JP5906784B2 - ターボ過給機付エンジンの制御装置 - Google Patents

ターボ過給機付エンジンの制御装置 Download PDF

Info

Publication number
JP5906784B2
JP5906784B2 JP2012030221A JP2012030221A JP5906784B2 JP 5906784 B2 JP5906784 B2 JP 5906784B2 JP 2012030221 A JP2012030221 A JP 2012030221A JP 2012030221 A JP2012030221 A JP 2012030221A JP 5906784 B2 JP5906784 B2 JP 5906784B2
Authority
JP
Japan
Prior art keywords
exhaust
passage
catalyst
engine
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012030221A
Other languages
English (en)
Other versions
JP2013167188A (ja
Inventor
直之 山形
直之 山形
和也 横田
和也 横田
幹公 藤井
幹公 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2012030221A priority Critical patent/JP5906784B2/ja
Publication of JP2013167188A publication Critical patent/JP2013167188A/ja
Application granted granted Critical
Publication of JP5906784B2 publication Critical patent/JP5906784B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Exhaust Silencers (AREA)
  • Supercharger (AREA)

Description

ここに開示する技術は、ターボ過給機付エンジンの制御装置に関する。
特許文献1には、排気通路の途中に絞り部を設けることによって、排気流速の向上による過給効率の向上と、エゼクタ効果による掃気性の向上と、を同時に達成するターボ過給機付エンジンシステムが開示されている。具体的に特許文献1のシステムは、直列4気筒のエンジンに適用されており、排気順序が隣り合わない第2及び第3気筒の排気側に接続される通路部と、第1気筒の排気側に接続される通路部と、第4気筒の排気側に接続される通路部との3つの独立通路部を備えると共に、それらの独立通路部の下流端に流路を縮小する絞り部を設けた上で、集合部において集合させている。この構成によって、気筒から排出された排気ガスは、絞り部において流速が高められる結果、他の気筒に接続されている独立通路部へ膨張することなく、ターボ過給機のタービンに高い流速の排気ガスを供給することが可能になって、過給効率が向上するようになると共に、ブローダウンガスが絞り部を通過する際のエゼクタ効果により、当該気筒よりも点火順序が先行する気筒、言い換えると膨張行程後半にある別の気筒の排気ガスを吸い出すことが可能になる結果、各気筒の掃気性が向上して低回転域におけるトルクの向上、ひいては燃費の向上が図られる。
また、特許文献2には、排気順序が隣り合わない、第1及び第4気筒に接続される独立通路と、第2及び第3気筒に接続される独立通路とのそれぞれに絞り部を設けて集合させることで、ブローダウン時のエゼクタ効果により、排気干渉を防止するエンジンシステムが開示されている。
特開2010−185403号公報 特開平4−36023号公報
ところで、エンジンの排気ガス中の有害成分を浄化させる触媒は、その浄化機能を十分に発揮させるには触媒温度を活性温度にしなければならず、触媒温度が低いときには、活性温度にまで触媒の温度を高める必要がある。こうした触媒の昇温には、一般的には、点火タイミングを圧縮上死点以降に大幅に遅らせることによって、エンジン本体から排出される排気ガスの温度を高くする、いわゆる点火リタードと呼ばれる手法が採用されている。
しかしながら、点火リタードによる触媒の昇温は、排気損失を増大させることと等価であるから、燃費の悪化を招くことになる。特にターボ過給機付エンジンにおいては、エンジン本体と触媒との間に介設されるタービンの熱容量が大きいため、点火リタードにより高温の排気ガスをエンジン本体から排出しても、その高温の排気ガスが触媒に供給される前に、タービンにおいて温度が低下してしまうようになる。つまり、ターボ過給機付エンジンにおいては、点火リタードによる触媒の昇温は、燃費を大幅に悪化させてしまうことから、低燃費で触媒を昇温させる手法が待ち望まれている。
ここに開示する技術は、かかる点に鑑みてなされたものであり、その目的とするところは、ターボ過給機付エンジンにおいて、触媒の温度を速やかに上昇させかつ、それを低燃費で可能にすることにある。
ここに開示するターボ過給機付エンジンの制御装置は、複数の気筒を有するように構成されたエンジン本体と、前記気筒に燃料を供給するように構成された燃料供給手段と、前記複数の気筒それぞれの排気側に独立して連通する通路からなる複数の独立通路部、又は、前記複数の気筒の内のいずれか一つの気筒の排気側に独立して連通する通路と、排気順序が連続しない複数の気筒の排気側のそれぞれに連通する通路とからなる複数の独立通路部、当該複数の独立通路部の下流側で、これら独立通路部を集合させる集合部、及び、各独立通路部における前記集合部との接続端部に設けられかつ、当該各独立通路部の流路を縮小させる絞り部を含んで構成された排気通路と、前記絞り部よりも下流側の前記排気通路上に配置されたタービン及び前記エンジン本体に対する吸気通路上に配置されたコンプレッサを有するターボ過給機と、前記タービンよりも下流側に配置されかつ、前記排気通路を通じて排出される排気ガスを浄化するように構成された触媒と、前記排気通路における絞り部よりも下流側の前記集合部でかつ、前記タービンよりも上流側に接続されると共に、前記吸気通路を流れる新気を、前記エンジン本体をバイパスして前記排気通路に供給可能に構成された、単一のバイパス通路と、を備える。
