JP2009131406A - 内視鏡システム - Google Patents

内視鏡システム Download PDF

Info

Publication number
JP2009131406A
JP2009131406A JP2007309234A JP2007309234A JP2009131406A JP 2009131406 A JP2009131406 A JP 2009131406A JP 2007309234 A JP2007309234 A JP 2007309234A JP 2007309234 A JP2007309234 A JP 2007309234A JP 2009131406 A JP2009131406 A JP 2009131406A
Authority
JP
Japan
Prior art keywords
bending
information
endoscope
motor
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007309234A
Other languages
English (en)
Other versions
JP5137540B2 (ja
Inventor
Hideki Tanaka
秀樹 田中
Jun Hasegawa
潤 長谷川
Toshio Nakamura
俊夫 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Medical Systems Corp
Original Assignee
Olympus Medical Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Medical Systems Corp filed Critical Olympus Medical Systems Corp
Priority to JP2007309234A priority Critical patent/JP5137540B2/ja
Publication of JP2009131406A publication Critical patent/JP2009131406A/ja
Application granted granted Critical
Publication of JP5137540B2 publication Critical patent/JP5137540B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • A61B1/009Flexible endoscopes with bending or curvature detection of the insertion part

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Endoscopes (AREA)

Abstract

【課題】湾曲制御のための情報の取得の周期が異なる場合、或いは形状検出による情報の取得のために時間遅延が発生する場合にも円滑な湾曲制御を実現することができる内視鏡システムを提供する。
【解決手段】エンコーダ出力でモータ43を駆動制御するモータ制御系71とUPD装置11による内視鏡の形状検出により、モータ回転角を推定する位置フィードバック制御系72とはT1<T2となる異なる周期T1,周期T2で動作する。モータ角推定部73から出力される現在のモータ推定角Sを目標モータ角Dから減算した差分値を周期T1に相当する値に補正して、周期T1でエンコーダ出力が入力される電圧設定部74に周期T1で出力する。
【選択図】図11

