステルの原料セルロースは、木材パルプでも綿花リンターでもよく、木材パルプは針葉樹でも広葉樹でもよいが、針葉樹の方がより好ましい。製膜の際の剥離性の点からは綿花リンターが好ましく用いられる。これらから作られたセルロースエステルは適宜混合して、或いは単独で使用することができる。
例えば、綿花リンター由来セルロースエステル:木材パルプ(針葉樹)由来セルロースエステル:木材パルプ(広葉樹)由来セルロースエステルの比率が100:0:0、90:10:0、85:15:0、50:50:0、20:80:0、10:90:0、0:100:0、0:0:100、80:10:10、85:0:15、40:30:30で用いることができる。
〔原料ポリマーの形状〕
〈粒径・粒度分布〉
セルロース樹脂を含め原料ポリマーの形状は粒径1〜10mmの範囲であることが好ましく、これは粒度分布を測定したときに、平均粒径が1〜10mmの間にあり、かつ90質量%以上の粒子が1〜10mmの範囲にあることをいう。粒度分布の測定は、例えば、日機装(株)粒度分布測定装置マイクロトラックMT3000、島津製作所 SALD−2000A、等の粒度分布測定装置を用いて測定できる。
また、原料ポリマーを水に分散した後顕微鏡写真を撮影してその画像を解析することで測定することができる。
〈かさ比重〉
セルロース樹脂を含め原料ポリマーのかさ比重は、体積既知の容器に充填した粉体の質量を測定することで求められる。例えば、筒井理化学器械(株)A.B.D粉体特性測定器などの専用の測定機を用いることで簡便にかつ精度よく測定することができる。
本発明では、かさ比重が0.1〜1.0の範囲にあることが好ましく、これは筒井理化学器械(株)A.B.D粉体特性測定器を用いて測定した、疎充填かさ比重が0.1と1.0の間の値を取ることをいう。
かさ比重が0.1未満だとフワフワとなって、例えば、搬送、計量などの取扱いが極端に悪い。1.0より大きいと、貯蔵サイロ下部で圧密状態となりブリッジングして排出できない、等の不具合を生じる。従って上記の範囲内にあることが好ましい。
〔乾燥:揮発成分の除去〕
溶融流延法による製膜は、溶液流延法と著しく異なり、流延する材料に揮発成分が存在すると、フィルムの平面性及び透明性確保の点から好ましくない。これは製膜されたフィルムに揮発成分が混入すると透明性が低下すること、及びダイ−スリットから押出しされて製膜されたフィルムを得る場合、フィルム表面に筋が入る要因となり平面性劣化を誘発することがある。従って、フィルム構成材料を製膜加工する場合、加熱溶融時に揮発成分の発生を回避する点から、製膜するための溶融温度よりも低い温度領域に揮発する成分が存在することは好ましくない。
前記揮発成分とは、フィルム構成材料の何れかが例えば吸湿した水分、または材料の購入前または合成時に混入している溶媒が挙げられ、加熱による蒸発、昇華或いは分解による揮発が挙げられる。ここでいう溶媒とは溶液流延として樹脂を溶液として調製するための溶媒と異なり、フィルム構成材料に微量に含まれるものである。従ってフィルム構成材料を選択することは、揮発成分の発生を回避する上で重要である。
本発明の溶融流延に用いるフィルム構成材料は、前記水分や前記溶媒等に代表される揮発成分を、製膜する前に、または加熱時に除去することが好ましい。この除去する方法は、所謂公知の乾燥方法が適用でき、加熱法、減圧法、加熱減圧法等の方法で行うことができ、空気中または不活性ガスとして窒素を選択した雰囲気下で行ってもよい。これらの公知の乾燥方法を行うとき、フィルム構成材料が分解しない温度領域で行うことがフィルムの品質上好ましい。
例えば、前記乾燥工程で除去した後の残存する水分または溶媒は、各々フィルム構成材料の全体の質量に対して20質量%以下、好ましくは10質量%以下、より好ましくは5質量%以下、更に好ましくは1質量%以下にすることである。
このときの乾燥温度は、製膜前に乾燥することにより、揮発成分の発生を削減することを目的にするが、前述したように下記関係を満足する温度に設定され乾燥する。
Tmix<Tm−a≦Tdry<Tg
(式中、Tmixは粉体混合時の温度、Tm−aは安定化剤の融点、Tdryは粉体混合物の乾燥温度、Tgはセルロース樹脂のガラス転移温度を表す。)
具体的に好ましい乾燥温度は100℃以上〜乾燥する材料のTg以下であることが好ましい。材料同士の融着を回避する観点を含めると、乾燥温度は、より好ましくは100℃以上〜(Tg−5)℃以下である。また、少なくとも一種の安定化剤の融点と同等以上、好ましくはより高い温度で乾燥することである。
好ましい乾燥時間は0.5〜24時間、より好ましくは1〜18時間、更に好ましくは1.5〜12時間である。
乾燥工程は2段階以上の分離してもよく、例えば予備乾燥工程による材料の保管と、製膜する直前〜1週間前の間に行う直前乾燥工程を介して製膜してもよい。
〈造粒〉
乾燥されたフィルム構成材料を用いて溶融流延法によって透明フィルム基材を製造する前に、該フィルム構成材料を造粒することができる。ここでいう造粒とは、粉体のまま圧力をかけて所望形状のスクリーンから押出してカットする方法、融点以下の温度をかけて二軸ローターなどで練り所望形状のスクリーンから押出してカットする方法等を言う。
造粒体の形状は、円筒形、球形、直方体、不定形など、特に限定するものではない。造粒機の造粒メカニズムによって異なるが、造粒したものの粒径を測定するとき、1mmより小さいもの及び10mmより大きいものの合計が10質量%より少ないことが好ましく、押出し機のスクリュー径、等に応じてサイズを決定する。
造粒する際は、ある程度の圧力をかけて造粒したり、ポリマーの融点以下の温度をかけて造粒することも好ましい。
造粒する際に後述する可塑剤、酸化防止剤、熱安定剤、滑り剤、等の添加剤を混合して造粒することもできる。
造粒装置としては、市販のものを用いることができ、例えば、不二パウダル(株)製ディスクペレッターF−5〜440、日本製鋼所(株)大型造粒機CMP,CIM等各シリーズ、千代田技研工業(株)製プレスペレッターFMP−180N〜800N、深江パウテックス(株)製円筒造粒機FG−250〜600等が挙げられる。
(添加剤)
添加剤は、セルロース樹脂の加熱溶融前または加熱溶融時に添加剤を添加することが好ましい。
添加剤としては、可塑剤、酸化防止剤、酸捕捉剤、光安定剤、過酸化物分解剤、ラジカル捕捉剤、金属不活性化剤、紫外線吸収剤、マット剤、染料、顔料などが挙げられる。また、上記機能を有するものであれば、これに分類されない添加剤も用いられる。
この中で可塑剤と共に、酸化防止剤、酸捕捉剤、光安定剤等の安定化剤が機能上重要な働きを担う。これら安定化剤の少なくとも一種はセルロース樹脂と共に加熱溶融前に乾燥することが好ましい。
フィルム構成材料の酸化防止は、分解して発生した酸の捕捉、光または熱によるラジカル種基因の分解反応を抑制または禁止する等、解明できていない分解反応を含めて、着色や分子量低下に代表される変質や材料の分解による揮発成分の生成を抑制する機能を付与するために上述の安定化剤を用いることが好ましい。
また、上述の安定化剤の存在は、加熱溶融時において可視光領域の着色物の生成を抑制すること、または揮発成分がフィルム中に混入することによって生じる全光線透過率やヘーズ(雲価)の上昇といった透明フィルム基材として好ましくない性能を抑制または消滅できる点で優れている。
上述のフィルム構成材料の保存或いは製膜工程において、空気中の酸素或いは水分による劣化反応を併発することがある。この場合、上記安定化剤の安定化作用とは別に、空気中の湿度・酸素濃度を低減させることも本発明において好ましい。公知の技術として不活性ガスとして窒素やアルゴンの使用、減圧〜真空による脱気操作、及び密閉環境下による操作が挙げられ、これら3者の内少なくとも1つの方法を上記安定剤とともに用いることが好ましい。
以下、添加剤について、更に詳述する。
(可塑剤)
透明フィルム基材に可塑剤として知られる化合物を添加することは、機械的性質向上、柔軟性付与、耐吸水性付与、水分透過率の低減等のフィルムの改質の点から好ましい。また溶融流延法においては、可塑剤の添加により用いるセルロースエステル単独のガラス転移温度よりも低い温度で溶融することができ、または同じ加熱温度の場合はフィルム構成材料の粘度を低下できる。
ここで、フィルム構成材料の溶融温度とは、該材料が加熱され流動性が発現された時の温度を意味する。
可塑剤としては、例えばリン酸エステル誘導体、カルボン酸エステル誘導体が好ましく用いられる。また、特開2003−12859号に記載の重量平均分子量が500以上10000以下であるエチレン性不飽和モノマーを重合して得られるポリマー、アクリル系ポリマー、芳香環を側鎖に有するアクリル系ポリマーまたはシクロヘキシル基を側鎖に有するアクリル系ポリマーなども好ましく用いられる。
具体的な可塑剤としては、リン酸エステル系可塑剤、エチレングリコールエステル系可塑剤、グリセリンエステル系可塑剤、ジグリセリンエステル系可塑剤(脂肪酸エステル)、多価アルコールエステル系可塑剤、ジカルボン酸エステル系可塑剤、多価カルボン酸エステル系可塑剤、ポリマー可塑剤等が挙げられる。この中でも多価アルコールエステル系可塑剤、ジカルボン酸エステル系可塑剤及び多価カルボン酸エステル系可塑剤が好ましい。また、可塑剤は液体であっても固体であってもよく、組成物の制約上無色であることが好ましい。熱的にはより高温において安定であることが好ましく、分解開始温度が150℃以上、更に200℃以上が好ましい。添加量は光学物性・機械物性に悪影響がなければよく、その配合量は、本発明の目的を損なわない範囲で適宜選択され、セルロースエステル100質量部に対して好ましくは0.001〜50質量部、より好ましくは0.01〜30質量部である。特に0.1〜15質量%が好ましい。
以下、可塑剤の具体例を挙げるが、これらに限定されるものではない。
リン酸エステル系の可塑剤:具体的には、トリアセチルホスフェート、トリブチルホスフェート等のリン酸アルキルエステル、トリシクロベンチルホスフェート、シクロヘキシルホスフェート等のリン酸シクロアルキルエステル、トリフェニルホスフェート、トリクレジルホスフェート、クレジルフェニルホスフェート、オクチルジフェニルホスフェート、ジフェニルビフェニルホスフェート、トリオクチルホスフェート、トリブチルホスフェート、トリナフチルホスフェート、トリキシリルオスフェート、トリスオルト−ビフェニルホスフェート等のリン酸アリールエステルが挙げられる。これらの置換基は、同一でもあっても異なっていてもよく、更に置換されていてもよい。またアルキル基、シクロアルキル基、アリール基のミックスでもよく、また置換基同士が共有結合で結合していてもよい。
またエチレンビス(ジメチルホスフェート)、ブチレンビス(ジエチルホスフェート)等のアルキレンビス(ジアルキルホスフェート)、エチレンビス(ジフェニルホスフェート)、プロピレンビス(ジナフチルホスフェート)等のアルキレンビス(ジアリールホスフェート)、フェニレンビス(ジブチルホスフェート)、ビフェニレンビス(ジオクチルホスフェート)等のアリーレンビス(ジアルキルホスフェート)、フェニレンビス(ジフェニルホスフェート)、ナフチレンビス(ジトルイルホスフェート)等のアリーレンビス(ジアリールホスフェート)等のリン酸エステルが挙げられる。これらの置換基は、同一でもあっても異なっていてもよく、更に置換されていてもよい。またアルキル基、シクロアルキル基、アリール基のミックスでもよく、また置換基同士が共有結合で結合していてもよい。
更にリン酸エステルの部分構造が、ポリマーの一部、或いは規則的にペンダントされていてもよく、また酸化防止剤、酸掃去剤、紫外線吸収剤等の添加剤の分子構造の一部に導入されていてもよい。上記化合物の中では、リン酸アリールエステル、アリーレンビス(ジアリールホスフェート)が好ましく、具体的にはトリフェニルホスフェート、フェニレンビス(ジフェニルホスフェート)が好ましい。
エチレングリコールエステル系の可塑剤:具体的には、エチレングリコールジアセテート、エチレングリコールジブチレート等のエチレングリコールアルキルエステル系の可塑剤、エチレングリコールジシクロプロピルカルボキシレート、エチレングリコールジシクロヘキルカルボキシレート等のエチレングリコールシクロアルキルエステル系の可塑剤、エチレングリコールジベンゾエート、エチレングリコールジ4−メチルベンゾエート等のエチレングリコールアリールエステル系の可塑剤が挙げられる。これらアルキレート基、シクロアルキレート基、アリレート基は、同一でもあっても異なっていてもよく、更に置換されていてもよい。またアルキレート基、シクロアルキレート基、アリレート基のミックスでもよく、またこれら置換基同士が共有結合で結合していてもよい。更にエチレングリコール部も置換されていてもよく、エチレングリコールエステルの部分構造が、ポリマーの一部、或いは規則的にペンダントされていてもよく、また酸化防止剤、酸掃去剤、紫外線吸収剤等の添加剤の分子構造の一部に導入されていてもよい。