そして、前記触媒の温度を高める運転モードにおいては、前記絞り部を排気ガスが通過する際のエゼクタ効果により、前記バイパス通路を通じて新気を前記排気通路に供給しつつ、前記燃料供給手段は、前記タービンに未燃燃料が供給されるように前記燃料を供給する。
ここで、例えばエンジン本体が3気筒エンジンであるときには、独立通路部は、各気筒に対応して3つになる一方、エンジン本体が4気筒エンジンであるときには、独立通路部は、各気筒に対応して4つにしてもよいし、4つの気筒の内、排気順序が連続しない2つの気筒をまとめることによって、独立通路部を合計3つにしてもよい。
この構成によると、排気通路における独立通路部と集合部との間に絞り部を備えていることで、気筒からのブローバイガスが絞り部を通過する際のエゼクタ効果により、当該気筒とは別の気筒、正確には膨張行程にある気筒の排気ガスが吸い出される。こうして、掃気性が向上する結果、燃費の向上が図られる。また、絞り部によって排気ガスの流速が高められるため、絞り部よりも下流に配置されているターボ過給機のタービンに、高速の排気ガスを供給することが可能になるから、過給効率の向上が図られる。
前記の構成ではまた、絞り部の下流側にバイパス通路が接続されており、触媒の温度上昇を行う運転モードにおいては、前述したエゼクタ効果により、バイパス通路を通じて、吸気通路を流れる空気がエンジン本体をバイパスして排気通路に導入される。尚、例えばバイパス通路の途中に、開閉バルブ又は流量調整バルブを設けることによって、新気の供給、停止の切り替え、又は、供給量の調整を行うようにしてもよい。
触媒の温度上昇を行う運転モードにおいてはまた、燃料供給手段によって、タービンに未燃燃料が供給されるように燃料が供給される。例えば燃料リッチとなるように、必要量よりも多い燃料を気筒に供給することによって、未燃燃料を気筒から排出させて、それがタービンに供給されるようにしてもよい。燃料供給手段が、燃料を気筒内に直接供給(噴射)する構成であるときには、例えば圧縮上死点以降の膨張行程において燃料を気筒内に噴射する後段噴射を利用してもよい。
こうして、触媒の温度上昇を行う運転モードにおいては、ターボ過給機のタービンに、新気と未燃燃料とが供給されるようになり、このタービンにおいて、新気及び未燃燃料が撹拌されて酸化反応が生じる。その酸化反応の結果、高温となったガスは、タービンよりも下流側に配置されている触媒に供給されるようになるから、触媒の温度が上昇する。
このように、エンジン本体、タービン及び触媒の順番に並ぶ排気側の構成において、タービンにおいて酸化反応を行って、高温のガスを触媒に供給することで、タービンの熱容量の影響を無くすことが可能になるから、エンジン本体から高温の排気ガスを排出する点火リタードと比較して、触媒の温度上昇に極めて有利になる。このことは、触媒の温度を速やかに上昇させると共に、燃費が向上する。
前記バイパス通路は、前記吸気通路における前記コンプレッサよりも下流側に接続されている、としてもよい。
こうすることで、コンプレッサによる過給圧と、前述したエゼクタ効果とが組み合わさって、吸気通路から排気通路に、必要十分な量の新気を供給することが可能になる。このことは、タービンにおける酸化反応を十分かつ確実に行って、触媒の昇温に有利になると共に、排気エミッション性の悪化を回避する上でも有利になる。
また、相対的に高圧である排気側に新気を供給するために、例えば二次エアポンプ等の別途の駆動源は不要であり、エンジンシステムの簡素化が図られると共に、燃費の向上にも有利になる。
前記触媒の温度を高める運転モードは、前記触媒が未活性のときに行う、としてもよい。前記の構成によって、触媒を早期にかつ低燃費で活性化させることが実現する。
また、前記触媒の温度を高める運転モードは、前記エンジン本体の運転状態が所定回転数以下の低回転域において行う、としてもよい。
前記のエゼクタ効果は、エンジン本体の運転状態が低回転域において特に有効になるため、十分な量の新気を排気側に導入して、触媒の温度が速やかに上昇する。
以上説明したように、前記のターボ過給機付エンジンの制御装置によると、触媒の温度上昇を行う運転モードにおいては、バイパス通路を介して排気側に導入した新気と、未燃燃料とをターボ過給機のタービンに供給し、酸化反応を発生させるため、高温のガスを、温度を低下させることなく触媒に供給することが可能になるから、触媒の温度を速やかにかつ低燃費で上昇させることが可能になる。
エンジンシステムの構成を示す概略図である。 エンジンシステムの構成を示す概略図である。 エンジンシステムにおける排気側の構成を示す正面図である。 エンジンシステムにおける排気側の構成を示す一部断面図であり、(a)絞り部を構成する可変絞り弁を開けた状態、(b)可変絞り弁を閉じた状態である。 バイパス通路上に配置されるコントロールバルブの構成を示す一部破断の斜視図である。 エンジンシステムにおける、(a)コントロールバルブの開度とタービンの温度との関係、(b)コントロールバルブの開度と触媒上流の温度との関係、(c)コントロールバルブの開度と触媒下流における酸素濃度の関係、(d)コントロールバルブの開度と触媒下流におけるHC量との関係、の一例をそれぞれ示す図である。 実施例と比較例とのそれぞれについて、触媒上流の温度と燃費との関係の一例を示す図である。
以下、実施形態に係るエンジンシステムを図面に基づいて説明する。尚、以下の好ましい実施形態の説明は、本質的に例示に過ぎない。図1、2において、1はエンジン(エンジン本体)であって、この例では、第1〜第4の4つの気筒C1〜C4を有する直列4気筒の火花点火式エンジンとされている。尚、以下の説明において、各気筒を区別する必要のないときは、気筒を単に符合Cを用いて示す場合もある。2はシリンダブロック、3はシリンダヘッド、4はピストンであり、これらシリンダブロック2とシリンダヘッド3とピストン4とによって燃焼室5が形成されている。燃焼室5には、シリンダヘッド3に形成された吸気ポート6及び排気ポート7が開口し、燃焼室5の略中心部には点火プラグ8が配設されている。吸気ポート6は吸気弁9により開閉され、排気ポート7は排気弁10により開閉される。
シリンダヘッド3にはまた、気筒C毎に、気筒C内に燃料を直接噴射するインジェクタ11が取り付けられている。インジェクタ11は、この例では、シリンダヘッド3の吸気側に取り付けられており、燃焼室5の中央付近に向かって、燃料を直接噴射するように構成されている。