Description

本発明は、体腔内に挿入され、内視鏡検査に使用される内視鏡システムに関する。
近年、内視鏡は、医療分野等において広く用いられるようになった。また、内視鏡は、体腔内等に挿入される挿入部の改良や湾曲操作をモータを用いて電動化し、操作性を改善する検討が行われている。
しかし、腸管内で内視鏡先端を目標の位置に移動、目標とするライン(例えば、腸管の中心線)を通過させることは経験の浅いドクタ(術者)にとって難しい操作であるため、内視鏡画像から内視鏡先端を向ける方向を検出(例えば、暗部を検出)し、検出した方向から内視鏡先端を向ける目標位置を求め、現在の内視鏡先端位置を内視鏡先端目標位置に一致させるように、湾曲制御動作を電気的に行う内視鏡システムがある。
内視鏡の湾曲動作は、湾曲部に接続されたワイヤを電気的な湾曲駆動手段としてのモータの回転駆動力により押し引きして湾曲部の関節を駆動するため、ワイヤの伸びや関節のガタが発生すると、実際の湾曲量は、モータに付加されたモータの回転による駆動位置を検出するエンコーダ出力から算出された湾曲量とはならない。
そこで、従来例では、エンコーダ出力で湾曲駆動制御を行うモータ制御系の他に、内視鏡の(挿入)形状を検出するためのコイル位置/方向検出装置としてのUPD装置を設け、UPD装置により検出されるコイル位置/方向により、挿入部の先端側の3次元座標を推定した結果をフィードバックして目標モータ回転角(目標モータ角と略記)を決定することにより、挿入部の位置/方向の精度を向上して湾曲制御を行うようにしている。
図19は従来例の内視鏡システムにおける内視鏡湾曲駆動制御装置を構成するモータ制御系71及び位置フィードバック制御系72の機能的な構成を示す。
従来例では、目標モータ角Dと、UPD装置11によるコイル位置/方向から、さらにモータ回転角(モータ角と略記)推定部73を経て算出される現在のモータ推定角Sとの差分値がモータ制御系71のモータ電圧設定部(電圧設定部と略記)74に入力される。 この電圧設定部74には、モータ43に付加されたエンコーダによるエンコーダ出力による現在のモータ角が入力され、この現在のモータ角から上記差分値に対応するずれのモータ角分だけモータ43を回転させるモータ電圧(電圧と略記)を、このモータ43に出力する。
そして、この電圧によるモータ43の回転出力が内視鏡湾曲駆動出力となり、湾曲部を湾曲させる。また、その湾曲がコイルの位置及び方向変化(に対応したコイル磁気)となり、それがUPD装置11により検出されるフィードバック系が形成される。
この場合、モータの駆動位置の検出情報としてのエンコーダ出力を用いてモータを駆動する電圧を設定するモータ制御(湾曲制御)を行う時間周期(以下、単に周期)は、図20に示すようにT1である。
これに対して、UPD装置11によるコイル位置/方向の検出(或いは取得)は、その検出の周期がT2となる。従って、その情報をモータ制御系71で現在のモータ推定角Sとして湾曲制御の情報として利用する場合、その情報が取得される周期はT2になる。よって、前記目標モータ角Dは、周期T2で決定されることになる。
この場合、コイル位置/方向の検出は、所定周波数の駆動信号が印加されるコイルにより発生される磁界発生量をA/D変換して、サンプリングし、そのサンプリングした値から複数の各コイル位置/方向の情報をそれぞれ算出する(時間を要する処理である)ため、周期T2>周期T1の関係になる。
そのため、前述のとおり、モータ43を実際に駆動する電圧の決定は、周期T1より過去の周期T2のコイル位置/方向に基づくモータ推定角Sによって決定されてしまうこととなる。
その結果、従来例においては、円滑な内視鏡湾曲動作を行わせることができず、例えば湾曲動作が振動および発散したり、コマ送り的なぎこちないステップ動作になる。
このように従来例では内視鏡先端位置(或いは内視鏡の挿入形状)の検出手段の検出情報に基づいて、先端側の湾曲状態を補正して湾曲動作させる場合、エンコーダ出力による湾曲制御の周期T1よりも長い周期T2でモータ角の補正を行うため、円滑な湾曲動作を行わせることが困難になる。
一方、例えば特開2006−116289号公報には、モード切替により内視鏡画像に対応した湾曲制御と、UPD装置を用いて得たUPD画像に対応した湾曲制御を行うことができる湾曲制御装置が開示されている。
特開2006−116289号公報
しかし、上記公報の従来例においても内視鏡で暗部を検出し、UPD装置の情報に基づいて暗部方向に自動的に湾曲させようとする場合、上述したようにUPD装置の情報としてのコイル位置/方向が得られるまでに時間遅延が発生する。
このように従来例では、湾曲駆動手段の駆動位置を検出する第1の情報の検出(取得)の周期と、内視鏡の形状検出手段による第2の情報の取得の周期とが異なるため、或いは第2の情報の取得に時間遅延があるため円滑な湾曲制御を行うことが困難になる。
このため、湾曲制御のための情報の取得の周期が異なる場合、或いは形状検出による情報の取得のために時間遅延が発生する場合にも円滑な湾曲制御を実現することができる、換言すると第1の周期と第2の周期との相違に基づく影響を軽減して円滑な湾曲制御を実現することができる内視鏡システムが望まれる。
本発明は上述した点に鑑みてなされたもので、湾曲制御のための情報の取得の周期が異なる場合、或いは形状検出による情報の取得のために時間遅延が発生する場合にも円滑な湾曲制御を実現することができる内視鏡システムを提供することを目的とする。
本発明の内視鏡システムは、被検体を撮像する撮像手段及び湾曲自在の湾曲部を備えた内視鏡と、
前記湾曲部を電気的に湾曲駆動する湾曲駆動部と、
前記湾曲駆動手段の時間的な駆動位置情報を、第1の情報として第1の時間周期で取得する第1の情報取得部と、
前記内視鏡先端側を目標とする方向に湾曲させるために前記内視鏡先端側の形状情報を第2の情報として第2の時間周期で取得する第2の情報取得部と、
前記第1の時間周期に対して前記第2の時間周期が長くなる時間周期の相違の場合における前記第2の情報を第1の時間周期に相当する情報への補正と、前記第1の情報の検出に対して、前記第2の情報の取得までに発生する時間遅延に起因する前記第2の情報の補正との少なくとも一方の補正を行う補正部と、
前記第1の情報と前記補正部により補正された第2の情報とを用いて前記湾曲駆動部の湾曲制御を行う湾曲制御部と、
を具備することを特徴とする。
本発明によれば、湾曲制御のための情報の取得の周期が異なる場合、或いは形状検出による情報の取得のために時間遅延が発生する場合にも円滑な湾曲制御を実現することができる。
以下、図面を参照して本発明の実施例を説明する。
図1から図12は本発明の実施例1に係り、図1は本発明の実施例1の内視鏡システムの構成を使用例の状態で示し、図2は内視鏡装置の外観例を示し、図3は内視鏡の内部構成を示し、図4は挿入部の先端側のコイルの配置例を示し、図5は検出される挿入形状を示し、図6A〜図6Cは挿入形状データ、フレームデータ、コイル座標データの例を示す。
図7はPC本体の機能的なブロック構成を示し、図8はメイン処理部の機能的なブロック構成を示し、図9は内視鏡先端の向きと湾曲させたい方向との湾曲角を形成する角θ及びφを示し、図10は湾曲量制御処理部による湾曲角からモータ電圧を生成する処理機能を示し、図11は内視鏡湾曲駆動制御装置の制御機能的構成を示し、図12は本実施例における補正手段により目標モータ角に向けての制御特性例を示す。
図1に示すように、本発明の実施例1の内視鏡システム1は、内視鏡検査を行う内視鏡2、光源装置3、プロセッサ4及び内視鏡モニタ5を備えた内視鏡装置6と、内視鏡2により撮像された内視鏡画像に対して画像処理及び湾曲制御の処理を行うパーソナルコンピュータ本体(以下、PC本体と略記)7及びPCモニタ8と、内視鏡2の挿入部9における少なくともその先端側の位置検出を含む内視鏡形状検出手段としてのUPD装置11とを有する。
図1に示すように内視鏡2は、ベッド12に横たわる被検体としての患者13の体腔内(管腔内)に挿入される細長の挿入部9と、その後端に設けられた操作部14とを有する。この操作部14から延出されたユニバーサルケーブル15の端部のコネクタは、照明光を発生する光源装置3と、信号処理を行う信号処理装置としてのプロセッサ4とに接続される。
図2に示すように挿入部9は、その先端に設けられた先端部10と、この先端部10の後端に設けられ、湾曲自在の湾曲部18と、この湾曲部18の後端から操作部14まで延出された可撓性を有する可撓部19とを有する。
操作部14には、術者20が所望とする方向に湾曲部18を湾曲指示操作を行う湾曲指示操作手段としての例えばジョイスティック21が設けてある。そして、術者20は、このジョイスティック21を操作することにより、この操作部14内部に設けられた電気的な湾曲駆動手段を形成するモータユニット22を介して、湾曲部18を電気的に湾曲することができる。
また、術者20が後述する自動湾曲制御モードを選択した場合においては、PC本体7によるモータ制御により、挿入部9の先端側を挿入部9が挿通される管腔の走行方向に向くようにモータユニット22を介して湾曲部18の湾曲制御を電気的に行う。
また、図1に示すように、挿入部9がその軸の回りで捻られた(ひねられた)場合の捻り量を検出できるように、挿入部9における例えば後端側の外周面に捻り量検出ユニット23が設けてある。
