JP2009117429A - 半導体装置及びその製造方法 - Google Patents

半導体装置及びその製造方法 Download PDF

Info

Publication number
JP2009117429A
JP2009117429A JP2007285565A JP2007285565A JP2009117429A JP 2009117429 A JP2009117429 A JP 2009117429A JP 2007285565 A JP2007285565 A JP 2007285565A JP 2007285565 A JP2007285565 A JP 2007285565A JP 2009117429 A JP2009117429 A JP 2009117429A
Authority
JP
Japan
Prior art keywords
layer
semiconductor layer
sidewall
concentration
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007285565A
Other languages
English (en)
Other versions
JP5211647B2 (ja
Inventor
Naoyoshi Tamura
直義 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Semiconductor Ltd
Original Assignee
Fujitsu Semiconductor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Semiconductor Ltd filed Critical Fujitsu Semiconductor Ltd
Priority to JP2007285565A priority Critical patent/JP5211647B2/ja
Priority to US12/261,173 priority patent/US8269256B2/en
Publication of JP2009117429A publication Critical patent/JP2009117429A/ja
Priority to US13/586,091 priority patent/US9214524B2/en
Application granted granted Critical
Publication of JP5211647B2 publication Critical patent/JP5211647B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41775Source or drain electrodes for field effect devices characterised by the proximity or the relative position of the source or drain electrode and the gate electrode, e.g. the source or drain electrode separated from the gate electrode by side-walls or spreading around or above the gate electrode
    • H01L29/41783Raised source or drain electrodes self aligned with the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823807Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823814Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6653Unipolar field-effect transistors with an insulated gate, i.e. MISFET using the removal of at least part of spacer, e.g. disposable spacer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66636Lateral single gate silicon transistors with source or drain recessed by etching or first recessed by etching and then refilled
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7848Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being located in the source/drain region, e.g. SiGe source and drain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • H01L29/165Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Element Separation (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

【課題】半導体層における転位の発生を抑止しトランジスタのロールオフ特性を十分に確保しつつも、チャネル領域への歪み量を増加させて電流駆動能力を大幅に向上させて動作速度を増大させる。
【解決手段】SiGe層103は、第1のSiGe層103aと、第1のSiGe層103a上に形成され、Si又は第1のSiGe層103aよりもGe濃度の低い中間層103cと、第1のSiGe層103a上に中間層103cを介して形成され、第1のSiGe層103aよりもGe濃度の高い第2のSiGe層103bと、第2のSiGe層103b上に形成され、Si又は第1のSiGe層103aよりもGe濃度の低い上層103d有して構成される。
【選択図】図1