吸気弁9及び排気弁10を駆動する動弁機構12は、吸気側及び排気側のそれぞれにVVT(Variable Valve Timing)を備えている。VVTは、吸気弁9及び排気弁10の開弁期間を維持したまま、バルブタイミング(バルブ開閉弁時期)を平行移動的に前後させる。VVTの方式としては、バルブタイミングを連続的に変化させるものでも、2以上の段階的に変化させるものでもよい。この動弁機構12(つまりVVT)を制御することによって、吸気弁9の開弁時期を吸気上死点前とする一方で、排気弁10の閉弁時期を吸気上死点後として、吸気弁9と排気弁10とを共に開弁するオーバーラップ期間を設定することが可能である。尚、ここでは、後述の通りオーバーラップ期間を設定可能であればよく、動弁機構12は、例えば吸気側及び/又は排気側のVVTに加え、又は、そのVVTに代えて、バルブのリフト量を連続的に変更可能なCVVL(Continuously Variable Valve Lift)を備えるようにしてもよい。
吸気ポート6は、吸気マニホールドによって形成される独立分岐吸気通路21を介してサージタンク22に接続されている。サージタンク22には、1本の共通吸気通路23が接続されている。この共通吸気通路23には、その上流側から下流側へ順次、エアクリーナ24,スロットル弁25,ターボ過給機26のコンプレッサ26A、インタークーラ27が配設されている。
このエンジン1において、各気筒C1、C2、C3、C4の点火順序(排気行程の順序ともいえる)は、第1気筒C1、第3気筒C3、第4気筒C4、第2気筒C2の順とされている。つまり、中央の第2気筒C2と第3気筒C3とは、点火順序(排気行程の順序)が互いに隣り合わない設定とされている。図2に示すように、第1〜第4気筒C1〜C4に連通する排気ポート7は、エンジン1の他側面に開口しているものの、点火順序が隣り合わない第2気筒C2と第3気筒C3の排気ポート7は、シリンダヘッド3内で集合された状態で、エンジン1の他側面に開口されている。従って、エンジン1の他側面に形成される排気ポート7の開口は、合計3つである。
エンジン1の他側面には、図1〜4に示すように、排気通路30の一部を構成する排気マニホールド31が取り付けられる。この排気マニホールド31は、互いに独立した第1〜第3の独立通路部31A、31B、31Cを有している。第1独立通路部31Aが第1気筒C1の排気ポート7に連通し、第2独立通路部31Bが、第2及び第3気筒C2、C3の排気ポート7に連通し、第3独立通路部31Cが、第4気筒C4の排気ポート7に連通する。
排気マニホールド31の出口端にはハウジング32が接続されている。ハウジング32は、その上流側においては、排気マニホールド31の独立通路部31A、31B、31Cにそれぞれ連通する独立通路部32A、32B、32Cを形成すると共に、後述する可変絞り弁320を有する絞り部として機能し、それよりも下流側においては、各独立通路部32A、32B、32Cからの排気が合流する集合部32Dを形成する。ここで、可変絞り弁320は、3つの独立通路部32A、32B、32Cの各通路断面積を、その独立状態を維持しつつ変更するバルブである。可変絞り弁320を含むハウジング32の詳細構造は、後述する。
ハウジング32の下流側には、ターボ過給機26のハウジングが接続されている。ハウジング内には、ターボ過給機26のタービン26Bが配設されている。タービン26Bは、コンプレッサ26Aに対して連結軸26Cによって連結されており、排気ガスのエネルギを受けてタービン26Bが回転駆動されることによって、コンプレッサ26Aが回転駆動されて、過給が行われる。
排気通路30におけるタービン26Bの下流側には、図1に示すように、排気ガス中の有害成分を浄化する触媒33が接続されている。この触媒33は、ケースと、そのケース内の流路に配置した、例えば三元触媒とを備えて構成されている。
そうして、このエンジン1においては、共通吸気通路23におけるコンプレッサ26Aの下流側と、排気通路30におけるタービン26Bの上流側との間に、バイパス通路34が設けられており、このバイパス通路34上に、流量調整弁としてのコントロールバルブ341が介設されている。
図1において符号100は、エンジン1の動作を電気的に制御するECU(Engine Control Unit)である。ECU100は、CPU、メモリ、カウンタタイマー群、インターフェース並びにこれらのユニットを接続するバス等を有するマイクロプロセッサで構成された制御ユニットである。ECU100は、インジェクタ11の制御を通じた燃料供給量、スロットル弁25の制御を通じたスロットル開度、及び、点火プラグ8の制御を通じた点火時期といった一般的な燃焼制御に加え、動弁機構12(VVT)の駆動制御を行う。
さらにECU100は、可変絞り弁320の開度調整制御も行う。具体的にはECU100は、少なくとも過給領域の所定の低回転領域において、後述するように、可変絞り弁320を閉弁することによって、ハウジング32における独立通路部32A、32B、32Cの各通路断面積を最大面積時よりも縮小させる絞り制御を実行する。
加えて、ECU100は、バイパス通路34のコントロールバルブ341の開度調整制御を行う。この制御は主に、触媒33の温度を高めて活性化するための触媒活性モードにおいて実行される。
次に、当該エンジン1の排気側の構成について、主に図3、4を参照しながら、さらに詳細に説明する。図3は、エンジン1の排気側から視た排気マニホールド31及びハウジング32の部分の全体を示す正面図であり、図4は、図3の視線の方向に対して直交する方向(気筒列の方向)に視た排気マニホールド31及びハウジング32の部分の一部破断の側面図である。
排気マニホールド31の上流端にはフランジ311が設けられ、排気マニホールド31は、このフランジ311を介してエンジン1のシリンダヘッド3に固定される。前述の通り、排気マニホールド31は、第1〜第3の独立通路部31A、31B、31Cを有し、それぞれの上流端は、シリンダヘッド3の側面に開口する3つの排気ポート7それぞれに接続されると共に、その下流端である排気マニホールド31の出口には、詳細な図示は省略するが、3つの開口が気筒列方向に並んで形成されている。つまり、第1独立通路部31Aの第1開口部、第2独立通路部31Bの第2開口部、及び、第3独立通路部31Cの第3開口部が、この順に一直線上に配置されている。