なお、図1における内視鏡装置6としては、例えば図2に示すような外観である。この図2では、PC本体7は内視鏡2内のモータユニット22の制御ユニットとして内視鏡装置6を構成している。
また、図1では内視鏡2にジョイスティック21が用いられているが、図2に示すようにジョイパッドで湾曲指示操作手段を形成しても良い。
本実施例では、術者20が湾曲指示操作手段としての例えばジョイスティック21を手動(マニュアル)で湾曲操作を行うことにより、先端部10側を管腔の走行方向に設定して内視鏡2を挿入する手動湾曲による通常の湾曲制御モードの他に、内視鏡画像から管腔内の暗部の位置を(目標位置として)画像処理により3次元的に推定すると共に、挿入部9の先端側の挿入形状を推定し、挿入部9の先端が目標位置の方向に向くように湾曲部18を電気的に湾曲制御する自動湾曲制御モードを備える。
図3に示すように、挿入部9内には照明光を伝送するライトガイド31が挿通され、このライトガイド31は、図1或いは図2に示す操作部14,ユニバーサルケーブル15を経てその後端が光源装置3に接続される。
このライトガイド31の後端面には、光源装置3内の図示しないランプからの照明光が入射される。そして、ライトガイド31により伝送された照明光は、先端部10に設けられた照明窓に固定されたライトガイド先端面から前方に出射される。
そして、照明窓からこの挿入部9の長手軸の前方側に出射される照明光により、挿入部9が挿入される体腔内における長手軸の前方側を照明する。図3に示すように照明窓に隣接して設けられた観察窓には、光学像を結ぶ対物レンズ32が取り付けられており、その観察視野或いは撮像範囲は照明光で照明される。
この光学像を結ぶ対物レンズ32と、その結像位置に配置された固体撮像素子としての例えばCCD33とにより撮像装置34が形成されている。
このCCD33により光電変換されたCCD出力信号或いは撮像信号は、プロセッサ4に入力される。このプロセッサ4により撮像信号に対する信号処理を行い、内視鏡画像を内視鏡モニタ5に表示する内視鏡画像信号(映像信号)として例えばRGB信号等を生成する。内視鏡画像信号は、内視鏡モニタ5に入力され、内視鏡モニタ5の内視鏡画像表示エリアに内視鏡画像が表示される。
なお、この内視鏡画像信号は、画像処理及びモータ制御(或いは湾曲制御)を行う画像処理/モータ制御装置としてのPC本体7にも入力され、挿入部9の先端を体腔内の走行方向に挿入させるための位置情報の検出の画像処理に利用される。
また、本実施例に係る内視鏡2においては、挿入部9内には、挿入部9の挿入形状(内視鏡形状ともいう)を検出するために、それぞれ位置情報を発生する位置情報発生手段として複数のUPDコイル(以下、単にコイルという)36a、36b、36c、…が例えば先端部10から可撓部19における適宜の位置まで、例えば所定間隔で配置されている。
そして、これらのコイル36a、36b、36c、…の各コイル位置を検出することにより、挿入部9の挿入形状を算出することができる。特に、挿入部9の先端側の複数のコイル、例えば36a、36b、36cの各位置を検出することにより、挿入部9の先端位置の他に、その長手軸の方向(向き)を、先端側の挿入形状として検出する。
また、本実施例では、図4に示すように長手軸の方向に配置されたコイル36a、36b、36cの他に、例えば長手軸に配置されたコイル36aと直交する方向で、湾曲部18を湾曲させる場合の上方向の湾曲方向(Up湾曲方向或いは単にUp方向という)に、そのソレノイドの軸(巻線の軸)を設定したコイル36a′が、コイルaに隣接して先端部10内に配置されている。この場合、コイル36aとコイル36a′の巻線の方向と直交させた配置となっている。なお、コイル36aとコイル36a′の巻線の方向と直交させた配置に限らす、巻線の方向を平行にしても良い。
なお、図4においては、コイル36cに対して、コイル36a″が同様の配置関係とあんるようにコイル36c、36a″が配置されている。
このような配置にすることにより、各コイル36a、36b、36c、36a′、36a″…の位置を検出することにより、先端部10の位置及びその軸方向の他に、先端部10の軸周りの方位(Up方向やCCD33の上方向)も、内視鏡挿入形状として検出(推定)することができる。
このように、コイル位置検出手段により、内視鏡先端側の挿入形状をその湾曲方向の情報を含めて検出することにより、その状態における湾曲部18の湾曲状態を推定できる。そして、暗部など目標位置の方向に、先端側が向くように湾曲部18を湾曲制御することを行い易くする。
コイル36a、36b、36c…は、その後端側のケーブルがUPD装置11に接続される。
また、図1に示すUPD装置11は、コイル36a、36b、36c…を所定の周波数のドライブ信号の印加により磁界を発生させる図示しないUPDドライブ回路と、磁界を検出するためにそれぞれ所定の位置関係で配置された複数のセンスコイルからなる磁界検出用のセンスコイルユニットとを備えている。
また、このUPD装置11は、複数のセンスコイルによる検出信号から各コイル36a、36b、36c、…の位置を検出(算出)する位置検出部と、各コイル36a、36b、36c、…の位置情報から挿入部9(内視鏡2)の挿入形状の算出処理と、算出された挿入形状の表示処理を行う挿入形状算出・表示処理回路と、その挿入形状を表示する図示しない形状表示モニタとを備えている。
なお、UPD装置11における少なくともセンスコイルユニットは、図1のベッド12の近傍に配置され、ベッド12に横たわる患者13における挿入部9が挿入される3次元領域をカバーする座標系(ワールド座標系という)で、コイル36a、36b、36c、…の位置、つまりワールド座標系における3次元の座標位置を検出する。
なお、図1に示すように挿入部9の捻り量を検出する捻り量検出ユニット23は、図3に示すようなコイル36a′を設けて先端部10の方位(Up方向)を検出可能とした場合には、必要不可欠となるものではない。
図5は、UPD装置11により生成される挿入形状の1例を示す。この図5に示すように3次元の座標系で例えばjフレーム(ただし、j=0、1、2…)におけるコイル36a、36b、36c、…の位置(Xji,Yji,Zji)(ここで、i=a,b…,m)が算出され、それらを結ぶことにより、挿入形状が生成される。
UPD装置11により検出されたコイル36a、36b、36c、…の位置を含む挿入形状データは、図6Aに示すように、各フレームに関するフレームデータ(つまり、第0フレームデータ、第1フレームデータ、…)として構成されており、PC本体7に順次送信される。
そして、挿入状態情報としての各フレームデータは、図6Bに示すように、挿入形状データの作成時刻、表示属性、付属情報及びコイルの3次元座標データ(コイル座標データ)等のデータを有して構成されている。
また、コイル座標データは、図6Cに示すように、挿入部9の先端側から基端側(操作部14側)に順次配置されたコイル36a、36b、36c、…の3次元座標をそれぞれ示すデータである。
なお、ここでのフレームの時間周期(以下、周期)T2は、例えば100ms程度であり、後述するモータの回転角を検出するエンコーダ出力(値)の周期T1よりも長くなる。
一方、先端部10に設けられた撮像装置34により得られる内視鏡座画像は、挿入部9の体腔内(以下では大腸のような管腔内)への挿入量に伴って変化する。
このため、内視鏡画像から検出される管腔内の暗部(管腔暗部ともいう)の位置情報は、ワールド座標系に変換される。なお、この暗部の位置情報は、管腔の走行方向に対応するため、その位置情報が挿入部先端を管腔の深部側に挿入(導入)すべき目標位置若しくは湾曲すべき湾曲方向の目標位置となる。
なお、先端部10に設けられた撮像装置34による観察方向(撮像方向)は、この内視鏡2においては挿入部9の長手軸と平行であり、上記挿入方向或いは湾曲方向は、撮像装置34による観察方向と同じ方向となる。
UPD装置11内部のコイル位置検出部11aにより検出されたコイル36a、36b、36c、…のコイル座標位置及び方向の情報は、PC本体7にも入力される(後述する図7参照)。
図3に模式的に示すように湾曲部18は、その長手方向に複数の湾曲駒が回動自在に連結して構成されている。また、挿入部9内には、上下、左右の湾曲方向に沿って湾曲ワイヤ41u、41d、41l、41rが挿通されている。そして、これらの湾曲ワイヤ41u、41d、41l、41rの後端は、例えば操作部14内に配置された湾曲駆動手段としてのモータユニット22を構成するプーリ42a、42bに連結されている。
操作部14内には上下方向の湾曲ワイヤ41u、41dの両端が連結されたワイヤが巻装されたプーリ42aと、左右方向の各湾曲ワイヤ41l、41rの両端が連結されたワイヤが巻装されたプーリ42bが設置されている。
各プーリ42a,42bは、それぞれ上下湾曲(駆動)用のUDモータ43a,左右湾曲用のRLモータ43b(単にモータ43a、43bとも略記)の回転軸に連結され、正転及び逆転が自在のモータ43a,43bの回転方向に応じて回転される。
これらのモータ43a,43bは、図7に示すようにモータユニット22に接続されたPC本体7から制御される。
そして、モータ43a,43bによりプーリ42a,42bを回転することによって、湾曲ワイヤ41u、41d、41l、41rを牽引/弛緩(押し引き)して湾曲部18を電気的に湾曲駆動する電気的湾曲駆動手段が構成されている。