Description

本件は、歪み印加により動作速度を向上させた半導体装置及びその製造方法に関する。
近時における、いわゆる90nmノード以降のLSIでは、更なる微細化が要請されており、これに伴いトランジスタの能力向上が困難となってきている。これは、ゲート長の短縮化に伴いスタンバイオフリーク電流が増大することから、オフリーク電流を一定に抑えようとすると、電流駆動能力の向上が極めて困難となることに起因する。そのため、トランジスタの能力向上を図るための新しいアプローチが探索されている。
その一つの試みとして、ストレインドシリコン(strained silicon)技術がある。これは、チャネル領域へストレスを印加することで、バンド構造を変化させ、キャリアの有効質量を軽減し、キャリア移動度を向上することによる電流駆動能力の向上技術である。
pチャネルMOSトランジスタでは、チャネル領域に一軸性の圧縮応力を印加することでキャリアの移動度が向上することが知られている。チャネル領域に圧縮応力を印加する具体例として、ソース/ドレイン領域に凹部を形成し、当該凹部内にエピタキシャル法によりSiGe層を埋め込む、いわゆるエンベディッド構造のトランジスタが提案されている(特許文献1を参照)。
一方、nチャネルMOSトランジスタでは、pチャネルMOSトランジスタと同様にソース/ドレイン領域に凹部を形成し、当該凹部内にエピタキシャル法によりSiC層を埋め込む、いわゆるエンベディッド構造のトランジスタが提案されている。
SiGeはシリコンよりも格子定数が大きく、SiGe層の結晶が基板面内方向でシリコン基板に言わば強制的に格子整合する。そのため、シリコン基板は基板垂直方向では伸張される。その結果として、基板面内方向、即ちチャネル方向でチャネル領域に圧縮歪が導入され、圧縮応力が印加される。チャネル領域にこのような一軸性の圧縮応力が印加される結果、チャネル領域を構成するSi結晶の対称性が局所的に変調される。更に、かかる対称性の変化に伴って、重いホールの価電子帯と軽いホールの価電子帯の縮退が解けるため、チャネル領域におけるホール移動度が増大し、トランジスタの動作速度が向上する。このようなチャネル領域に局所的に誘起された応力によるホール移動度の増大及びこれに伴うトランジスタ動作速度の向上は、特にゲート長が100nm以下の超微細化された半導体装置に顕著に現れる。
一方、SiC層の場合では、SiCシリコンよりも格子定数が小さく、SiC層の結晶が基板面内方向でシリコン基板に強制的に格子整合する。その結果として、基板面内方向、即ちチャネル方向でチャネル領域に引張歪が導入され、引張応力が印加される。
特開2006−186240号公報 特開2006−261283号公報 特開2005−244187号公報
SiGe層をソース/ドレイン領域に埋め込むエンベディッド構造のトランジスタにおいて、チャネルへ圧縮歪を導入することによりホール移動度が増大し、トランジスタの電流駆動能力が改善される。しかしながら、45nmノード以降では、SiGe層による圧縮歪の増大化させ、電流駆動能力の改善率を更に高める必要がある。
SiGe層の圧縮歪を強めるには、単純にSiGe中のGe濃度を高めれば実現される。ところがこの場合、SiGe層中に転位を発生させて電流リークパスが形成され易いという問題がある。
また、SiGe層の圧縮歪を強める他の方策として、SiGe層間の間隔を狭め、SiGe層が埋め込まれる凹部を深く形成する等の方法が考えられている。凹部を深く形成することにより、SiGe層は成長方向に大きく格子が伸張され、その結果としてチャネル領域の側面である(110)面の格子を大きく伸張させることができる。ところがこの場合、SiGe層内の格子歪みを緩和させないためには、予めSiGeの成長と同時に不純物、例えばホウ素(B)を導入しておく必要がある。その結果、トランジスタ電流のカットオフが困難となり、トランジスタのロールオフ特性が損なわれるという問題がある。一方、浅い凹部を形成し、SiGe層間の間隔を狭める場合、上記した(110)面の確保が不十分となるため、歪み印加の効率が低下する。
なお、SiC層の場合では、SiC中のC濃度を高めることでSiC層の引張歪を強めることができる反面、SiC層中に転位を発生させて電流リークパスが形成され易い。また、凹部を深く形成することにより、SiC層は成長方向に大きく格子が圧縮され、その結果としてチャネル領域の側面である(110)面の格子を大きく圧縮させることができるが、上記と同様に問題がある。
本件は、上記の課題に鑑みてなされたものであり、半導体層における転位の発生を抑止しトランジスタのロールオフ特性を十分に確保しつつも、チャネル領域への歪み量を増加させて電流駆動能力を大幅に向上させて動作速度を増大させることを可能とする信頼性の高い半導体装置及びその製造方法を提供することを目的とする。キャリア注入速度を増加させる
本件の半導体装置は、半導体基板と、前記半導体基板上に形成されたゲート絶縁膜と、前記ゲート絶縁膜に形成されたゲート電極と、前記半導体基板における前記ゲート電極の両側の部分に埋め込まれるように形成された第1の半導体層と、前記第1の半導体層上に、当該第1の半導体層と重畳するように形成された第2の半導体層とを含むものである。ここで、前記第1の半導体層及び前記第2の半導体層は、SiとSi以外の4B属元素との混晶からなり、前記第2の半導体層中の前記Si以外の4B属元素の濃度は、前記第1の半導体層中の前記Si以外の4B属元素の濃度よりも高く、前記第1の半導体層の端部は、前記第2の半導体層の端部よりも、前記ゲート電極から離間している。
本件の半導体装置の製造方法は、半導体基板上にゲート絶縁膜及びゲート電極を順次形成する工程と、前記ゲート絶縁膜及び前記ゲート電極の側面に第1のサイドウォールを形成する工程と、前記ゲート電極及び前記第1のサイドウォールをマスクとして、前記半導体基板に第1のエッチングを施す工程と、前記第1のサイドウォール上に第2のサイドウォールを形成する工程と、前記半導体基板、前記第1のサイドウォール及び前記第2のサイドウォールをマスクとして、前記半導体基板に第2のエッチングを施す工程と、前記半導体基板の前記第2のエッチングにより加工された部分に第1の半導体層を成長させる工程と、前記第2のサイドウォールを除去した後、前記第1の半導体層上に第2の半導体層を成長させる工程とを含む。
本件によれば、半導体層における転位の発生を抑止しトランジスタのロールオフ特性を十分に確保しつつも、チャネル領域への歪み量を増加させて電流駆動能力を大幅に向上させて動作速度を増大させることが可能となり、信頼性の高い半導体装置が実現する。
―半導体装置の基本構成―
先ず、本実施形態における半導体装置の基本構成について説明する。ここでは、半導体装置として、pチャネルMOSトランジスタを例に採る。
図1は、本基本構成であるpチャネルMOSトランジスタの概略構成を示す断面図である。
本基本構成では、典型的には、シリコン基板100上にゲート絶縁膜101を介してゲート電極102が形成され、ゲート電極102の両側に位置するソース/ドレイン領域に半導体層、例えばSiGe層103が埋め込み形成され、ゲート電極102の側面にサイドウォール104が形成されている。
SiGe層103は、第1のSiGe層103aと、第1のSiGe層103a上に形成され、Si又は第1のSiGe層103aよりもGe濃度の低い中間層103cと、第1のSiGe層103a上に中間層103cを介して形成され、第1のSiGe層103aよりもGe濃度の高い第2のSiGe層103bと有して構成される。そして、第1のSiGe層103aの端部は、第2のSiGe層103bの端部よりも、ゲート電極102から離間している。
更に、第2のSiGe層103b上に、Si又は第1のSiGe層103aよりもGe濃度の低い上層103dを形成しても良い。
サイドウォール104は、ゲート電極102の側面に形成された第1のサイドウォール104aと、第1のサイドウォール104a上に形成された第2のサイドウォール104bとを有して構成されている。
第1のサイドウォール104aは、収縮性の絶縁膜、例えばSiNからなり、第2のSiGe層101bの端部と接するように(第1のサイドウォール104aを介してゲート電極102と第2のSiGe層103bとが離間するように)形成されている。
第2のサイドウォール104bは、第1のサイドウォール104aよりの応力の小さい絶縁膜、例えばSiO2からなり、第1のサイドウォール104a上及び第2のサイドウォール104bの一部上に形成されている。
図2は、本基本構成であるpチャネルMOSトランジスタの歪み作用による応力を説明するための模式図である。
このpチャネルMOSトランジスタでは、SiGe層103のうち、第2のSiGe層103bは、自身が伸張することでチャネル領域の鉛直方向を伸張し、その結果としてチャネル領域をチャネル長方向に収縮させ、チャネル領域のチャネル長方向に対して圧縮歪みを与える。ここで第2のSiGe層103bは、Ge濃度が高いことで低抵抗化及び圧縮歪みを増加させるも、浅く(薄く)形成されているため、トランジスタ電流のカットオフが容易となり、十分なロールオフ特性が確保される。
一方、第1のSiGe層103aは、深く(厚く)形成されているため、チャネル領域の側面である(110)面の格子を大きく伸張し、チャネル領域のチャネル長方向に対して圧縮歪みを与える。この作用により、第2のSiGe層103bによる圧縮応力の不足が補われ、SiGe層103として大きな圧縮歪みを与えることができる。この場合、第1のSiGe層103aは、Ge濃度が低いために転位を生ぜしめることなく、しかもその端部は第2のSiGe層103bの端部よりもゲート電極102から離間しているため、ロールオフ特性を損なう懸念はない。
ここで、第1のSiGe層103aは、中間層103cにより第2のSiGe層103bと隔てられているため、Ge濃度の高い第2のSiGe層103bから第1のSiGe層103aへの転位の伝播が中間層103cで遮断される。
更に、第2のSiGe層103b上に上層103dを形成することにより、第2のSiGe層103bから外部への転位の伝播がより確実に防止されることになる。
更に、本基本構成では、自身は収縮する性質を有する第1のサイドウォール104aがゲート電極102の側面に形成されているため、チャネル領域のチャネル長方向に対する圧縮歪みが助長される。
即ち、SiGe層103に加えて第1のサイドウォール104aを設けることにより、両者による圧縮応力の合算により、十分に大きい圧縮歪みをチャネル領域のチャネル長方向に与えることができる。
図3は、本基本構成のpチャネルMOSトランジスタにおいて、従来構成との比較に基づき、チャネル領域の中央部位を原点としたチャネル長方向及び鉛直方向の歪み(εxx及びεyy)を示す特性図である。図4は、図3に対応した応力値を示す図である。
図3及び図4において、比較例1が従来のSiGe層を有するエンベテッド構造のものを、比較例2がSiGe層の端部がエクステンション部にまで張り出した構造のものを、比較例3が比較例2の構造に圧縮歪みの印加用のサイドウォールが加わったものをそれぞれ示す。また、図4において、参照例はSiGe層の代わりにSi層を形成したものであり、σxxがチャネル長方向の圧縮応力を、σyyが鉛直方向の圧縮応力を、Δμ/μが比較例3を基準にした移動度増加率をそれぞれ示す。