排気マニホールド31の出口端に接続されるハウジング32の上流側には、排気の流れに沿って(平行に)立設する仕切板321が、その立設方向に直交する気筒列の方向(図における紙面に直交する方向)に所定の間隔だけ離間して、2枚設けられている。2枚の仕切板321の内の一方は、排気マニホールド31の出口端との合わせ部において第1開口部と第2開口部とを仕切る壁面と連続するように立設されてハウジング32内を仕切り、他方は、第2開口部と第3開口部とを仕切る壁面と連続するように立設されてハウジング32内を仕切る。これにより、ハウジング32内の上流側において、仕切板321に沿って排気が流れる区間では、2枚の仕切板321によって各独立通路部31A、31B、31Cの独立状態及び並列状態が維持されており、ハウジングにおけるこの部分が、複数の気筒Cの排気側にそれぞれ連通する複数の独立通路部32A、32B、32Cを構成することになる。
前述した可変絞り弁320は、ハウジング32の上流側に配設されており、具体的には、排気の流れに交差する方向に設けられ、ハウジング32に支持されたフラップ軸322と、フラップ軸322まわりに旋回可能とされた弁体としてのフラップ323と、ECU100からの制御信号(可変絞り弁320の開度指令)に基づいてフラップ軸322を回転させるアクチュエータ(図示省略)と、フラップ323を開弁方向に付勢するリターンスプリング(図示省略)とを含む。フラップ323は、フラップ軸322に沿って視てフラップ軸322を扇の要とする扇形断面の扇状面を有する。
ハウジング32には上方に膨出する膨出部324が形成されており、膨出部324の内側にフラップ323が格納された状態(図4(a)に示す状態)が、可変絞り弁320の開弁(全開)状態である。可変絞り弁320が全開のときには、排気マニホールド31の出口からハウジング32内に導入された排気はフラップ323(可変絞り弁320)で絞られることなく、下流側の集合部32Dに導かれる。
一方、フラップ323がフラップ軸322を中心に回転駆動され、膨出部324よりも内側に最も侵入した状態(図4(b)に示す状態)が可変絞り弁320の閉弁(全閉)状態である。フラップ323は、アクチュエータによって全閉状態と全開状態との間で適宜開度調節される。
可変絞り弁320が全閉のときには、図4(b)に示すように、フラップ323の扇状面が流路の一部を遮るので排気通路断面積が縮小される。従って、排気マニホールド31の出口からハウジング32内に導入された排気は可変絞り弁320によって絞られた後、集合部32Dに導かれる。ここで、各仕切板321の各後縁は、可変絞り弁320が閉弁状態にあるときのフラップ323の扇状面に沿うように成形されている。従って、排気がフラップ323で絞られる際には、排気通路の独立状態及び並列状態が維持された状態で絞られる。従って、全閉状態の可変絞り弁320が、各独立通路部32A〜32Cにおける集合部との接続端部において、各独立通路部32A〜32Cの流路を縮小させる絞り部を構成することになる。
集合部32Dは、ハウジング32内において仕切板321の後縁よりも下流側に形成される部分である。ハウジング32の下流端側にはフランジが設けられて、ターボ過給機26のハウジングが接続されている。
以上のような構成において、エンジン1の運転状態が、第1の回転数以下となる低回転域にあるときには、ECU100は、可変絞り弁320を全閉とする(図4(b)参照)。これにより、ハウジング32内の各独立通路部32A〜32Cは、その開口面積が小さくされた絞り状態にされる。
排気行程にある気筒から、排気ポート7及び排気マニホールド31を経て、ハウジング32の集合部32Dへと向かう排気ガスは、可変絞り弁320(つまり、絞り部)で流速が高められた上で、集合部32Dを経てターボ過給機26へ供給される。これにより、ターボ過給機26が効率よく作動する。特に、排気弁10が開弁された直後に発生する勢いの強い排気ガス(ブローダウンガス)が、より流速が高められた状態でターボ過給機26に供給されるため、エンジントルクが向上する。
また、前記の絞り部において排気ガスの流速が高められることによって、エゼクタ効果(吸い出し効果)が発揮されて、ある独立通路を流れる排気ガスが、他の独立通路へ向かって流れる(膨張される)ような事態が防止されると共に、エゼクタ効果によって他の独立通路中の残留排気ガスも合わせてターボ過給機26へ供給されて、この分により、エンジントルクが向上されることになる。
さらに、エゼクタ効果によって、吸気行程にある気筒の掃気効果が高まって、この分、充填効率が向上されて(10〜20%程度の向上)、エンジントルクがさらに向上する。つまり、このエンジン1においては、第1気筒C1、第3気筒C3、第4気筒C4、第2気筒C2の順に点火順序が設定されており、例えば第1気筒C1が、膨張行程から排気行程への移行期(下死点付近)にあって、排気弁10が開いて排気が燃焼室5から排気ポート7へ排出され始めたときに(つまりブローダウン時に)、第2気筒C2は排気行程から吸気行程への移行期(上死点付近)にある。この移行期において、動弁機構12(VVT)の制御により、吸気弁9と排気弁10とが共に開弁しているオーバーラップ期間が設けられている。こうして、第1気筒C1のブローダウン時に、オーバーラップ期間が設けられている第2気筒C2内の既燃ガスが、エゼクタ効果により吸い出される結果、第2気筒C2の充填効率は向上するようになる。尚、排気行程と吸気行程との関係が成立する気筒関係は、次のようになる。すなわち、第1気筒C1(排気行程)と第2気筒C2(吸気行程)、第2気筒C2(排気行程)と第4気筒C4(吸気行程)、第3気筒C3(排気行程)と第1気筒C1(吸気行程)、第4気筒C4(排気行程)と第3気筒C3(吸気行程)である。
一方、エンジン回転数が高くなって、エンジン1の運転状態が第2の回転数よりも高い高回転域にあるときには、ECU100は、図4(a)に示すように、可変絞り弁320を全開にすることで、多量の排気ガスを効率よく排出させる。尚、第1の回転数と第2の回転数との間の、中間の回転域では、エンジン回転数が高いほど可変絞り弁320の開度が大きくなるように、可変絞り弁320の開度を中間開度に設定することによって、排気ガスの排出効率とエゼクタ効果とがバランスよく両立されることになる。
このエンジン1においてはさらに、前述したように、共通吸気通路23におけるコンプレッサ26Aの下流側と、排気通路30における可変絞り弁320の下流側でかつタービン26Bの上流側との間をつなぐ、バイパス通路34が設けられており、このバイパス通路34に、ECU100によって開度が調整されるコントロールバルブ341が介設されている。
具体的に、このバイパス通路34は、図3に示すように、ターボ過給機26におけるコンプレッサ26Aの下流側に延びる吸気管から分岐するように設けられると共に、ハウジング32の外側に一体的に設けられたコントロールバルブ341を介して、ハウジング32の集合部32D内に接続されており、その全長は比較的短く設定されている。このように、バイパス通路34の下流端が、集合部32D内に開口しているため、前述したように、可変絞り弁320を閉じて絞り部を絞った状態にしたときには、エゼクタ効果により、共通吸気通路23を流れる新気が、バイパス通路34を通じて、集合部32Dに吸い出されるようになる。特にバイパス通路34は、この構成においては、共通吸気通路23におけるコンプレッサ26Aの下流側に接続されているため、過給圧が付加されており、その過給圧とエゼクタ効果との組み合わせにより、十分な量の新気が集合部32Dに導入されることになる。この構成では、相対的に圧力が高い排気側に対して、例えば二次エアポンプ等の別途の駆動源を持たずに、新気を導入することが可能になる。
図5は、コントロールバルブ341の構成の一例を示している。このコントロールバルブ341は、その内部に、Uターン形式に構成された流路41を備えており、その流路41のUターン部分に配置された弁体42がアクチュエータ43によって、同図に一点鎖線の矢印で示すように進退変位することで、バイパス通路34を通過する新気の流量を調整するように構成されている。尚、流路41の途中に、逆流防止用の逆止弁を設けてもよい。
バイパス通路34を通じた排気側への新気の導入は、触媒33の温度が所定温度以下のとき、言い換えると、触媒33が不活性であって、その活性化が必要なときに実行され、具体的には、エンジン1の冷間始動時に実行される(つまり、触媒活性モード)。但し、触媒活性モードの実行は、エンジン1の冷間始動時に限定されない。また、触媒活性モードは、エンジン1の回転数が第1の回転数以下の低回転域にあるときに実行される。低回転域にあるときに、エゼクタ効果が有効に得られるためである。
ECU100は、排気通路30において触媒33の上流側に配置された排気温度センサ35(図1参照)の検出値を受けて、触媒活性モードへの移行の要否を判断し、触媒活性モードへの移行が必要と判断したときには、可変絞り弁320を全閉にすると共に、バイパス通路34上のコントロールバルブ341を開弁する。このときコントロールバルブ341は全開にしてもよい。
触媒活性モードにおいては、ECU100はさらにインジェクタ11の制御を通じて、気筒Cから未燃燃料が排出されるようにする。具体的には、燃料リッチとなるように、必要量よりも多い燃料を気筒Cに供給する。このとき、余剰の燃料は、例えば圧縮上死点以降の膨張行程において燃料を気筒C内に噴射する後段噴射によって、気筒C内に供給してもよい。尚、後段噴射と共に、また、後段噴射に代えて、点火時期を圧縮上死点以降に設定してもよい。点火時期を遅らせることは、気筒Cから十分な量の未燃燃料を排出させる上で有利になる。
こうして触媒活性モードにおいては、バイパス通路34を通じて排気側に導入された新気が、ハウジング32からタービン26Bへと供給されると同時に、気筒Cから排出された未燃燃料がタービン26Bに供給される。そうしてこのタービン26Bにおいて、新気及び未燃燃料が撹拌される結果、酸化反応が発生し、高温のガスがタービン26Bから排出されるようになる。この高温のガスは、タービン26Bの下流側に配置されている触媒33に供給され、触媒の温度を高める。ここで、タービン26Bと触媒33との間には、何の部材も介在していないため、タービン26Bから排出されたガスは、その温度がほとんど低下することなく、触媒33に供給されるようになる。その結果、触媒33の温度を速やかにかつ効率的に上昇させることが可能になる。
つまり、従来のエンジンでは、触媒活性モードでは、点火時期を膨張行程に設定する点火リタードによって、高温の既燃ガスを気筒Cから排出するようにしている。しかしながら、ターボ過給機付エンジンでは、エンジン1と触媒33との間に介設されたタービン26Bの熱容量が大きいため、既燃ガスの温度が、タービン26Bを通過する際に低下してしまい、触媒33に供給するガスの温度が低くなってしまうという問題がある。
これに対し、前記の構成では、タービン26Bにおいて酸化反応を発生させ、それにより高温となったガスを触媒33に供給するから、ガス温の低下が抑制され、極めて高温のガスを触媒33に供給することが可能になる。その結果、触媒33の温度を効率的に高めて、触媒33を早期に活性化させることが可能になるから、燃費が向上する。
次に、バイパス路を通じた新気の導入による、触媒の温度上昇効果について実際に行った実施例を、図6、7を参照しながら説明する。図6の(a)は、コントロールバルブ341の開度に対するタービン26Bの温度の関係、同図の(b)は、コントロールバルブ341の開度に対する触媒上流側の温度の関係、同図の(c)は、コントロールバルブ341の開度に対する触媒下流側の酸素濃度の関係、同図の(d)は、コントロールバルブ341の開度に対する触媒下流側のHC量の関係を示す。各図において、白丸は、点火時期をBTDC0°CAに設定した場合、白三角は、点火時期をBTDC5°CAに設定した場合、白四角は、点火時期をBTDC−7°CAに設定した場合である。尚、エンジン回転数は1800rpm、BMEPは100kPa、A/Fは10、つまり燃料リッチ、に設定されている。
先ず、同図(a)に示すタービン26Bの温度について検討する。点火時期をBTDC5°CAに設定した場合(白三角)は、コントロールバルブ341の開度を大きくして、バイパス通路34を通じてタービン26Bに供給する新気量を増大しても、タービン26Bの温度は高くならない。これは、点火時期が比較的早いため、気筒Cから排出される未燃燃料の量が少なく、その結果、タービン26Bにおいて酸化反応が十分に発生していないと考えられる。これに対し、点火時期をBTDC0°CAに設定した場合(白丸)や、点火時期をBTDC−7°CAに設定した場合(白四角)は、コントロールバルブ341の開度を大きくして、バイパス通路34を通じてタービン26Bに供給する新気量を増大させることに伴い、タービン26Bの温度が次第に上昇する。特に、点火時期をBTDC−7°CAに設定した場合の方が、タービン26Bの温度が高くなりやすい。これは、点火時期を遅らせることによって気筒Cから排出される未燃燃料の量が増えると共に、コントロールバルブ341の開度を大きくして必要量の新気がタービン26Bに供給される結果、タービン26Bにおいて十分な酸化反応が発生し、ガス温が上昇したためと考えられる。
次に、同図(b)に示す触媒上流の温度について検討する。触媒33の早期活性化のために、触媒上流の温度は、同図に示すT1以上の温度に設定することが望ましい。点火時期をBTDC5°CAに設定した場合(白三角)は、前述の通り、タービン26Bの温度が高まらないため、触媒上流の温度も高くならない。これに対し、点火時期をBTDC0°CAに設定した場合(白丸)や、点火時期をBTDC−7°CAに設定した場合(白四角)は、タービン26Bの温度が上昇することに伴い、触媒上流の温度も高まるようになる。特に、点火時期をBTDC−7°CAに設定したときには、コントロールバルブ341を全開付近にすることで、触媒上流の温度を目標温度であるT1以上にすることが可能になる。これは、同図(a)に示すように、タービン26Bの温度がT1を大きく超えることに対応する。
次に、同図(c)に示す酸素濃度について検討する。点火時期をBTDC5°CAに設定した場合(白三角)は、コントロールバルブ341の開度が大きくなるに従って、酸素濃度が次第に高くなる。前述の通り、点火時期をBTDC5°CAに設定した場合は、タービン26Bにおける酸化反応が十分に発生しないため、排気側に導入された新気が、ほとんどそのまま、タービン26B及び触媒33を通過して排出されていると考えられる。つまり、コントロールバルブ341の開度が大きくなり、排気側に導入される新気量が増大することに比例して、酸素濃度が上昇するのである。これに対し、点火時期をBTDC0°CAに設定した場合(白丸)や、点火時期をBTDC−7°CAに設定した場合(白四角)は、同図(a)においてタービン26Bの温度上昇が開始する開度付近から、酸素濃度が低下している。このことは、タービン26Bにおいて酸化反応が発生し、そこで酸素が消費されているということができる。特に、点火時期をBTDC−7°CAに設定した場合においては、酸素濃度が極めて低くなっており、タービン26Bに供給された新気(酸素)が、酸化反応により、ほとんど消費されているということができる。
最後に、同図(d)に示すHC量について検討する。点火時期をBTDC5°CAに設定した場合(白三角)は、コントロールバルブ341の開度を大きくしても、HC量が高いままになる。これは、前述の通り、タービン26Bにおける酸化反応が十分に発生せず、気筒Cから排出された未燃燃料の多くが排出されているということができる。これに対し、点火時期をBTDC0°CAに設定した場合(白丸)や、点火時期をBTDC−7°CAに設定した場合(白四角)は、コントロールバルブ341の開度が大きくなるに従ってHC量が少なくなっており、タービン26Bにおける酸化反応が十分に発生していることがわかる。特に、点火時期をBTDC−7°CAに設定した場合は、コントロールバルブ341を全開付近にしたときにHC量が実質的にゼロになっており、未燃燃料が排出されてしまうことが回避されている。
図7は、バイパス通路34を介した新気の導入と燃料リッチとによって触媒33の活性化を図る実施例と、点火リタードにより触媒33の活性化を図る比較例とについて、触媒上流の温度と燃費との関係を示している。尚、エンジン1の運転状態は、回転数が1800rpmで、BMEP=100kPaである。同図における黒菱形が、点火リタードにより触媒の活性化を図る比較例であり、比較例では、A/Fを14.5に設定している。同図においては、点火時期を、BTDC10°CAから、5°CAずつ遅らせており、点火時期を遅らせるに従って、触媒上流の温度は次第に高くなる一方で、燃費も次第に悪化することになる。尚、比較例では、点火時期をBTDC−10°CAよりも遅らせることはできず、それ以降は、破線によって仮想的に示している。比較例においては、点火時期をBTDC−7°CAに設定することが実用的である。
これに対し、白丸は、前述した空気導入の実施例を示しており、実施例では、比較例よりも燃料リッチなA/F=11に設定している。尚、点火時期はBTDC−7°CAである。例えば、比較例と実施例とを同一燃費で比較したときには、触媒上流の温度は、実施例の方が大幅に高くなり、触媒の活性化を早期に実現することが可能である。触媒活性に要する時間が短縮する分、燃費の向上にも有利になる。また、同一温度で比較したときには、燃費は、実施例の方が大きく向上することになる。つまり、バイパス通路34を介した新気の導入と燃料リッチとによって触媒33の活性化を図る構成は、触媒33を早期に活性化することができると共に、燃費の向上にも有利である。
また、前述したように、排気側に新気を導入する構成として可変絞り弁320の閉弁によるエゼクタ効果を利用しているため、別途の駆動源が不要になり、このこともまた、燃費の向上に有利であると共に、エンジンシステムが簡素化する。
尚、前記の構成では、バイパス通路34の上流端を、共通吸気通路23におけるコンプレッサ26Aの下流側に設定しているが、バイパス通路34の上流端は、共通吸気通路上であれば(特に、エアフローセンサの下流側であれば)、任意の位置に設定することが可能である。但し、コンプレッサ26Aの下流側に設定することは、前述したように、新気を排気側に導入する際に、過給圧を利用することが可能になるから、新気を効果的にかつ十分に排気側に導入して、燃費の向上及び排気エミッション性能の向上を図る上では、バイパス通路34の上流端をコンプレッサ26Aの下流側に設定することが好ましい。
また、前記の構成では、バイパス通路34上に介設したコントロールバルブ341を、流量調整弁によって構成しているが、バイパス通路34に、開閉弁を介設するようにしてもよい。
また、ここに開示する技術は、4気筒以外の多気筒エンジンにも適用することが可能である。例えば3気筒エンジンの場合は、排気マニホールド及びハウジングの各独立通路を、それぞれ異なる一つの気筒に連通させればよい。また、例えば6気筒エンジン(直列6気筒、V型6気筒)においては、排気順序が連続しない気筒同士の各独立通路を合流させて3本の排気通路を形成し、これらの排気通路をターボ過給機26に接続してもよい。
さらに、可変絞り弁320としては、前述したフラップ構造に限定されず、例えばその一部に切り欠き(絞り)が形成されたバタフライバルブを採用してもよい。
1 エンジン(エンジン本体)
11 インジェクタ(燃料供給手段)
23 共通吸気通路(吸気通路)
26 ターボ過給機
26A コンプレッサ
26B タービン
30 排気通路
31A、31B、31C 独立通路部(排気マニホールド)
32A、32B、32C 独立通路部(ハウジング)
32D 集合部
320 可変絞り弁(絞り部)
33 触媒
34 バイパス通路
C 気筒

Claims (4)

  1. 複数の気筒を有するように構成されたエンジン本体と、
    前記気筒に燃料を供給するように構成された燃料供給手段と、
    前記複数の気筒それぞれの排気側に独立して連通する通路からなる複数の独立通路部、又は、前記複数の気筒の内のいずれか一つの気筒の排気側に独立して連通する通路と、排気順序が連続しない複数の気筒の排気側のそれぞれに連通する通路とからなる複数の独立通路部、
    当該複数の独立通路部の下流側で、これら独立通路部を集合させる集合部、及び、
    各独立通路部における前記集合部との接続端部に設けられかつ、当該各独立通路部の流路を縮小させる絞り部を含んで構成された排気通路と、
    前記絞り部よりも下流側の前記排気通路上に配置されたタービン及び前記エンジン本体に対する吸気通路上に配置されたコンプレッサを有するターボ過給機と、
    前記タービンよりも下流側に配置されかつ、前記排気通路を通じて排出される排気ガスを浄化するように構成された触媒と、
    前記排気通路における絞り部よりも下流側の前記集合部でかつ、前記タービンよりも上流側に接続されると共に、前記吸気通路を流れる新気を、前記エンジン本体をバイパスして前記排気通路に供給可能に構成された、単一のバイパス通路と、を備え、
    前記触媒の温度を高める運転モードにおいては、前記絞り部を排気ガスが通過する際のエゼクタ効果により、前記バイパス通路を通じて新気を前記排気通路に供給しつつ、前記燃料供給手段は、前記タービンに未燃燃料が供給されるように前記燃料を供給するターボ過給機付エンジンの制御装置。
  2. 請求項1に記載のターボ過給機付エンジンの制御装置において、
    前記バイパス通路は、前記吸気通路における前記コンプレッサよりも下流側に接続されているターボ過給機付エンジンの制御装置。
  3. 請求項1又は2に記載のターボ過給機付エンジンの制御装置において、
    前記触媒の温度を高める運転モードは、前記触媒が未活性のときに行うターボ過給機付エンジンの制御装置。
  4. 請求項1〜3のいずれか1項に記載のターボ過給機付エンジンの制御装置において、
    前記触媒の温度を高める運転モードは、前記エンジン本体の運転状態が所定回転数以下の低回転域において行うターボ過給機付エンジンの制御装置。
JP2012030221A 2012-02-15 2012-02-15 ターボ過給機付エンジンの制御装置 Expired - Fee Related JP5906784B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012030221A JP5906784B2 (ja) 2012-02-15 2012-02-15 ターボ過給機付エンジンの制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012030221A JP5906784B2 (ja) 2012-02-15 2012-02-15 ターボ過給機付エンジンの制御装置

Publications (2)

Publication Number Publication Date
JP2013167188A JP2013167188A (ja) 2013-08-29
JP5906784B2 true JP5906784B2 (ja) 2016-04-20

Family

ID=49177765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012030221A Expired - Fee Related JP5906784B2 (ja) 2012-02-15 2012-02-15 ターボ過給機付エンジンの制御装置

Country Status (1)

Country Link
JP (1) JP5906784B2 (ja)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5050917B2 (ja) * 2008-02-25 2012-10-17 マツダ株式会社 過給機付エンジンシステム
JP5375151B2 (ja) * 2009-02-13 2013-12-25 マツダ株式会社 多気筒エンジンの排気通路構造
JP5493936B2 (ja) * 2010-02-03 2014-05-14 トヨタ自動車株式会社 内燃機関の制御装置

Also Published As

Publication number Publication date
JP2013167188A (ja) 2013-08-29

Similar Documents

Publication Publication Date Title
US8141357B2 (en) Supercharger for an engine
US8056337B2 (en) Internal combustion engine and control method thereof
JP4045844B2 (ja) エンジンの制御装置
WO2009040642A1 (en) Exhaust device and control device for internal combustion engine
JP2003227370A (ja) 過給機付エンジンの制御装置
JP5040747B2 (ja) 過給機付きエンジン
JP5794046B2 (ja) 多気筒エンジン
JP4479774B2 (ja) 内燃機関の制御装置
JP2014163251A (ja) ターボ過給機付き火花点火式エンジン
JP5262863B2 (ja) 多気筒エンジンの排気システムの制御方法およびその装置
JP5262862B2 (ja) 多気筒エンジンの排気システムの制御方法およびその装置
JP5906784B2 (ja) ターボ過給機付エンジンの制御装置
JP4692253B2 (ja) 過給機付きエンジンの排気ガス温度制御装置
JP4978525B2 (ja) 過給機付きエンジンの排気装置
JP2018168781A (ja) 多気筒エンジンの吸気通路構造
JP5549544B2 (ja) 内燃機関の制御装置
JP2009293537A (ja) 内燃機関の制御装置
JP3711939B2 (ja) 火花点火式エンジンの制御装置
JPH0533661A (ja) 機械式過給機付エンジンの吸気装置
JP5845699B2 (ja) 多気筒エンジンの排気装置
JP3826850B2 (ja) 火花点火式エンジンの制御装置
JP2018168785A (ja) 多気筒エンジンの吸気装置
JP6551472B2 (ja) エンジンの吸気通路構造
JP6260859B2 (ja) 直列四気筒のエンジン
JP6032802B2 (ja) Egr装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160307

R150 Certificate of patent or registration of utility model

Ref document number: 5906784

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees