JP2009085020A - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP2009085020A
JP2009085020A JP2007252073A JP2007252073A JP2009085020A JP 2009085020 A JP2009085020 A JP 2009085020A JP 2007252073 A JP2007252073 A JP 2007252073A JP 2007252073 A JP2007252073 A JP 2007252073A JP 2009085020 A JP2009085020 A JP 2009085020A
Authority
JP
Japan
Prior art keywords
cylinder
bypass
side exhaust
residual gas
exhaust valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007252073A
Other languages
English (en)
Other versions
JP4479774B2 (ja
Inventor
Yasuyuki Irisawa
泰之 入澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007252073A priority Critical patent/JP4479774B2/ja
Priority to PCT/IB2008/002496 priority patent/WO2009040642A1/en
Publication of JP2009085020A publication Critical patent/JP2009085020A/ja
Application granted granted Critical
Publication of JP4479774B2 publication Critical patent/JP4479774B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0242Variable control of the exhaust valves only
    • F02D13/0246Variable control of the exhaust valves only changing valve lift or valve lift and timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0257Independent control of two or more intake or exhaust valves respectively, i.e. one of two intake valves remains closed or is opened partially while the other is fully opened
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0261Controlling the valve overlap
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

【課題】本発明は、内燃機関の制御装置に関し、同じ気筒列内の各気筒の燃焼間隔が不等間隔であり、且つターボ過給機を備えた内燃機関において、他気筒の排気脈動の影響によって残留ガス量が増加し易い特定の気筒においても、残留ガス量が多くなることを確実に抑制することを目的とする。
【解決手段】ターボ過給機14L,14Rのタービン14aに連通する排気ポートを開閉するターボ側排気弁EX1と、タービン14aに連通しないバイパス側排気弁EX2とを各気筒に備える。所定の運転状況において、残留ガス影響大気筒のバイパス側排気弁EX2のリフト量、または、バイパス側排気弁EX2の開弁期間と吸気弁の開弁期間とが重なるバイパス側バルブオーバーラップ期間が、その他の気筒のバイパス側排気弁リフト量またはバイパス側バルブオーバーラップ期間より大きくなるように、可変動弁装置を制御する。
【選択図】図1

Description

本発明は、内燃機関の制御装置に関する。
図10は、従来のV型8気筒エンジンを示す模式的な平面図である。同図に示すように、V型8気筒エンジン90は、左気筒列(左バンク)92Lと右気筒列(右バンク)92Rとを有している。左気筒列92Lは、1番、3番、5番および7番気筒で構成され、右気筒列92Rは、2番、4番、6番および8番気筒で構成されている。左気筒列92Lの各気筒は、排気マニホールド94Lを共用しており、右気筒列92Rの各気筒は、排気マニホールド94Rを共用している。
このようなV型8気筒エンジン90の点火順序は色々あるが、ここでは1→8→7→3→6→5→4→2の場合について説明する。図11は、この点火順序の場合のクランク角と各気筒の作動行程との関係を示す図である。同図に示すように、このような点火順序の場合、左右の各気筒列内での燃焼間隔は、180°等間隔とはならず、不等間隔(90°、180°、270°)となる。
左気筒列92Lの各気筒は、排気マニホールド94Lを共用しているため、左気筒列92L内の他の気筒の排気脈動の影響を受け得る。同様に、右気筒列92Rの各気筒は、排気マニホールド94Rを共用しているため、右気筒列92R内の他の気筒の排気脈動の影響を受け得る。左右の各気筒列内での燃焼間隔が等間隔であれば、各気筒が他の気筒から受ける排気脈動の影響も均一になる。しかしながら、上述したように、V型8気筒エンジン90では、左右の各気筒列内での燃焼間隔が不等間隔であるため、他気筒から受ける排気脈動の影響が気筒間で異なる。
左気筒列92Lの場合を具体的に説明すると、まず、7番気筒のブローダウンの影響を受けて、1番気筒の残留ガスが増加し易くなる。すなわち、図11に示すように、7番気筒において排気弁が開いて筒内の高圧の排気ガスが排気マニホールド94L内へ放出されることによって排気マニホールド94L内の圧力が高まったとき、1番気筒では排気弁の開弁期間と吸気弁の開弁期間とが重なるバルブオーバーラップ期間にある。このため、排気マニホールド94L内の排気ガスが1番気筒の排気弁から筒内や吸気ポートに逆流し、1番気筒の残留ガスが増加する。
更に、左気筒列92Lにおいては、上記と同様に、5番気筒のブローダウンの影響を受けて、3番気筒の残留ガスが増加し易くなる。一方、5番気筒および7番気筒は、多気筒の排気脈動の影響を受けにくいので、残留ガスは少なくなる。
同様にして、右気筒列92Rにおいては、図11から分かるように、4番気筒のブローダウンの影響を受けて6番気筒の残留ガスが増加し易くなり、8番気筒のブローダウンの影響を受けて2番気筒の残留ガスが増加し易くなる。その一方で、4番気筒および8番気筒は、多気筒の排気脈動の影響を受けにくいので、残留ガスは少なくなる。
以上のようにして、V型8気筒エンジン90では、エンジン回転数やエンジン負荷にかかわらず、特定の気筒(1番、2番、3番、6番)において残留ガス量が多くなり易いという特性がある。その結果、それら残留ガス量の多くなり易い気筒では、他の気筒と比べて、燃焼が悪化したり、失火の危険性が高くなったりする。このため、トルク変動などが生じてドライバビリティが悪化したり、排気浄化触媒の劣化を促進させたりするなど、様々な悪影響が発生し易くなる。
このような問題に対し、従来、残留ガス量が多くなり易い気筒の残留ガス量が少なくなるように、残留ガス量が多くなり易い気筒とその他の気筒とで、吸気弁や排気弁を駆動するカムの形状を異ならせるという対策がとられている。しかしながら、このような対策では、弁特性の補正値が固定値であるので、特定の運転領域のみでしか残留ガス量を十分に低減できず、すべての運転領域で問題を解決することはできなかった。
一方、特開2006−161619号公報には、ブローダウンガス発生気筒(上記の点火順序では、5番、7番、4番、8番)の排気通路に流路開閉弁を設け、その流路開閉弁を開閉制御することにより、ブローダウンガス発生気筒の排気圧を低下させ、もって各気筒の残留ガス量を均等化する技術が開示されている。しかしながら、このような対策では、ブローダウンガス発生気筒のポンプ損失が大きくなり、燃費が悪化し易いという欠点がある。更に、流路開閉弁の分だけ製造コストが高くなるという欠点もある。
また、特開2003−56374号公報には、吸・排気弁のバルブ特性を気筒毎に独立に制御可能なエンジンにおいて、残留ガス量が多くなり易い気筒の吸気弁開き時期を他の気筒より遅くするか排気弁閉じ時期を他の気筒より早くするようにバルブ特性を制御することにより、残留ガス量が多くなり易い気筒のバルブオーバーラップ期間を他の気筒より短くし、もってそれらの気筒の残留ガス量を少なくする技術が開示されている。しかしながら、吸気弁開き時期や排気弁閉じ時期、あるいはバルブオーバーラップ期間は、燃費性能や、内部EGR量制御による燃焼制御・エミッション制御などに多大な影響を与える非常に重要なパラメータである。このため、残留ガス量が多くなり易い気筒の燃焼悪化や失火を回避するためにそれらの気筒のみバルブオーバーラップ期間を単純に短くすると、燃費性能やエミッション性能に重大な影響が発生し、好ましくない。
特開2006−161619号公報 特開2003−56374号公報 特開2006−161581号公報 特開平10−89106号公報
上記のように、従来より、V型8気筒エンジンで残留ガス量が多くなり易い特定気筒の残留ガス量を低減するために種々の提案がなされているが、何れの提案にも欠点がある。
また、ターボ過給機付きのV型8気筒エンジンの場合には、次のような問題もある。一般に、ターボ過給機付きエンジンでは、排気通路にタービンが存在するため、背圧が高くなり易く、その結果、残留ガス量が多くなり易い。このため、残留ガス量が多くなり易い特定気筒では、残留ガス量が更に多くなり、燃焼悪化や失火危険性が更に深刻となる。
本発明は、上述のような課題を解決するためになされたもので、同じ気筒列内の各気筒の燃焼間隔が不等間隔であり、且つターボ過給機を備えた内燃機関において、他気筒の排気脈動の影響によって残留ガス量が増加し易い特定の気筒においても、残留ガス量が多くなることを確実に抑制することのできる内燃機関の制御装置を提供することを目的とする。
第1の発明は、上記の目的を達成するため、内燃機関の制御装置であって、
同じ気筒列内の各気筒の燃焼間隔が不等間隔であることにより、他気筒の排気脈動の影響によって残留ガス量が増加し易くなる残留ガス影響の大きさが気筒間で異なる内燃機関を制御する装置であって、
ターボ過給機と、
前記ターボ過給機のタービン入口に通じるターボ側排気通路と、
前記ターボ側排気通路に連通する排気ポートを開閉するターボ側排気弁と、
前記タービン入口に通じないバイパス側排気通路と、
前記バイパス側排気通路に連通する排気ポートを開閉するバイパス側排気弁と、
前記バイパス側排気弁リフト量、または、前記バイパス側排気弁の開弁期間と吸気弁の開弁期間とが重なるバイパス側バルブオーバーラップ期間を、前記残留ガス影響が大きい残留ガス影響大気筒とその他の気筒とで別々に変化させることのできる可変動弁装置と、
所定の運転状況において、前記残留ガス影響大気筒の前記バイパス側排気弁リフト量または前記バイパス側バルブオーバーラップ期間が、前記その他の気筒の前記バイパス側排気弁リフト量または前記バイパス側バルブオーバーラップ期間より大きくなるように、前記可変動弁装置を制御する開弁特性制御手段と、
を備えることを特徴とする。
また、第2の発明は、第1の発明において、
前記内燃機関の各気筒は、前記残留ガス影響大気筒と、前記残留ガス影響大気筒より残留ガス影響が小さい残留ガス影響中気筒と、前記残留ガス影響中気筒より残留ガス影響が小さい残留ガス影響小気筒とに分類され、
前記可変動弁装置は、前記バイパス側排気弁リフト量または前記バイパス側バルブオーバーラップ期間を、前記残留ガス影響大気筒と前記残留ガス影響中気筒と前記残留ガス影響小気筒とで別々に変化させることができ、
前記開弁特性制御手段は、前記残留ガス影響大気筒の前記バイパス側排気弁リフト量または前記バイパス側バルブオーバーラップ期間が、前記留ガス影響中気筒の前記バイパス側排気弁リフト量または前記バイパス側バルブオーバーラップ期間より大きく、且つ、前記残留ガス影響中気筒の前記バイパス側排気弁リフト量または前記バイパス側バルブオーバーラップ期間が、前記残留ガス影響小気筒の前記バイパス側排気弁リフト量または前記バイパス側バルブオーバーラップ期間以上となるように、前記可変動弁装置を制御することを特徴とする。
また、第3の発明は、第1または第2の発明において、
前記バイパス側排気弁リフト量を、前記残留ガス影響大気筒とその他の気筒とで別々に、ゼロとすることのできるバイパス側排気弁停止手段と、
各気筒の前記バイパス側排気弁リフト量をゼロに切り替える場合に、前記その他の気筒の前記バイパス側排気弁リフト量を先行してゼロに切り替え、それに遅れて、前記残留ガス影響大気筒の前記バイパス側排気弁リフト量をゼロに切り替えるリフト量切替順序制御手段と、
を備えることを特徴とする。
また、第4の発明は、第3の発明において、
前記リフト量切替順序制御手段は、前記その他の気筒のうちで、前記残留ガス影響大気筒に排気脈動の影響を及ぼす気筒以外の何れかの気筒の前記バイパス側排気弁リフト量を最先にゼロに切り替えることを特徴とする。
また、第5の発明は、第1乃至第4の発明の何れかにおいて、
前記残留ガス影響大気筒と、この残留ガス影響大気筒に排気脈動の影響を及ぼす気筒とは、それらの前記ターボ側排気弁または前記バイパス側排気弁に通じる排気ポートがシリンダヘッド内で合流していることを特徴とする。
また、第6の発明は、第1乃至第5の発明の何れかにおいて、
前記ターボ側排気弁および前記バイパス側排気弁の位置は、同じ気筒列内の隣り合う気筒間で逆になるように配置され、これにより、隣り合う二つの気筒間では前記ターボ側排気弁同士または前記バイパス側排気弁同士が隣り合って位置しており、
前記隣り合って位置する二つの前記バイパス側排気弁の各々に通じる排気ポートは、シリンダヘッド内で合流するとともに、前記隣り合って位置する二つの前記ターボ側排気弁の各々に通じる排気ポートは、シリンダヘッド内で合流することを特徴とする。
また、第7の発明は、第1乃至第6の発明の何れかにおいて、
前記ターボ側排気弁および前記バイパス側排気弁が共に駆動されるとき、前記バイパス側排気弁の開き時期は、前記ターボ側排気弁の開き時期より遅く、前記バイパス側排気弁の閉じ時期は、前記ターボ側排気弁の閉じ時期より遅いことを特徴とする。
第1の発明によれば、ターボ過給機のタービン入口に連通するターボ側排気弁と、タービン入口に連通しないバイパス側排気弁とを各気筒に備えたことにより、バイパス側排気弁と吸気弁とのバルブオーバーラップ期間(バイパス側バルブオーバーラップ期間)において、過給によって高圧となった吸気によって筒内の既燃ガスを追い払って低圧のバイパス側排気弁へ排出する掃気作用が得られる。背圧の高くなり易いターボ過給機付きエンジンでは一般に残留ガス量が多くなり易いが、第1の発明によれば、上記の掃気作用によって、残留ガス量を十分に少なくすることができる。更に、第1の発明によれば、残留ガス量の多くなり易い特定の残留ガス影響大気筒のバイパス側排気弁リフト量またはバイパス側バルブオーバーラップ期間を、その他の気筒のバイパス側排気弁リフト量またはバイパス側バルブオーバーラップ期間より大きくすることができる。このため、残留ガス量の多くなり易い残留ガス影響大気筒において、掃気作用を他の気筒より大きく発揮させることができる。よって、残留ガス影響大気筒の残留ガス量が多くなることを確実に抑制することができ、残留ガス影響大気筒の燃焼悪化や失火を確実に回避することができる。
第2の発明によれば、残留ガス影響大気筒における掃気作用を残留ガス影響中気筒より大きくし、残留ガス影響中気筒における掃気作用を残留ガス影響小気筒以上とすることができる。このため、各気筒の残留ガスの残り易さに応じて各気筒の掃気作用の大きさを過不足なく制御することができる。よって、各気筒の残留ガス量を均一化しつつ低減することができるとともに、新気がバイパス側排気通路へ吹き抜けることも防止することができる。
第3の発明によれば、各気筒のバイパス側排気弁リフト量をゼロに切り替える際に、残留ガス影響大気筒以外の気筒のバイパス側排気弁リフト量を先行してゼロに切り替え、それに遅れて、残留ガス影響大気筒のバイパス側排気弁リフト量をゼロに切り替えることができる。各気筒のバイパス側排気弁リフト量をゼロに切り替える際には、掃気作用が発揮されなくなるとともに、バイパス側排気弁の停止によってターボ側排気弁側への排気流量が急増するので、過渡的には、ターボ側排気弁側の背圧が非常に高くなるとともに排気脈動の振幅も非常に大きくなり易い。このようなことから、各気筒のバイパス側排気弁リフト量をゼロに切り替える際の過渡運転時には、定常運転時と比べて、残留ガス影響大気筒の残留ガス量が特に多くなり易い。これに対し、第3の発明によれば、過渡的な振幅の大きい排気脈動が減衰するまでは残留ガス影響大気筒のバイパス側排気弁を駆動し続けて掃気作用を発揮させることができるので、残留ガス影響大気筒の残留ガス量が過渡的に多くなることを確実に抑制することができる。
第4の発明によれば、残留ガス影響大気筒以外の気筒のバイパス側排気弁リフト量を先行してゼロに切り替える際、残留ガス影響大気筒に排気脈動の影響を及ぼす気筒以外の何れかの気筒のバイパス側排気弁リフト量を最先にゼロに切り替えることができる。これにより、残留ガス影響大気筒が受ける排気脈動が過大になることを抑制することができるので、残留ガス影響大気筒の残留ガス量が過渡的に多くなることをより確実に抑制することができる。
第5の発明によれば、残留ガス影響大気筒と、この残留ガス影響大気筒に排気脈動の影響を及ぼす気筒とは、それらのターボ側排気弁またはバイパス側排気弁に通じる排気ポートがシリンダヘッド内で合流している。このような構成により、排気通路の表面積を小さくし、排気通路表面からの熱エネルギー放散を抑制することができるので、ターボ効率の向上あるいは触媒の早期暖機が図れる。その一方で、それらの気筒間で排気脈動の影響が及び易くなるので、残留ガス影響大気筒の残留ガス量が特に増え易くなる。しかしながら、本発明によれば、残留ガス影響大気筒の残留ガス量が多くなることを確実に抑制することができるので、残留ガス影響大気筒の燃焼悪化や失火を確実に回避することができる。
第6の発明によれば、隣り合う二つの気筒間でターボ側排気弁に通じる排気ポート同士またはバイパス側排気弁に通じる排気ポート同士がシリンダヘッド内で合流している。このような構成により、排気通路の表面積を小さくし、排気通路表面からの熱エネルギー放散を抑制することができるので、ターボ効率の向上あるいは触媒の早期暖機が図れる。その一方で、それらの気筒間で排気脈動の影響が及び易くなるので、残留ガス影響大気筒の残留ガス量が特に増え易くなる。しかしながら、本発明によれば、残留ガス影響大気筒の残留ガス量が多くなることを確実に抑制することができるので、残留ガス影響大気筒の燃焼悪化や失火を確実に回避することができる。
第7の発明によれば、ターボ側排気弁およびバイパス側排気弁が共に駆動されるとき、バイパス側排気弁の開き時期をターボ側排気弁の開き時期より遅くし、バイパス側排気弁の閉じ時期をターボ側排気弁の閉じ時期より遅くすることができる。これにより、掃気作用を発揮させ易くするとともに、背圧の高いターボ側排気弁から筒内への排気ガスの逆流を抑制することができるので、残留ガス量をより確実に低減することができる。
以下、図面を参照してこの発明の実施の形態について説明する。なお、各図において共通する要素には、同一の符号を付して、重複する説明を省略する。
実施の形態1.
図1は、本発明の実施の形態1におけるV型8気筒エンジンの排気系を説明するための模式的な平面図である。なお、図1中では、吸気系については図示を省略している。また、図面中では、#のついた数字は、気筒番号を表す。
図1に示すV型8気筒エンジン(以下単に「エンジン」という)10は、左気筒列(左バンク)12Lと右気筒列(右バンク)12Rとを有している。左気筒列12は、1番、3番、5番および7番気筒で構成され、右気筒列14は、2番、4番、6番および8番気筒で構成されている。
エンジン10には、ターボ過給機14L,14Rが備えられている。本実施形態では、左気筒列12Lに対してのターボ過給機14Lと、右気筒列14Rに対してのターボ過給機14Rとが別々に設けられている。ターボ過給機14L,14Rは、タービン14aとコンプレッサ14bとを有している。ターボ過給機14L,14Rのタービン14aは、排気ガスによって作動する。このタービン14aによってコンプレッサ14bが駆動されることにより、吸入空気を圧縮することができる。
また、エンジン10には、ターボ過給機14L,14Rのタービン14aの入口に通じるターボ側排気通路16L,16Rと、タービン14aの入口に通じないバイパス側排気通路18L,18Rとが備えられている。そして、エンジン10の各気筒には、二つの排気弁、すなわちターボ側排気弁EX1およびバイパス側排気弁EX2がそれぞれ設けられている。ターボ側排気弁EX1は、ターボ側排気通路16L,16Rに連通する排気ポートを開閉するものであり、バイパス側排気弁EX2は、バイパス側排気通路18L,18Rに連通する排気ポートを開閉するものである。
排気系には、排気ガス中の有害成分を浄化するための触媒20L,20Rが設けられている。すなわち、左気筒列12L側では、ターボ過給機14Lのタービン14aの下流側の排気通路と、バイパス側排気通路18Lとが、触媒20Lに接続されている。右気筒列12R側では、ターボ過給機14Rのタービン14aの下流側の排気通路と、バイパス側排気通路18Rとが、触媒20Rに接続されている。
本実施形態のエンジン10では、ターボ側排気弁EX1およびバイパス側排気弁EX2の位置が、同じ気筒列内の隣り合う気筒間で逆になるように配置されている。これにより、隣り合う気筒間で、ターボ側排気弁EX1またはバイパス側排気弁EX2が隣接して位置する。すなわち、左気筒列12Lにおいては、1番気筒および3番気筒のバイパス側排気弁EX2同士が隣接し、3番気筒および5番気筒のターボ側排気弁EX1同士が隣接し、5番気筒および7番気筒のバイパス側排気弁EX2同士が隣接している。そして、右気筒列12Rにおいては、2番気筒および4番気筒のバイパス側排気弁EX2同士が隣接し、4番気筒および6番気筒のターボ側排気弁EX1同士が隣接し、6番気筒および8番気筒のバイパス側排気弁EX2同士が隣接している。
上記隣接する同種の二つの排気弁の排気ポートは、シリンダヘッド22L,22R内で合流し、一つの排気出口としてシリンダヘッド22L,22Rの側面に開口している。例えば、3番気筒のターボ側排気弁EX1に連通する排気ポート24と、5番気筒のターボ側排気弁EX1に連通する排気ポート26とは、シリンダヘッド22L内で合流しており、4番気筒のターボ側排気弁EX1に連通する排気ポート28と、6番気筒のターボ側排気弁EX1に連通する排気ポート30とは、シリンダヘッド22R内で合流している。
本実施形態のエンジン10の点火順序は、1→8→7→3→6→5→4→2であるものとする。前述したように、このような点火順序のV型8気筒エンジンでは、一般に、7番気筒のブローダウンの影響を受けて1番気筒の残留ガス量が増加し易くなり、5番気筒のブローダウンの影響を受けて3番気筒の残留ガス量が増加し易くなり、4番気筒のブローダウンの影響を受けて6番気筒の残留ガス量が増加し易くなり、8番気筒のブローダウンの影響を受けて2番気筒の残留ガス量が増加し易くなるという特性がある。
更に、本実施形態のエンジン10の場合には、次のような理由から、3番気筒および6番気筒の残留ガス量が特に多くなり易い。
上述したように、本実施形態のエンジン10では、3番気筒のターボ側排気弁EX1に連通する排気ポート24と、5番気筒のターボ側排気弁EX1に連通する排気ポート26とは、シリンダヘッド22L内で合流している。このため、5番気筒のターボ側排気弁EX1から排出されたブローダウンガスが3番気筒に更に回り込み易くなるので、3番気筒の残留ガス量が特に多くなり易い。
同様に、右気筒列12Rでは、4番気筒のターボ側排気弁EX1に連通する排気ポート28と6番気筒のターボ側排気弁EX1に連通する排気ポート30とがシリンダヘッド22R内で合流している。このため、4番気筒のターボ側排気弁EX1から排出されたブローダウンガスが6番気筒に更に回り込み易くなるので、6番気筒の残留ガス量が特に多くなり易い。
このように、本実施形態のエンジン10では、1番、3番、2番および6番の気筒の残留ガス量が他の気筒と比べて多くなり易く、その中でも3番および6番の気筒の残留ガス量が特に多くなり易いという特性を有している。そこで、以下の説明では、3番および6番の気筒を「残留ガス影響大気筒」と称し、1番および2番の気筒を「残留ガス影響中気筒」と称し、4番、5番、7番および8番の気筒を「残留ガス影響小気筒」と称する。
本実施形態のエンジン10は、リーンバーンエンジンであり、理論空燃比近傍で燃料を燃焼させるストイキ燃焼モードと、理論空燃比より希薄な空燃比で燃料を燃焼させるリーン燃焼モードとを切り替え可能に構成されている。
図2は、本発明の実施の形態1のシステム構成を示すブロック図である。同図に示すように、本実施形態のシステムは、エンジン10のクランク軸(出力軸)の回転角度を検出するクランク角センサ32と、エンジン10を搭載した車両のアクセルペダル位置(アクセル開度)を検出するアクセルポジションセンサ34と、エンジン10の吸入空気量を検出するエアフロメータ36と、過給圧(ターボ過給機14L,14Rのコンプレッサ14bの下流側の吸気管圧力)を検出する過給圧センサ38と、バイパス側排気弁リフト可変機構40と、排気弁位相可変機構(排気VVT機構)42と、ターボ側排気弁停止機構44と、吸気弁位相可変機構(吸気VVT機構)46とを有している。これらのセンサおよびアクチュエータは、ECU(Electronic Control Unit)50に電気的に接続されている。
バイパス側排気弁リフト可変機構40は、バイパス側排気弁EX2のリフト量を、残留ガス影響大気筒と、残留ガス影響中気筒と、残留ガス影響小気筒とで別々に、連続的に可変とする機能を有している。本実施形態のバイパス側排気弁リフト可変機構40は、バイパス側排気弁EX2の閉じ時期を保持したまま、バイパス側排気弁EX2のリフト量および開弁期間(作用角)を可変とするように構成されている。また、このバイパス側排気弁リフト可変機構40は、各気筒のバイパス側排気弁EX2のリフト量をゼロにまで小さくできるように構成されている。つまり、バイパス側排気弁リフト可変機構40によれば、バイパス側排気弁EX2のリフト量をゼロとすることにより、バイパス側排気弁EX2を閉状態で停止させることができる。
排気弁位相可変機構42は、ターボ側排気弁EX1およびバイパス側排気弁EX2を駆動するカム軸の位相を連続的に変化させることにより、ターボ側排気弁EX1およびバイパス側排気弁EX2のバルブタイミングを連続的に遅くしたり早くしたりすることができる。排気弁位相可変機構42は、最進角状態が初期状態とされており、その最進角状態からの遅角量が制御パラメータとされる。
ターボ側排気弁停止機構44は、ターボ側排気弁EX1の作動を閉状態で停止させる機能を有している。また、吸気弁位相可変機構46は、排気弁位相可変機構42とほぼ同様の機構であり、エンジン10の吸気弁(図示せず)を駆動するカム軸の位相を連続的に変化させることにより、吸気弁のバルブタイミングを連続的に遅くしたり早くしたりすることができる。吸気弁位相可変機構46は、最遅角状態が初期状態とされており、その最遅角状態からの進角量が制御パラメータとされる。
なお、バイパス側排気弁リフト可変機構40、排気弁位相可変機構42、ターボ側排気弁停止機構44、および吸気弁位相可変機構46の各機構の構造は公知であるので、本明細書では説明を省略する。
ECU50は、エンジン10の運転状況に応じて、バイパス側排気弁リフト可変機構40、排気弁位相可変機構42、ターボ側排気弁停止機構44、および吸気弁位相可変機構46の状態を制御することにより、吸気弁、ターボ側排気弁EX1およびバイパス側排気弁EX2の開弁特性を以下のように制御する。
(冷間始動時)
図3は、冷間始動時(触媒暖機領域)における吸気弁、ターボ側排気弁EX1およびバイパス側排気弁EX2のバルブリフト線図である。冷間始動時には、図3に示すように、バイパス側排気弁EX2を大リフトとするとともに、ターボ側排気弁EX1を閉状態で停止させる。また、吸気弁のバルブタイミングを遅角することにより、バイパス側排気弁EX2の開弁期間と吸気弁の開弁期間とが重なるバルブオーバーラップ期間をほぼ無くしている。
図3に示すような開弁特性によれば、各気筒内の既燃ガスを、全部、バイパス側排気弁EX2を通してバイパス側排気通路18L,18Rへ排出することができる。すなわち、排気ガスの全量を、ターボ過給機14L,14Rのタービン14aを通さずに、触媒20L,20Rに流入させることができる。このため、触媒20L,20Rの温度をなるべく早く上昇させたい冷間始動時において、タービン14aでの排気ガス温度低下を回避することができるので、高温の排気ガスを触媒20L,20Rに流入させることができる。その結果、始動後に触媒20L,20Rを早期に活性温度まで暖機することができ、始動時のエミッションを十分に低減することができる。
特に、本実施形態では、図1に示すように、1番気筒と3番気筒との間、5番気筒と7番気筒との間、2番気筒と4番気筒との間、6番気筒と8番気筒との間、の各組で、二つの気筒のバイパス側排気弁EX2に連通する排気ポートがシリンダヘッド22L,22R内で合流している。このため、バイパス側排気弁EX2から排出される排気ガスの流路の長さおよび表面積を小さくすることができるので、バイパス側排気弁EX2から触媒20L,20Rへと流れる排気ガスから奪われる熱エネルギーをなるべく少なくすることができ、触媒20L,20Rに流入する排気ガスの温度をなるべく高く維持することができる。このため、触媒20L,20Rの更なる早期暖機および温度維持が可能となり、エミッション性能を更に向上することができる。
(ストイキ燃焼モードの高出力領域)
図4は、ストイキ燃焼モードの高出力領域における吸気弁、ターボ側排気弁EX1およびバイパス側排気弁EX2のバルブリフト線図である。この領域においては、ターボ側排気弁EX1およびバイパス側排気弁EX2を共に開く。この場合、バイパス側排気弁EX2は、ターボ側排気弁EX1よりも小さいリフト量および開弁期間で、排気行程の後半に開く。すなわち、バイパス側排気弁EX2は、ターボ側排気弁EX1より後に開き、ターボ側排気弁EX1の閉じた後(上死点より後)に閉じる。吸気弁のバルブタイミングは、進角され、上死点より前に吸気弁が開く。バイパス側排気弁EX2と吸気弁とは、それらの開弁期間が重なるバルブオーバーラップ期間を十分に有している。一方、ターボ側排気弁EX1と吸気弁とは、それらの開弁期間が重なるバルブオーバーラップ期間をほとんど有していない。
このような図4に示す開弁特性によれば、排気行程の前半においてはターボ側排気弁EX1のみが開いているので、高エネルギーの排気ガスをターボ過給機14L,14Rのタービン14aに十分に供給することができる。このため、ターボ過給機14L,14Rを効率良く作動させることができ、高い過給圧が得られる。
特に、本実施形態では、図1に示すように、3番気筒と5番気筒との間、4番気筒と6番気筒との間、の各組で、二つの気筒のターボ側排気弁EX1に連通する排気ポートがシリンダヘッド22L,22R内で合流している。このため、ターボ側排気弁EX1から排出される排気ガスの流路の長さおよび表面積を小さくすることができるので、ターボ側排気弁EX1からターボ過給機14L,14Rのタービン14aへと流れる排気ガスから奪われる熱エネルギーをなるべく少なくすることができ、タービン14aに流入する排気ガスのエネルギーをなるべく高く維持することができる。このため、タービン14aでより多くのエネルギーを回収することができ、ターボ過給機14L,14Rを更に高い効率で作動させることができる。
一方、排気行程の後半では、バイパス側排気弁EX2が開くことにより、残留ガス量を極めて少なくすることができる。すなわち、バイパス側排気弁EX2側は、タービン14aに通じていないので、背圧が低く、筒内の既燃ガスを排出し易い。更に、吸気管圧力は、過給によって高められており、バイパス側排気弁EX2側の背圧よりも高い。このため、バイパス側排気弁EX2側と吸気弁とが共に開いたバルブオーバーラップ状態になると、吸気弁から流入する高圧の新気によって筒内の既燃ガスを追い払い(掃気し)、バイパス側排気弁EX2を通してバイパス側排気通路18L,18Rへ効率良く排出することができる。このような作用を以下「掃気作用」と称する。また、ターボ側排気弁EX1と吸気弁との間にはバルブオーバーラップがほとんどないので、背圧の高いターボ側排気弁EX1から筒内や吸気ポートに排気ガスが逆流することを確実に防止することができる。このようなことから、図4に示す開弁特性によれば、筒内の残留ガス量を極めて少なくすることができ、その分空気量を多くすることができるので、高出力化が図れる。
更に、図4に示す開弁特性によれば、残留ガス影響中気筒(1番、2番)のバイパス側排気弁EX2のリフト量を残留ガス影響小気筒(5番、7番、4番、8番)より大きくするとともに、残留ガス影響大気筒(3番、6番)のバイパス側排気弁EX2のリフト量を残留ガス影響中気筒より更に大きくしている。これにより、残留ガス影響中気筒では残留ガス影響小気筒よりも大きな掃気作用を発揮させ、残留ガス影響大気筒では残留ガス影響中気筒よりも更に大きな掃気作用を発揮させることができる。すなわち、残留ガスの多くなり易い気筒ほど、十分な掃気作用が得られるようにし、残留ガスを十分に低減することができる。このため、図4に示す開弁特性によれば、残留ガス影響大気筒や残留ガス影響中気筒においても、残留ガス量を十分に少なくすることができるので、燃焼悪化や失火などの弊害を確実に防止することができる。
また、図4に示す開弁特性によれば、残留ガス影響小気筒や残留ガス影響中気筒のバイパス側排気弁EX2のリフト量を必要以上に大きくすることを確実に防止することができる。このため、掃気作用が過剰に発揮され、新気がバイパス側排気通路18L,18Rに吹き抜けるようなことを確実に回避することができる。
(リーン燃焼モードの燃費向上領域)
図5は、リーン燃焼モードの燃費向上領域における吸気弁、ターボ側排気弁EX1およびバイパス側排気弁EX2のバルブリフト線図である。この領域においては、図4に示す開弁特性と比べ、残留ガス影響大気筒(3番、6番)のみバイパス側排気弁EX2を開き、その他の残留ガス影響中気筒および残留ガス影響小気筒においてはバイパス側排気弁EX2のリフト量をゼロとしている。一般に、リーン燃焼モードでは、排気ガス温度が低くなり易い、つまり排気エネルギーが少なくなり易い。このため、ターボ過給機14L,14Rを十分に作動させるためには、バイパス側排気通路18L,18Rに流れる排気ガス量をなるべく少なくして、ターボ側排気通路16L,16Rに流れる排気ガス量をなるべく多くしたいという要求がある。図5に示す開弁特性によれば、残留ガス影響大気筒以外のバイパス側排気弁EX2のリフト量をゼロとすることにより、ターボ側排気通路16L,16Rに流れる排気ガス量をなるべく多くすることができるので、ターボ過給機14L,14Rを十分に作動させ、十分な過給圧を得ることができる。一方、残留ガス影響大気筒においては、バイパス側排気弁EX2を開くので、掃気作用が発揮され、残留ガスを低減することができる。このため、残留ガス量が特に多くなり易い残留ガス影響大気筒においては、残留ガス量を十分に少なくすることができ、燃焼悪化や失火などの弊害を確実に防止することができる。
図6は、エンジン10の運転領域を示す図である。同図に示すように、本実施形態では、エンジン10の運転領域は、A,B,C,Dの4つに分けられている。AおよびBの運転領域は、ストイキ燃焼モードでエンジン10が運転されるストイキ燃焼領域である。CおよびDの運転領域は、リーン燃焼モードでエンジン10が運転されるリーン燃焼領域である。
ストイキ燃焼領域のうち、運転領域Aでは、吸排気弁の開弁特性は、前述した図4に示す開弁特性となるように制御される。一方、ストイキ燃焼領域のうち、運転領域Bでは、吸排気弁の開弁特性は、図7に示す開弁特性となるように制御される。図7に示す開弁特性によれば、全気筒においてバイパス側排気弁EX2のリフト量がゼロとされる。また、排気弁位相可変機構42によって排気弁のバルブタイミングを遅角することにより、ターボ側排気弁EX1の開弁期間と吸気弁の開弁期間とが重なるバルブオーバーラップ期間が設けられている。
図6に示すように、運転領域Bは、低回転高負荷域を含む領域である。低回転高負荷域は、いわゆるターボラグ(過給圧の応答遅れ)が最も発生しやすい領域である。そこで、本実施形態では、運転領域Bにおいては図7に示す開弁特性とし、全気筒のバイパス側排気弁EX2のリフト量をゼロとすることにより、排気ガスの全量をターボ過給機14L,14Rのタービン14aに流入させることとしている。これにより、低回転高負荷域におけるターボラグをなるべく小さくすることができる。
リーン燃焼領域のうち、運転領域Cでは、吸排気弁の開弁特性は、前述した図5に示す開弁特性となるように制御される。一方、リーン燃焼領域のうち、運転領域Dは、排気ガス量の少ない低負荷域であり、ブローダウンも弱いので、残留ガス影響大気筒(3番、6番)であっても、他気筒(5番、4番)のブローダウンによって残留ガスが増える影響は少ない。よって、残留ガス影響大気筒においても、バイパス側排気弁EX2を開いて掃気作用を発揮させる必要性は少ない。また、低負荷域である運転領域Dでは、過給圧すなわち吸気管圧も高まりにくいので、バイパス側排気弁EX2を開いたとしても、得られる掃気作用は小さい。そこで、本実施形態では、運転領域Dにおいては、吸排気弁の開弁特性を上述した図7に示す開弁特性と同様、すなわち全気筒においてバイパス側排気弁EX2のリフト量をゼロとすることとした。
[実施の形態1における具体的処理]
図8は、上記の機能を実現するために本実施形態においてECU50が実行するルーチンのフローチャートである。なお、本ルーチンは、所定時間毎あるいは所定クランク角毎に繰り返し実行されるものとする。図8に示すルーチンによれば、まず、アクセルポジションセンサ34およびクランク角センサ32の検出信号に基づいて、アクセル開度およびエンジン回転数が算出される(ステップ100)。次いで、そのアクセル開度およびエンジン回転数に基づいて、エンジン10に要求される出力が決定される(ステップ102)。続いて、上記要求出力、アクセル開度、エンジン回転数に基づいて、エンジン10の動作点が図6中の領域Aであるか否かが判別される(ステップ104)。
上記ステップ104で、エンジン10の動作点が領域Aであると判別された場合には、ECU50に予め記憶されたストイキ燃焼モード用のマップに基づいて、バイパス側排気弁EX2の基本リフト量、排気弁位相可変機構42の遅角量、および吸気弁位相可変機構46の進角量がそれぞれ算出される(ステップ106)。次いで、残留ガス影響中気筒(1番、2番)のバイパス側排気弁EX2のリフト量と、残留ガス影響大気筒(3番、6番)のバイパス側排気弁EX2のリフト量とが所定のマップまたは計算式に基づいてそれぞれ算出される(ステップ108)。このステップ108では、残留ガス影響中気筒のバイパス側排気弁EX2のリフト量は、上記ステップ106の基本リフト量よりも大きな値として算出され、残留ガス影響大気筒のバイパス側排気弁EX2のリフト量は、残留ガス影響中気筒のバイパス側排気弁EX2のリフト量よりも更に大きな値として算出される。
上記ステップ108の処理に続いて、バイパス側排気弁リフト可変機構40の駆動制御が実行される。すなわち、残留ガス影響小気筒(5番、7番、4番、8番)のバイパス側排気弁EX2のリフト量は、上記ステップ106で算出された基本リフト量に制御され、残留ガス影響中気筒および残留ガス影響大気筒のバイパス側排気弁EX2のリフト量は、それぞれ、上記ステップ108で算出された所定のリフト量に制御される(ステップ110)。これにより、運転領域Aにおいて、前述した図4に示すような開弁特性が実現される。
一方、上記ステップ104でエンジン10の動作点が領域Aでないと判別された場合には、次に、図6中の領域Cであるか否かが判別される(ステップ112)。
上記ステップ112で、エンジン10の動作点が領域Cであると判別された場合には、ECU50に予め記憶されたリーン燃焼モード用のマップに基づいて、バイパス側排気弁EX2の基本リフト量、排気弁位相可変機構42の遅角量、および吸気弁位相可変機構46の進角量がそれぞれ算出される(ステップ114)。本実施形態では、このステップ114で算出されるバイパス側排気弁EX2の基本リフト量は、ゼロとされる。
上記ステップ114の処理に続いて、残留ガス影響中気筒(1番、2番)のバイパス側排気弁EX2のリフト量と、残留ガス影響大気筒(3番、6番)のバイパス側排気弁EX2のリフト量とが所定のマップまたは計算式に基づいてそれぞれ算出される(ステップ116)。本実施形態では、このステップ116では、残留ガス影響中気筒のバイパス側排気弁EX2のリフト量は、ゼロとして算出され、残留ガス影響大気筒のバイパス側排気弁EX2のリフト量は、ゼロより大きな値として算出される。
上記ステップ116の処理に続いて、バイパス側排気弁リフト可変機構40の駆動制御が実行される。すなわち、残留ガス影響小気筒(5番、7番、4番、8番)のバイパス側排気弁EX2のリフト量は、上記ステップ114で算出された基本リフト量すなわちゼロに制御され、残留ガス影響中気筒のバイパス側排気弁EX2のリフト量は、上記ステップ116で算出されたリフト量すなわちゼロに制御され、残留ガス影響大気筒のバイパス側排気弁EX2のリフト量は、上記ステップ116で算出された所定のリフト量に制御される(ステップ110)。これにより、運転領域Cにおいて、前述した図5に示すような開弁特性が実現される。
一方、上記ステップ112で、エンジン10の動作点が領域Cでないと判別された場合には、エンジン10の動作点は図6中の領域Bまたは領域Dであることになる。この場合には、図7に示すような開弁特性を実現するべく、全気筒のバイパス側排気弁EX2のリフト量がゼロとなるように、バイパス側排気弁リフト可変機構40の駆動制御が実行される(ステップ118)。
以上説明した実施の形態1では、吸排気弁の可変動弁装置が、バイパス側排気弁リフト可変機構40、排気弁位相可変機構42、ターボ側排気弁停止機構44および吸気弁位相可変機構46で構成されているものとして説明したが、本発明における可変動弁装置の構成はこれに限定されるものではなく、同様の機能を発揮し得る任意の構成と置換することができる。例えば、カムシャフトを電気サーボモータで回転駆動することにより弁開閉時期を任意に制御可能な可変動弁装置や、電磁駆動式あるいは油圧駆動式の可変動弁装置などを用いてもよい。
また、本実施形態では、バイパス側排気弁EX2のリフト量を変化させることによって掃気作用の大きさを制御しているが、掃気作用の大きさは、バイパス側排気弁EX2の開弁期間と吸気弁の開弁期間とが重なるバルブオーバーラップ期間(以下「バイパス側バルブオーバーラップ期間」と称する)を変化させることによっても制御することが可能である。そこで、本発明では、バイパス側排気弁EX2のリフト量を変化させることに代えて、残留ガス影響大気筒や残留ガス影響中気筒のバイパス側バルブオーバーラップ期間が残留ガス影響小気筒のバイパス側バルブオーバーラップ期間より長くなるように制御してもよい。この場合、バイパス側排気弁EX2の閉じ時期を残留ガス影響大気筒と残留ガス影響中気筒と残留ガス影響小気筒とで個別に制御しても、吸気弁開き時期を残留ガス影響大気筒と残留ガス影響中気筒と残留ガス影響小気筒とで個別に制御しても、どちらでもよい。
また、本実施形態では、点火順序が1→8→7→3→6→5→4→2のV型8気筒エンジンの場合について説明したが、V型8気筒エンジンの点火順序は色々あり、これに限定されるものではない。点火順序が異なる場合であっても、図11および図1を参照して説明したのと同様の原理により、残留ガス影響大気筒、残留ガス影響中気筒、残留ガス影響小気筒をそれぞれ判別することができる。
また、本発明における内燃機関の気筒数および気筒配置は、V型8気筒に限定されるものではなく、同じ気筒列内の各気筒の燃焼間隔が不等間隔となるエンジンであれば、他の気筒数および気筒配置であっても適用可能である。
また、上述した実施の形態1においては、ECU50が、図8に示すルーチンの処理を実行することにより前記第1の発明における「開弁特性制御手段」が実現されている。
実施の形態2.
次に、図9を参照して、本発明の実施の形態2について説明するが、上述した実施の形態1との相違点を中心に説明し、同様の事項については、その説明を簡略化または省略する。本実施形態は、前述した実施の形態1と同様のハードウェア構成を用いて、ECU50に、後述する図9に示すルーチンを実行させることにより実現することができる。
[実施の形態2の特徴]
前述したように、図6中の領域Aにおいては各気筒のバイパス側排気弁EX2を開くことによって掃気作用が発揮されている一方、領域BおよびDにおいては各気筒のバイパス側排気弁EX2のリフト量がゼロとされるので掃気作用は発揮されない。このため、エンジン10の動作点が領域Aから領域BあるいはDへと移行する場合には、バイパス側排気弁EX2の停止指令が出されて掃気作用が停止することになるので、特に残留ガス影響大気筒(3番、6番)においては残留ガス量が多くなり易い。更に、バイパス側排気弁EX2の停止により、ターボ側排気弁EX1側への排気流量が急増するので、過渡的には、ターボ側排気弁EX1側の背圧が非常に高くなるとともに、排気脈動の振幅も非常に大きくなり易い。このようなことから、領域Aから領域BあるいはDへと移行する過渡運転時には、定常運転時と比べて、残留ガス影響大気筒の残留ガス量が特に多くなり易く、燃焼悪化や失火によってドライバビリティに悪影響が及ぶ可能性が高くなる。
本実施形態では、上記のような点を改善するため、領域Aから領域BあるいはDへと移行する際、振幅の大きい過渡的な排気脈動が減衰して安定するまでの期間においては、残留ガス影響大気筒のバイパス側排気弁EX2のリフト量をゼロとせず、掃気作用を継続させることとした。これにより、残留ガス影響大気筒の残留ガス量が過渡的に多くなることを防止することができる。
また、残留ガス影響大気筒以外の各気筒のバイパス側排気弁EX2のリフト量をゼロに切り替えていく際には、通常は点火順序に従って順次切り替えていくが、本実施形態では、残留ガス影響大気筒(3番、6番)に排気脈動の影響を及ぼす気筒(5番、4番)が最先に切り替わることを避けるように制御することとした。5番気筒あるいは4番気筒のバイパス側排気弁EX2のリフト量を最先にゼロに切り替えたとすると、5番気筒あるいは4番気筒のターボ側排気弁EX1に連通する排気ポート26あるいは28の排気脈動が特に大きくなり、その大きな排気脈動が排気ポート24あるいは30を介して3番気筒あるいは6番気筒に伝達する。このため、残留ガス影響大気筒である3番気筒あるいは6番気筒の残留ガス量が余計に増え易くなる。これに対し、本実施形態では、5番、4番の気筒のバイパス側排気弁EX2のリフト量が最先にゼロに切り替わることを避けることにより、上記の事態を回避することができ、残留ガス影響大気筒である3番気筒あるいは6番気筒の残留ガス量をより確実に低減することができる。
[実施の形態2における具体的処理]
図9は、上記の機能を実現するために本実施形態においてECU50が実行するルーチンのフローチャートである。なお、図9において、図8に示すステップと同一のステップには、同一の符号を付してその説明を省略または簡略化する。図9に示すルーチンによれば、まず、アクセル開度およびエンジン回転数が算出され(ステップ100)、そのアクセル開度およびエンジン回転数に基づいて、エンジン10の要求出力が決定される(ステップ102)。
続いて、上記要求出力、アクセル開度、エンジン回転数に基づき、ECU50に予め記憶された所定のマップに基づいて、バイパス側排気弁EX2の基本リフト量、排気弁位相可変機構42の遅角量、および吸気弁位相可変機構46の進角量がそれぞれ算出される(ステップ120)。次いで、このステップ120での算出結果に基づいて、バイパス側排気弁EX2の基本リフト量がゼロである領域Bへの移行要求が出されているか否かが判別される(ステップ122)。
上記ステップ122で、領域Bへの移行要求が出されていると判別された場合には、次に、その移行要求が出されてからエンジン10の作動サイクルが所定サイクル数αだけ経過したか否かが判別される(ステップ124)。この所定サイクル数αは、領域Aから領域Bへ移行する場合に振幅の大きな過渡的な排気脈動が減衰するのに必要十分なサイクル数として、予め設定されている値である。このステップ124で、所定サイクル数αが経過していないと判別された場合には、次に、残留ガス影響大気筒(3番、6番)のバイパス側排気弁EX2のリフト量が所定のマップに基づいて算出される(ステップ126)。このステップ126で算出されるバイパス側排気弁EX2のリフト量は、残留ガス影響大気筒の過渡的な残留ガス増加を回避するのに必要な掃気作用が得られるようなリフト量とされる。
上記ステップ126の処理に続いて、クランク角センサ32の信号等に基づいて、現在のタイミングが5番気筒あるいは4番気筒のバイパス側排気弁EX2のリフト量を切り替えるタイミングであるか否かが判別される(ステップ128)。このステップ128で、5番気筒あるいは4番気筒の切り替えタイミングであると判別された場合には、5番気筒あるいは4番気筒のバイパス側排気弁EX2のリフト量が最先にゼロに切り替えられることを避けるため、そのまま待機する。これに対し、ステップ128で、5番気筒および4番気筒の何れの切り替えタイミングでもないと判別された場合には、バイパス側排気弁リフト可変機構40の駆動制御が実行され、各気筒のバイパス側排気弁EX2のリフト量が順次切り替えられる(ステップ130)。すなわち、残留ガス影響大気筒のバイパス側排気弁EX2のリフト量は、上記ステップ126で算出された所定のリフト量に制御され、残留ガス影響中気筒および残留ガス影響小気筒のバイパス側排気弁EX2のリフト量は、ゼロに制御される。
そして、領域Aから領域Bへの移行要求が出されてから所定サイクル数αが経過した場合、つまりに振幅の大きな過渡的な排気脈動が減衰したと判断できる場合には、ステップ124の判断が肯定されるので、次に、全気筒のバイパス側排気弁EX2のリフト量がゼロに制御される(ステップ132)。つまり、残留ガス影響大気筒のバイパス側排気弁EX2のリフト量もゼロへと切り替えられる。
一方、上記ステップ122で、領域Bへの移行要求が出されていないと判別された場合には、次に、バイパス側排気弁EX2の基本リフト量がゼロである領域Dへの移行要求が出されているか否かが判別される(ステップ134)。このステップ134で、領域Dへの移行要求が出されていると判別された場合には、次に、その移行要求が出されてからエンジン10の作動サイクルが所定サイクル数βだけ経過したか否かが判別される(ステップ136)。この所定サイクル数βは、領域Aから領域Dへ移行する場合に振幅の大きな過渡的な排気脈動が減衰するのに必要十分なサイクル数として、予め設定されている値である。このステップ136で、所定サイクル数βが経過していないと判別された場合には、次に、過給圧センサ38で検出される過給圧(吸気管圧力)が所定圧力以上であるか否かが判別される(ステップ138)。この所定圧力とは、掃気作用が有効に発揮される下限の過給圧として予め設定されている値である。領域Dはターボ過給機14L,14Rの作動しにくい低負荷域であるので、過給圧が上記所定圧力以下になる場合がある。その場合には、残留ガス影響大気筒のバイパス側排気弁EX2を開いたとしても掃気作用が有効に発揮されない。そこで、上記ステップ138で、過給圧が上記所定圧力以上であると認められなかった場合には、直ちに全気筒のバイパス側排気弁EX2のリフト量がゼロに制御される(ステップ132)。
これに対し、上記ステップ138で、過給圧が上記所定圧力以上であると認められた場合には、次に、残留ガス影響大気筒(3番、6番)のバイパス側排気弁EX2のリフト量が所定のマップに基づいて算出される(ステップ140)。このステップ140で算出されるバイパス側排気弁EX2のリフト量は、残留ガス影響大気筒の過渡的な残留ガス増加を回避するのに必要な掃気作用が得られるようなリフト量とされる。
上記ステップ140の処理に続いて、クランク角センサ32の信号等に基づいて、現在のタイミングが5番気筒あるいは4番気筒のバイパス側排気弁EX2のリフト量を切り替えるタイミングであるか否かが判別される(ステップ128)。このステップ128で、5番気筒あるいは4番気筒の切り替えタイミングであると判別された場合には、5番気筒あるいは4番気筒のバイパス側排気弁EX2のリフト量が最先にゼロに切り替えられることを避けるため、そのまま待機する。これに対し、ステップ128で、5番気筒および4番気筒の何れの切り替えタイミングでもないと判別された場合には、バイパス側排気弁リフト可変機構40の駆動制御が実行され、各気筒のバイパス側排気弁EX2のリフト量が順次切り替えられる(ステップ130)。すなわち、残留ガス影響大気筒のバイパス側排気弁EX2のリフト量は、上記ステップ140で算出された所定のリフト量に制御され、残留ガス影響中気筒および残留ガス影響小気筒のバイパス側排気弁EX2のリフト量は、ゼロに制御される。
そして、領域Aから領域Dへの移行要求が出されてから所定サイクル数βが経過した場合、つまりに振幅の大きな過渡的な排気脈動が減衰したと判断できる場合には、ステップ136の判断が肯定されるので、次に、全気筒のバイパス側排気弁EX2のリフト量がゼロに制御される(ステップ132)。つまり、残留ガス影響大気筒のバイパス側排気弁EX2のリフト量もゼロへと切り替えられる。
以上説明した図9に示すルーチンの処理によれば、エンジン10の動作点が領域Aから領域BあるいはDへと移行する際に、残留ガス影響大気筒の残留ガス量が過渡的に多くなることを確実に防止することができる。このため、残留ガス影響大気筒の燃焼悪化や失火等の悪影響を回避することができ、良好なドライバビリティが得られる。
なお、上述した実施の形態2においては、ECU50が、バイパス側排気弁リフト可変機構40によってバイパス側排気弁EX2のリフト量をゼロとすることにより前記第3の発明における「バイパス側排気弁停止手段」が、図9に示すルーチンの処理を実行することにより前記第3および第4の発明における「リフト量切替順序制御手段」が、それぞれ実現されている。
本発明の実施の形態1におけるV型8気筒エンジンの排気系を説明するための模式的な平面図である。 本発明の実施の形態1のシステム構成を示すブロック図である。 冷間始動時(触媒暖機領域)における吸気弁、ターボ側排気弁EX1およびバイパス側排気弁EX2のバルブリフト線図である。 ストイキ燃焼モードの高出力領域における吸気弁、ターボ側排気弁EX1およびバイパス側排気弁EX2のバルブリフト線図である。 リーン燃焼モードの燃費向上領域における吸気弁、ターボ側排気弁EX1およびバイパス側排気弁EX2のバルブリフト線図である。 本発明の実施の形態1におけるエンジンの運転領域を示す図である。 領域BおよびDにおける吸気弁、ターボ側排気弁EX1およびバイパス側排気弁EX2のバルブリフト線図である。 本発明の実施の形態1において実行されるルーチンのフローチャートである。 本発明の実施の形態2において実行されるルーチンのフローチャートである。 従来のV型8気筒エンジンを示す模式的な平面図である。 V型8気筒エンジンのクランク角と各気筒の作動行程との関係を示す図である。
符号の説明
10 エンジン
12L 左気筒列
12R 右気筒列
14L,14R ターボ過給機
14a タービン
14b コンプレッサ
16L,16R ターボ側排気通路
18L,18R バイパス側排気通路
20L,20R 触媒
22L,22R シリンダヘッド
24,26,28,30 排気ポート
50 ECU(Electronic Control Unit)
90 V型8気筒エンジン
92L 左気筒列
92R 右気筒列
94L,94R 排気マニホールド
EX1 ターボ側排気弁
EX2 バイパス側排気弁

Claims (7)

  1. 同じ気筒列内の各気筒の燃焼間隔が不等間隔であることにより、他気筒の排気脈動の影響によって残留ガス量が増加し易くなる残留ガス影響の大きさが気筒間で異なる内燃機関を制御する装置であって、
    ターボ過給機と、
    前記ターボ過給機のタービン入口に通じるターボ側排気通路と、
    前記ターボ側排気通路に連通する排気ポートを開閉するターボ側排気弁と、
    前記タービン入口に通じないバイパス側排気通路と、
    前記バイパス側排気通路に連通する排気ポートを開閉するバイパス側排気弁と、
    前記バイパス側排気弁のリフト量、または、前記バイパス側排気弁の開弁期間と吸気弁の開弁期間とが重なるバイパス側バルブオーバーラップ期間を、前記残留ガス影響が大きい残留ガス影響大気筒とその他の気筒とで別々に変化させることのできる可変動弁装置と、
    所定の運転状況において、前記残留ガス影響大気筒の前記バイパス側排気弁リフト量または前記バイパス側バルブオーバーラップ期間が、前記その他の気筒の前記バイパス側排気弁リフト量または前記バイパス側バルブオーバーラップ期間より大きくなるように、前記可変動弁装置を制御する開弁特性制御手段と、
    を備えることを特徴とする内燃機関の制御装置。
  2. 前記内燃機関の各気筒は、前記残留ガス影響大気筒と、前記残留ガス影響大気筒より残留ガス影響が小さい残留ガス影響中気筒と、前記残留ガス影響中気筒より残留ガス影響が小さい残留ガス影響小気筒とに分類され、
    前記可変動弁装置は、前記バイパス側排気弁リフト量または前記バイパス側バルブオーバーラップ期間を、前記残留ガス影響大気筒と前記残留ガス影響中気筒と前記残留ガス影響小気筒とで別々に変化させることができ、
    前記開弁特性制御手段は、前記残留ガス影響大気筒の前記バイパス側排気弁リフト量または前記バイパス側バルブオーバーラップ期間が、前記留ガス影響中気筒の前記バイパス側排気弁リフト量または前記バイパス側バルブオーバーラップ期間より大きく、且つ、前記残留ガス影響中気筒の前記バイパス側排気弁リフト量または前記バイパス側バルブオーバーラップ期間が、前記残留ガス影響小気筒の前記バイパス側排気弁リフト量または前記バイパス側バルブオーバーラップ期間以上となるように、前記可変動弁装置を制御することを特徴とする請求項1記載の内燃機関の制御装置。
  3. 前記バイパス側排気弁リフト量を、前記残留ガス影響大気筒とその他の気筒とで別々に、ゼロとすることのできるバイパス側排気弁停止手段と、
    各気筒の前記バイパス側排気弁リフト量をゼロに切り替える場合に、前記その他の気筒の前記バイパス側排気弁リフト量を先行してゼロに切り替え、それに遅れて、前記残留ガス影響大気筒の前記バイパス側排気弁リフト量をゼロに切り替えるリフト量切替順序制御手段と、
    を備えることを特徴とする請求項1または2記載の内燃機関の制御装置。
  4. 前記リフト量切替順序制御手段は、前記その他の気筒のうちで、前記残留ガス影響大気筒に排気脈動の影響を及ぼす気筒以外の何れかの気筒の前記バイパス側排気弁リフト量を最先にゼロに切り替えることを特徴とする請求項3記載の内燃機関の制御装置。
  5. 前記残留ガス影響大気筒と、この残留ガス影響大気筒に排気脈動の影響を及ぼす気筒とは、それらの前記ターボ側排気弁または前記バイパス側排気弁に通じる排気ポートがシリンダヘッド内で合流していることを特徴とする請求項1乃至4の何れか1項記載の内燃機関の制御装置。
  6. 前記ターボ側排気弁および前記バイパス側排気弁の位置は、同じ気筒列内の隣り合う気筒間で逆になるように配置され、これにより、隣り合う二つの気筒間では前記ターボ側排気弁同士または前記バイパス側排気弁同士が隣り合って位置しており、
    前記隣り合って位置する二つの前記バイパス側排気弁の各々に通じる排気ポートは、シリンダヘッド内で合流するとともに、前記隣り合って位置する二つの前記ターボ側排気弁の各々に通じる排気ポートは、シリンダヘッド内で合流することを特徴とする請求項1乃至5の何れか1項記載の内燃機関の制御装置。
  7. 前記ターボ側排気弁および前記バイパス側排気弁が共に駆動されるとき、前記バイパス側排気弁の開き時期は、前記ターボ側排気弁の開き時期より遅く、前記バイパス側排気弁の閉じ時期は、前記ターボ側排気弁の閉じ時期より遅いことを特徴とする請求項1乃至6の何れか1項記載の内燃機関の制御装置。
JP2007252073A 2007-09-27 2007-09-27 内燃機関の制御装置 Active JP4479774B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007252073A JP4479774B2 (ja) 2007-09-27 2007-09-27 内燃機関の制御装置
PCT/IB2008/002496 WO2009040642A1 (en) 2007-09-27 2008-09-25 Exhaust device and control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007252073A JP4479774B2 (ja) 2007-09-27 2007-09-27 内燃機関の制御装置

Publications (2)

Publication Number Publication Date
JP2009085020A true JP2009085020A (ja) 2009-04-23
JP4479774B2 JP4479774B2 (ja) 2010-06-09

Family

ID=40658773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007252073A Active JP4479774B2 (ja) 2007-09-27 2007-09-27 内燃機関の制御装置

Country Status (1)

Country Link
JP (1) JP4479774B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011064864A1 (ja) * 2009-11-26 2011-06-03 トヨタ自動車株式会社 内燃機関の冷却装置
JP2013227915A (ja) * 2012-04-25 2013-11-07 Toyota Motor Corp 内燃機関の制御装置
JP2015113806A (ja) * 2013-12-13 2015-06-22 トヨタ自動車株式会社 内燃機関の制御装置
JP2017187041A (ja) * 2016-04-06 2017-10-12 ドクター エンジニール ハー ツェー エフ ポルシェ アクチエンゲゼルシャフトDr. Ing. h.c. F. Porsche Aktiengesellschaft 過給式内燃機関を動作させる方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160149831A (ko) 2015-06-19 2016-12-28 현대자동차주식회사 엔진 시스템

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011064864A1 (ja) * 2009-11-26 2011-06-03 トヨタ自動車株式会社 内燃機関の冷却装置
CN102216584A (zh) * 2009-11-26 2011-10-12 丰田自动车株式会社 内燃机的冷却装置
JP4888601B2 (ja) * 2009-11-26 2012-02-29 トヨタ自動車株式会社 内燃機関の冷却装置
US8550040B2 (en) 2009-11-26 2013-10-08 Toyota Jidosha Kabushiki Kaisha Cooling apparatus for internal combustion engine
JP2013227915A (ja) * 2012-04-25 2013-11-07 Toyota Motor Corp 内燃機関の制御装置
JP2015113806A (ja) * 2013-12-13 2015-06-22 トヨタ自動車株式会社 内燃機関の制御装置
JP2017187041A (ja) * 2016-04-06 2017-10-12 ドクター エンジニール ハー ツェー エフ ポルシェ アクチエンゲゼルシャフトDr. Ing. h.c. F. Porsche Aktiengesellschaft 過給式内燃機関を動作させる方法
KR20170114962A (ko) * 2016-04-06 2017-10-16 독터. 인제니어. 하.체. 에프. 포르쉐 악티엔게젤샤프트 과급형 내연 기관을 동작시키기 위한 방법
KR101912524B1 (ko) * 2016-04-06 2018-10-26 독터. 인제니어. 하.체. 에프. 포르쉐 악티엔게젤샤프트 과급형 내연 기관을 동작시키기 위한 방법
US10641163B2 (en) 2016-04-06 2020-05-05 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Method for operating a supercharged internal combustion engine

Also Published As

Publication number Publication date
JP4479774B2 (ja) 2010-06-09

Similar Documents

Publication Publication Date Title
US8051835B2 (en) Internal combustion engine and internal combustion engine control method
JP4215085B2 (ja) 内燃機関
JP4442659B2 (ja) 内燃機関の排気浄化装置
JP4341706B2 (ja) 内燃機関の制御装置
WO2009040642A1 (en) Exhaust device and control device for internal combustion engine
JP4479774B2 (ja) 内燃機関の制御装置
JP6520982B2 (ja) 内燃機関の制御装置
JP5034849B2 (ja) 内燃機関の制御装置
JP2008095534A (ja) 内燃機関
JP2010270651A (ja) 内燃機関の制御装置
JP4466164B2 (ja) ターボ式過給機付き多気筒エンジン
JP2009293537A (ja) 内燃機関の制御装置
JP4692253B2 (ja) 過給機付きエンジンの排気ガス温度制御装置
JP3925379B2 (ja) 過給機付火花点火式エンジンの制御装置
JP2008274884A (ja) 内燃機関の制御装置
JP2009174457A (ja) 内燃機関の制御装置
JP3826850B2 (ja) 火花点火式エンジンの制御装置
JP4375089B2 (ja) ターボ式過給機付き多気筒エンジン
JP2009250209A (ja) 内燃機関の排気再循環装置
JP4107180B2 (ja) 火花点火式エンジンの制御装置
JP2005188334A (ja) エンジンの燃料噴射制御装置
JP5906784B2 (ja) ターボ過給機付エンジンの制御装置
JP2012132323A (ja) 内燃機関の吸気装置
JP2008069742A (ja) 内燃機関
JP2009209780A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4