図3及び図4のように、本基本構成では、参照例及び比較例1〜3に比べて、チャネル長方向では圧縮応力(負値)が、鉛直方向では引張応力(正値)がそれぞれ大幅に増加していることが判る。これは、pチャネルMOSトランジスタのトランジスタ特性が大幅に向上することを意味する。
ここで、第1のSiGe層103aのGe濃度は、Si1-xGexとした場合に0.15≦x≦0.20程度とされている。15%より小さいと応力不足であり、20%より大きいと転位の発生及びロールオフ特性の劣化が懸念される。従って、15%以上20%以下程度のGe濃度が、深い低Ge濃度のSiGe層としての適正範囲である。
第1のSiGe層103aの膜厚は、25nm〜40nm程度とされている。25nmより薄いと応力不足であり、35nmより厚いと転位の発生及びロールオフ特性の劣化が懸念される。従って、25nm以上4nm以下程度の膜厚が、深い低Ge濃度のSiGe層としての適正範囲である。
第2のSiGe層103bのGe濃度は、Si1-xGexとした場合に0.05≦x≦0.10程度とされている。当該部分は、前記第1のSiGe層に対してより低濃度のSiGe層を配置することにより、前記層内の積層欠陥誘発を抑制する作用がある。従ってそのSiGe濃度は前記層より低下させる必要があり、Ge濃度は10%以下であることが必要である。
第2のSiGe層103bの膜厚は、5nm〜10nm程度とされている。
中間層103cのGe濃度は、Si1-xGexとした場合に0.20<x≦0.30程度とされている。Ge濃度が30%より大きいとSiGe内部への結晶欠陥貫入が、20%より低いと更に大きいストレスをチャネルに対して印加する作用が多き聞く低下してしまう。
中間層103cの膜厚は、10nm〜20nm程度とされている。10nmより薄いと応力印加作用が激減する。20nmより厚いと、Geが高濃度であるため、積層欠陥が貫入する虞が大きくなる。従って、10nm以上20nm以下程度の膜厚が中間層としての適正範囲である。
上層103dのGe濃度は、前記103bと同様の作用を示し、且つシリサイド形成時の凝集抑止のためにSi1-xGexとした場合に、x≦0.10の濃度範囲が適正である。
また、ソース/ドレイン領域に形成される半導体層として、第1のSiGe層103cの代わりに高Ge濃度のSiGeC層を形成しても良い。
この場合、SiGeC層では、Ge濃度及びC濃度は、Si1-xGexyで0.20≦x≦0.30程度、y≦0.01程度とされる。膜厚は、25nm〜40nmとされる。
SiGeC層では、Ge濃度が24%より小さい、又は膜厚が25nmより薄いと応力不足であり、Ge濃度が35%より大きい、又は膜厚が40nmより厚いと転位の発生が懸念される。また、C濃度が1%より大きいとストレス不足となる。従って、24%以上35%以下程度のGe濃度、1%以下程度のC濃度、及び25nm以上40nm以下程度の膜厚が、深い領域にある低Ge濃度のSiGeC層としての適正範囲である。
ここで、中間層103cについても同様に、SiGeC層として形成しても良い。この場合、Ge濃度及びC濃度は、Si1-x-yGexyで0.24≦x≦0.35程度、y≦0.01程度とされる。膜厚は、10nm〜20nmとされる。
Ge濃度が35%より大きい、又は膜厚が20nmより厚いとSiGeC層内に積層欠陥が貫入する。また、C濃度が1%より大きいとストレス不足となる。一方、膜厚が10nmより薄い場合でもストレス不足となる。従って、24%以上35%以下のGe濃度且つ1%以下のC濃度を有し、膜厚が10nm〜20nmが中間層としてのSiGeC層の適正範囲である。
上層部103dは、その作用が当該下層の103cへの積層欠陥・転位の貫入防止の機能を有しているので、Si1-x-yGexyとしたときに適正濃度はx≦0.10、y<0.01、その膜厚は15nm〜20nmである。
以上説明したように、上記したpチャネルMOSトランジスタでは、SiGe層103における転位の発生を抑止しトランジスタのロールオフ特性を十分に確保しつつも、チャネル領域への歪み量を増加させて電流駆動能力を大幅に向上させて動作速度を増大させることが可能となる。
以上、pチャネルMOSトランジスタの基本構成について説明したが、nチャネルMOSトランジスタの場合では、SiGe層103の代わりにSiC層を形成する。即ち、第1のSiGe層103aと同様の第1のSiC層と、第2のSiGe層103bと同様の第2のSiC層とを形成する。更に、中間層103c及び上層103dの代わりに、Si又はSiCからなる中間層及び上層を、中間層103c及び上層103dと同様に形成する。更に、第1のサイドウォール104aの代わりに、膨張性の絶縁膜(SiN等)からなる第1のサイドウォールを、第1のサイドウォール104aと同様に形成する。
ここで、第1のSiC層のC濃度は、Si1-yyとした場合に0.008≦y≦0.012程度とされている。0.8%より小さいと応力不足であり、1.2%より大きいと転位の発生が懸念される。従って、0.8%以上1.2%以下程度のC濃度が、深い低C濃度のSiC層としての適正範囲である。
第1のSiC層の膜厚は、25nm〜40nm程度とされている。25nmより薄いと応力不足であり、40nmより厚いと転位の発生が懸念される。従って、25nm以上40nm以下程度の膜厚が、深い低C濃度のSiC層としての適正範囲である。
第2のSiC層のC濃度は、Si1-yyとした場合にy≦0.005程度とされている。C濃度が0.5%より大きいと転位の発生が懸念される。および当該層の役割は前記下層SiCへの貫入欠陥抑止である。従って、0.5%以下程度のC濃度が、のSiC層としての適正範囲である。または完全はシリコン層でもよい。
第2のSiC層の膜厚は、5nm〜10nm程度とされている。リセスの全体的な深さは50nmであるため、5nmより薄いと下層SiC層の欠陥貫入抑止能力が低下し、10nmより厚いと後述するように主たるストレスを印加するSiC層を埋め込むことができなくなる。従って、5nm以上10nm以下程度の膜厚が、浅い高C濃度のSiC層としての適正範囲である。
中間層のC濃度は、Si1-yyとした場合に0.015<y≦0.0025程度とされている。C濃度が2.5%より大きいとSiC中の欠陥貫入が抑止できなくなり、かつSiC形成後の熱処理により格子位置から格子間位置へCが析出してしまう。従って、1.5%以上2.5%以下程度のC濃度が中間層としての適正範囲である。
中間層の膜厚は、10nm〜20nm度とされている。10nmより薄いとストレス印加能力が不足する懸念がある。20nmより厚いと結晶欠陥が貫入する。従って、10nm 以上(0nm以下程度の膜厚が中間層としての適正範囲である。
上層部103dは、その作用が当該下層の103cへの積層欠陥・転位の貫入防止の機能を有しているので、Si1-yyとしたときに適正濃度はy<0.005、その膜厚は15nm〜20nm程度である。
また、ソース/ドレイン領域に形成される半導体層として、第1のSiC層の代わりにSiGeC層を形成しても良い。
この場合、SiGeC層では、Ge濃度及びC濃度は、Si1-xGexyでx≦0.01程度、0.008<y≦0.015程度とされる。膜厚は、25nm〜40nm程度とされる。
SiGeC層では、C濃度が0.8%より小さい、又は膜厚が25nmより薄いと応力不足であり、Ge濃度が1%より大きいとC導入による格子縮小効果がGeにより相殺され、その結果ストレス印加量が低下してしまうことになる。従って、0.8%以上1.5%以下程度のC濃度、1%以下程度のGe濃度、及び25nm以上40nm以下程度の膜厚が、浅い高C濃度のSiGeC層としての適正範囲である。
ここで、中間層についても同様に、SiGeC層として形成しても良い。この場合、Ge濃度及びC濃度は、Si1-xGexyでx≦0.01程度、0.015≦y≦0.025程度とされる。膜厚は、10nm〜20nmとされる。
C濃度が2.5%より大きい、又は膜厚が20nmより厚いとSiC中の欠陥貫入が抑止できなくなり、かつSiC形成後の熱処理により格子位置から格子間位置へCが析出してしまう懸念がある。Ge濃度が1%より大きいとC導入による格子縮小効果がGeにより相殺され、その結果ストレス印加量が低下してしまうことになる。従って、1.5%以上、2.5%以下程度のC濃度、1%程度以下のGe濃度、及び10nm以上20nm以下程度の膜厚が、中間層としてのSiGeC層の適正範囲である。
上層部103dは、その作用が当該下層の103cへの積層欠陥・転位の貫入防止の機能を有しているので、Si1-x-yGexyとしたときに適正濃度はx<0.01、y<0.005、その膜厚は15nm〜20nmである。
以上説明したように、上記したnチャネルMOSトランジスタでは、SiC層における転位の発生を抑止しトランジスタのロールオフ特性を十分に確保しつつも、チャネル領域への歪み量を増加させて電流駆動能力を大幅に向上させて動作速度を増大させることが可能となる。
―本発明の具体的な諸実施形態―
以下、本発明を適用した具体的な諸実施形態について、図面を参照しながら詳細に説明する。なお、以下の諸実施形態では半導体装置としてnチャネルMOSトランジスタ及びpチャネルMOSトランジスタを備えたCMOSトランジスタについて例示するが、本発明はこれに限定されるものではなく、ゲート電極を有する他の半導体装置にも適用可能である。
(第1の実施形態)
以下、本実施形態によるCMOSトランジスタの構成について、その製造方法と共に説明する。
図5〜図15は、第1の実施形態によるCMOSトランジスタの製造方法を工程順に示す概略断面図である。図16〜図18は、図5〜図15のうちの主要工程におけるpチャネルMOSトランジスタのゲート電極付近の様子を拡大して示す概略断面図である。
先ず、図5(a)に示すように、シリコン基板1上に、シリコン酸化膜2及びシリコン窒化膜3を順次形成する。
詳細には、先ず、例えばドライ酸化法により、シリコン基板1上に900℃で例えば膜厚10nm程度のシリコン酸化膜2を形成する。
次に、例えばCVD法により、例えばSiH2Cl2・NH3をソースガスに用いて、750℃でシリコン酸化膜2上に例えば膜厚112nm程度のシリコン窒化膜3を形成する。
続いて、図5(b)に示すように、シリコン窒化膜3及びシリコン酸化膜2に開口4を形成する。
詳細には、シリコン窒化膜3及びシリコン酸化膜2でシリコン基板1の素子分離領域上に相当する部分をリソグラフィー及びドライエッチングにより加工し、シリコン窒化膜3及びシリコン酸化膜2に開口4を形成する。
続いて、図5(c)に示すように、シリコン基板1に分離溝1aを形成する。
詳細には、開口4が形成されたシリコン酸化膜2及びシリコン窒化膜3をマスクとして、シリコン基板1をドライエッチングし、シリコン基板1の開口4から露出する部分に分離溝1aを形成する。
続いて、図6(a)に示すように、開口4内及び分離溝1a内を埋め込むようにシリコン酸化膜5を堆積する。
詳細には、開口4から露出する、開口4内及び分離溝1a内を埋め込むように絶縁物、ここでは例えばプラズマCVD法によりシリコン酸化膜5を堆積する。
続いて、図6(b)に示すように、STI素子分離構造6を形成する。
詳細には、化学機械研磨(Chemical Mechanical Polishing:CMP)により、シリコン窒化膜3の表面が露出するまでシリコン酸化膜5を研磨して平坦化する。その後、シリコン酸化膜5をウェットエッチングにより除去し、更に露出するシリコン酸化膜2をフッ化水素酸を用いたウェットエッチングによりにより除去する。