モータ43a,43bを介してプーリ42a,42bを回転させる回転量に応じて湾曲部18の湾曲量が対応するため、プーリ42a,42bの回転量をプーリアングル或いはプーリ角という。
モータ43a,43bの回転角(モータ角ともいう)は、回転角或いは回転位置の検出手段として、例えばモータ43a,43bの回転軸にそれぞれ取り付けられている上下用ロータリーエンコーダ(UDエンコーダ)44a,左右用ロータリーエンコーダ(RLエンコーダ44b)によってそれぞれ検出される。
これらのUDエンコーダ44a,RLエンコーダ44bによるエンコーダ出力は、図7に示すようにPC本体7に入力される。
なお、UDエンコーダ44a,RLエンコーダ44bは、上述した周期T2よりも十分に短い周期T1でエンコーダ出力をPC本体7側に出力する。
そして自動湾曲制御モードの場合においては、モータユニット22内のモータ43a、43bは、PC本体7側からのUPD装置11による目標位置の推定結果と、現在の(内視鏡)先端部10側の位置及び方向等の湾曲制御情報(又は湾曲情報)により湾曲制御される湾曲状態が決定される。つまり、PC本体7は、湾曲状態決定部の機能を持つ。
また、上述したように、モータ43a、43bに対する現在の回転位置はエンコーダ出力により比較的短い周期T1で検出されるが、UPD装置11による挿入部先端側の挿入形状(姿勢)の算出には時間がかかるためにその周期T2は、T1より長くなる。この他にPC本体7は、画像処理により、湾曲させたい方向に相当する目標位置の算出の処理を行う。
そして、本実施例では、以下に説明するようにPC本体7側において、長い周期T2で得られる情報を短い周期T1に相当する情報に補正する補正手段を設けることにより、円滑な湾曲制御を行うことを可能にする。
換言すると、周期T2で推定された情報と、周期T1とT2とに基づく情報(具体的には周期比の情報)とを用いて、周期T1で湾曲制御する湾曲状態(湾曲制御状態)を補正して、補正された湾曲状態を決定する湾曲状態決定部による湾曲補正を行う。
なお、手動操作により湾曲を行う場合には、モータユニット22は、操作部14に設けられた湾曲指示操作手段としてのジョイスティック21によって上下、左右の任意の湾曲方向への指示値に応じて、エンコーダ出力がその値に一致するように、モータ43a、43bの回転駆動量(プーリ42a,42bのプーリアングルに相当する)が制御され、湾曲部18は湾曲指示された湾曲量まで湾曲する。
このため、ジョイスティック21には、例えば上下方向と左右方向への傾動操作量を検出する図示しないエンコーダ或いはポテンショメータ等が設けてあり、湾曲指示値、方向の指示情報を出す。この場合には、PC本体7は、単に湾曲指示値にエンコーダ出力が一致するように湾曲制御する(この場合のように手動湾曲する場合には、周期T2は影響しない)。
図7は、PC本体7の機能的な構成を示す。プロセッサ4からの内視鏡画像信号は、PC本体7内のA/D変換回路51を介してメモリ52内に内視鏡画像のデータとして格納される。
また、UPD装置11によるコイル座標と方向の情報は、コイル情報取得スレッド53を介してメモリ52内に、内視鏡形状パラメタ、具体的には、コイル座標位置、コイル方向、先端Up方向のデータとして格納される。
そして、内視鏡画像のデータと内視鏡形状パラメタのデータは、CPUにより形成されるメイン処理部55に出力される。
なお、CPUは、このメイン処理部55の処理だけでなく、他の処理、例えば後述する湾曲量制御処理部56の処理を行う構成であっても良いし、図7に示すメイン処理部55が湾曲量制御処理部56の処理を行う構成であっても良い。
また、内視鏡2のモータユニット22のエンコーダ出力は、湾曲量制御処理部56に入力され、この湾曲量制御処理部56には、メイン処理部55による処理で生成され、メモリ52内に格納された湾曲量パラメタのデータが入力される。
この湾曲量パラメタとしては、目標プーリアングル(目標とするプーリアングル)と、絶対プーリアングル(現在のプーリアングル)である。この絶対プーリアングルの代わりに相対プーリアングルでも良い。
そして、この湾曲量制御処理部56は、図10にて説明するようにモータ制御値(より具体的には、UDモータ電圧、RLモータ電圧)をモータユニット22のUDモータ43a,RLモータ43bに出力する。
本実施例では、この湾曲量制御処理部56が異なる周期T1,T2でモータ制御(湾曲制御)を行う情報による欠点を改善する補正を行う、或いは周期T1,T2で算出される情報に基づいて補正した湾曲状態決定を行うことになる。
なお、図7において点線で示すように、捻り量検出ユニット23が用いられた場合には、捻り量検出ユニット23により検出される相対捻り量が、捻り量取得スレッド57を介してメモリ52内における例えば内視鏡形状パラメタのデータの1つとして相対捻り量のデータとして格納される。
図8は、メイン処理部55による機能的な構成を示す。
図8に示すようにメイン処理部55は、内視鏡画像における管腔情報から特定位置としての目標位置を検出する特定位置検出部としての画像内目標位置検出部55aの機能と、コイル座標から内視鏡各部の位置、方向、速度を検出する内視鏡形状処理部55bと、相対捻り量から絶対捻り量を算出する捻り量算出部55cの機能を有する。なお、点線で示すように捻り量算出部55cは、相対捻り量が入力された場合にこの処理を行う。
画像内目標位置検出部55aは、内視鏡画像から内視鏡画像内における管腔の走行方向に相当する暗部の中心の位置(或いは重心の位置)を2次元の位置情報として検出する。 この暗部の位置は、CCD33の画素サイズ、焦点距離等の値を考慮して検出される。そして、その時刻における挿入部9の先端位置に対する暗部の位置の情報から、その方向が挿入部先端(内視鏡先端)の挿入方向として検出される。
また、この暗部の2次元の位置情報は、さらにその暗部の奥行き方向の値を含めた3次元の位置が例えばShape From Shading法により算出される。そして、この3次元の位置情報は、挿入部9先端を指向させて導入すべき目標位置となる。
なお、画像内目標位置検出部55aで検出された目標位置は、画像内目標位置検出部55a内の座標系変換部によりワールド座標系の目標位置に変換される。
そして、変換された目標位置は、湾曲量算出部55dに出力される。
この湾曲量算出部55dには、内視鏡形状処理部55bにより、周期T2で(特に先端コイル座標を含む)内視鏡各部の位置、方向、速度の情報が入力される。なお、本実施例では速度の情報は必要不可欠でない。後述する実施例で利用する。
また、この湾曲量算出部55dには、捻り量算出部55cから絶対捻り量も算出される。この絶対捻り量は、捻り量検出ユニット23が設けてない場合には、算出されない。 そして、この湾曲量算出部55dは、入力される情報から挿入部9の先端を、推定された暗部の位置を目標位置としてその方向に指向させる湾曲角(φ、θ)を算出(推定)する。この場合、湾曲角(φ、θ)は、周期T2で算出される。そして、湾曲量算出部55dは、周期T2でこの湾曲角(φ、θ)の情報を算出する算出手段或いは取得手段を形成する。
算出されたこの湾曲角(φ、θ)の情報は、湾曲制御における補正手段或いは湾曲状態決定手段としての機能を持つ図7に示した湾曲量制御処理部56に出力される。なお、図7にて説明したようにこの湾曲量制御処理部56には、周期T1でエンコーダ出力(具体的にはUDエンコーダ44aの出力、RLエンコーダ44bの出力)も入力される。
このため、エンコーダ44a、44bは、周期T1で湾曲制御の情報を検出或いは取得する情報取得手段を形成する。
図9は、湾曲角(φ、θ)を挿入部9の先端との関係で示す。図9の左側は、内視鏡先端の向き(方向)と、湾曲させたい方向(つまり目標位置の方向)とのなす角θを示す。また、図9の右側の先端面を正面から見た図は、湾曲の上(U)方向と、湾曲させたい方向とのなす角φを示す。
また、図10は、湾曲量制御処理部56の機能的な構成を示す。周期T2で算出或いは推定される湾曲角(φ、θ)の情報は、絶対プーリ角変換部56aに入力される。絶対プーリ角変換部56aは、湾曲角(φ、θ)の情報をUD方向の絶対目標プーリ角(プーリアングル)と、これに直交する方向となるRL方向の絶対目標プーリ角との情報に変換する。
そして、生成されたUD方向の絶対目標プーリ角と、RL方向の絶対目標プーリ角とは、周期相違に対するプ−リ角補正部(単にプーリ角補正部という)56bを経て、モータ電圧設定部56cに入力される。
従来例においては、UD方向の絶対目標プーリ角と、RL方向の絶対目標プーリ角とがプーリ角補正部56bを経ることなくモータ電圧設定部56cに入力される構成であった。
そして、モータ電圧設定部56cは、周期T2で生成されたままのUD方向の絶対目標プーリ角及びRL方向の絶対目標プーリ角の情報と、周期T1で生成されるUDエンコーダによる現在のプーリ角及びRLエンコーダによる現在のプーリ角の情報とからPID制御によりモータ電圧をそれぞれ生成していた。
これに対して本実施例では、上述したように長い方の周期T2で推定或いは取得されるUD方向の絶対目標プーリ角と、RL方向の絶対目標プーリ角とは、プーリ角補正部56bに入力される。
このプーリ角補正部56bは、周期T2で推定により生成されたUD方向の絶対目標プーリ角及びRL方向の絶対目標プーリ角の情報から、それぞれ周期T1に相当するUD方向の補正目標プーリ角及びRL方向の補正目標プーリ角に補正して、モータ電圧設定部56cに出力する。
このモータ電圧設定部56cを構成するUD用PID制御によるモータ電圧設定部とRL用PID制御によるモータ電圧設定部とには、周期T1で生成されるUDエンコーダ44aによる現在プーリ角、RLエンコーダ44bによる現在プーリ角が入力される。
そして、このモータ電圧設定部56cは、補正された情報と、エンコーダ44a,44bによる情報とからモータ43a,43bを湾曲制御する湾曲制御部を形成すると見なすことができる。
なお、PID制御は、フィードバック制御の一種であり、入力値の制御を出力値と目標値との偏差、その積分、及び微分の3つの要素によって行う方法のことである。
本実施例におけるプーリ角補正部56bは、以下のようにしてUD方向の補正目標プーリ角及びRL方向の補正目標プーリ角を生成する。
UD方向の補正目標プーリ角及びRL方向の補正目標プーリ角は、周期T2で生成(取得)されたUD方向の絶対目標プーリ角及びRL方向の絶対目標プーリ角の情報を、その周期T2を周期T1であったとした場合に推定されるUD方向の絶対目標プーリ角及びRL方向の絶対目標プーリ角の情報に補正する。
換言すると、UPD装置11による形状推定による湾曲角(φ、θ)の推定結果及び第1の周期(T1に相当)と第2の周期(T2に相当)から算出される情報に基づいて湾曲制御される湾曲駆動手段(としてのUDモータ43aと、RLモータ43b)の湾曲状態を決定する湾曲状態決定部による補正を行う。
具体的には、以下のように補正する。
例えば周期T2で算出されたUD方向の絶対目標プーリ角及びRL方向の絶対目標プーリ角を、それぞれA、Bとすると、プーリ角補正部56bは、A×(T1/T2)、B×(T1/T2)をUD方向の補正目標プーリ角及びRL方向の補正目標プーリ角として出力する。
そして、モータ電圧設定部56cによりそれぞれ生成されたUD用PID制御によるモータ電圧とRL用PID制御によるモータ電圧は、D/A変換部56dにおいて、それぞれD/A変換されてアナログのUDモータ電圧、RLモータ電圧となり、UDモータ43a、RLモータ43bに印加される。
図10においては、湾曲角(φ、θ)からモータ電圧(具体的にはUDモータ電圧、RLモータ電圧)を生成する機能を説明した。
図11は本内視鏡システム1における(図19の従来例と同じ構成要素を有する)モータ制御系71と位置フィードバック制御系72を用いた制御装置としての内視鏡湾曲駆動制御装置61部分の構成を図11に示す。
なお、図11におけるモータ制御系71は、図10におけるモータ電圧設定部56cとD/A変換部56dと、図3のUDエンコーダ44aが取り付けられたUDモータ43a、RLエンコーダ44bが取り付けられたRLモータ43bとから構成される。
また、位置フィードバック制御系72は、コイル36a、36b、36c…の位置を検出するUPD装置11と、このUPD装置11によるコイル位置/方向から現在のモータ回転角を推定するメイン処理部55による湾曲角(φ、θ)の推定手段としてのモータ角推定部73とから構成される。
図11に示す本実施例に係る内視鏡湾曲駆動制御装置61は、図19のモータ制御系71と位置フィードバック制御系72において、位置フィードバック制御系72により推定或いは取得される目標モータ角Dと現在のモータ推定角Sとから補正目標モータ角Δを算出(推定)するモータ絶対角補正部62の機能を備えている。
図11に示す制御系の構成においては、モータ制御系71は、周期T1のエンコーダ出力で湾曲制御を行う湾曲制御部を形成する。
また、位置フィードバック制御系72は、UPD装置11により、周期T2で内視鏡形状を検出する内視鏡形状検出部と、モータ角推定部73によりその内視鏡形状からモータ制御系71により制御される湾曲状態に相当するモータ推定角Sを推定する湾曲状態推定部を形成する。
そして、モータ絶対角補正部62は、モータ角推定部73による推定結果と、周期T1及び周期T2から算出される情報に基づいて、モータ制御系71により制御される湾曲状態を補正して、その湾曲状態を決定する湾曲状態決定部を形成する。
なお、図11においてモータ絶対角補正部62に入力される情報として、目標モータ角Dと現在のモータ推定角Sの代わりに、目標先端位置と現在の先端位置の情報が入力されるようにしても良い。この場合には各位置の情報をモータ43でのモータ角、モータ推定に換算すれば両表現が同等のものとなる。なお、図11では2つのモータ43a、43bを1つのモータ43で代表して示している。
上記モータ絶対角補正部62は、このモータ絶対角補正部62に入力される目標モータ角Dから現在のモータ推定角Sを差し引いた差分値D−Sを分割の係数N(=T2/T1)で除算して補正目標モータ角Δとして出力する。つまり、Δ=(D−S)/N。
より具体的な設計例としてT1=5msec、T2=100msecとすると、係数N=20となる。この場合には、内視鏡先端位置(つまり、目標モータ角及び現在のモータ推定角)の情報が1回更新される間に20回、モータ制御系71に、位置フィードバック制御系72から補正目標モータ角Δ、Δ=(D−S)/Nの情報がモータ相対角として与えられる。
なお、ここでのモータ相対角の意味は、周期T1毎に次の補正目標モータ角Δが偏差値として与えられることを意味し、周期T1の開始時には、開始時における(現在の)モータ推定角Sがモータ相対角として与えられる。
このようなモータ相対角でなく、モータ絶対角でモータ制御系71に与えるようにしても良い。モータ絶対角で与える場合には、その補正目標モータ角をΔiとすると、Δi=S+i×(D−S)/Nとなる。
ここで、iは、周期T2における現在の時間を周期T1を単位で計測した値である。 図12は、補正目標モータ角Δiで湾曲制御を行った場合における現在のモータ推定角Sから目標モータ角Dに推移していく概略の動作特性例を示す。
図19の従来例の場合には、目標モータ角Dと現在のモータ推定角Sとが周期T2の開始時にモータ制御系71に与えられ、それによって例えば破線で示すように現在のモータ推定角Sが変化する特性の制御となる。
これに対し、本実施例においては、周期T1の間隔で実線で示すように補正目標モータ角Δiがモータ制御系71に与えられ、それによって例えば実線で示すように現在のモータ推定角Sが短い周期T1で段階的に変化する特性の制御を実現できる。
この場合、目標モータ角Dと現在のモータ推定角Sとを終端に持つ2点鎖線で示す直線上の点は、補正目標モータ角Δiを外挿補正したものとなり、湾曲部18を湾曲駆動する湾曲駆動手段としてのモータ43を目標とする目標湾曲角に相当する目標モータ角Dに滑らか(より具体的には略直線的)に近づけるように制御できる。
本実施例によれば、このように補正することにより、湾曲制御のため異なる周期で制御情報を取得する場合にも、長い方の周期の情報を短い周期に整合させるような補正を行うことによって、滑らか(円滑)な湾曲制御の動作を行うようにできる。
また、本実施例によれば、簡単な補正で実現することができる。
(実施例2)
図13は本発明の実施例2における湾曲駆動制御装置61Bの概略の構成を示す。本実施例は、図11に示す湾曲駆動制御装置61において、さらに電圧設定部74からモータ43に印加(出力)される電圧のタイミング(時刻)を監視するオブザーバとしての電圧監視部66を備えている。また、本実施例においては、周期T1は一定値から変動した値でも良い。
この電圧監視部66は、電圧設定部74からモータ43への電圧の印加を検出すると、その時刻(時間)tjをモータ絶対角補正部62に通知する。モータ絶対角補正部62は、電圧監視部66から時刻tjの通知を受けると、例えばその内部に設けられた通知計数カウンタのカウント値jを0から1つづつインクリメントする。
この場合、位置フィードバック制御系72から現在のモータ推定角Sが入力された時点、つまり周期T2でカウント値jを初期値にリセット(j=0)する。なお、時刻tjも現在のモータ推定角Sが入力される周期T2で0にリセットされる。
位置フィードバック制御系72の周期T2の間に、モータ制御系71は、平均的には周期T1で制御動作を行う。そして、カウント値jがN(=T2/T1)となる場合のみ、つまりtjがtNとなる時、カウント値jが0にリセットされる。0≦j≦Nとなる。 この場合、モータ絶対角補正部62は、出力する補正目標モータ角をΔjとすると、これをモータ絶対角で表すと、Δj=S+tj×(D−S)/T2となる。
この場合も、補正目標モータ角Δjは、図12に示した補正目標モータ角Δiの値を外挿補正した直線上に乗る。但し、この場合には、図12における一定の周期T1が変動した場合にも対応できるものとなる。
本実施例においても実施例1の場合と同様に、モータ制御系、位置フィードバック制御系の制御の周期の相違による不整合を補償して、円滑な湾曲制御の動作を行わせることができる。
このため、管腔の暗部等、術者が進ませたいと望む目標方向に内視鏡先端方向を円滑に指向させることができるので、術者にとって、挿入作業が容易となる。従って、内視鏡検査、処置を円滑に行うことができる。なお、挿入部9を、その長手軸方向に送り出す送り機構を設けることにより、円滑に自動挿入を行うことも可能になる。
(実施例3)
次に図14を参照して本発明の実施例3を説明する。図14は本発明の実施例3における内視鏡湾曲駆動制御装置61Cの制御機能的な構成を示す。
実施例1及び2においては、モータ制御系71の制御情報と位置フィードバック制御系72の情報と、湾曲駆動手段としてのモータ43の回転位置の検出情報で湾曲制御する場合の周期とが相違することによる影響を長い周期側の情報を補正により改善した。
これに対して本実施例は、コイル位置/方向の情報を実際にモータ制御(湾曲制御)を行う部分(具体的には図7における湾曲量制御処理部56或いは図10におけるモータ電圧設定部56c或いは図11,図13の電圧設定部74)が用いる或いは取得するまでに所定時間Lの遅延するため、この影響を軽減したモータ制御(湾曲制御)を行うものである。
挿入部9内に配置されたコイル36a、36b、36c…の位置/方向は、コイル36a、36b、36c…にドライブ信号を印加してそれぞれ磁場を発生させ、それをベッド12の周囲に配置されるセンスコイル等を備えたUPD装置11により検出する。
この場合、センスコイルにより検出された検出信号をサンプリングして、それらの位相差等を検出して各コイルの位置/方向の情報を算出する算出処理に時間を要する他に、UPD装置11とPC本体7間とで情報を転送する際の時間遅延も発生する。図14においては、模式的にUPD装置11からモータ角推定部73までの間でLの時間遅れが発生するとしている。
このため、仮にモータ制御系71側の情報と位置フィードバック制御系72側の情報を、例えば電圧設定部74が等しい周期で取得できるようにした場合(つまりT1=T2)においても、実際には位置フィードバック制御系72側の情報の発生時刻(具体的には磁場の発生をセンスコイルで受信した時刻)は、モータ制御系71側の情報から例えば所定時間Lだけ遅延した過去の情報となっている。
図15は、この様子を示す。図15においては、簡単化のため周期T1とT2とが等しい場合(T1=T2)で示している。この図15に示すようにPC本体7は、UPD装置11から所定時間L遅れたコイル位置/方向の情報を取得する。
このため、この所定時間L(時間遅れLとも言う)の影響を低減する補正を行うと、より精度の高い湾曲制御を行うことが可能になる。
図14に示す内視鏡湾曲駆動制御装置61Cは、図11に示した内視鏡湾曲駆動制御装置61においてモータ絶対角補正部62の代わりにモータ角予測部67を設けている。このモータ角予測部67には位置フィードバック制御系72から現在のモータ推定角Sが入力される。
そして、このモータ角予測部67は、位置フィードバック制御系72から所定の周期、この場合にはT1で入力される現在のモータ推定角S(より具体的にはこのモータ推定角及び1つ前のステップのモータ角予測部のシステム状態)から、モデル化した条件を設定して時間遅れLのない現在のモータ推定角S′をモータ角予測値として出力する。
そして、目標モータ角Dからこの現在の推定角S′を減算した差分値D−S′を補正目標モータ角としてモータ制御系71に出力する。
この場合、モータ角と、そのモータ回転速度をパラメータとして、湾曲動作(モータ回転動作)がモータ回転座標系上において等速運動と見なす仮定を行うことにより、カルマンフィルタを利用する。
カルマンフィルタとは、誤差を含む観測値を用いて、ある動的システムの状態を推定或いは制御するための無限インパルス応答フィルタの一種である。
また、このカルマンフィルタは、時間ステップを1つ進めるために予測と更新の2つの手続きを行う。予測の手続きでは、前の時刻の推定状態から、その次の(現在)の時刻の推定状態を計算する。更新では、今の時刻の観測を用いて、推定値を補正してより正確な状態を推定する。
本実施例においては、このカルマンフィルタを利用することにより、時間遅れLのある現在のモータ推定角Sから時間遅れLのない現在のモータ推定角S′を推定して出力する。
以下では、時間遅れLのある現在のモータ推定角Sに基づきカルマンフィルタによって補正したモータ推定角をS0、さらにカルマンフィルタにより1ステップ先を予測したモータ推定角をS1、とすることにより、時間遅れLのない現在のモータ推定角S′に相当するSpを推定して出力する。
カルマンフィルタの更新手続きにおいて、カルマンフィルタに現在のモータ推定角Sを入力することにより、現在のフィルタ係数に基づいてモータ推定角Sを補正したところのモータ推定角S0を出力すると共に、カルマンフィルタのフィルタ係数を更新する。
続いて、カルマンフィルタの推定手続きにより、1ステップ先のモータ推定角S1を取得する。
時間遅れLのない現在のモータ推定角Spは、モータ推定角S0に対して、時間Lだけ経過する時の角度の変化量を加算した値となる。
モータ推定角と時間tとの関係を表す関数をF(t)とし、現在時間をt0とすると、1ステップの時間はT1であるため、図16に示すように、S0=F(t0−L)、S1=F(t0−L+T1)、Sp=F(t)となる。
湾曲動作がモータ回転角座標系の上で等速運動であると仮定すると、現在時間から、1ステップ先の時間までの角度の変化量は一定、すなわちF(t)は一次関数であるので、Sp=S0+t(S1−S0)となる。ただし、t=L/T1。
この予測値に基づきモータを制御することにより、位置フィードバック制御系72の時間遅れを補償した動作を実現する。
本実施例は、このように時間遅れの影響を低減した精度の高い湾曲制御を行うことができる。
なお、上記説明においては、簡単化のため、周期T1とT2とを等しいとして説明したが、T1<T2の周期の場合にも同様に適用できる。また、例えば、実施例1を適用して、モータ推定角SpをT2/T1で分割して周期T1と同期させるようにしても良い。
(実施例4)
図17は、本発明の実施例4における内視鏡湾曲駆動制御装置61Dの構成を示す。本実施例は、実施例3において、さらにエンコーダ出力を監視するオブザーバとしてエンコ−ダ監視部68を設けた構成である。
実施例3においては周期T1=T2においてこの周期T1よりも時間遅れLの方が短いことを想定した場合で説明したが、周期T1よりも時間遅れLの方が長くなる場合もあり得る。図18は、このような関係の動作タイミング説明図を示す。
本実施例は、このような場合に対処することができる。エンコ−ダ監視部68は、実際のモータ回転量、つまりエンコーダ出力(エンコーダの変位量)dを観測し、モータ角予測部67に出力する。
モータ43が等速運動であると仮定すると、モータ43の回転速度はd/T1とみなせる。よって、時間遅れLの間に動くモータ回転量は、d×L/T1となる。
モータ角予測部67は、位置フィードバック制御系72が出力する内視鏡先端の位置に対応するモータ推定角Sに対して、dL/T1に相当する値を加算した値、S+Ld/T1をモータ43の現在のモータ推定角S′として使用する。そして、目標モータ角との差分値D−S′に基づいてモータ制御を行わせる。
このように行うことにより、周期T1よりも時間遅れLの方が長い場合にも、高い精度で現在のモータ推定角S′を推定でき、従って高い精度で湾曲部18の湾曲(駆動)制御ができる。
なお、上述した各実施例などを部分的に組み合わせる等して構成される実施例等も本発明に属する。
図1は本発明の実施例1の内視鏡システムの構成を使用例の状態で示す構成図。 図2は内視鏡装置の外観例を示す図。 図3は内視鏡の内部構成を示す図。 図4は挿入部の先端側のコイルの配置例を示す図。 図5は検出される挿入形状を示す図。 図6Aは挿入形状データの例を示す図。 図6Bはフレームデータの例を示す図。 図6Cはコイル座標データの例を示す図。 図7はPC本体の機能的なブロック構成を示す図。 図8はメイン処理部の機能的なブロック構成を示す図。 図9は内視鏡先端の向きと湾曲させたい方向との湾曲角を形成する角θ及びφを示す図。 図10は湾曲量制御処理部による湾曲角からモータ電圧を生成する処理機能を示すブロック図。 図11は内視鏡湾曲駆動制御装置の制御機能的構成を示すブロック図。 図12は本実施例により目標モータ角に向けての制御による特性例を示す図。 図13は本発明の実施例2における内視鏡湾曲制御装置の制御機能的構成を示すブロック図。 図14は本発明の実施例3における内視鏡湾曲駆動制御装置の制御機能的構成を示すブロック図。 図15はモータ制御のために用いられるコイル位置/方向の情報の算出に時間遅延がある場合の動作説明図。 図16はカルマンフィルタによる時間遅れを補正してモータ推定角を予測する動作説明図。 図17は本発明の実施例4における内視鏡湾曲駆動制御装置の制御機能的構成を示すブロック図。 図18は実施例4におけるモータ制御のために用いられるコイル位置/方向の情報の算出に時間遅延がある場合の動作説明図。 図19は従来例における内視鏡湾曲駆動制御装置の制御機能的構成を示すブロック図。 図20は従来例におけるモータ制御の時間周期よりもコイル位置/方向の算出の周期が長い場合の動作説明図。
符号の説明
1…内視鏡システム、2…内視鏡、7…PC本体、9…挿入部、11…UPD装置、18…湾曲部、22…モータユニット、34…撮像装置、36a、36b、36c…コイル、43a、43b…モータ、44a、44b…エンコーダ、55…メイン処理部、56…湾曲量制御処理部、56b…プーリ角補正部、62…モータ絶対角補正部、71…モータ制御系、72…位置フィードバック制御系、73…モータ角推定部、74…電圧設定部

Claims (6)

  1. 被検体を撮像する撮像手段及び湾曲自在の湾曲部を備えた内視鏡と、
    前記湾曲部を電気的に湾曲駆動する湾曲駆動部と、
    前記湾曲駆動手段の時間的な駆動位置情報を、第1の情報として第1の時間周期で取得する第1の情報取得部と、
    前記内視鏡先端側を目標とする方向に湾曲させるために前記内視鏡先端側の形状情報を第2の情報として第2の時間周期で取得する第2の情報取得部と、
    前記第1の時間周期に対して前記第2の時間周期が長くなる時間周期の相違の場合における前記第2の情報を第1の時間周期に相当する情報への補正と、前記第1の情報の取得に対して、前記第2の情報の取得までに発生する時間遅延に起因する前記第2の情報の補正との少なくとも一方の補正を行う補正部と、
    前記第1の情報と前記補正部により補正された第2の情報とを用いて前記湾曲駆動部の湾曲制御を行う湾曲制御部と、
    を具備することを特徴とする内視鏡システム。
  2. 被検体を撮像する内視鏡と、
    第1の時間周期で前記内視鏡の湾曲制御を行う湾曲制御部と、
    第1の時間周期より長い第2の時間周期で前記内視鏡形状を検出する内視鏡形状検出部と、
    前記内視鏡形状から前記湾曲制御部によって制御される湾曲状態を推定する湾曲状態推定部と、
    前記湾曲状態推定部による推定結果及び前記第1の時間周期と第2の時間周期から算出される情報に基づいて前記湾曲制御部によって制御される湾曲状態を決定する湾曲状態決定部と、
    を有する内視鏡システム。
  3. 被検体を撮像する内視鏡と、
    第1の時間周期で前記内視鏡の湾曲制御を行う湾曲制御部と、
    第1の時間周期より長い第2の時間間隔で前記内視鏡形状を検出する内視鏡形状検出部と、
    前記内視鏡形状から前記湾曲制御部によって制御される湾曲状態を推定する湾曲状態推定部と、
    前記内視鏡により撮像された画像内の特定部位を検出する特定部位検出部と、
    前記湾曲状態推定部による推定結果及び前記第1の時間周期と第2の時間周期から算出される情報及び前記特定部位に基づいて前記湾曲制御部によって制御される湾曲状態を決定する湾曲状態決定部と、
    を有する内視鏡システム。
  4. 前記湾曲状態決定部は、前記第1の時間周期と前記第2の時間周期から算出される情報として、前記第2の時間周期から算出される情報を前記第1の時間周期の場合に換算した情報を生成することを特徴とする請求項2又は3に記載の内視鏡システム。
  5. 前記湾曲状態決定部は、前記第1の時間周期と前記第2の時間周期から算出される情報における前記第2の時間周期から算出される情報が時間遅延された時間遅延情報である場合、前記時間遅延を補正した情報を生成する補正手段を有することを特徴とする請求項2又は3に記載の内視鏡システム。
  6. 前記補正手段は、カルマンフィルタを用いて構成されることを特徴とする請求項5に記載の内視鏡システム。
JP2007309234A 2007-11-29 2007-11-29 内視鏡システム Active JP5137540B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007309234A JP5137540B2 (ja) 2007-11-29 2007-11-29 内視鏡システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007309234A JP5137540B2 (ja) 2007-11-29 2007-11-29 内視鏡システム

Publications (2)

Publication Number Publication Date
JP2009131406A true JP2009131406A (ja) 2009-06-18
JP5137540B2 JP5137540B2 (ja) 2013-02-06

Family

ID=40863951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007309234A Active JP5137540B2 (ja) 2007-11-29 2007-11-29 内視鏡システム

Country Status (1)

Country Link
JP (1) JP5137540B2 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011040111A1 (ja) * 2009-09-30 2011-04-07 オリンパスメディカルシステムズ株式会社 内視鏡装置
WO2012014532A1 (ja) * 2010-07-28 2012-02-02 オリンパスメディカルシステムズ株式会社 内視鏡と、この内視鏡の挿通湾曲方法
JP2012115521A (ja) * 2010-12-01 2012-06-21 Olympus Medical Systems Corp 管状挿入システム
JP2013516001A (ja) * 2009-12-23 2013-05-09 ゼネラル・エレクトリック・カンパニイ 自動セグメンテーション及び時間的追跡方法
WO2014103030A1 (ja) * 2012-12-28 2014-07-03 日鍛バルブ株式会社 位相可変装置の制御方法及び制御装置
US9861337B2 (en) 2013-02-04 2018-01-09 General Electric Company Apparatus and method for detecting catheter in three-dimensional ultrasound images
JP2018500079A (ja) * 2014-12-01 2018-01-11 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. カテーテルベースの操縦のための仮想的に方向づけられた電磁追跡コイル
US9878449B2 (en) 2013-07-25 2018-01-30 Olympus Corporation Manipulator system
JPWO2017175320A1 (ja) * 2016-04-06 2019-02-14 オリンパス株式会社 医療用マニピュレータシステムおよびマニピュレータの湾曲形状推定方法
CN114617520A (zh) * 2022-01-30 2022-06-14 常州朗合医疗器械有限公司 导管头端控制方法、装置、设备和存储介质
US11478306B2 (en) 2016-12-27 2022-10-25 Olympus Corporation Shape acquiring method and controlling method for medical manipulator
WO2023032074A1 (ja) * 2021-09-01 2023-03-09 オリンパスメディカルシステムズ株式会社 マニピュレータシステム及びマニピュレータの形状推定方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03191943A (ja) * 1989-12-20 1991-08-21 Olympus Optical Co Ltd 内視鏡装置
JP2002315719A (ja) * 2001-04-24 2002-10-29 Olympus Optical Co Ltd 電動湾曲内視鏡の湾曲駆動制御装置
JP2006116289A (ja) * 2004-09-27 2006-05-11 Olympus Corp 湾曲制御装置
JP2007319622A (ja) * 2006-06-05 2007-12-13 Olympus Corp 内視鏡装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03191943A (ja) * 1989-12-20 1991-08-21 Olympus Optical Co Ltd 内視鏡装置
JP2002315719A (ja) * 2001-04-24 2002-10-29 Olympus Optical Co Ltd 電動湾曲内視鏡の湾曲駆動制御装置
JP2006116289A (ja) * 2004-09-27 2006-05-11 Olympus Corp 湾曲制御装置
JP2007319622A (ja) * 2006-06-05 2007-12-13 Olympus Corp 内視鏡装置

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4724262B2 (ja) * 2009-09-30 2011-07-13 オリンパスメディカルシステムズ株式会社 内視鏡装置
US8480568B2 (en) 2009-09-30 2013-07-09 Olympus Medical Systems Corp. Endoscope apparatus with automatic selection between automated insertion direction search methods
WO2011040111A1 (ja) * 2009-09-30 2011-04-07 オリンパスメディカルシステムズ株式会社 内視鏡装置
JP2013516001A (ja) * 2009-12-23 2013-05-09 ゼネラル・エレクトリック・カンパニイ 自動セグメンテーション及び時間的追跡方法
US20130266184A1 (en) * 2009-12-23 2013-10-10 General Electric Company Methods for Automatic Segmentation and Temporal Tracking
US9092848B2 (en) * 2009-12-23 2015-07-28 General Electric Company Methods for automatic segmentation and temporal tracking
WO2012014532A1 (ja) * 2010-07-28 2012-02-02 オリンパスメディカルシステムズ株式会社 内視鏡と、この内視鏡の挿通湾曲方法
US9943220B2 (en) 2010-12-01 2018-04-17 Olympus Corporation Tubular insertion system
JP2012115521A (ja) * 2010-12-01 2012-06-21 Olympus Medical Systems Corp 管状挿入システム
WO2014103030A1 (ja) * 2012-12-28 2014-07-03 日鍛バルブ株式会社 位相可変装置の制御方法及び制御装置
JP5967456B2 (ja) * 2012-12-28 2016-08-10 日鍛バルブ株式会社 位相可変装置の制御方法及び制御装置
US9861337B2 (en) 2013-02-04 2018-01-09 General Electric Company Apparatus and method for detecting catheter in three-dimensional ultrasound images
US9878449B2 (en) 2013-07-25 2018-01-30 Olympus Corporation Manipulator system
JP2018500079A (ja) * 2014-12-01 2018-01-11 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. カテーテルベースの操縦のための仮想的に方向づけられた電磁追跡コイル
US10966629B2 (en) 2014-12-01 2021-04-06 Koninklijke Philips N.V. Virtually-oriented electromagnetic tracking coil for catheter based navigation
US11925453B2 (en) 2014-12-01 2024-03-12 Koninklijke Philips N.V. Virtually-oriented electromagnetic tracking system for medical instrument navigation
JPWO2017175320A1 (ja) * 2016-04-06 2019-02-14 オリンパス株式会社 医療用マニピュレータシステムおよびマニピュレータの湾曲形状推定方法
US11478306B2 (en) 2016-12-27 2022-10-25 Olympus Corporation Shape acquiring method and controlling method for medical manipulator
WO2023032074A1 (ja) * 2021-09-01 2023-03-09 オリンパスメディカルシステムズ株式会社 マニピュレータシステム及びマニピュレータの形状推定方法
CN114617520A (zh) * 2022-01-30 2022-06-14 常州朗合医疗器械有限公司 导管头端控制方法、装置、设备和存储介质
CN114617520B (zh) * 2022-01-30 2024-03-19 常州朗合医疗器械有限公司 导管头端控制方法、装置、设备和存储介质

Also Published As

Publication number Publication date
JP5137540B2 (ja) 2013-02-06

Similar Documents

Publication Publication Date Title
JP5137540B2 (ja) 内視鏡システム
US8454497B2 (en) Endoscope apparatus and bending drive control method
JP5295555B2 (ja) 内視鏡システム
JP5165162B2 (ja) 内視鏡
US8597178B2 (en) Active drive type medical apparatus and drive control method
JP4642938B2 (ja) マニピュレータ
JP4896264B2 (ja) 内視鏡装置
JP5153787B2 (ja) 内視鏡湾曲制御装置及び内視鏡システム
JP5159995B2 (ja) 内視鏡システム
JP4914953B2 (ja) 医療システム及び制御方法
EP1852052B1 (en) Endoscope apparatus
US10932875B2 (en) Manipulator, medical system, and medical system control method
WO2015190514A1 (ja) 内視鏡システム
JPWO2008155828A1 (ja) 内視鏡システム、撮像システム及び画像処理装置
JP5702026B2 (ja) 電動内視鏡
JP5841366B2 (ja) 医療装置
CN107438390B (zh) 内窥镜形状把握系统
JP2002238839A (ja) 内視鏡システム
KR20160038151A (ko) 터치 스크린이 구비된 내시경 시스템 및 그 제어 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121113

R151 Written notification of patent or utility model registration

Ref document number: 5137540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250