グリセリンエステル系の可塑剤:具体的にはトリアセチン、トリブチリン、グリセリンジアセテートカプリレート、グリセリンオレートプロピオネート等のグリセリンアルキルエステル、グリセリントリシクロプロピルカルボキシレート、グリセリントリシクロヘキシルカルボキシレート等のグリセリンシクロアルキルエステル、グリセリントリベンゾエート、グリセリン4−メチルベンゾエート等のグリセリンアリールエステル、ジグリセリンテトラアセチレート、ジグリセリンテトラプロピオネート、ジグリセリンアセテートトリカプリレート、ジグリセリンテトララウレート、等のジグリセリンアルキルエステル、ジグリセリンテトラシクロブチルカルボキシレート、ジグリセリンテトラシクロペンチルカルボキシレート等のジグリセリンシクロアルキルエステル、ジグリセリンテトラベンゾエート、ジグリセリン3−メチルベンゾエート等のジグリセリンアリールエステル等が挙げられる。これらアルキレート基、シクロアルキルカルボキシレート基、アリレート基は、同一でもあっても異なっていてもよく、更に置換されていてもよい。またアルキレート基、シクロアルキルカルボキシレート基、アリレート基のミックスでもよく、またこれら置換基同士が共有結合で結合していてもよい。更にグリセリン、ジグリセリン部も置換されていてもよく、グリセリンエステル、ジグリセリンエステルの部分構造が、ポリマーの一部、或いは規則的にペンダントされていてもよく、また酸化防止剤、酸掃去剤、紫外線吸収剤等の添加剤の分子構造の一部に導入されていてもよい。
多価アルコールエステル系の可塑剤:具体的には、特開2003−12823号公報の段落番号[30]〜[33]に記載の多価アルコールエステル系可塑剤が挙げられる。
これらアルキレート基、シクロアルキルカルボキシレート基、アリレート基は、同一でもあっても異なっていてもよく、更に置換されていてもよい。またアルキレート基、シクロアルキルカルボキシレート基、アリレート基のミックスでもよく、またこれら置換基同士が共有結合で結合していてもよい。更に多価アルコール部も置換されていてもよく、多価アルコールの部分構造が、ポリマーの一部、或いは規則的にペンダントされていてもよく、また酸化防止剤、酸掃去剤、紫外線吸収剤等の添加剤の分子構造の一部に導入されていてもよい。
ジカルボン酸エステル系の可塑剤:具体的には、ジドデシルマロネート(C1)、ジオクチルアジペート(C4)、ジブチルセバケート(C8)等のアルキルジカルボン酸アルキルエステル系の可塑剤、ジシクロペンチルサクシネート、ジシクロヘキシルアジーペート等のアルキルジカルボン酸シクロアルキルエステル系の可塑剤、ジフェニルサクシネート、ジ4−メチルフェニルグルタレート等のアルキルジカルボン酸アリールエステル系の可塑剤、ジヘキシル−1,4−シクロヘキサンジカルボキシレート、ジデシルビシクロ[2.2.1]ヘプタン−2,3−ジカルボキシレート等のシクロアルキルジカルボン酸アルキルエステル系の可塑剤、ジシクロヘキシル−1,2−シクロブタンジカルボキシレート、ジシクロプロピル−1,2−シクロヘキシルジカルボキシレート等のシクロアルキルジカルボン酸シクロアルキルエステル系の可塑剤、ジフェニル−1,1−シクロプロピルジカルボキシレート、ジ2−ナフチル−1,4−シクロヘキサンジカルボキシレート等のシクロアルキルジカルボン酸アリールエステル系の可塑剤、ジエチルフタレート、ジメチルフタレート、ジオクチルフタレート、ジブチルフタレート、ジ−2−エチルヘキシルフタレート等のアリールジカルボン酸アルキルエステル系の可塑剤、ジシクロプロピルフタレート、ジシクロヘキシルフタレート等のアリールジカルボン酸シクロアルキルエステル系の可塑剤、ジフェニルフタレート、ジ4−メチルフェニルフタレート等のアリールジカルボン酸アリールエステル系の可塑剤が挙げられる。これらアルコキシ基、シクロアルコキシ基は、同一でもあっても異なっていてもよく、また一置換でもよく、これらの置換基は更に置換されていてもよい。アルキル基、シクロアルキル基はミックスでもよく、またこれら置換基同士が共有結合で結合していてもよい。更にフタル酸の芳香環も置換されていて良く、ダイマー、トリマー、テトラマー等の多量体でもよい。またフタル酸エステルの部分構造が、ポリマーの一部、或いは規則的にポリマーへペンダントされていてもよく、酸化防止剤、酸掃去剤、紫外線吸収剤等の添加剤の分子構造の一部に導入されていてもよい。
多価カルボン酸エステル系の可塑剤:具体的には、トリドデシルトリカルバレート、トリブチル−meso−ブタン−1,2,3,4−テトラカルボキシレート等のアルキル多価カルボン酸アルキルエステル系の可塑剤、トリシクロヘキシルトリカルバレート、トリシクロプロピル−2−ヒドロキシ−1,2,3−プロパントリカルボキシレート等のアルキル多価カルボン酸シクロアルキルエステル系の可塑剤、トリフェニル2−ヒドロキシ−1,2,3−プロパントリカルボキシレート、テトラ3−メチルフェニルテトラヒドロフラン−2,3,4,5−テトラカルボキシレート等のアルキル多価カルボン酸アリールエステル系の可塑剤、テトラヘキシル−1,2,3,4−シクロブタンテトラカルボキシレート、テトラブチル−1,2,3,4−シクロペンタンテトラカルボキシレート等のシクロアルキル多価カルボン酸アルキルエステル系の可塑剤、テトラシクロプロピル−1,2,3,4−シクロブタンテトラカルボキシレート、トリシクロヘキシル−1,3,5−シクロヘキシルトリカルボキシレート等のシクロアルキル多価カルボン酸シクロアルキルエステル系の可塑剤、トリフェニル−1,3,5−シクロヘキシルトリカルボキシレート、ヘキサ4−メチルフェニル−1,2,3,4,5,6−シクロヘキシルヘキサカルボキシレート等のシクロアルキル多価カルボン酸アリールエステル系の可塑剤、トリドデシルベンゼン−1,2,4−トリカルボキシレート、テトラオクチルベンゼン−1,2,4,5−テトラカルボキシレート等のアリール多価カルボン酸アルキルエステル系の可塑剤、トリシクロペンチルベンゼン−1,3,5−トリカルボキシレート、テトラシクロヘキシルベンゼン−1,2,3,5−テトラカルボキシレート等のアリール多価カルボン酸シクロアルキルエステル系の可塑剤トリフェニルベンゼン−1,3,5−テトラカルトキシレート、ヘキサ4−メチルフェニルベンゼン−1,2,3,4,5,6−ヘキサカルボキシレート等のアリール多価カルボン酸アリールエステル系の可塑剤が挙げられる。これらアルコキシ基、シクロアルコキシ基は、同一でもあっても異なっていてもよく、また一置換でもよく、これらの置換基は更に置換されていてもよい。アルキル基、シクロアルキル基はミックスでもよく、またこれら置換基同士が共有結合で結合していてもよい。更にフタル酸の芳香環も置換されていて良く、ダイマー、トリマー、テトラマー等の多量体でもよい。またフタル酸エステルの部分構造が、ポリマーの一部、或いは規則的にポリマーへペンダントされていてもよく、酸化防止剤、酸掃去剤、紫外線吸収剤等の添加剤の分子構造の一部に導入されていてもよい。
ポリマー可塑剤:具体的には、脂肪族炭化水素系ポリマー、脂環式炭化水素系ポリマー、ポリアクリル酸エチル、ポリメタクリル酸メチル等のアクリル系ポリマー、ポリビニルイソブチルエーテル、ポリN−ビニルピロリドン等のビニル系ポリマー、ポリスチレン、ポリ4−ヒドロキシスチレン等のスチレン系ポリマー、ポリブチレンサクシネート、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル、ポリアミド、ポリウレタン、ポリウレア等が挙げられる。数平均分子量は、1,000〜500,000程度が好ましく、特に好ましくは、5,000〜200,000である。1,000以下では揮発性に問題が生じ、500,000を超えると可塑化能力が低下し、セルロースエステル誘導体組成物の機械的性質に悪影響を及ぼす。これらポリマー可塑剤は1種の繰り返し単位からなる単独重合体でも、複数の繰り返し構造体を有する共重合体でもよい。また、上記ポリマーを2種以上併用して用いてもよく、他の可塑剤、酸化防止剤、酸掃去剤、紫外線吸収剤、滑り剤及びマット剤等を含有させてもよい。
これらの化合物の添加量は、可塑剤がフィルムを構成する樹脂に対して、0.5質量%以上〜50質量%未満の範囲で使用することが好ましく、より好ましくは1質量%以上〜30質量%未満の範囲、更に好ましくは1質量%以上〜15質量%未満の範囲にある。
上記可塑剤の中でも熱溶融時に揮発成分を生成しないことが好ましい。具体的には特表平6−501040号に記載されている不揮発性リン酸エステルが挙げられ、例えばアリーレンビス(ジアリールホスフェート)エステルや上記例示化合物の中ではトリメチロールプロパントリベンゾエート等が好ましいがこれらに限定されるものではない。
揮発成分が上記可塑剤の熱分解起因の場合、上記可塑剤の熱分解温度Td−p(1.0)は、1.0質量%減少したときの温度と定義すると、フィルム形成材料の溶融温度よりも高いことが好ましい。可塑剤は、セルロースエステルに対する添加量が他のフィルム構成材料よりも多く、揮発成分の存在は得られるフィルムの品質に与える影響が大きいためである。熱分解温度Td−p(1.0)は、市販の示差熱重量分析(TG−DTA)装置で測定することができる。
更に後述する酸化防止剤、酸捕捉剤、光安定剤等の安定化剤についても同様で、フィルム構成材料に対して以下の関係を満たすことが、得られた透明フィルム基材の物性を満足する上で好ましい。当然のことながら溶融温度が、可塑剤、安定化剤の分解温度を上回ると、得られた透明フィルム基材の物性は低下する。
Tm<Td−p(1.0)
Tm<Td−a(1.0)
(式中、Tmは120℃以上250℃以下の温度で製膜したフィルム構成材料の溶融温度、Td−p(1.0)は可塑剤の1.0質量%減少したときの温度、Td−a(1.0)は安定化剤の1.0質量%減少したときの分解温度を表す。)
(酸化防止剤)
透明フィルムの安定化剤である酸化防止剤について説明する。
酸化防止剤としては、フェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤、耐熱加工安定剤、酸素スカベンジャー等が挙げられ、これらの中でもフェノール系酸化防止剤、特にアルキル置換フェノール系酸化防止剤が好ましい。これらの酸化防止剤を配合することにより、透明性、耐熱性等を低下させることなく、成型時の熱や酸化劣化等による成形体の着色や強度低下を防止できる。これらの酸化防止剤は、それぞれ単独で、或いは2種以上を組み合わせて用いることができ、その配合量は、本発明の目的を損なわない範囲で適宜選択されるが、本発明に用いられるセルロースエステル100質量部に対して好ましくは0.001〜5質量部、より好ましくは0.01〜1質量部である。
ヒンダードフェノール系酸化防止剤化合物は既知の化合物であり、例えば、米国特許第4,839,405号明細書の第12〜14欄に記載されており、2,6−ジアルキルフェノール誘導体化合物が含まれる。
ヒンダードフェノール化合物の具体例には、n−オクタデシル=3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)−プロピオネート、n−オクタデシル=3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)−アセテート、n−オクタデシル=3,5−ジ−t−ブチル−4−ヒドロキシベンゾエート、n−ヘキシル=3,5−ジ−t−ブチル−4−ヒドロキシフェニルベンゾエート、n−ドデシル=3,5−ジ−t−ブチル−4−ヒドロキシフェニルベンゾエート、ネオ−ドデシル=3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、ドデシル=β(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、エチル=α−(4−ヒドロキシ−3,5−ジ−t−ブチルフェニル)イソブチレート、オクタデシル=α−(4−ヒドロキシ−3,5−ジ−t−ブチルフェニル)イソブチレート、オクタデシル=α−(4−ヒドロキシ−3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、2−(n−オクチルチオ)エチル=3,5−ジ−t−ブチル−4−ヒドロキシ−ベンゾエート、2−(n−オクチルチオ)エチル=3,5−ジ−t−ブチル−4−ヒドロキシ−フェニルアセテート、2−(n−オクタデシルチオ)エチル=3,5−ジ−t−ブチル−4−ヒドロキシフェニルアセテート、2−(n−オクタデシルチオ)エチル=3,5−ジ−t−ブチル−4−ヒドロキシ−ベンゾエート、2−(2−ヒドロキシエチルチオ)エチル=3,5−ジ−t−ブチル−4−ヒドロキシベンゾエート、ジエチルグリコール=ビス−(3,5−ジ−t−ブチル−4−ヒドロキシ−フェニル)プロピオネート、2−(n−オクタデシルチオ)エチル=3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、ステアルアミド−N,N−ビス−[エチレン=3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、n−ブチルイミノ−N,N−ビス−[エチレン=3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、2−(2−ステアロイルオキシエチルチオ)エチル=3,5−ジ−t−ブチル−4−ヒドロキシベンゾエート、2−(2−ステアロイルオキシエチルチオ)エチル=7−(3−メチル−5−t−ブチル−4−ヒドロキシフェニル)ヘプタノエート、1,2−プロピレングリコール=ビス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、エチレングリコール=ビス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、ネオペンチルグリコール=ビス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、エチレングリコール=ビス−(3,5−ジ−t−ブチル−4−ヒドロキシフェニルアセテート)、グリセリン−l−n−オクタデカノエート−2,3−ビス−(3,5−ジ−t−ブチル−4−ヒドロキシフェニルアセテート)、ペンタエリトリトール−テトラキス−[3−(3′,5′−ジ−t−ブチル−4′−ヒドロキシフェニル)プロピオネート]、1,1,1−トリメチロールエタン−トリス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、ソルビトールヘキサ−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、2−ヒドロキシエチル=7−(3−メチル−5−t−ブチル−4−ヒドロキシフェニル)プロピオネート、2−ステアロイルオキシエチル=7−(3−メチル−5−t−ブチル−4−ヒドロキシフェニル)ヘプタノエート、1,6−n−ヘキサンジオール−ビス[(3′,5′−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、ペンタエリトリトール−テトラキス(3,5−ジ−t−ブチル−4−ヒドロキシヒドロシンナメート)が含まれる。上記タイプのヒンダードフェノール系酸化防止剤は、例えば、Ciba Specialty Chemicalsから、“Irganox1076”及び“Irganox1010”という商品名で市販されている。
その他の酸化防止剤としては、具体的には、トリスノニルフェニルホスファイト、トリフェニルホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト等のリン系酸化防止剤、ジラウリル−3,3′−チオジプロピオネート、ジミリスチル−3,3′−チオジプロピオネート、ジステアリル−3,3′−チオジプロピオネート、ペンタエリスリチルテトラキス(3−ラウリルチオプロピオネート)等のイオウ系酸化防止剤、2−tert−ブチル−6−(3−tert−ブチル−2−ヒドロキシ−5−メチルベンジル)−4−メチルフェニルアクリレート、2−[1−(2−ヒドロキシ−3、5−ジ−tert−ペンチルフェニル)エチル]−4,6−ジ−tert−ペンチルフェニルアクリレート等の耐熱加工安定剤、特公平08−27508記載の3,4−ジヒドロ−2H−1−ベンゾピラン系化合物、3,3′−スピロジクロマン系化合物、1,1−スピロインダン系化合物、モルホリン、チオモルホリン、チオモルホリンオキシド、チオモルホリンジオキシド、ピペラジン骨格を部分構造に有する化合物、特開平3−174150号記載のジアルコキシベンゼン系化合物等の酸素スカベンジャー等が挙げられる。これら酸化防止剤の部分構造が、ポリマーの一部、或いは規則的にポリマーへペンダントされていてもよい。
(酸捕捉剤)
セルロースエステルは高温下では酸によっても分解が促進されるため、本発明の透明フィルム基材においては安定化剤として酸捕捉剤を含有することが好ましい。
有用な酸捕捉剤としては、酸と反応して酸を不活性化する化合物であれば制限なく用いることができるが、中でも米国特許第4,137,201号明細書に記載されているエポキシ基を有する化合物が好ましい。このような酸捕捉剤としてのエポキシ化合物は当該技術分野において既知であり、種々のポリグリコールのジグリシジルエーテル、特にポリグリコール1モル当たりに約8〜40モルのエチレンオキシドなどの縮合によって誘導されるポリグリコール、グリセロールのジグリシジルエーテルなど、金属エポキシ化合物(例えば、塩化ビニルポリマー組成物において、及び塩化ビニルポリマー組成物と共に、従来から利用されているもの)、エポキシ化エーテル縮合生成物、ビスフェノールAのジグリシジルエーテル(即ち、4,4′−ジヒドロキシジフェニルジメチルメタン)、エポキシ化不飽和脂肪酸エステル(特に、2〜22この炭素原子の脂肪酸の4〜2個程度の炭素原子のアルキルのエステル(例えば、ブチルエポキシステアレート)など)、及び種々のエポキシ化長鎖脂肪酸トリグリセリドなど(例えば、エポキシ化大豆油など)の組成物によって代表され例示され得るエポキシ化植物油及び他の不飽和天然油(これらはときとしてエポキシ化天然グリセリドまたは不飽和脂肪酸と称され、これらの脂肪酸は一般に12〜22個の炭素原子を含有している)が含まれる。また、市販のエポキシ基含有エポキシド樹脂化合物として、EPON 815Cも好ましく用いることができる。
更に上記以外に用いることが可能な酸捕捉剤としては、オキセタン化合物やオキサゾリン化合物、或いはアルカリ土類金属の有機酸塩やアセチルアセトナート錯体、特開平5−194788号公報の段落68〜105に記載されているものが含まれる。
尚酸捕捉剤は酸掃去剤、酸捕獲剤、酸キャッチャー等と称されることもあるが、本発明においてはこれらの呼称による差異なく用いることができる。
(光安定剤)
外光や液晶ディスプレイのバックライトからの光に対する安定化剤として、透明フィルムに光安定剤を含有することができる。光安定剤としては、ヒンダードアミン光安定剤(HALS)化合物が挙げられ、これは既知の化合物であり、例えば、米国特許第4,619,956号明細書の第5〜11欄及び米国特許第4,839,405号明細書の第3〜5欄に記載されているように、2,2,6,6−テトラアルキルピペリジン化合物、またはそれらの酸付加塩もしくはそれらと金属化合物との錯体が含等まれる。
ヒンダードアミン光安定剤化合物の具体例には、4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン、1−アリル−4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン、1−ベンジル−4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン、1−(4−t−ブチル−2−ブテニル)−4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン、4−ステアロイルオキシ−2,2,6,6−テトラメチルピペリジン、1−エチル−4−サリチロイルオキシ−2,2,6,6−テトラメチルピペリジン、4−メタクリロイルオキシ−1,2,2,6,6−ペンタメチルピペリジン、1,2,2,6,6−ペンタメチルピペリジン−4−イル−β(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)−プロピオネート、1−ベンジル−2,2,6,6−テトラメチル−4−ピペリジニルマレイネート(maleinate)、(ジ−2,2,6,6−テトラメチルピペリジン−4−イル)−アジペート、(ジ−2,2,6,6−テトラメチルピペリジン−4−イル)−セバケート、(ジ−1,2,3,6−テトラメチル−2,6−ジエチル−ピペリジン−4−イル)−セバケート、(ジ−1−アリル−2,2,6,6−テトラメチル−ピペリジン−4−イル)−フタレート、1−アセチル−2,2,6,6−テトラメチルピペリジン−4−イル−アセテート、トリメリト酸−トリ−(2,2,6,6−テトラメチルピペリジン−4−イル)エステル、1−アクリロイル−4−ベンジルオキシ−2,2,6,6−テトラメチルピペリジン、ジブチル−マロン酸−ジ−(1,2,2,6,6−ペンタメチル−ピペリジン−4−イル)−エステル、ジベンジル−マロン酸−ジ−(1,2,3,6−テトラメチル−2,6−ジエチル−ピペリジン−4−イル)−エステル、ジメチル−ビス−(2,2,6,6−テトラメチルピペリジン−4−オキシ)−シラン,トリス−(1−プロピル−2,2,6,6−テトラメチルピペリジン−4−イル)−ホスフィット、トリス−(1−プロピル−2,2,6,6−テトラメチルピペリジン−4−イル)−ホスフェート,N,N′−ビス−(2,2,6,6−テトラメチルピペリジン−4−イル)−ヘキサメチレン−1,6−ジアミン、N,N′−ビス−(2,2,6,6−テトラメチルピペリジン−4−イル)−ヘキサメチレン−1,6−ジアセトアミド、1−アセチル−4−(N−シクロヘキシルアセトアミド)−2,2,6,6−テトラメチル−ピペリジン、4−ベンジルアミノ−2,2,6,6−テトラメチルピペリジン、N,N′−ビス−(2,2,6,6−テトラメチルピペリジン−4−イル)−N,N′−ジブチル−アジパミド、N,N′−ビス−(2,2,6,6−テトラメチルピペリジン−4−イル)−N,N′−ジシクロヘキシル−(2−ヒドロキシプロピレン)、N,N′−ビス−(2,2,6,6−テトラメチルピペリジン−4−イル)−p−キシリレン−ジアミン、4−(ビス−2−ヒドロキシエチル)−アミノ−1,2,2,6,6−ペンタメチルピペリジン、4−メタクリルアミド−1,2,2,6,6−ペンタメチルピペリジン、α−シアノ−β−メチル−β−[N−(2,2,6,6−テトラメチルピペリジン−4−イル)]−アミノ−アクリル酸メチルエステル等が挙げられる。
フィルム形成材料中の安定化剤は、少なくとも1種以上選択でき、添加する量は、セルロースエステルの質量に対して、光安定化剤の添加量は0.001質量%以上5質量%以下が好ましく、より好ましくは0.005質量%以上3質量%以下であり、更に好ましくは0.01質量%以上0.8質量%以下である。
(紫外線吸収剤)
本発明のハードコートフィルムを液晶セルに対して視認側に用いる偏光子保護フィルムとして用いる場合には、更に紫外線吸収剤を含有することが好ましい。紫外線吸収剤とは、製造後に使用される環境下で紫外線によってフィルムを構成する材料が分解することを防ぐ効果のある材料である。セルロースエステル自体は比較的紫外線に対して強い材料であるが、その他の添加剤については紫外線に対して弱い化合物である場合もあるし、偏光子や液晶セルも紫外線に対して弱いものであるため、少なくとも外光があたる側の偏光子保護フィルムや、液晶ディスプレイのバックライトが入射する側の偏光子保護フィルムに付いては紫外線吸収剤を含有することが好ましい。
このような紫外線吸収剤としては、偏光子や表示装置の紫外線に対する劣化防止の観点から、波長370nm以下の紫外線の吸収能に優れており、かつ液晶表示性の観点から、波長400nm以上の可視光の吸収が少ないものが好ましい。例えば、オキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、トリアジン系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、ニッケル錯塩系化合物等を挙げることができるが、ベンゾフェノン系化合物や着色の少ないベンゾトリアゾール系化合物が好ましく、特に好ましくはベンゾトリアゾール系化合物である。また、特開平10−182621号公報、特開平8−337574号公報記載の紫外線吸収剤、特開平6−148430号公報記載の高分子紫外線吸収剤を用いてもよい。
有用なベンゾトリアゾール系紫外線吸収剤の具体例として、2−(2′−ヒドロキシ−5′−メチルフェニル)ベンゾトリアゾール、2−(2′−ヒドロキシ−3′,5′−ジ−tert−ブチルフェニル)ベンゾトリアゾール、2−(2′−ヒドロキシ−3′−tert−ブチル−5′−メチルフェニル)ベンゾトリアゾール、2−(2′−ヒドロキシ−3′,5′−ジ−tert−ブチルフェニル)−5−クロロベンゾトリアゾール、2−(2′−ヒドロキシ−3′−(3″,4″,5″,6″−テトラヒドロフタルイミドメチル)−5′−メチルフェニル)ベンゾトリアゾール、2,2−メチレンビス(4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール)、2−(2′−ヒドロキシ−3′−tert−ブチル−5′−メチルフェニル)−5−クロロベンゾトリアゾール、2−(2H−ベンゾトリアゾール−2−イル)−6−(直鎖及び側鎖ドデシル)−4−メチルフェノール、オクチル−3−〔3−tert−ブチル−4−ヒドロキシ−5−(クロロ−2H−ベンゾトリアゾール−2−イル)フェニル〕プロピオネートと2−エチルヘキシル−3−〔3−tert−ブチル−4−ヒドロキシ−5−(5−クロロ−2H−ベンゾトリアゾール−2−イル)フェニル〕プロピオネートの混合物等を挙げることができるが、これらに限定されない。
また、市販品として、チヌビン(TINUVIN)109、チヌビン(TINUVIN)171、チヌビン(TINUVIN)234、チヌビン(TINUVIN)360(何れもチバ・ジャパン社製)を用いることもできる。
ベンゾフェノン系化合物の具体例として、2,4−ジヒドロキシベンゾフェノン、2,2′−ジヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−5−スルホベンゾフェノン、ビス(2−メトキシ−4−ヒドロキシ−5−ベンゾイルフェニル)メタン等を挙げることができるが、これらに限定されるものではない。
紫外線吸収剤は0.1〜20質量%添加することが好ましく、更に0.5〜10質量%添加することが好ましく、更に1〜5質量%添加することが好ましい。これらは2種以上を併用してもよい。
(マット剤)
透明フィルム基材は、滑り性を付与するためにマット剤等の微粒子を添加することができ、微粒子としては、無機化合物の微粒子または有機化合物の微粒子が挙げられる。マット剤はできるだけ微粒子のものが好ましく、微粒子としては、例えば、二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、カオリン、タルク、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム、リン酸カルシウム等の無機微粒子や架橋高分子微粒子を挙げることができる。中でも、二酸化ケイ素がフィルムのヘイズを低くできるので好ましい。二酸化ケイ素のような微粒子は有機物により表面処理されている場合が多いが、このようなものはフィルムのヘイズを低下できるため好ましい。
表面処理で好ましい有機物としては、ハロシラン類、アルコキシシラン類、シラザン、シロキサンなどが挙げられる。微粒子の平均粒径が大きい方が滑り性効果は大きく、反対に平均粒径の小さい方は透明性に優れる。また、微粒子の二次粒子の平均粒径は0.05〜1.0μmの範囲である。好ましい微粒子の二次粒子の平均粒径は5〜50nmが好ましく、更に好ましくは、7〜14nmである。これらの微粒子はセルロースエステルフィルム中では、セルロースエステルフィルム表面に0.01〜1.0μmの凹凸を生成させる為に好ましく用いられる。微粒子のセルロースエステル中の含有量はセルロースエステルに対して0.005〜0.3質量%が好ましい。
二酸化ケイ素の微粒子としては、日本アエロジル(株)製のアエロジル(AEROSIL)200、200V、300、R972、R972V、R974、R202、R812、OX50、TT600等を挙げることができ、好ましくはアエロジル200V、R972、R972V、R974、R202、R812である。これらの微粒子は2種以上併用してもよい。2種以上併用する場合、任意の割合で混合して使用することができる。この場合、平均粒径や材質の異なる微粒子、例えば、アエロジル200VとR972Vを質量比で0.1:99.9〜99.9:0.1の範囲で使用できる。
上記マット剤として用いられるフィルム中の微粒子の存在は、別の目的としてフィルムの強度向上のために用いることもできる。また、フィルム中の上記微粒子の存在は、透明フィルム基材を構成するセルロースエステル自身の配向性を向上することも可能である。
(製膜)
透明フィルム基材は、例えばセルロースエステル及び添加剤の混合物を、熱風乾燥または真空乾燥した後、溶融押出し、Tダイよりフィルム状に押出して、50〜150℃に温調されたロールで引取ることが好ましい。このとき2本のロールでニップすることが平面性向上の観点から好ましい。
溶融押出しは、一軸押出し機、二軸押出し機、更に二軸押出し機の下流に一軸押出し機を連結して用いてもよいが、前述した添加剤を均一分散する観点から二軸押出し機を用いることが好ましい。更に、原料タンク、原料の投入部、押出し機内といった原料の供給、溶融工程を、窒素ガス等の不活性ガスで置換、或いは減圧することが好ましい。
前記溶融押出し時の温度はTg以上、Tg+100℃以下の範囲であることが好ましい。更にTg+10℃以上、Tg+90℃以下の範囲であることが好ましい。
透明フィルム基材を偏光板保護フィルムとして偏光板を作製した場合、該セルロースエステルフィルムは、幅手方向もしくは製膜方向に延伸製膜されたフィルムであることが特に好ましい。
前述の冷却ロールから剥離され、得られた未延伸フィルムを複数のロール群及び/または赤外線ヒーター等の加熱装置を介してセルロースエステルのガラス転移温度(Tg)−50℃からTg+100℃の範囲内に加熱し、一段または多段縦延伸することが好ましい。次に、上記のようにして得られた縦方向に延伸されたセルロースエステルフィルムを、Tg−50℃〜Tg+100℃の温度範囲内で横延伸し、次いで熱固定することが好ましい。
横延伸する場合、2つ以上に分割された延伸領域で温度差を1〜50℃の範囲で順次昇温しながら横延伸すると、幅方向の物性の分布が低減でき好ましい。更に横延伸後、フィルムをその最終横延伸温度以下でTg−40℃以上の範囲に0.01〜5分間保持すると幅方向の物性の分布が更に低減でき好ましい。
熱固定は、その最終横延伸温度より高温で、Tg−20℃以下の温度範囲内で通常0.5〜300秒間熱固定する。この際、2つ以上に分割された領域で温度差を1〜100℃の範囲で順次昇温しながら熱固定することが好ましい。
熱固定されたフィルムは通常Tg以下まで冷却され、フィルム両端のクリップ把持部分をカットし巻き取られる。この際、最終熱固定温度以下、Tg以上の温度範囲内で、横方向及び/または縦方向に0.1〜10%弛緩処理することが好ましい。また冷却は、最終熱固定温度からTgまでを、毎秒100℃以下の冷却速度で徐冷することが好ましい。冷却、弛緩処理する手段は特に限定はなく、従来公知の手段で行えるが、特に複数の温度領域で順次冷却しながらこれらの処理を行うことがフィルムの寸法安定性向上の点で好ましい。尚、冷却速度は、最終熱固定温度をT1、フィルムが最終熱固定温度からTgに達するまでの時間をtとしたとき、(T1−Tg)/tで求めた値である。
これら熱固定条件、冷却、弛緩処理条件のより最適な条件は、フィルムを構成するセルロースエステルにより異なるので、得られた二軸延伸フィルムの物性を測定し、好ましい特性を有するように適宜調整することにより決定すればよい。
製膜工程において、カットされたフィルム両端のクリップ把持部分は、粉砕処理された後、或いは必要に応じて造粒処理を行った後、同じ品種のフィルム用原料としてまたは異なる品種のフィルム用原料として再利用してもよい。
前述の可塑剤、紫外線吸収剤、マット剤等の添加物濃度が異なるセルロース樹脂を含む組成物を共押出しして、積層構造のセルロースエステルフィルムを作製することもできる。例えば、スキン層/コア層/スキン層といった構成のセルロースエステルフィルムを作ることができる。例えば、マット剤は、スキン層に多く、またはスキン層のみに入れることができる。可塑剤、紫外線吸収剤はスキン層よりもコア層に多く入れることができ、コア層のみに入れてもよい。また、コア層とスキン層で可塑剤、紫外線吸収剤の種類を変更することもでき、例えば、スキン層に低揮発性の可塑剤及び/または紫外線吸収剤を含ませ、コア層に可塑性に優れた可塑剤、或いは紫外線吸収性に優れた紫外線吸収剤を添加することもできる。スキン層とコア層のTgが異なっていてもよく、スキン層のTgよりコア層のTgが低いことが好ましい。また、溶融流延時のセルロースエステルを含む溶融物の粘度もスキン層とコア層で異なっていてもよく、スキン層の粘度>コア層の粘度でも、コア層の粘度≧スキン層の粘度でもよい。
本発明のハードコートフィルムは偏光板保護フィルム用として用いることが好ましい。偏光板保護フィルムとして用いる場合、偏光板の作製方法は特に限定されず、一般的な方法で作製することができる。得られたハードコートフィルムをアルカリ処理し、ポリビニルアルコールフィルムを沃素溶液中に浸漬延伸して作製した偏光子の両面に完全鹸化ポリビニルアルコール水溶液を用いて、偏光子の両面に偏光板保護フィルムを貼り合わせる方法があり、少なくとも片面に本発明のハードコートフィルムが偏光子に直接貼合することが好ましい。
透明フィルム基材は、表面粗さRaが1μm以下であることが好ましい。Raが1μmより大きいと、前述した各種機能層を設けた場合に表面が凹凸になったり、凸状欠陥として残ったりして、平滑性、光沢感が損なわれることがある。Raを1μm以下にするためには、溶融押出し直後の引取りロールや延伸ロールの表面を鏡面としたり、ロールで引取った直後に鏡面ロール同士でニップしたり、タテ及びまたはヨコ延伸の温度、倍率、延伸速度を適切に選定することで達成される。また、溶融押出しダイのリップエッヂをシャープ化したり、ダイ内部の溶融樹脂と接触する面を鏡面化することもRaを低減するのに有効である。
表面粗さRaの測定方法としては、非接触3次元表面解析装置(WYKO社RST/PLUS)を用いて測定することができる。また、Raの定義はJIS−B−0601に従う。
本発明のハードコートフィルムを偏光板保護フィルムとした場合、該保護フィルムの厚さは10〜500μmが好ましい。特に20μm以上、更に35μm以上が好ましい。また、150μm以下、更に120μm以下が好ましい。特に好ましくは25以上〜90μmが好ましい。上記領域よりもハードコートフィルムが厚いと偏光板加工後の偏光板が厚くなり過ぎ、ノート型パソコンやモバイル型電子機器に用いる液晶表示においては、特に薄型軽量の目的には適さない。一方、上記領域よりも薄いと、リターデーションの発現が困難となること、フィルムの透湿性が高くなり偏光子に対して湿度から保護する能力が低下してしまうために好ましくない。
《偏光板》
本発明のハードコートフィルム及び反射防止フィルムを用いた偏光板について述べる。
偏光板は一般的な方法で作製することができる。本発明のハードコートフィルム及び反射防止フィルムの裏面側をアルカリ鹸化処理し、処理したハードコートフィルム及び反射防止フィルムを、ヨウ素溶液中に浸漬延伸して作製した偏光膜の少なくとも一方の面に、完全鹸化型ポリビニルアルコール水溶液を用いて貼り合わせることが好ましい。もう一方の面に該ハードコートフィルム及び反射防止フィルムを用いても、別の偏光板保護フィルムを用いてもよい。本発明のハードコートフィルム及び反射防止フィルムに対して、もう一方の面に用いられる偏光板保護フィルムは面内リターデーションRoが590nmで、20〜70nm、Rtが70〜400nmの位相差を有する光学補償フィルム(位相差フィルム)を用いることが好ましい。これらは例えば、特開2002−71957号、特願2002−155395号記載の方法で作製することができる。または、更にディスコチック液晶等の液晶化合物を配向させて形成した光学異方層を有している光学補償フィルムを兼ねる偏光板保護フィルムを用いることが好ましい。例えば、特開2003−98348号記載の方法で光学異方性層を形成することができる。或いは、特開2003−12859号記載のリターデーションRoが590nmで0〜5nm、Rtが−20〜+20nmの無配向フィルムも好ましく用いられる。
本発明のハードコートフィルム及び反射防止フィルムと組み合わせて使用することによって、平面性に優れ、安定した視野角拡大効果を有する偏光板を得ることができる。
裏面側に用いられる偏光板保護フィルムとしては、市販のセルロースエステルフィルムとして、KC8UX2MW、KC4UX、KC5UX、KC4UY、KC8UY、KC12UR、KC4UEW、KC8UCR−3、KC8UCR−4、KC8UCR−5、KC4FR−1、KC4FR−2、KC8UE、KC4UE(コニカミノルタオプト(株)製)等が好ましく用いられる。
偏光板の主たる構成要素である偏光膜とは、一定方向の偏波面の光だけを通す素子であり、現在知られている代表的な偏光膜は、ポリビニルアルコール系偏光フィルムで、これはポリビニルアルコール系フィルムにヨウ素を染色させたものと二色性染料を染色させたものがあるがこれのみに限定されるものではない。偏光膜は、ポリビニルアルコール水溶液を製膜し、これを一軸延伸させて染色するか、染色した後一軸延伸してから、好ましくはホウ素化合物で耐久性処理を行ったものが用いられている。偏光膜の膜厚は5〜30μm、好ましくは8〜15μmの偏光膜が好ましく用いられる。該偏光膜の面上に、本発明のハードコートフィルム及び反射防止フィルムの片面を貼り合わせて偏光板を形成する。好ましくは完全鹸化ポリビニルアルコール等を主成分とする水系の接着剤によって貼り合わせる。
《表示装置》
本発明のハードコートフィルム及び反射防止フィルムを用いて作製した偏光板を表示装置に組み込むことによって、種々の視認性に優れた本発明の表示装置を作製することができる。
本発明のハードコートフィルム及び反射防止フィルムは前記偏光板に組み込まれ、反射型、透過型、半透過型LCDまたはTN型、STN型、OCB型、HAN型、VA型(PVA型、MVA型)、IPS型、OCB型等の各種駆動方式の液晶表示装置で好ましく用いられる。
また、本発明のハードコートフィルム及び反射防止フィルムは密着性、耐薬品性に優れ、プラズマディスプレイ、フィールドエミッションディスプレイ、有機ELディスプレイ、無機ELディスプレイ、電子ペーパー等の各種表示装置にも好ましく用いられる。
以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
実施例1
〔セルロースエステルフィルムの作製〕
(セルロースエステルC1の合成)
特表平6−501040号公報の例Bを参考にして、プロピオン酸、酢酸の添加量を調整して、アセチル基置換度、プロピオニル基置換度を下記のように調整したセルロースエステルC1を合成した。
C1:アセチル基置換度1.9、プロピオニル基置換度0.7、総アシル基置換度2.60
得られたセルロースエステルの置換度は、ASTM−D817−96に基づいて算出した。セルロースエステルC1の重量平均分子量は、前記高速液体クロマトグラフィーを用いて測定した結果130000であった。
(セルロースエステルフィルム1の作製)
下記組成で、溶融流延によりセルロースエステルフィルム1を作製した。
〈セルロースエステルフィルム1組成物〉
セルロースエステル:C1 94質量部
可塑剤:グリセリントリベンゾエート 5質量部
Irganox 1010(チバ・ジャパン社製) 0.5質量部
Irgafos P−EPG(チバ・ジャパン社製) 0.3質量部
HP−136(チバ・ジャパン社製) 0.2質量部
上記セルロースエステルを70℃、3時間減圧下で乾燥を行い室温まで冷却した後、各添加剤を混合した。
以上の混合物を弾性タッチロールを用いた製造装置で製膜した。窒素雰囲気下、240℃にて溶融して流延ダイから第1冷却ロール上に押し出し、第1冷却ロールとタッチロールとの間にフィルムを挟圧して成形した。また押出し機中間部のホッパー開口部から、滑り剤としてシリカ粒子(日本アエロジル社製)を、0.1質量部となるよう添加した。
流延ダイのギャップの幅がフィルムの幅方向端部から30mm以内では0.5mm、その他の場所では1mmとなるようにヒートボルトを調整した。タッチロールとしては、その内部に冷却水として80℃の水を流した。
流延ダイから押し出された樹脂が第1冷却ロールに接触する位置P1から第1冷却ロールとタッチロールとのニップの第1冷却ロール回転方向上流端の位置P2までの、第1冷却ローラの周面に沿った長さLを20mmに設定した。その後、タッチロールを第1冷却ロールから離間させ、第1冷却ロールとタッチロールとのニップに挟圧される直前の溶融部の温度Tを測定した。第1冷却ロールとタッチロールとのニップに挟圧される直前の溶融部の温度Tは、ニップ上流端P2よりも更に1mm上流側の位置で、温度計(安立計器株式会社製HA−200E)により測定した。測定の結果、温度Tは141℃であった。タッチロールの第1冷却ロールに対する線圧は14.7N/cmとした。更に、テンターに導入し、巾方向に160℃で1.3倍延伸した後、巾方向に3%緩和しながら30℃まで冷却し、その後クリップから開放し、クリップ把持部を裁ち落とし、フィルム両端に幅10mm、高さ5μmのナーリング加工を施し、巻き取り張力220N/m、テーパー40%で巻芯に巻き取った。巻芯の大きさは、内径152mm、外径165〜180mm、長さ1550mmであった。この巻芯母材として、エポキシ樹脂をガラス繊維、カーボン繊維に含浸させたプリプレグ樹脂を用いた。巻芯表面にはエポキシ導電性樹脂をコーティングし、表面を研磨して、表面粗さRaは0.3μmに仕上げた。なお、膜厚は80μm、巻長は3500mとし、セルロースエステルフィルム1を作製した。
〔ハードコートフィルムの作製〕
(ハードコートフィルム1の作製)
上記のセルロースエステルフィルム1を用いて、下記手順により中間層、ハードコート層を設け、ハードコートフィルム1を作製した。
(中間層形成)
上記セルロースエステルフィルム1の上に、下記の中間層塗布組成物1を孔径0.4μmのポリプロピレン製フィルターで濾過し、中間層塗布液を調製し、マイクログラビアコーターを用いて塗工した。次に、70℃で乾燥後、紫外線ランプを用い照射部の照度が100mW/cm、照射量0.15J/cmで硬化させ、ドライ膜厚1μmの中間層を形成した。
次に、下記ハードコート層塗布組成物1を孔径0.4μmのポリプロピレン製フィルターで濾過し、ハードコート層塗布液を調製し、マイクログラビアコーターを用いて上記形成した中間層上に塗工し、70℃で乾燥後、酸素濃度が1.0体積%以下の雰囲気になるように窒素パージしながら、紫外線ランプを用い照射部の照度が100mW/cm、照射量0.25J/cmで硬化させ、ドライ膜厚16μmのハードコート層を形成した。
引き続き、下記バックコート層塗布組成物1をウェット膜厚10μmとなるように、中間層、ハードコート層を形成した面とは反対の面に押し出しコーターで塗工し、50℃で乾燥させ、ハードコートフィルム1を作製し、巻き取った。
〈中間層塗布組成物1〉
下記材料を攪拌・混合し、中間層塗布組成物1とした。
(樹脂:多官能アクリレート)
ペンタエリスリトールトリアクリレート 20質量部
ペンタエリスリトールテトラアクリレート 50質量部
(光重合開始剤)
イルガキュア184(チバ・ジャパン社製) 2質量部
イルガキュア907(チバ・ジャパン社製) 5質量部
(添加剤)
ポリオキシエチレンオレイルエーテル(商品名;エマルゲン408、花王株式会社製、
HLB値10) 10質量部
(溶媒)
プロピレングリコールモノメチルエーテル 50質量部
メチルエチルケトン 50質量部
〈ハードコート層塗布組成物1〉
(フッ素−シロキサングラフトポリマー1の調製)
以下、フッ素−シロキサングラフトポリマー1の調製に用いた素材の市販品名を示す。
・セフラルコートCF−803(水酸基価60、数平均分子量15,000)、セントラル硝子株式会社製
・サイラプレーンFM−0721(数平均分子量5,000)、チッソ株式会社製
・パーブチルO(t−ブチルパーオキシ−2−エチルヘキサノエート;ラジカル重合開始剤、日本油脂株式会社製)
・スミジュールN3200(ヘキサメチレンジイソシアネートのビウレット型プレポリマー;硬化剤)、住友バイエルウレタン株式会社製
〔ラジカル重合性フッ素樹脂(A)の合成〕
機械式撹拌装置、温度計、コンデンサー及び乾燥窒素ガス導入口を備えたガラス製反応器に、セフラルコートCF−803(1554質量部)、キシレン(233質量部)、及び2−イソシアナトエチルメタクリレート(6.3質量部)を入れ、乾燥窒素雰囲気下で80℃に加熱し、加熱後80℃で2時間反応させ、反応後のサンプリング物の赤外吸収スペクトルによりイソシアネートの吸収が消失したことを確認した後、反応混合物を取り出し、ウレタン結合を介して50質量%のラジカル重合性フッ素樹脂(A)を得た。
次いで、機械式撹拌装置、温度計、コンデンサー及び乾燥窒素ガス導入口を備えたガラス製反応器に、上記合成したラジカル重合性フッ素樹脂(A)(26.1質量部)、キシレン(19.5質量部)、酢酸n−ブチル(16.3質量部)、メチルメタクリレート(2.4質量部)、n−ブチルメタクリレート(1.8質量部)、ラウリルメタクリレート(1.8質量部)、2−ヒドロキシエチルメタクリレート(1.8質量部)、FM−0721(5.2質量部)、及びパーブチルO(0.1質量部)を入れ、窒素雰囲気中で90℃まで加熱した後、90℃で2時間保持した。パーブチルO(0.1部)を追加し、更に90℃で5時間保持することによって、重量平均分子量が171000である35質量%フッ素−シロキサングラフトポリマー1の溶液を得た。
重量平均分子量はGPCにより求めた。またフッ素−シロキサングラフトポリマー1の質量%はHPLC(液体クロマトグラフィー)により求めた。
下記材料を攪拌・混合し、ハードコート層塗布組成物1とした。
(樹脂;多官能アクリレート)
ペンタエリスリトールトリアクリレート 20質量部
ペンタエリスリトールテトラアクリレート 50質量部
ジペンタエリスリトールヘキサアクリレート 30質量部
ジペンタエリスリトールペンタアクリレート 30質量部
(光重合開始剤)
イルガキュア184(チバ・ジャパン社製) 4質量部
イルガキュア907(チバ・ジャパン社製) 8質量部
(添加剤)
フッ素−シロキサングラフトポリマー1(35質量%) 5質量部
(溶媒)
プロピレングリコールモノメチルエーテル 10質量部
酢酸メチル 60質量部
メチルエチルケトン 60質量部
〈バックコート層塗布組成物1〉
ジアセチルセルロース 0.6質量部
アセトン 35質量部
メチルエチルケトン 35質量部
メタノール 35質量部
シリカ粒子2%のメタノール分散液(KE−P30、日本触媒株式会社製)
16質量部
(ハードコートフィルム2〜19の作製)
ハードコートフィルム1で用いたポリオキシエチレンオレイルエーテル(商品名;エマルゲン408、花王株式会社製、HLB値10)の替わりに表1記載の化合物を用いた以外は同様にしてセルロースエステルフィルム2〜19を作製した。
(ハードコートフィルム20の作製)
比較例のハードコートフィルムとして下記の組成でハードコートフィルムを作製した。
特開平8−286001の実施例1を参考にして、透明フィルム基材として、厚さ230μmのアクリルフィルム(住友化学(株)製)の片面に下記の組成の塗工液(1)を用いてマイクログラビアコーターにて、塗布量を乾燥状態で6g/mになるように塗布し、乾燥により溶剤を除去後、紫外線ランプを用い照射部の照度が100mW/cm、照射量0.15J/cmで硬化させ、ビーズ含有ハードコート層を形成した。次に、前記ハードコート層を形成したアクリルフィルムの裏面に、上記と同様にしてハードコート層を形成し、両面にビーズ含有ハードコート層を有するハードコートフィルム20を作製した。
〈塗工液(1)の組成〉
・紫外線硬化性樹脂 100質量部
(大日精化工業(株)製「セイカビームEXG40」)
・シリカビーズ(平均粒系1μm) 0.35質量部
・トルエン(希釈溶剤) 100質量部
(ハードコートフィルム21の作製)
比較例のハードコートフィルムとして下記の組成でハードコートフィルムを作製した。
特開2007−237483号の実施例1を参考にして、光透過性樹脂基材として、40μmセルローストリアセテートフィルム(コニカミノルタオプト株式会社製:商品名、KC4UY)を用い、当該基材上に、下記表1の組成に従った樹脂を配合した下記に示すハードコート層形成用塗工液をウエット質量15g/m(乾燥質量6g/m)を塗布した。50℃にて30秒乾燥し、紫外線100mJ/cmを照射してハードコートフィルム21を作製した。
〈ハードコート層形成用塗工液の組成〉
(ラジカル重合性樹脂)
BS371(ビームセット371):ウレタンアクリレート 2質量部
(多官能;分子量40000;荒川化学社製)
UV1700B:ウレタンアクリレート 6.2質量部
(10官能:分子量2000:日本合成社製)
M9050:ウレタンアクリレート 0.8質量部
(多官能:分子量500:東亞合成社製)
イルガキュア184(ラジカル重合開始剤、チバ・ジャパン社製):ラジカル重合性官能基を有する樹脂の合計量に対して4質量%
(カチオン重合性樹脂)
UVR−6110:脂環式エポキシ樹脂 0.9質量部
(2官能:分子量252:ダウ・ケミカル社製)
OXT−221:ジオキセタン樹脂 0.1質量部
(2官能:分子量214:東亞合成社製)
メチルエチルケトン 10質量部
イルガキュア250(カチオン重合開始剤、チバ・ジャパン社製):カチオン重合性官能基を有する樹脂の合計量に対して5質量%
MCF−350SF 0.01質量部
(ハードコートフィルム22の作製)
比較例のハードコートフィルムとしてハードコートフィルム1の作製において、中間層組成物を以下の組成物に変更した以外は、同様にしてハードコートフィルム22を作製した。
〈中間層塗布組成物22〉
下記材料を攪拌・混合し、中間層塗布組成物1とした。
(樹脂:多官能アクリレート)
ペンタエリスリトールトリアクリレート 20質量部
ペンタエリスリトールテトラアクリレート 50質量部
(光重合開始剤)
イルガキュア184(チバ・ジャパン社製) 2質量部
イルガキュア907(チバ・ジャパン社製) 5質量部
〔ハードコートフィルムの評価〕
1.鉛筆硬度
耐久性試験を実施していないハードコートフィル1〜22を、温度25℃、相対湿度60%の条件で、2時間調湿した後、JIS S 6006に規定する試験用鉛筆を用いて、JIS K 5400に規定する鉛筆硬度評価法に従い、加重は500gのおもりを用いて、各硬度の鉛筆で、ハードコートフィルのハードコート層表面を5回繰り返して引っ掻き、傷(圧痕含む)が1本以下の表面硬度を測定した。数字か高いほど、高硬度を示す。得られた結果を下記の表1に示した。
(耐久性試験、及び密着性と耐薬品性評価)
上記作製したハードコートフィルム1〜22をA4サイズでカットし、2mol/Lの水酸化カリウム溶液に60℃で2分間浸漬し、ついで水洗、乾燥させ、アルカリ鹸化処理済みのハードコートフィルムを作製した。つぎに、この鹸化処理済みハードコートフィルムを、ハードコート層を表面にして、耐候性試験機(アイスーパーUVテスター、岩崎電気株式会社製)にて、200時間光照射し、耐久性試験済みハードコートフィルムを作製した。
次に、これら耐久性試験済みハードコートフィルムを温度25℃、相対湿度60%の条件で、2時間調湿した後、下記の密着性及び耐薬品性について評価した。得られた結果を下記の表1に示した。
2.密着性
耐久性試験済みハードコートフィルムを3cm×4cmサイズでカットし、ハードコート層の表面に片刃のカミソリの刃を面に対して90°の角度で切り込みを1mm間隔で縦横に11本入れ、1mm角の碁盤目を100個作製した。この上に市販のセロハン製テープを貼り付け、その一端を手で持って垂直に力強く引っ張って剥がし、切り込み線からの貼られたテープ面積に対する薄膜が剥がされた面積の割合を目視で観察し、下記の基準で評価した。
◎:全く剥離されなかった
○:剥離された面積割合が5%未満であった
△:剥離された面積割合が10%未満であった
×:剥離された面積割合が10%以上であった
3.耐薬品性
(耐薬品性)
耐薬品性1:アセトンと王水(塩酸と硝酸の体積比3:1の混合液)の質量比10:1の混合液体
耐久性試験済みハードコートフィルムのハードコート層表面を、アセトンと王水の混合液体を染み込ませたベンコット(旭化成株式会社製、製品名M−3)を用いて、同一箇所を50往復擦り、擦った後の状態を観察し、以下の基準で評価した。
耐薬品性2:リグロイン
耐久性試験済みのハードコートフィルムのハードコート層表面を、リグロイン(和光純薬社製)を染み込ませたベンコット(旭化成株式会社製、製品名M−3)を用いて、同一箇所を50往復擦り、擦った後の状態を観察し、以下の基準で評価した。また、擦りには以下の装置を用いた。
・耐薬品性の評価基準
◎:剥離無し
○:僅かな剥離が見られるレベル(実用上問題なし)
△:剥離が見られる
×:擦った箇所が全てが剥離している。
・表面擦り装置:新東科学株式会社摩擦摩耗試験機(トライボステーションTYPE:32、移動速度500mm/min.)荷重2000g/cm、先端部接触面積:1cm×1cm
Figure 2009134238
KF−351:ポリエーテル変性シリコーン(信越化学工業株式会社製)
KF−945:ポリエーテル変性シリコーン(信越化学工業株式会社製)
KF−353:ポリエーテル変性シリコーン(信越化学工業株式会社製)
エマルゲンA−90:ポリオキシエチレンジスチレン化フェニルエーテル(花王株式会社製)
エマルゲン404:ポリオキシエチレンオレイルエーテル(花王株式会社製)
レオドールSP−S30V:ソルビタントリスエアレート(花王株式会社製)
レオドールSP−O30V:ソルビタントリオレエート(花王株式会社製)
エマノーン3199V:ポリエチレングリコールモノステアレート(花王株式会社製)
エマノーン3299RV:ポリエチレングリコールジステアレート(花王株式会社製)
エマルゲン102KG:ポリオキシエチレンラウリルエーテル(花王株式会社製)
レオドールSP−S20:ソルビタンジステアレート(花王株式会社製)
表1の結果から判るように、本発明のハードコートフィルムは硬度にも優れ、かつHLB値が3〜18の化合物を含有する中間層を透明フィルム基材上とハードコート層の間に設けることで、優れた密着性及び耐薬品性の効果が得られることが判る。なかでもHLB値が8〜14の化合物を含有する中間層設けることで、更に優れた密着性及び耐薬品性の効果が得られることが判る。
実施例2
〔ハードコートフィルム23の作製〕
ハードコートフィルム1の作製において、中間層のドライ膜厚が0.1μmになるように中間層塗布液の付き量を変更し、塗工した以外は同様にしてハードコートフィルム23を作製した。
〔ハードコートフィルム24の作製〕
ハードコートフィルム1の作製において、中間層のドライ膜厚が0.1μmになるように中間層塗布液の付き量を変更し、かつ中間層組成物を以下に変更して、塗工した以外は同様にしてハードコートフィルムフィルム24を作製した。
〈中間層組成物24〉
下記材料を攪拌・混合し、中間層塗布組成物24とした。
(添加剤)
ポリオキシエチレンオレイルエーテル(商品名;エマルゲン408、花王株式会社製、HLB値10) 10質量部
(溶媒)
プロピレングリコールモノメチルエーテル 50質量部
メチルエチルケトン 50質量部
〔ハードコートフィルム25の作製〕
ハードコートフィルム1の作製において、中間層のドライ膜厚が0.1μmになるように中間層塗布液の付き量を変更し、かつ中間層組成物を以下に変更して、塗工した以外は同様にしてハードコートフィルム25を作製した。
〈中間層組成物25〉
下記材料を攪拌・混合し、中間層塗布組成物25とした。
(樹脂;熱硬化性)
ウレタン樹脂(商品名:U−333A/B、日本合成化工株式会社製)
130質量部
(添加剤)
ポリオキシエチレンオレイルエーテル(商品名;エマルゲン408、花王株式会社製、HLB値10) 10質量部
(溶媒)
プロピレングリコールモノメチルエーテル 50質量部
メチルエチルケトン 50質量部
〔ハードコートフィルム26の作製〕
ハードコートフィルム2の作製において、中間層のドライ膜厚が0.1μmになるように中間層塗布液の付き量を変更し、かつ中間層組成物を以下に変更して、塗工した以外は同様にしてハードコートフィルム26を作製した。
〔ハードコートフィルム27の作製〕
ハードコートフィルム1の作製において、中間層のドライ膜厚が0.1μmになるように中間層塗布液の付き量を変更し、かつ中間層組成物を以下に変更して、塗工した以外は同様にしてハードコートフィルム27を作製した。
〈中間層組成物27〉
下記材料を攪拌・混合し、中間層塗布組成物27とした。
(添加剤)
ポリエーテル変性シリコーン(商品名;KF−351、信越化学工業株式会社製、
HLB値12) 10質量部
(溶媒)
プロピレングリコールモノメチルエーテル 50質量部
メチルエチルケトン 50質量部
〔ハードコートフィルム28の作製〕
ハードコートフィルム1の作製において、中間層のドライ膜厚が0.1μmになるように中間層塗布液の付き量を変更し、かつ中間層組成物を以下に変更して、塗工した以外は同様にしてハードコートフィルム28を作製した。
〈中間層組成物28〉
下記材料を攪拌・混合し、中間層塗布組成物28とした。
(樹脂;熱硬化性)
ウレタン樹脂(商品名:U−333A/B、日本合成化工株式会社製)
130質量部
(添加剤)
ポリエーテル変性シリコーン(商品名;KF−351、信越化学工業株式会社製、
HLB値12) 10質量部
(溶媒)
プロピレングリコールモノメチルエーテル 50質量部
メチルエチルケトン 50質量部
〔ハードコートフィルムの評価〕
上記作製したハードコートフィルム23〜28について、耐候性試験の光照射時間を250時間に変更した以外は、実施例1と同様にして耐久性試験を実施し、実施例1と同様にして密着性と耐薬品性について評価を行った。得られた結果を下記表2に示した。
Figure 2009134238
表2から判るように中間層が、HLB値が3〜18の化合物を含有し、かつ多官能アクリレートである紫外線硬化樹脂を含有することで、特に優れた密着性及び耐薬品性を有していることが判る。
実施例3
ハードコートフィルム1の作製において、中間層のドライ膜厚を表3記載となるように中間層塗布液の付き量を変更して塗工した以外は、同様にしてハードコートフィルムフィルム29〜31を作製した。
〔ハードコートフィルムの評価〕
上記作製したハードコートフィルム29〜31、ハードコートフィルム1及び23について、耐候性試験の光照射時間を300時間に変更した以外は、実施例1と同様にして耐久性試験を実施し、実施例1と同様にして密着性と耐薬品性について評価を行った。得られた結果を下記表3に示した。
Figure 2009134238
表3から判るように本発明のハードコートフィルムの中間層の膜厚が0.1〜2μmにおいて、特に優れた密着性及び耐薬品性を有していることが判る。
実施例4
〔ハードコートフィルム32〜34の作製〕
ハードコートフィルム1の作製において、中間層組成物の添加剤を表4に記載の化合物に変更した以外は、同様にしてハードコートフィルム32〜34を作製した。
また、これらハードコートフィルム32〜34及びハードコートフィルム2の中間層表面の水に対する接触角についても測定した。水に対する接触角を下記表4に示した。
なお、接触角の測定について、水は純水を使用し、接触角計は協和界面科学株式会社製、商品名DropMaster DM100を用いて測定した。
〔ハードコートフィルムの評価〕
次に、実施例2と同様の条件で、上記作製したハードコートフィルム32〜34、及びハードコートフィルム2について耐久試験を実施し、実施例1と同様にして密着性と耐薬品性の評価を行った。得られた結果も下記表4に示した。
Figure 2009134238
サーフィノール440;アセチレン系化合物(2,4,7,9−テトラメチル−5−デシン4,7−ジオールのポリエトキシレート)、日信化学工業社製
サーフィノール420;アセチレン系化合物(2,4,7,9−テトラメチル−5−デシン4,7−ジオール/2,4,7,9−テトラメチル−5−デシン4,7−ジオールポリエトキシレート)、日信化学工業社製
X−22−4272;ポリエーテル変性シリコーン(信越化学工業株式会社製)
表4の結果から判るように、本発明のハードコートフィルムの中間層表面の水に対する接触角(対水接触角)が65°〜90°において、特に優れた密着性及び耐薬品性を有していることが判る。
実施例5
〔ハードコートフィルム35〜37の作製〕
ハードコートフィルム1の作製において、中間層組成物に一般式(A−1)〜(A−3)で表される化合物を新たに添加した以外は、同様にしてハードコートフィルム35〜37を作製した。
添加した化合物、添加量については表5に示す。
〔ハードコートフィルムの評価〕
上記作製したハードコートフィルム35〜37、ハードコートフィルム1について、耐候性試験の光照射時間を330時間に変更した以外は、実施例1と同様にして耐久性試験を実施し、実施例1と同様にして密着性と耐薬品性の評価を行った。得られた結果を下記表5に示した。
Figure 2009134238
表5の結果から判るように、本発明のハードコートフィルムの中間層に一般式(A−1)〜(A−3)で表される化合物を添加することで、特に優れた密着性及び耐薬品性を有していることが判る。
実施例6
〔ハードコートフィルム38、39及び40の作製〕
ハードコートフィルム2の作製において、中間層組成物を下記の中間層組成物29、30及び31に変更した以外は、同様にしてハードコートフィルム38、39及び40を作製した。
〈中間層塗布組成物29〉
下記材料を攪拌・混合し、中間層塗布組成物29とした。
(導電性粒子分散液Aの調製)
メタノール分散アンチモン複酸化物コロイド(固形分60%、日産化学工業株式会社製、アンチモン酸亜鉛ゾル、商品名:セルナックスCX−Z610M−F2)6.0kgに、イソプロピルアルコール12.0kgを攪拌しながら徐々に添加し、導電性粒子分散液Aを調製した。
(樹脂:多官能アクリレート)
ペンタエリスリトールトリアクリレート 20質量部
ペンタエリスリトールテトラアクリレート 50質量部
(光重合開始剤)
イルガキュア184(チバ・ジャパン社製) 2質量部
イルガキュア907(チバ・ジャパン社製) 5質量部
(添加剤)
ポリエーテル変性シリコーン(商品名;KF−351:信越化学工業株式会社製、
HLB値12) 10質量部
(導電性化合物)
導電性粒子分散液A(アンチモン酸亜鉛ゾル) 50質量部
(溶媒)
プロピレングリコールモノメチルエーテル 10質量部
メチルエチルケトン 50質量部
〈中間層塗布組成物30〉
下記材料を攪拌・混合し、中間層塗布組成物30とした。
(樹脂:多官能アクリレート)
ペンタエリスリトールトリアクリレート 20質量部
ペンタエリスリトールテトラアクリレート 50質量部
(光重合開始剤)
イルガキュア184(チバ・ジャパン社製) 2質量部
イルガキュア907(チバ・ジャパン社製) 5質量部
(添加剤)
ポリエーテル変性シリコーン(商品名;KF−351:信越化学工業株式会社製、
HLB値12) 10質量部
(導電性化合物)
ポリアニリン含有塗剤(ポリアニリン2質量%含有メチルエチルケトン分散液) 60質量部
(溶媒)
プロピレングリコールモノメチルエーテル 10質量部
メチルエチルケトン 32質量部
〈中間層塗布組成物31〉
下記材料を攪拌・混合し、中間層塗布組成物31とした。
(樹脂:多官能アクリレート)
ペンタエリスリトールトリアクリレート 10質量部
ペンタエリスリトールテトラアクリレート 25質量部
(光重合開始剤)
イルガキュア184(チバ・ジャパン社製) 1質量部
イルガキュア907(チバ・ジャパン社製) 3質量部
(樹脂:熱可塑性樹脂)
アクリル樹脂(ダイヤナールBR−108(三菱レイヨン(株)製))35質量部
(添加剤)
ポリエーテル変性シリコーン(商品名;KF−351:信越化学工業株式会社製、
HLB値12) 10質量部
(導電性化合物)
下記導電性化合物P−1 60質量部
(溶媒)
アセトン 20質量部
メタノール 20質量部
イソプロピルアルコール 30質量部
Figure 2009134238
〔ハードコートフィルムの評価〕
上記作製したハードコートフィルム38、39及び40、ハードコートフィルム2について、耐候性試験の光照射時間を330時間に変更した以外は、実施例1と同様にして耐久性試験を実施し、実施例1と同様にして密着性と耐薬品性の評価を行った。また、下記の防塵性についても評価を行った。得られた結果を表6に示した。
(防塵性)
耐久性試験後のハードコートフィルム38、39及び40、ハードコートフィルム2のバックコート面をCRT表面に貼り付け、0.5μm以上のホコリ及びティッシュペーパー屑を930cm(1ft)当たり100〜200万個有する部屋で24時間放置した。その後、表面100cm当たり、付着したホコリとティッシュペーパー屑の数を測定し、20個未満を○、20〜49個を△、50以上を×として評価した。
Figure 2009134238
表6の結果から判るように、ハードコートフィルムの中間層に導電性化合物を添加することで、本発明の目的効果である密着性及び耐薬品性について、特に優れるばかりか、防塵性についても優れることが判る。
実施例7
(反射防止フィルムの作製)
下記手順のとおり、大気圧プラズマ処理したハードコートフィルムのハードコート層上に、低屈折率層用塗布組成物1を塗布して、低屈折率層を形成し、反射防止フィルムを作製した。
(大気圧プラズマ処理)
まず、ハードコートフィルム2、9及び40の作製において、紫外線照射時に窒素パージを行わない以外は同様にして、ハードコートフィルムを作製した。つぎに、これらハードコートフィルムのハードコート層表面に、大気圧プラズマ処理装置を用いて大気圧プラズマ処理による表面処理を行った。
(低屈折率層用塗布組成物1の調製)
次に、大気圧プラズマ処理された各ハードコートフィルムのハードコート層表面に、低屈折率層を形成し、反射防止フィルムを作製するにあたり、まず含フッ素ポリマー1、ゾル液I、及び中空シリカ微粒子のイソプロピルアルコール分散液を調製した後、低屈折率層用塗布組成物1を調製した。
〈含フッ素ポリマー1の調製〉
内容量100mlのステンレス製撹拌機付オートクレーブに、酢酸エチル40ml、ヒドロキシエチルビニルエーテル14.7g、および過酸化ジラウロイル0.55gを仕込み、反応系内を脱気して窒素ガスで置換した。さらにヘキサフルオロプロピレン(HFP)25gをオートクレーブ中に導入して、温度65℃まで昇温した。オートクレーブ内の温度が65℃に達した時点の圧力は、5.4kg/cmであった。該温度を保持し、8時間反応を続け、圧力が3.2kg/cmに達した時点で加熱をやめ、放冷した。室温まで内温が下がった時点で、未反応のモノマーを追い出し、オートクレーブを開放して、反応液を取り出した。得られた反応液を大過剰のヘキサンに投入し、デカンテーションにより溶剤を除去することにより、沈殿したポリマーを取り出した。さらにこのポリマーを少量の酢酸エチルに溶解して、ヘキサンから2回再沈殿を行うことによって、残存モノマーを完全に除去し、乾燥した。乾燥後ポリマー28gを得た。つぎに、該ポリマーの20gをN,N−ジメチルアセトアミド100mlに溶解、氷冷下アクリル酸クロライド11.4gを滴下した後、室温で10時間攪拌した。反応液に酢酸エチルを加え水洗、有機層を抽出後濃縮し、得られたポリマーをヘキサンで再沈殿させることにより、含フッ素ポリマー1を19g得た。
〈ゾル液Iの調製〉
攪拌機、還流冷却器を備えた反応器に、メチルエチルケトン120質量部、アクリロイルオキシプロピルトリメトキシシラン(KBM−5103、信越化学工業株式会社製)100質量部、ジイソプロポキシアルミニウムエチルアセトアセテート3質量部を入れて混合したのち、イオン交換水30質量部を加え、温度60℃で4時間反応させたのち、室温まで冷却し、ゾル液Iを得た。
ゾル液I中の反応生成物の質量平均分子量は1600であり、オリゴマー成分以上の成分のうち、分子量が1000〜20000の成分は100質量%であった。またガスクロマトグラフィー分析から、原料のアクリロイルオキシプロピルトリメトキシシランは、全く残存していなかった。
〈中空シリカ微粒子のイソプロピルアルコール分散液の調製〉
工程(a):平均粒径5nm、SiO濃度20質量%のシリカゾル100gと、純水1900gの混合物を80℃に加温した。この反応母液のpHは10.5であり、同母液にSiO2として0.98質量%のケイ酸ナトリウム水溶液9000gと、Alとして1.02質量%のアルミン酸ナトリウム水溶液9000gとを、同時に添加した。その間、反応液の温度を80℃に保持した。反応液のpHは添加直後、12.5に上昇し、その後、ほとんど変化しなかった。添加終了後、反応液を室温まで冷却し、限外濾過膜で洗浄して固形分濃度20質量%のSiO・Al核粒子分散液を調製した。
工程(b):この核粒子分散液500gに、純水1700gを加えて温度98℃に加温し、この温度を保持しながら、ケイ酸ナトリウム水溶液を陽イオン交換樹脂で脱アルカリして得られたケイ酸液(SiO濃度3.5質量%)3000gを添加して第1シリカ被覆層を形成した核粒子の分散液を得た。
工程(c):ついで、限外濾過膜で洗浄して固形分濃度13質量%になった第1シリカ被覆層を形成した核粒子分散液500gに純水1125gを加え、さらに濃塩酸(35.5%)を滴下してpH1.0とし、脱アルミニウム処理を行った。ついで、pH3の塩酸水溶液10Lと純水5Lを加えながら限外濾過膜で溶解したアルミニウム塩を分離し、第1シリカ被覆層を形成した核粒子の構成成分の一部を除去したSiO・Al多孔質粒子の分散液を調製した。
工程(d):そして、上記の多孔質粒子分散液1500gと、純水500g、エタノール1、750g、及び28%アンモニア水626gとの混合液を、温度35℃に加温した後、エチルシリケート(SiO 28質量%)104gを添加し、第1シリカ被覆層を形成した多孔質粒子の表面を、エチルシリケートの加水分解重縮合物で被覆して、第2シリカ被覆層を形成した。ついで、限外濾過膜を用いて溶媒をイソプロピルアルコールに置換した固形分濃度20質量%の中空シリカ微粒子1の分散液を調製した。この中空シリカ微粒子の第1シリカ被覆層の厚さは、3nm、平均粒径は45nm、MO/SiO(モル比)は0.0017、屈折率は1.28であった。ここで、平均粒径、及び粒径の変動係数は動的光散乱法により測定した。
(低屈折率層用塗布組成物1の調製)
メチルエチルケトン 200質量部
シクロヘキサノン 150質量部
含フッ素ポリマー1 30質量部
メタクリレート基含有シリコーン樹脂 3質量部
(商品名、RMS−033、Gelest株式会社製)
光ラジカル発生剤(商品名、イルガキュア907、チバ・ジャパン社製)
3質量部
ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(日本化薬株式会社製) 7質量部
ゾル液I(溶媒揮発後の固形分として27質量部) 45質量部
中空シリカ微粒子のイソプロピルアルコール分散液 100質量部
上記低屈折率層用塗布組成物1のうち、メチルエチルケトン及びシクロヘキサノンに対して、上記で調製した含フッ素ポリマー1、メタクリレート基含有シリコーン樹脂、光ラジカル発生剤、ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物を上記の割合で加えて溶解した後に、上記ゾル液Iと、上記調整した中空シリカ微粒子のイソプロピルアルコール分散液を上記の割合で添加した。つぎに、塗布組成物全体の固形分濃度が7質量%となるようにメチルエチルケトンで希釈して、低屈折率層用塗布組成物1を調製した。
(反射防止フィルムの作製)
大気圧プラズマ処理された各ハードコートフィルムのハードコート層表面に、上記の低屈折率層用塗布組成物1をダイコートにより、酸素濃度が1.0体積%以下の雰囲気になるように窒素パージしながら、0.15J/cmの紫外線を高圧水銀灯で照射して膜厚が86nmになるように塗布して、低屈折率層を設け、反射防止フィルム1〜3を作製した。低屈折率層の屈折率は1.44であった。
〔反射防止フィルムの評価〕
(耐久性試験、及び密着性と耐薬品性評価)
上記作製した反射防止フィルム1〜3を反射防止層を表面にして、耐候性試験機(アイスーパーUVテスター、岩崎電気株式会社製)にて、200時間光照射し、耐久性試験済み反射防止フィルムを作製した。
次に、これら耐久性試験済み反射防止フィルムを温度25℃、相対湿度60%の条件で、2時間調湿した後、実施例1に記載の試験方法により密着性及び耐薬品性について評価した。得られた結果を下記の表7に示した。
Figure 2009134238
表7の結果から判るように、本発明の中間層を有するハードコートフィルム2及び40のハードコート層上に低屈折率層を設けた反射防止フィルム1及び3は、本発明の目的効果である密着性及び耐薬品性について優れていることが判る。また、反射防止フィルム1〜3について、バックコート面に粘着剤付きの黒色アクリル板を貼り付けた後、低屈折率層面から、CM−3700d(コニカミノルタセンシング株式会社製)を用いて反射率を測定した。結果、本発明の反射防止フィルムの平均反射率は、全て1.5%以下であり、良好な外光反射防止機能を有していた。
実施例8
下記の方法に従って、ハードコートフィルム1、2、9及び10を用いて、位相差フィルムであるコニカミノルタタックKC8UCR−3(コニカミノルタオプト(株)製)、各々1枚を偏光板保護フィルムとして用いて偏光板を作製した。
(a)偏光膜の作製
厚さ120μmの長尺のポリビニルアルコールフィルムを、一軸延伸(温度110℃、延伸倍率5倍)した。これをヨウ素0.075g、ヨウ化カリウム5g、水100gの比率からなる水溶液に60秒間浸漬し、次いでヨウ化カリウム6g、ホウ酸7.5g、水100gの比率からなる68℃の水溶液に浸漬した。これを水洗、乾燥し長尺の偏光膜を得た。
(b)偏光板の作製
次いで、下記工程1〜5に従って、偏光膜と偏光板用保護フィルムとを貼り合わせて偏光板を作製した。
工程1:ハードコートフィルム、及びKC8UCR−3を2mol/Lの水酸化カリウム溶液に45℃で120秒間浸漬し、次いで水洗、乾燥させた。ハードコートフィルムのハードコート層を設けた面には予め剥離性の保護フィルム(PET製)を張り付けて保護した。
工程2:前述の偏光膜を固形分2質量%のポリビニルアルコール接着剤槽中に1〜2秒間浸漬した。
工程3:工程2で偏光膜に付着した過剰の接着剤を軽く取り除き、それを工程1でアルカリ処理したKC8UCR−3とハードコートフィルムで挟み込んで、積層配置した。
工程4:2つの回転するローラにて20〜30N/cmの圧力で約2m/minの速度で貼り合わせた。このとき気泡が入らないように注意して実施した。
工程5:80℃の乾燥機中にて工程4で作製した試料を2分間乾燥処理し、偏光板を作製した。
市販の液晶表示パネル(NEC製 カラー液晶ディスプレイ MultiSync LCD1525J:型名 LA−1529HM)の最表面の偏光板を注意深く剥離し、ここに偏光方向を合わせた上記偏光板を、ハードコートフィルムが表面側になるように張り付け液晶表示装置を作製した。
評価の結果、比較例のハードコートフィルム9及び10を使用したものに比べ、本発明のハードコートフィルム1及び2を使用した液晶表示装置は視認性、色調、表示性ともに良好であった。
実施例9
下記の方法に従って、反射防止フィルム1〜3を用いて、位相差フィルムであるコニカミノルタタックKC8UCR−3(コニカミノルタオプト(株)製)、各々1枚を偏光板保護フィルムとして用いて偏光板を作製した。
(a)偏光膜の作製
厚さ120μmの長尺のポリビニルアルコールフィルムを、一軸延伸(温度110℃、延伸倍率5倍)した。これをヨウ素0.075g、ヨウ化カリウム5g、水100gの比率からなる水溶液に60秒間浸漬し、次いでヨウ化カリウム6g、ホウ酸7.5g、水100gの比率からなる68℃の水溶液に浸漬した。これを水洗、乾燥し長尺の偏光膜を得た。
(b)偏光板の作製
次いで、下記工程1〜5に従って、偏光膜と偏光板用保護フィルムとを貼り合わせて偏光板を作製した。
工程1:反射防止フィルム、及びKC8UCR−3を2mol/Lの水酸化カリウム溶液に50℃で120秒間浸漬し、次いで水洗、乾燥させた。反射防止フィルムの低屈折率層を設けた面には予め剥離性の保護フィルム(PET製)を張り付けて保護した。
工程2:前述の偏光膜を固形分2質量%のポリビニルアルコール接着剤槽中に1〜2秒間浸漬した。
工程3:工程2で偏光膜に付着した過剰の接着剤を軽く取り除き、それを工程1でアルカリ処理したKC8UCR−3と反射フィルムで挟み込んで、積層配置した。
工程4:2つの回転するローラにて20〜30N/cmの圧力で約2m/minの速度で貼り合わせた。このとき気泡が入らないように注意して実施した。
工程5:80℃の乾燥機中にて工程4で作製した試料を2分間乾燥処理し、偏光板を作製した。
市販の液晶表示パネル(NEC製 カラー液晶ディスプレイ MultiSync LCD1525J:型名 LA−1529HM)の最表面の偏光板を注意深く剥離し、ここに偏光方向を合わせた上記偏光板を、反射防止フィルムが表面側になるように張り付け液晶表示装置を作製した。
評価の結果、比較例の反射防止フィルム2を使用したものに比べ、本発明の反射防止フィルム1及び3を使用した液晶表示装置は視認性、色調、表示性ともに良好であった。

Claims (11)

  1. 透明フィルム基材とハードコート層との間に中間層を有するハードコートフィルムにおいて、該中間層が、少なくともHLB値が3〜18の化合物を含有することを特徴とするハードコートフィルム。
  2. 前記HLB値が8〜14の化合物を含有することを特徴とする請求項1に記載のハードコートフィルム。
  3. 前記中間層表面の対水接触角が65°〜90°であることを特徴とする請求項1または2項に記載のハードコートフィルム。
  4. 前記中間層が紫外線硬化性樹脂を含有することを特徴とする請求項1〜3のいずれか1項に記載のハードコートフィルム。
  5. 前記中間層が導電性化合物を含有することを特徴とする請求項1〜4のいずれか1項に記載のハードコートフィルム。
  6. 前記中間層の膜厚が0.1μm〜2μmであることを特徴とする請求項1〜5のいずれか1項に記載のハードコートフィルム。
  7. 前記透明フィルム基材がセルロースエステルフィルムであることを特徴とする請求項1〜6のいずれか1項に記載のハードコートフィルム。
  8. 前記中間層が下記一般式(A−1)〜(A−3)で表される化合物を含有することを特徴とする請求項1〜7のいずれか1項に記載のハードコートフィルム。
    Figure 2009134238
    〔式中、Rはアルキル基、シクロアルキル基、アリール基、ヒドロキシル基、アルコキシカルボニル基、アミノ基、カルボキシル基(その塩を含む)またはスルホ基(その塩を含む)を表す。R及びRはそれぞれ水素原子、ハロゲン原子、アミノ基、ニトロ基、ヒドロキシル基、アルコキシカルボニル基、カルボキシル基(その塩を含む)またはスルホ基(その塩を含む)を表す。Mは水素原子、アルカリ金属原子またはアンモニウム基を表す。〕
    Figure 2009134238
    〔式中、Rは水素原子、ハロゲン原子、アルキル基、アリール基、ハロゲン化アルキル基、−R12−OR13、−CONHR14(ここでR12はアルキレン基を表し、R13及びR14はそれぞれ水素原子、アルキル基またはアリールアルキル基を表す)またはアリールアルキル基を表し、R及びRはそれぞれ水素原子、ハロゲン原子、ハロゲン化アルキル基またはアルキル基を表し、Rは水素原子、ハロゲン原子、アルキル基、アリール基、ハロゲン化アルキル基、アリールアルキル基、−R15−OR16または−CONHR17(ここでR15はアルキレン基を表し、R16及びR17はともに水素原子またはアルキル基を表す)を表し、R、R、R10及びR11はそれぞれ水素原子、ハロゲン原子、ヒドロキシル基、アルキル基、アミノ基またはニトロ基を表す。〕
  9. 請求項1〜8のいずれか1項に記載のハードコートフィルムのハードコート層上に、直接又は他の層を介して低屈折率層が積層されていることを特徴とする反射防止フィルム。
  10. 請求項1〜8のいずれか1項に記載のハードコートフィルム、または請求項9に記載の反射防止フィルムを、少なくとも一方の面に有することを特徴とする偏光板。
  11. 請求項1〜8のいずれか1項に記載のハードコートフィルム、請求項9に記載の反射防止フィルムまたは請求項10に記載の偏光板を有することを特徴とする表示装置。
JP2008119600A 2007-11-06 2008-05-01 ハードコートフィルム、反射防止フィルム、偏光板及び表示装置 Pending JP2009134238A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008119600A JP2009134238A (ja) 2007-11-06 2008-05-01 ハードコートフィルム、反射防止フィルム、偏光板及び表示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007288222 2007-11-06
JP2008119600A JP2009134238A (ja) 2007-11-06 2008-05-01 ハードコートフィルム、反射防止フィルム、偏光板及び表示装置

Publications (1)

Publication Number Publication Date
JP2009134238A true JP2009134238A (ja) 2009-06-18

Family

ID=40866125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008119600A Pending JP2009134238A (ja) 2007-11-06 2008-05-01 ハードコートフィルム、反射防止フィルム、偏光板及び表示装置

Country Status (1)

Country Link
JP (1) JP2009134238A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010157471A (ja) * 2009-01-05 2010-07-15 Shin Etsu Polymer Co Ltd 透明導電シートおよびタッチパネル
JP2011029175A (ja) * 2009-06-30 2011-02-10 Jsr Corp 硬化性組成物、導電性積層体およびその製造方法、ならびにタッチパネル
WO2011016306A1 (ja) * 2009-08-04 2011-02-10 大日本印刷株式会社 光学積層体、偏光板及び画像表示装置
JP2012139948A (ja) * 2011-01-05 2012-07-26 Konica Minolta Holdings Inc 近赤外線反射フィルム
JP2014503855A (ja) * 2010-12-31 2014-02-13 コーロン インダストリーズ インク 輝度増強フィルム及びこれを含むバックライトユニット
WO2015012014A1 (ja) * 2013-07-23 2015-01-29 コニカミノルタ株式会社 偏光板及びva型液晶表示装置
WO2016104079A1 (ja) * 2014-12-26 2016-06-30 株式会社きもと ベース基材シート及び透明導電性積層体
KR20170000668A (ko) * 2015-06-24 2017-01-03 동우 화인켐 주식회사 하드코팅 조성물 및 이를 이용한 하드코팅 필름
WO2017141516A1 (ja) * 2016-02-19 2017-08-24 富士フイルム株式会社 積層体、偏光板及び画像表示装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000025181A (ja) * 1998-07-10 2000-01-25 Teijin Ltd 易接着性フィルムおよびそれを用いた積層体

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000025181A (ja) * 1998-07-10 2000-01-25 Teijin Ltd 易接着性フィルムおよびそれを用いた積層体

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010157471A (ja) * 2009-01-05 2010-07-15 Shin Etsu Polymer Co Ltd 透明導電シートおよびタッチパネル
JP2011029175A (ja) * 2009-06-30 2011-02-10 Jsr Corp 硬化性組成物、導電性積層体およびその製造方法、ならびにタッチパネル
WO2011016306A1 (ja) * 2009-08-04 2011-02-10 大日本印刷株式会社 光学積層体、偏光板及び画像表示装置
JP2011033948A (ja) * 2009-08-04 2011-02-17 Dainippon Printing Co Ltd 光学積層体、偏光板及び画像表示装置
CN102472842A (zh) * 2009-08-04 2012-05-23 大日本印刷株式会社 光学层积体、偏振片和图像显示装置
TWI448718B (zh) * 2009-08-04 2014-08-11 Dainippon Printing Co Ltd An optical laminate, a polarizing plate, and an image display device
JP2014503855A (ja) * 2010-12-31 2014-02-13 コーロン インダストリーズ インク 輝度増強フィルム及びこれを含むバックライトユニット
JP2012139948A (ja) * 2011-01-05 2012-07-26 Konica Minolta Holdings Inc 近赤外線反射フィルム
WO2015012014A1 (ja) * 2013-07-23 2015-01-29 コニカミノルタ株式会社 偏光板及びva型液晶表示装置
CN105408782A (zh) * 2013-07-23 2016-03-16 柯尼卡美能达株式会社 偏振片及va型液晶显示装置
JPWO2015012014A1 (ja) * 2013-07-23 2017-03-02 コニカミノルタ株式会社 偏光板及びva型液晶表示装置
WO2016104079A1 (ja) * 2014-12-26 2016-06-30 株式会社きもと ベース基材シート及び透明導電性積層体
JPWO2016104079A1 (ja) * 2014-12-26 2017-10-05 株式会社きもと ベース基材シート及び透明導電性積層体
TWI688479B (zh) * 2014-12-26 2020-03-21 日商木本股份有限公司 基底基材薄片及透明導電性層合體
KR20170000668A (ko) * 2015-06-24 2017-01-03 동우 화인켐 주식회사 하드코팅 조성물 및 이를 이용한 하드코팅 필름
KR102031655B1 (ko) 2015-06-24 2019-10-14 동우 화인켐 주식회사 하드코팅 조성물 및 이를 이용한 하드코팅 필름
WO2017141516A1 (ja) * 2016-02-19 2017-08-24 富士フイルム株式会社 積層体、偏光板及び画像表示装置

Similar Documents

Publication Publication Date Title
JP2011022456A (ja) ハードコートフィルム
JP2009134238A (ja) ハードコートフィルム、反射防止フィルム、偏光板及び表示装置
CN100468083C (zh) 防反射膜、防反射膜的制法、偏振片及显示装置
JP5408135B2 (ja) 光学フィルム、反射防止フィルム、偏光板及び液晶表示装置
JP5321456B2 (ja) クリアーハードコートフィルム、これを用いた反射防止フィルム、偏光板、及び表示装置
JP4924344B2 (ja) 防眩フィルム、その製造装置、防眩性反射防止フィルム、偏光板、及び表示装置
JP2009042351A (ja) 光学フィルム、偏光板及び表示装置
JP2009196202A (ja) ハードコートフィルム、これを用いた反射防止フィルム、偏光板、及び表示装置
JP2010078642A (ja) 反射防止フィルム、偏光板及び画像表示装置
JP2009036818A (ja) 防眩性フィルム、防眩性反射防止フィルム、偏光板および画像表示装置
JP4857801B2 (ja) 反射防止フィルム、反射防止フィルムの製造方法、偏光板及び表示装置
JP4935393B2 (ja) 反射防止フィルム、及びそれを用いた偏光板、表示装置
JP2010039418A (ja) 反射防止フィルム、反射防止フィルムの製造方法、偏光板及び画像表示装置
JP5217906B2 (ja) 偏光板、液晶表示装置、及びips(インプレーンスイッチング)モード型液晶表示装置
JP5245426B2 (ja) 機能性フィルム、偏光板、及び液晶表示装置
JP5158075B2 (ja) 反射防止フィルム、それを用いた偏光板、及び表示装置
JPWO2009075201A1 (ja) 防眩性フィルム、偏光板及び液晶表示装置
JP2010008659A (ja) ハードコートフィルム、反射防止フィルム、ハードコートフィルムの製造方法、反射防止フィルムの製造方法、偏光板、及び画像表示装置
JP5182521B2 (ja) 反射防止層用組成物、反射防止フィルム、偏光板、及び画像表示装置
JP5309677B2 (ja) ハードコートフィルムの製造方法
JP2009096955A (ja) 光学フィルム、偏光板、液晶表示装置
JP2010191023A (ja) 反射防止フィルム、偏光板及び画像表示装置
JP5168278B2 (ja) 防眩性フィルム、これを用いた防眩性反射防止フィルム、偏光板、及び表示装置
JP2009288413A (ja) ハードコートフィルムの製造方法、ハードコートフィルム、反射防止フィルム、偏光板、及び画像表示装置
JP2009186651A (ja) 反射防止フィルムの製造方法、反射防止フィルム、偏光板及び画像表示装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101020

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121204