これにより、シリコン基板1上で活性領域、ここではnMOS領域11及びpMOS領域12を画定するSTI(Shallow Trench Isolation)素子分離構造6が形成される。
続いて、図7(a)に示すように、pウェル7、nウェル8、ゲート絶縁膜9、及び多結晶シリコン膜10をそれぞれ形成する。
詳細には、先ず、pMOS領域12を覆うレジストマスク(不図示)を形成し、このレジストマスクを用いてnMOS領域11のみにp型不純物、ここではホウ素(B+)を加速エネルギー100keV、ドーズ量1×1013/cm2の条件でイオン注入する。
次に、レジストマスクを灰化処理等により除去した後、nMOS領域11を覆うレジストマスク(不図示)を形成し、このレジストマスクを用いてpMOS領域12のみにn型不純物、ここではリン(P+)を加速エネルギー150keV、ドーズ量1×1013/cm2の条件でイオン注入する。
次に、レジストマスクを灰化処理等により除去した後、活性化アニールを行う。これにより、STI素子分離構造6の一部を取り囲むように、nMOS領域11にはpウェル7が、pMOS領域12にはnウェル8がそれぞれ形成される。
次に、nMOS領域11及びpMOS領域12の表面をドライ酸化し、例えば膜厚1.5nm程度のシリコン酸化膜からなるゲート絶縁膜9を形成する。
次に、ゲート絶縁膜9上に、CVD法等により多結晶シリコン膜10を例えば膜厚100nm程度に堆積する。
続いて、図7(b)に示すように、多結晶シリコン膜10のpMOS領域12に相当する部位にp型不純物を導入する。
詳細には、nMOS領域11を覆うレジストマスク13を形成し、このレジストマスク13を用いて多結晶シリコン膜10のpMOS領域12に相当する部分のみにp型不純物、ここではホウ素(B+)を加速エネルギー6keV、ドーズ量6×1015/cm2の条件でイオン注入する。その後、レジストマスク13を灰化処理等により除去する。
続いて、図8(a)に示すように、多結晶シリコン膜10のnMOS領域11に相当する部位にn型不純物を導入する。
詳細には、pMOS領域12を覆うレジストマスク14を形成し、このレジストマスク14を用いて多結晶シリコン膜10のnMOS領域11に相当する部分のみにn型不純物、ここではリン(P+)を加速エネルギー8keV、ドーズ量8×1015/cm2の条件でイオン注入する。その後、レジストマスク14を灰化処理等により除去する。
続いて、図8(b)に示すように、ゲート電極15を形成する。
詳細には、多結晶シリコン膜10及びゲート絶縁膜9をリソグラフィー及びドライエッチングにより加工する。これにより、nMOS領域11及びpMOS領域12において、シリコン基板1上でゲート絶縁膜9を介してなるゲート電極15が形成される。
続いて、図9(a)に示すように、pMOS領域12にpエクステンション領域17及びをポケット領域を順次形成する。
詳細には、nMOS領域11を覆うレジストマスク21を形成し、このレジストマスク22を用いてpMOS領域12のみにp型不純物、ここではホウ素(B+)を加速エネルギー0.5keV、ドーズ量1×1015/cm2の条件でイオン注入する。これにより、pMOS領域12では、ゲート電極15の両側におけるシリコン基板1の表層にpエクステンション領域17が形成される。
次に、不図示のポケット領域を形成するため、レジストマスク21を用いてpMOS領域12のみにn型不純物、ここでは砒素(As+)を加速エネルギー10keV、ドーズ量2×1013/cm2の条件でイオン注入する。
その後、レジストマスク21を灰化処理等により除去する。
続いて、図9(b)に示すように、nMOS領域11にnエクステンション領域16及びポケット領域を順次形成する。
詳細には、pMOS領域12を覆うレジストマスク22を形成し、このレジストマスク21を用いてnMOS領域11のみにn型不純物、ここでは砒素(As+)を加速エネルギー3keV、ドーズ量1×1015/cm2の条件でイオン注入する。これにより、nMOS領域11では、ゲート電極15の両側におけるシリコン基板1の表層にnエクステンション領域16が形成される。
次に、不図示のポケット領域を形成するため、レジストマスク22を用いてnMOS領域11のみにp型不純物、ここではホウ素(B+)を加速エネルギー10keV、ドーズ量1×1013/cm2の条件でイオン注入する。
その後、レジストマスク22を灰化処理等により除去する。
なお、上記の各イオン注入において、後述するアニール処理により不純物が活性化されて各エクステンション領域16,17(及び各ポケット領域)が形成されるが、図示では便宜上エクステンション領域16,17とし、その旨を記載する。
続いて、図10(a)に示すように、nMOS領域11を覆う酸化膜マスク23を形成する。
詳細には、シリコン基板1の全面に、CVD法等により低温(400℃〜550℃程度)でシリコン酸化膜(不図示)を膜厚30nm程度に堆積する。そして、このシリコン酸化膜をリソグラフィー及びドライエッチングにより加工する。これにより、nMOS領域11を覆いpMOS領域12を露出させる酸化膜マスク23が形成される。
続いて、図10(b)に示すように、pMOS領域12のゲート電極15の側面に第1のサイドウォール19を形成する。
詳細には、先ず、シリコン基板1の全面に収縮性を有する膜、ここではシリコン窒化膜(不図示)を全面に形成する。具体的には、600〜650℃処理温度で、SiH4,NH3を用いる減圧CVD方式により、収縮性を有するシリコン窒化膜が例えば膜厚10nm程度に形成される。
次に、シリコン窒化膜上のnMOS領域11を覆うレジストマスク(不図示)を形成し、pMOS領域12で露出するシリコン窒化膜の全面を異方性ドライエッチング(エッチバック)して、ゲート電極15の側面のみにシリコン窒化膜を残す。これにより、pMOS領域12のゲート電極15の側面に第1のサイドウォール19が形成される。
その後、レジストマスクを灰化処理等により除去する。
続いて、図11(a)及び図16(a)に示すように、pMOS領域12に浅い凹部25を形成する。
詳細には、pMOS領域12のシリコン基板1の表面を例えば深さ10nm程度にドライエッチングする。このときpMOS領域12では、ゲート電極15及びサイドウォール19がマスクとなり、シリコン基板1の表面に浅い凹部25が形成される。
続いて、図11(b)及び図16(b)に示すように、pMOS領域12のゲート電極15の側面及び凹部25の端部にサイドウォール26を形成する。
詳細には、先ず、酸化膜マスク23から露出するpMOS領域12のシリコン基板1の表面に、例えばCVD法により薄いシリコン酸化膜24を形成する。
次に、プラズマCVD法により、500℃以上600℃未満の処理温度でシリコン基板1の全面にシリコン窒化膜(不図示)を例えば膜厚20nm程度に形成する。
次に、シリコン窒化膜上のnMOS領域11を覆うレジストマスク(不図示)を形成し、pMOS領域12で露出するシリコン窒化膜の全面を異方性ドライエッチング(エッチバック)して、酸化膜マスク23から露出するpMOS領域12のゲート電極15の側面のみにシリコン窒化膜を残す。
これにより、pMOS領域12において、第1のサイドウォール19及びシリコン酸化膜24を介したゲート電極15の側面及び凹部25の端部に、サイドウォール26が形成される。このサイドウォール26の形成とともに、シリコン酸化膜24は当該サイドウォール26下に形成された部分を残して除去される。
その後、nMOS領域11に形成されたレジストマスクを灰化処理等により除去する。このとき、nMOS領域11にはシリコン窒化膜が残存し、酸化膜マスク23上に窒化膜マスク27(第1のサイドウォール19の形成時のシリコン窒化膜を含む。)が形成される。以下、酸化膜マスク23及び窒化膜マスク27の積層体を積層マスク28と記す。
続いて、図12(a)及び図16(c)に示すように、pMOS領域12に深い凹部29を形成する。
詳細には、pMOS領域12のシリコン基板1の表面を例えば深さ30nm程度にドライエッチングする。このときpMOS領域12では、ゲート電極15、第1のサイドウォール19、シリコン酸化膜24及びサイドウォール26がマスクとなって凹部25の底面がエッチングされ、深い凹部29が形成される。
その後、凹部29の内壁面のスムーズ処理のため、例えばアルカリ酸(TMAH等)を用いて、凹部29の内壁面を10nm程度ウェットエッチングする。これにより、凹部29の深さは、シリコン基板1の表面を基準として40nm程度となる。
続いて、図12(b)及び図17(a)に示すように、凹部29を所定深さまで埋め込む第1のSiGe層31を形成する。
詳細には、選択エピタキシャル成長法により、ソースガスとしてSiH4及びB26/GeH4・H2/HClの混合ガスを用い、成長温度を600℃以下として、シリコン面が露出する凹部29にSiGe、具体的にはSi1-xGexとして例えば0.20≦x≦0.30、ここではSi0.80Ge0.20(x=0.20:Geを20%含有する。)を選択成長させる。これにより、凹部29に所定深さに、ここでは後述する中間Si層と合わせて凹部29を埋め込む程度の膜厚、例えば膜厚30nm程度に、第1のSiGe層31が形成される。このとき、第1のSiGe層31へのホウ素(B)のドーピング量は抵抗率換算で例えば1mΩ・cm程度となる。
続いて、図13(a)及び図17(b)に示すように、第1のSiGe層31上に中間Si層32を形成する。
詳細には、選択エピタキシャル成長法により、ソースガスとしてSiH4及びB26/HClの混合ガスを用い、成長温度を600℃以下として、第1のSiGe層31上にSiを選択成長させる。これにより、凹部29を第1のSiGe層31と合わせて埋め込む程度の膜厚、ここでは膜厚10nm程度に、中間Si層32が形成される。
続いて、図13(b)及び図17(c)に示すように、サイドウォール26を除去する。
詳細には、化学ドライエッチングによりpMOS領域12のサイドウォール26を除去する。このときnMOS領域11では、積層マスク28の窒化膜マスク27も同時に除去される。これにより、pMOS領域12では、浅い凹部25に相当する部分が現れる。また、当該化学ドライエッチングにより薄いシリコン酸化膜24も同時に除去され、第1のサイドウォール19が露出する。
続いて、図14(a)及び図18(a)に示すように、中間Si層29上に第2のSiGe層33を形成する。
詳細には、先ず、中間Si層32上の酸化膜(不図示)を、HFを用いたウェットエッチングにより除去する。
次に、選択エピタキシャル成長法により、ソースガスとしてSiH4及びB26・H2/HClの混合ガスを用い、成長温度を600℃以下として、シリコン面が露出する凹部25に相当する部分にSiのシード層を膜厚2nm程度に形成する。その後、ソースガスとしてGeH4のガスを用い、SiGe、具体的にはSi1-xGexとして例えば0.24≦x≦0.35、ここではSi0.72Ge0.28(x=0.28:Geを28%含有する。)を選択成長させる。これにより、凹部25に相当する部分を埋め込むように、中間Si層32上に膜厚10nm程度に第2のSiGe層33が形成される。
続いて、図14(b)及び図18(b)に示すように、第2のSiGe層33上に上部Si層34を形成する。
詳細には、選択エピタキシャル成長法により、ソースガスとしてSiH4及びB26/HClの混合ガスを用い、成長温度を600℃以下として、第2のSiGe層33上にSiを選択成長させる。これにより、第2のSiGe層33上に膜厚5nm程度に上部Si層34が形成される。
続いて、図15(a)に示すように、酸化膜マスク23を除去した後、第2のサイドウォール35を形成する。
詳細には、先ず、pMOS領域12を覆うレジストマスク(不図示)を形成し、nMOS領域11の酸化膜マスク23を除去する。具体的には、例えばHFを用いたウェットエッチングにより下層の酸化膜マスク23を除去する。
その後、レジストマスクを灰化処理等により除去する。
次に、シリコン基板1の全面に、CVD法等により、500℃以下の処理温度で、第1のサイドウォール19よりも応力の小さい膜、ここではシリコン酸化膜(不図示)を形成する。
そして、シリコン酸化膜の全面を異方性ドライエッチング(エッチバック)して、各ゲート電極15の側面のみにシリコン酸化膜を残す。これにより、nMOS領域11ではゲート電極15の側面に、pMOS領域12では第1のサイドウォール19を介したゲート電極15の側面及び上部Si層34の端部上に、それぞれ第2のサイドウォール35が形成される。
続いて、図15(b)及び図18(c)に示すように、nMOS領域11にnソース/ドレイン領域36を形成した後、サリサイドプロセスを行う。
詳細には、先ず、pMOS領域12を覆うレジストマスク(不図示)を形成し、nMOS領域11のみにn型不純物、ここではリン(P+)を加速エネルギー6.0keV、ドーズ量8×1015/cm2の条件でイオン注入する。
そして、シリコン基板1に、最高温度950℃で極短時間のアニール処理、例えばスパイクアニール処理を施し、イオン注入された不純物を活性化する。これにより、nMOS領域11では、第2のサイドウォール35に隣接するようにシリコン基板1の表層でnエクステンション領域16と一部重畳されてなるnソース/ドレイン領域36が形成される。このアニール処理により、前工程でイオン注入された各種の不純物(エクステンション領域16,17の不純物、及び各ポケット領域の不純物)も同時に活性化させる。
その後、レジストマスクを灰化処理等により除去する。
次に、シリコン基板1の全面にシリサイド化する金属、ここではNi合金(不図示)をスパッタ法等により例えば膜厚10nm程度に堆積する。そして、シリコン基板1を例えば300℃前後でRTP処理してNi合金をシリコンと反応させる。その後、未反応のNi合金を例えば過硫酸処理により除去する。更にシリサイドの低抵抗化を促進するため、例えば400℃〜500℃の温度で追加の熱処理を実行する。これにより、各ゲート電極15の上面部、各上部Si層34の第2のサイドウォール35下を除く部分、及びnソース/ドレイン領域36の上面部にそれぞれシリサイド層37が形成される。
しかる後、層間絶縁膜、コンタクト孔、及び配線の形成等を経て、本実施形態のCMOSトランジスタを完成させる。
なお、上記の層間絶縁膜を形成する前に、当該層間絶縁膜に上記のコンタクト孔を形成する際のエッチングストッパーとしても機能する応力膜を形成しても良い。
詳細には、nMOS領域11には収縮性を有する膜(シリコン窒化膜)を、pMOS領域12には膨張性を有する膜(シリコン窒化膜)を、それぞれ形成すれば良い。
以上説明したように、本実施形態によれば、SiGe層における転位の発生を抑止しトランジスタのロールオフ特性を十分に確保しつつも、チャネル領域への歪み量を増加させて電流駆動能力を大幅に向上させて動作速度を増大させることが可能となり、信頼性の高いpチャネルMOSトランジスタが実現する。
(第2の実施形態)
以下、本実施形態によるCMOSトランジスタの構成について、その製造方法と共に説明する。
図19〜図24は、第2の実施形態によるCMOSトランジスタの製造方法の主要工程を順に示す概略断面図である。
先ず、第1の実施形態と同様に、図5(a)〜図9(b)の各工程を経る。
続いて、図19(a)に示すように、pMOS領域12を覆う酸化膜マスク41を形成する。
詳細には、シリコン基板1の全面に、CVD法等により低温(400℃〜550℃程度)でシリコン酸化膜(不図示)を膜厚30nm程度に堆積する。そして、このシリコン酸化膜をリソグラフィー及びドライエッチングにより加工する。これにより、pMOS領域12を覆いnMOS領域11を露出させる酸化膜マスク41が形成される。
続いて、図19(b)に示すように、nMOS領域11のゲート電極15の側面に第1のサイドウォール42を形成する。
詳細には、先ず、シリコン基板1の全面に膨張性を有する膜、ここではシリコン窒化膜(不図示)を全面に形成する。具体的には、500℃以上600℃未満の処理温度で( )の条件により、収縮性を有するシリコン窒化膜が例えば膜厚10nm程度に形成される。
次に、シリコン窒化膜上のpMOS領域12を覆うレジストマスク(不図示)を形成し、nMOS領域11で露出するシリコン窒化膜の全面を異方性ドライエッチング(エッチバック)して、ゲート電極15の側面のみにシリコン窒化膜を残す。これにより、nMOS領域11のゲート電極15の側面に第1のサイドウォール42が形成される。
その後、レジストマスクを灰化処理等により除去する。
続いて、図20(a)に示すように、nMOS領域11に浅い凹部43を形成する。
詳細には、nMOS領域11のシリコン基板1の表面を例えば深さ10nm程度にドライエッチングする。このときnMOS領域11では、ゲート電極15及びサイドウォール42がマスクとなり、シリコン基板1の表面に浅い凹部43が形成される。
この凹部43の形成とともに、シリコン酸化膜44は第1のサイドウォール42上に形成された部分を残して除去される。
続いて、図20(b)に示すように、nMOS領域11のゲート電極15の側面及び凹部43の端部にサイドウォール45を形成する。
詳細には、先ず、酸化膜マスク41から露出するnMOS領域11のシリコン基板1の表面に、例えばCVD法により薄いシリコン酸化膜44を形成する。
次に、プラズマCVD法により、500℃以上600℃未満の処理温度でシリコン基板1の全面にシリコン窒化膜(不図示)を例えば膜厚20nm程度に形成する。
次に、シリコン窒化膜上のpMOS領域12を覆うレジストマスク(不図示)を形成し、nMOS領域11で露出するシリコン窒化膜の全面を異方性ドライエッチング(エッチバック)して、酸化膜マスク41から露出するnMOS領域11のゲート電極15の側面のみにシリコン窒化膜を残す。これにより、nMOS領域11において、第1のサイドウォール42及びシリコン酸化膜44を介したゲート電極15の側面及び凹部43の端部に、サイドウォール45が形成される。このサイドウォール45の形成とともに、シリコン酸化膜44は当該サイドウォール45下に形成された部分を残して除去される。
その後、pMOS領域12に形成されたレジストマスクを灰化処理等により除去する。このとき、pMOS領域12にはシリコン窒化膜が残存し、酸化膜マスク41上に窒化膜マスク46(第1のサイドウォール42の形成時のシリコン窒化膜を含む。)が形成される。以下、酸化膜マスク41及び窒化膜マスク46の積層体を積層マスク47と記す。
続いて、図21(a)に示すように、nMOS領域11に深い凹部48を形成する。
詳細には、nMOS領域11のシリコン基板1の表面を例えば深さ30nm程度にドライエッチングする。このときnMOS領域11では、ゲート電極15、第1のサイドウォール42、シリコン酸化膜44及びサイドウォール45がマスクとなって凹部43の底面がエッチングされ、深い凹部48が形成される。
その後、凹部48の内壁面のスムーズ処理のため、例えばアルカリ酸(TMAH等)を用いて、凹部48の内壁面を10nm程度ウェットエッチングする。これにより、凹部48の深さは、シリコン基板1の表面を基準として40nm程度となる。
続いて、図21(b)に示すように、凹部48を所定深さまで埋め込む第1のSiC層49を形成する。
詳細には、選択エピタキシャル成長法により、ソースガスとして(SiH4,SiCH6、PH3、H2)の混合ガスを用い、成長温度を600℃以下として、シリコン面が露出する凹部48にSiC、具体的にはSi1-yyとして例えば0.008≦y≦0.015、ここではSi0.9920.008(y=0.008:Cを0.8%含有する。)を選択成長させる。これにより、凹部48に所定深さに、ここでは後述する中間Si層と合わせて凹部48を埋め込む程度の膜厚、例えば膜厚30nm程度に、第1のSiC層49が形成される。このとき、第1のSiC層49へのリン(P+)のドーピング量は抵抗率換算で例えば1mΩ・cm程度となる。
続いて、図22(a)に示すように、第1のSiC層49上に中間Si層51を形成する。
詳細には、選択エピタキシャル成長法により、ソースガスとしてSiH4/PH3/H2の混合ガスを用い、成長温度を600℃以下として、第1のSiC層49上にSiを選択成長させる。これにより、凹部48を第1のSiC層49と合わせて埋め込む程度の膜厚、ここでは膜厚10nm程度に、中間Si層51が形成される。
続いて、図22(b)に示すように、サイドウォール45を除去する。
詳細には、化学ドライエッチングによりnMOS領域11のサイドウォール45を除去する。このときpMOS領域12では、積層マスク47の窒化膜マスク46も同時に除去される。これにより、nMOS領域11では、浅い凹部43に相当する部分が現れる。また、当該化学ドライエッチングにより薄いシリコン酸化膜44も同時に除去され、第1のサイドウォール42が露出する。
続いて、図23(a)に示すように、中間Si層51上に第2のSiC層52を形成する。
詳細には、先ず、中間Si層51上の酸化膜(不図示)をHFを用いたウェットエッチングにより除去する。
次に、選択エピタキシャル成長法により、ソースガスとしてSiH4,PH3,H2の混合ガスを用い、成長温度を600℃以下として、シリコン面が露出する凹部43に相当する部分にSiのシード層を膜厚2nm程度に形成する。その後、ソースガスとして(SiH4,SiCH6,PH3,H2のガスを用い、SiC、具体的にはSi1-yyとして例えば0.015≦y≦0.025、ここではSi0.980.02(y=0.02:Cを2%含有する。)を選択成長させる。これにより、凹部43に相当する部分を埋め込むように、中間Si層51上に膜厚10nm程度に第2のSiC層52が形成される。
続いて、図23(b)に示すように、第2のSiC層52上に上部Si層53を形成する。
詳細には、選択エピタキシャル成長法により、ソースガスとして(SiH4,PH3,H2 )の混合ガスを用い、成長温度を600℃以下として、第2のSiC層52上にSiを選択成長させる。これにより、第2のSiC層52上に膜厚5nm程度に上部Si層53が形成される。
続いて、図24(a)に示すように、酸化膜マスク41を除去した後、第2のサイドウォール35を形成する。
詳細には、先ず、nMOS領域11を覆うレジストマスク(不図示)を形成し、pMOS領域12の酸化膜マスク41を除去する。具体的には、例えばHFを用いたウェットエッチングにより下層の酸化膜マスク41を除去する。
その後、レジストマスクを灰化処理等により除去する。
次に、シリコン基板1の全面に、CVD法等により、500℃以下の処理温度で、第1のサイドウォール42よりも応力の小さい膜、ここではシリコン酸化膜(不図示)を形成する。
そして、シリコン酸化膜の全面を異方性ドライエッチング(エッチバック)して、各ゲート電極15の側面のみにシリコン酸化膜を残す。これにより、nMOS領域11では第1のサイドウォール42を介したゲート電極15の側面及び上部Si層53の端部上に、pMOS領域12ではゲート電極15の側面に、それぞれ第2のサイドウォール35が形成される。
続いて、図24(b)に示すように、pMOS領域12にpソース/ドレイン領域54を形成した後、サリサイドプロセスを行う。
詳細には、先ず、nMOS領域11を覆うレジストマスク(不図示)を形成し、pMOS領域12のみにp型不純物、ここではホウ素(B+)を加速エネルギー3keV、ドーズ量5×1015/cm2の条件でイオン注入する。
そして、シリコン基板1に、最高温度950℃で極短時間のアニール処理、例えばスパイクアニール処理を施し、イオン注入された不純物を活性化する。これにより、pMOS領域12では、第2のサイドウォール35に隣接するようにシリコン基板1の表層でpエクステンション領域17と一部重畳されてなるpソース/ドレイン領域54が形成される。このアニール処理により、前工程でイオン注入された各種の不純物(エクステンション領域16,17の不純物、及び各ポケット領域の不純物)も同時に活性化させる。
その後、レジストマスクを灰化処理等により除去する。
次に、シリコン基板1の全面にシリサイド化する金属、ここではNi合金(不図示)をスパッタ法等により例えば膜厚10nm程度に堆積する。そして、シリコン基板1を例えば300℃前後でRTP処理してNi合金をシリコンと反応させる。その後、未反応のNi合金を例えば過硫酸処理により除去する。更にシリサイドの低抵抗化を促進するため、例えば400℃〜500℃の温度で追加の熱処理を実行する。これにより、各ゲート電極15の上面部、各上部Si層43の第2のサイドウォール35下を除く部分、及びpソース/ドレイン領域54の上面部にそれぞれシリサイド層37が形成される。
しかる後、層間絶縁膜、コンタクト孔、及び配線の形成等を経て、本実施形態のCMOSトランジスタを完成させる。
なお、上記の層間絶縁膜を形成する前に、当該層間絶縁膜に上記のコンタクト孔を形成する際のエッチングストッパーとしても機能する応力膜を形成しても良い。
詳細には、nMOS領域11には収縮性を有する膜(シリコン窒化膜)を、pMOS領域12には膨張性を有する膜(シリコン窒化膜)を、それぞれ形成すれば良い。
以上説明したように、本実施形態によれば、SiC層における転位の発生を抑止しトランジスタのロールオフ特性を十分に確保しつつも、チャネル領域への歪み量を増加させて電流駆動能力を大幅に向上させて動作速度を増大させることが可能となり、信頼性の高いnチャネルMOSトランジスタが実現する。
以下、本発明の諸態様を付記としてまとめて記載する。
(付記1)半導体基板と、
前記半導体基板上に形成されたゲート絶縁膜と、
前記ゲート絶縁膜上に形成されたゲート電極と、
前記半導体基板における前記ゲート電極の両側の部分に埋め込まれた第1の半導体層と、
前記第1の半導体層上に、当該第1の半導体層と重畳する第2の半導体層と
を含み、
前記第1の半導体層及び前記第2の半導体層は、SiとSi以外の4B属元素を含み、前記第2の半導体層中の前記Si以外の4B属元素の濃度は、前記第1の半導体層中の前記Si以外の4B属元素の濃度よりも高く、
前記第1の半導体層の端部は、前記第2の半導体層の端部よりも、前記ゲート電極から離間していることを特徴とする半導体装置。
(付記2)前記第1の半導体層中の前記Si以外の4B属元素及び前記第2の半導体層中の前記Si以外の4B属元素は、Ge又はCであることを特徴とする付記1に記載の半導体装置。
(付記3)前記第1の半導体層と前記第2の半導体層との間に形成された第3の半導体層を更に含むことを特徴とする付記1又は2に記載の半導体装置。
(付記4)前記第3の半導体層は、Si、又はSiとSi以外の4B属元素との混晶からなり、
前記第3の半導体層中の前記Si以外の4B属元素の濃度は、前記第1の半導体層中の前記Si以外の4B属元素の濃度よりも低いことを特徴とする付記3に記載の半導体装置。
(付記5)前記第2の半導体層中の前記Si以外の4B属元素は、Ge又はCであることを特徴とする付記4に記載の半導体装置。
(付記6)前記第2の半導体層上に形成された第4の半導体層を更に含むことを特徴とする付記3〜5のいずれか1項に記載の半導体装置。
(付記7)前記第4の半導体層は、Si、又はSiとSi以外の4B属元素との混晶からなり、
前記第4の半導体層中の前記Si以外の4B属元素の濃度は、前記第1の半導体層中の前記Si以外の4B属元素の濃度よりも低いことを特徴とする付記6に記載の半導体装置。
(付記8)前記第2の半導体層中の前記Si以外の4B属元素は、Ge又はCであることを特徴とする付記7に記載の半導体装置。
(付記9)前記ゲート電極の側壁に形成された、絶縁膜からなる第1のサイドウォールを更に含むことを特徴とする付記1〜8のいずれか1項に記載の半導体装置。
(付記10)前記第2の半導体層は、前記第1のサイドウォールに接していることを特徴とする付記9に記載の半導体装置。
(付記11)前記第1のサイドウォール上且つ前記第2半導体層上に形成された第2のサイドウォールを更に含むことを特徴とする付記10に記載の半導体装置。
(付記12)半導体基板上にゲート絶縁膜及びゲート電極を形成する工程と、
前記ゲート電極の側面に第1のサイドウォールを形成する工程と、
前記ゲート電極及び前記第1のサイドウォールをマスクとして、前記半導体基板に第1のエッチングを施す工程と、
前記第1のサイドウォール上に第2のサイドウォールを形成する工程と、
前記ゲート電極及び前記第2のサイドウォールをマスクとして、前記半導体基板に第2のエッチングを施す工程と、
次いで、前記半導体基板に第1の半導体層を成長させる工程と、
前記第2のサイドウォールを除去した後、前記第1の半導体層上に第2の半導体層を成長させる工程と
を含むことを特徴とする半導体装置の製造方法。
(付記13)前記第1の半導体層及び前記第2の半導体層は、SiとSi以外の4B属元素とを含み、前記第2の半導体層中の前記Si以外の4B属元素の濃度は、前記第1の半導体層中の前記Si以外の4B属元素の濃度よりも高いことを特徴とする付記12に記載の半導体装置の製造方法。
(付記14)前記第1の半導体層中の前記Si以外の4B属元素及び前記第2の半導体層中の前記Si以外の4B属元素は、Ge又はCであることを特徴とする付記13に記載の半導体装置の製造方法。
(付記15)前記第1の半導体層を形成する工程の後、前記第2の半導体層を形成する工程の前に、前記第1の半導体層上に第3の半導体層形成する工程を更に含むことを特徴とする付記12〜14のいずれか1項に記載の半導体装置の製造方法。
(付記16)前記第3の半導体層は、Si、又はSiとSi以外の4B属元素とを含み、
前記第3の半導体層中の前記Si以外の4B属元素の濃度は、前記第1の半導体層中の前記Si以外の4B属元素の濃度よりも低いことを特徴とする付記15に記載の半導体装置の製造方法。
(付記17)前記第2の半導体層中の前記Si以外の4B属元素は、Ge又はCであることを特徴とする付記16に記載の半導体装置の製造方法。
(付記18)前記第2の半導体層を形成する工程の後、前記第2の半導体層上に第4の半導体層を形成する工程を更に含むことを特徴とする付記15〜17のいずれか1項に記載の半導体装置の製造方法。
(付記19)前記第4の半導体層は、Si、又はSiとSi以外の4B属元素とを含み、
前記第4の半導体層中の前記Si以外の4B属元素の濃度は、前記第1の半導体層中の前記Si以外の4B属元素の濃度よりも低いことを特徴とする付記18に記載の半導体装置の製造方法。
(付記20)前記第2の半導体層中の前記Si以外の4B属元素は、Ge又はCであることを特徴とする付記19に記載の半導体装置の製造方法。
本基本構成であるpチャネルMOSトランジスタの概略構成を示す断面図である。 本基本構成であるpチャネルMOSトランジスタの歪み作用による応力を説明するための模式図である。 本基本構成のpチャネルMOSトランジスタにおいて、従来構成との比較に基づき、チャネル領域の中央部位を原点としたチャネル長方向及び鉛直方向の歪み(εxx及びεyy)を示す特性図である。 図3に対応した応力値を示す図である。 第1の実施形態によるCMOSトランジスタの製造方法を工程順に示す概略断面図である。 図5に引き続き、第1の実施形態によるCMOSトランジスタの製造方法を工程順に示す概略断面図である。 図6に引き続き、第1の実施形態によるCMOSトランジスタの製造方法を工程順に示す概略断面図である。 図7に引き続き、第1の実施形態によるCMOSトランジスタの製造方法を工程順に示す概略断面図である。 図8に引き続き、第1の実施形態によるCMOSトランジスタの製造方法を工程順に示す概略断面図である。 図9に引き続き、第1の実施形態によるCMOSトランジスタの製造方法を工程順に示す概略断面図である。 図10に引き続き、第1の実施形態によるCMOSトランジスタの製造方法を工程順に示す概略断面図である。 図11に引き続き、第1の実施形態によるCMOSトランジスタの製造方法を工程順に示す概略断面図である。 図12に引き続き、第1の実施形態によるCMOSトランジスタの製造方法を工程順に示す概略断面図である。 図13に引き続き、第1の実施形態によるCMOSトランジスタの製造方法を工程順に示す概略断面図である。 図14に引き続き、第1の実施形態によるCMOSトランジスタの製造方法を工程順に示す概略断面図である。 図5〜図15のうちの主要工程におけるpチャネルMOSトランジスタのゲート電極付近の様子を拡大して示す概略断面図である。 図16に引き続き、図5〜図15のうちの主要工程におけるpチャネルMOSトランジスタのゲート電極付近の様子を拡大して示す概略断面図である。 図17に引き続き、図5〜図15のうちの主要工程におけるpチャネルMOSトランジスタのゲート電極付近の様子を拡大して示す概略断面図である。 第2の実施形態によるCMOSトランジスタの製造方法を工程順に示す概略断面図である。 図19に引き続き、第2の実施形態によるCMOSトランジスタの製造方法を工程順に示す概略断面図である。 図20に引き続き、第2の実施形態によるCMOSトランジスタの製造方法を工程順に示す概略断面図である。 図21に引き続き、第2の実施形態によるCMOSトランジスタの製造方法を工程順に示す概略断面図である。 図22に引き続き、第2の実施形態によるCMOSトランジスタの製造方法を工程順に示す概略断面図である。 図23に引き続き、第2の実施形態によるCMOSトランジスタの製造方法を工程順に示す概略断面図である。
符号の説明
1,10,100 シリコン基板
1a 分離溝
2,5,24 シリコン酸化膜
3 シリコン窒化膜
4 開口
6 STI素子分離構造
7 pウェル
8 nウェル
9 ゲート絶縁膜
10 多結晶シリコン膜
11 nMOS領域
12 pMOS領域
13,14,21,22 レジストマスク
15 ゲート電極
16 nエクステンション領域
17 pエクステンション領域
23,41,44 酸化膜マスク
19,42,104a 第1のサイドウォール
25,43 浅い凹部
26,45 サイドウォール
27,46 窒化膜マスク
28,47 積層マスク
29,48 深い凹部
31,103a 第1のSiGe層
32,51 中間Si層
33,103b 第2のSiGe層
34,53 上部Si層
35,104b 第2のサイドウォール
36 nソース/ドレイン領域
37 シリサイド層
49 第1のSiC層
52 第2のSiC層
54 pソース/ドレイン領域
101 ゲート絶縁膜
102 ゲート電極
103 SiGe
103b 第2のSiGe層
103c 中間層
103d 上層
104 サイドウォール

Claims (10)

  1. 半導体基板と、
    前記半導体基板上に形成されたゲート絶縁膜と、
    前記ゲート絶縁膜上に形成されたゲート電極と、
    前記半導体基板における前記ゲート電極の両側の部分に埋め込まれた第1の半導体層と、
    前記第1の半導体層上に、当該第1の半導体層と重畳する第2の半導体層と
    を含み、
    前記第1の半導体層及び前記第2の半導体層は、SiとSi以外の4B属元素を含み、前記第2の半導体層中の前記Si以外の4B属元素の濃度は、前記第1の半導体層中の前記Si以外の4B属元素の濃度よりも高く、
    前記第1の半導体層の端部は、前記第2の半導体層の端部よりも、前記ゲート電極から離間していることを特徴とする半導体装置。
  2. 前記第1の半導体層と前記第2の半導体層との間に形成された第3の半導体層を更に含むことを特徴とする請求項1に記載の半導体装置。
  3. 前記第2の半導体層上に形成された第4の半導体層を更に含むことを特徴とする請求項2に記載の半導体装置。
  4. 前記ゲート電極の側壁に形成された、絶縁膜からなる第1のサイドウォールを更に含むことを特徴とする請求項1〜3のいずれか1項に記載の半導体装置。
  5. 前記第2の半導体層は、前記第1のサイドウォールに接していることを特徴とする請求項4に記載の半導体装置。
  6. 前記第1のサイドウォール上且つ前記第2半導体層上に形成された第2のサイドウォールを更に含むことを特徴とする請求項5に記載の半導体装置。
  7. 半導体基板上にゲート絶縁膜及びゲート電極を形成する工程と、
    前記ゲート電極の側面に第1のサイドウォールを形成する工程と、
    前記ゲート電極及び前記第1のサイドウォールをマスクとして、前記半導体基板に第1のエッチングを施す工程と、
    前記第1のサイドウォール上に第2のサイドウォールを形成する工程と、
    前記ゲート電極及び前記第2のサイドウォールをマスクとして、前記半導体基板に第2のエッチングを施す工程と、
    次いで、前記半導体基板に第1の半導体層を成長させる工程と、
    前記第2のサイドウォールを除去した後、前記第1の半導体層上に第2の半導体層を成長させる工程と
    を含むことを特徴とする半導体装置の製造方法。
  8. 前記第1の半導体層及び前記第2の半導体層は、SiとSi以外の4B属元素とを含み、前記第2の半導体層中の前記Si以外の4B属元素の濃度は、前記第1の半導体層中の前記Si以外の4B属元素の濃度よりも高いことを特徴とする請求項7に記載の半導体装置の製造方法。
  9. 前記第1の半導体層を形成する工程の後、前記第2の半導体層を形成する工程の前に、前記第1の半導体層上に第3の半導体層形成する工程を更に含むことを特徴とする請求項7又は8に記載の半導体装置の製造方法。
  10. 前記第2の半導体層を形成する工程の後、前記第2の半導体層上に第4の半導体層を形成する工程を更に含むことを特徴とする請求項9に記載の半導体装置の製造方法。
JP2007285565A 2007-11-01 2007-11-01 半導体装置及びその製造方法 Expired - Fee Related JP5211647B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007285565A JP5211647B2 (ja) 2007-11-01 2007-11-01 半導体装置及びその製造方法
US12/261,173 US8269256B2 (en) 2007-11-01 2008-10-30 Semiconductor device and manufacturing method thereof
US13/586,091 US9214524B2 (en) 2007-11-01 2012-08-15 Method of manufacturing a semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007285565A JP5211647B2 (ja) 2007-11-01 2007-11-01 半導体装置及びその製造方法

Publications (2)

Publication Number Publication Date
JP2009117429A true JP2009117429A (ja) 2009-05-28
JP5211647B2 JP5211647B2 (ja) 2013-06-12

Family

ID=40587219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007285565A Expired - Fee Related JP5211647B2 (ja) 2007-11-01 2007-11-01 半導体装置及びその製造方法

Country Status (2)

Country Link
US (2) US8269256B2 (ja)
JP (1) JP5211647B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012514317A (ja) * 2008-12-31 2012-06-21 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド 段階的な形状の構造を有する埋め込み歪誘起材質を伴うトランジスタ
US9129952B2 (en) 2012-11-22 2015-09-08 Samsung Electronics Co., Ltd. Semiconductor devices including a stressor in a recess and methods of forming the same
US9214530B2 (en) 2012-11-22 2015-12-15 Samsung Electronic Co., Ltd. Methods of forming semiconductor devices including a stressor in a recess

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5381382B2 (ja) * 2009-06-19 2014-01-08 富士通セミコンダクター株式会社 半導体装置及びその製造方法
US8999798B2 (en) * 2009-12-17 2015-04-07 Applied Materials, Inc. Methods for forming NMOS EPI layers
CN102820320B (zh) * 2011-06-09 2015-03-04 中芯国际集成电路制造(北京)有限公司 半绝缘体上硅半导体器件及其制造方法
CN104051263A (zh) * 2013-03-11 2014-09-17 中芯国际集成电路制造(上海)有限公司 一种半导体器件的制备方法
US9306054B2 (en) * 2013-05-24 2016-04-05 Samsung Electronics Co., Ltd. Semiconductor device and a method of fabricating the same
CN105304481A (zh) * 2014-06-10 2016-02-03 联华电子股份有限公司 半导体元件及其制作方法
KR102202754B1 (ko) 2014-08-14 2021-01-15 삼성전자주식회사 반도체 장치
US9947788B2 (en) * 2016-02-09 2018-04-17 Globalfoundries Inc. Device with diffusion blocking layer in source/drain region
US20190131454A1 (en) * 2017-11-01 2019-05-02 Qualcomm Incorporated Semiconductor device with strained silicon layers on porous silicon
WO2019132858A1 (en) * 2017-12-26 2019-07-04 Intel Corporation Non-selective epitaxial source/drain deposition to reduce dopant diffusion for germanium nmos transistors

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008078347A (ja) * 2006-09-21 2008-04-03 Sony Corp 半導体装置の製造方法および半導体装置
JP2008177319A (ja) * 2007-01-18 2008-07-31 Sony Corp 半導体装置の製造方法および半導体装置
JP2008192989A (ja) * 2007-02-07 2008-08-21 Fujitsu Ltd 半導体装置とその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6869866B1 (en) * 2003-09-22 2005-03-22 International Business Machines Corporation Silicide proximity structures for CMOS device performance improvements
US7105393B2 (en) * 2004-01-30 2006-09-12 Taiwan Semiconductor Manufacturing Co., Ltd. Strained silicon layer fabrication with reduced dislocation defect density
US7247583B2 (en) * 2004-01-30 2007-07-24 Toshiba Ceramics Co., Ltd. Manufacturing method for strained silicon wafer
JP2005244187A (ja) 2004-01-30 2005-09-08 Toshiba Ceramics Co Ltd 歪みシリコンウエハおよびその製造方法
JP4369359B2 (ja) * 2004-12-28 2009-11-18 富士通マイクロエレクトロニクス株式会社 半導体装置
JP4561419B2 (ja) 2005-03-16 2010-10-13 ソニー株式会社 半導体装置の製造方法
JP2007281038A (ja) * 2006-04-03 2007-10-25 Toshiba Corp 半導体装置
US7554110B2 (en) * 2006-09-15 2009-06-30 Taiwan Semiconductor Manufacturing Company, Ltd. MOS devices with partial stressor channel
US7750338B2 (en) * 2006-12-05 2010-07-06 Taiwan Semiconductor Manufacturing Company, Ltd. Dual-SiGe epitaxy for MOS devices
US8344447B2 (en) * 2007-04-05 2013-01-01 Taiwan Semiconductor Manufacturing Company, Ltd. Silicon layer for stopping dislocation propagation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008078347A (ja) * 2006-09-21 2008-04-03 Sony Corp 半導体装置の製造方法および半導体装置
JP2008177319A (ja) * 2007-01-18 2008-07-31 Sony Corp 半導体装置の製造方法および半導体装置
JP2008192989A (ja) * 2007-02-07 2008-08-21 Fujitsu Ltd 半導体装置とその製造方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012514317A (ja) * 2008-12-31 2012-06-21 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド 段階的な形状の構造を有する埋め込み歪誘起材質を伴うトランジスタ
US9129952B2 (en) 2012-11-22 2015-09-08 Samsung Electronics Co., Ltd. Semiconductor devices including a stressor in a recess and methods of forming the same
US9214530B2 (en) 2012-11-22 2015-12-15 Samsung Electronic Co., Ltd. Methods of forming semiconductor devices including a stressor in a recess
US9257520B2 (en) 2012-11-22 2016-02-09 Samsung Electronics Co, Ltd. Semiconductor devices including a stressor in a recess and methods of forming the same
US9397216B2 (en) 2012-11-22 2016-07-19 Samsung Electronics Co., Ltd. Semiconductor devices including a stressor in a recess and methods of forming the same
US9520497B2 (en) 2012-11-22 2016-12-13 Samsung Electronics Co., Ltd. Semiconductor devices including a stressor in a recess and methods of forming the same
US9537009B2 (en) 2012-11-22 2017-01-03 Samsung Electronics Co., Ltd. Semiconductor devices including a stressor in a recess and methods of forming the same
US9548301B2 (en) 2012-11-22 2017-01-17 Samsung Electronics Co., Ltd. Semiconductor devices including a stressor in a recess and methods of forming the same
US9741855B2 (en) 2012-11-22 2017-08-22 Samsung Electronics Co., Ltd. Semiconductor devices including a stressor in a recess and methods of forming the same
US9768300B2 (en) 2012-11-22 2017-09-19 Samsung Electronics Co., Ltd. Semiconductor devices including a stressor in a recess and methods of forming the same

Also Published As

Publication number Publication date
US20120309176A1 (en) 2012-12-06
JP5211647B2 (ja) 2013-06-12
US8269256B2 (en) 2012-09-18
US20090114956A1 (en) 2009-05-07
US9214524B2 (en) 2015-12-15

Similar Documents

Publication Publication Date Title
JP5211647B2 (ja) 半導体装置及びその製造方法
US7592214B2 (en) Method of manufacturing a semiconductor device including epitaxially growing semiconductor epitaxial layers on a surface of semiconductor substrate
US8283226B2 (en) Method for manufacturing semiconductor device
US7985641B2 (en) Semiconductor device with strained transistors and its manufacture
JP5326274B2 (ja) 半導体装置および半導体装置の製造方法
JP4630728B2 (ja) 半導体装置及びその製造方法
US20060292783A1 (en) CMOS transistor and method of manufacturing the same
JP5223285B2 (ja) 半導体装置の製造方法
JP2008520110A (ja) ゲート及びチャネル内に歪を誘起させてcmosトランジスタの性能を向上させる方法
KR20090122122A (ko) 반도체 소자의 제조 방법 및 그 구조
US20120256265A1 (en) Semiconductor device and manufacturing method thereof
US7892908B2 (en) Integration scheme for changing crystal orientation in hybrid orientation technology (HOT) using direct silicon bonded (DSB) substrates
JP2009094225A (ja) 半導体装置の製造方法
JP5200476B2 (ja) 半導体装置及びその製造方法
JP2009033173A (ja) 半導体素子およびその製造方法
JP4997752B2 (ja) 半導体装置の製造方法
JP2008263114A (ja) 半導体装置の製造方法および半導体装置
US9281246B2 (en) Strain adjustment in the formation of MOS devices
US9412869B2 (en) MOSFET with source side only stress
JP5205779B2 (ja) 半導体装置の製造方法および半導体装置
JP5206427B2 (ja) 半導体装置の製造方法
JP2005209980A (ja) 半導体装置の製造方法および半導体装置
JP2004087695A (ja) 半導体装置の製造方法
US20070152282A1 (en) Semiconductor Device and Fabrication Method Thereof
JP2009111145A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130211

R150 Certificate of patent or registration of utility model

Ref document number: 5211647

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees