JP2009084009A - 移動体速度検出装置 - Google Patents

移動体速度検出装置 Download PDF

Info

Publication number
JP2009084009A
JP2009084009A JP2007257656A JP2007257656A JP2009084009A JP 2009084009 A JP2009084009 A JP 2009084009A JP 2007257656 A JP2007257656 A JP 2007257656A JP 2007257656 A JP2007257656 A JP 2007257656A JP 2009084009 A JP2009084009 A JP 2009084009A
Authority
JP
Japan
Prior art keywords
moving body
speed
detector
sensor
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007257656A
Other languages
English (en)
Inventor
Hideki Inoue
秀樹 井上
Kosei Kishikawa
岸川  孝生
Akira Onuki
朗 大貫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2007257656A priority Critical patent/JP2009084009A/ja
Priority to CN200810005114XA priority patent/CN101402429B/zh
Publication of JP2009084009A publication Critical patent/JP2009084009A/ja
Priority to HK09105430.8A priority patent/HK1126740A1/xx
Pending legal-status Critical Current

Links

Images

Landscapes

  • Maintenance And Inspection Apparatuses For Elevators (AREA)

Abstract

【課題】低コストで移動体の速度検出することができる移動体速度検出装置を提供する。
【解決手段】移動体速度検出装置200は、構造物と相対速度をなす移動体に設置した素子207と、素子207から与えられる検知信号に基づいて移動体の速度を算出する速度算出処理装置116とを備える。移動体は、複数の素子207を含み移動体の走行方向に沿って所定間隔を隔てて配置されるセンサアレー201を有する。速度算出処理装置116は、センサアレー201の出力を所定の様式で重畳し、重畳の結果を周波数分析し、周波数分析から得られた周波数および検知子の所定間隔の距離に基づいて移動体の速度を算出することができる。
【選択図】図2

Description

本発明は、移動体の速度検出装置に係り、特にエレベータの安全装置用の速度検出装置に関する。
昨今、エレベータの乗りかご(移動体)の速度の検出を、機械室ではなく乗りかごに設置したセンサで行う方式の検討が進められている。乗りかごでの速度検出は、ロープの介在無しに行えるため、直接的な値を取得できる他、ロープ切れに際しても速度の検出が可能となるなど、種々の利点がある。更に、速度検出器について、可動部を排除した非接触方式とすることで、更なる信頼性の向上が見込める。
従来、乗りかご側に設置したセンサ装置により、乗りかごの速度を検出する方式が開示されている(例えば、特許文献1参照)。基本的には、昇降路に設置したマーカと、乗りかごに設置したセンサ装置を用いて、乗りかごの位置を検出する装置である。マーカとセンサ装置の距離の設定方法が示され、昇降路側に設置したマーカを、乗りかご側に設置したセンサ装置で検出し、絶対位置ステートメントに変換する。この絶対位置ステートメントを、速度測定に利用している。
特開2006−52092号公報
特許文献1によれば、乗りかごに設置したセンサ装置で速度検出を行うには、昇降路の全行程にわたり検出用マーカを設置する必要があった。マーカ利用の方式においては、マーカそのものの調達コストの他、昇降路への設置コスト、運用開始後の保守のためのコストなどが発生し、価格競争力の確保が問題であった。
また、乗りかご側設置のセンサ自体が高価である場合、コスト的に不利となる。更に、使用可能な距離範囲の狭いセンサの場合、ギャップ保持機構が必要になる場合もある。
すなわち、昇降路側へ速度検出用のマーカ関連コストの削減、乗りかご側設置センサのコストの削減、センサの検出ギャップ保持に関するコストの削減が課題であった。さらに、検出信号の処理に関するコストも低減が課題であった。
本発明は、前記の課題を解決するための発明であって、低コストで移動体の速度検出を行うことができる移動体速度検出装置を提供することを目的とする。
前記目的を達成するため、構造物と相対速度をなす移動体に設置した検知子(例えば、後記する素子207)と、検知子から与えられる検知信号に基づいて移動体の速度を算出する速度算出装置(例えば、後記する速度算出処理装置116)とを備える移動体速度検出装置であって、前記検知子は、前記移動体の移動方向に沿って所定間隔を隔てて複数配置されて検知子列(例えば、後記するセンサアレー201)をなし、速度算出装置は、検知子列の出力を所定の様式で重畳し、重畳の結果を周波数分析し、周波数分析から得られた周波数および検知子の所定間隔の距離に基づいて移動体の速度を算出することを特徴とする。
本発明によれば、低コストで移動体の速度検出を行うことができる。
以下、本発明の実施形態について図面を参照して説明する。
図1は、本発明の実施形態に係わる移動体検出装置を示す構成図である。ここでは、移動体として、建物内に設けられたエレベータ装置100の乗りかご105を例として説明する。乗りかご105は、図面中の走行方向(昇降方向)113を移動する。昇降方向113には、昇降路内構造物117がある。なお、本実施形態の移動体速度検出装置200(図2参照)は、センサアレー201と速度算出処理装置116とを含んで構成される。
乗りかご105とつり合い錘107は、メインロープ106で相互に接続され、メインロープ106は、巻き上げ機108に巻き掛けられている。巻き上げ機108が、制御装置111の指令により、メインロープ106を駆動する。これにより、乗りかご105(以降単に‘かご’と表記する場合がある。)および、つり合い錘107が、昇降路内を移動する。かご105には、かご側安全装置115が搭載されている。
かご側安全装置115に包含される速度算出処理装置116は、センサアレー201(センサアレー201の長さLs)からの入力データにもとづき速度を算出することができる。速度算出処理装置116は、センサアレー201からの入力データにもとづき判定した過速の有無を含む安全制御情報を、制御装置111へ送信する。制御装置111は、安全制御情報にもとづき、ブレーキ109や非常止め装置114の動作指令を出力する。状況に応じ、かご側安全装置115が直接、非常止め装置114やブレーキ109の動作指令を出力する構成としてもよい。
エレベータ装置100では、通常、メインロープ106の他に調速機ロープという補助ロープ(図示せず)が、かご105の非常止め装置114に取り付けてある。メインロープ106の切断などにより一定の速度(建築基準法の規定では定格速度の1.4倍など)までかご105の速度が加速すると、制御装置111の制御動作とは別に、調速機(図示せず)が調速ロープをロックさせ、非常止め装置114を作動させて、ガイドレール102をくわえ込む形で急停止する。
図2は、速度算出処理装置を示す内部構成図である。速度算出処理装置116は、検波器202、重畳器203、周波数分析器204、および閾値判定器205を有している。また、センサアレー201は、複数の素子207により構成され、その素子の識別をa、b、c、・・・、xで表している。
センサアレー201からの信号は、検波器202によりベースバンドの信号に変換される。該信号は、重畳器203によりセンサ(207a、b、c、・・・、x)の相対位置関係に応じた所定の規則、より具体的にはセンサ配置の順番に従い、交互に加法的若しくは減法的に重畳されたのち、周波数分析器204によりベースバンド信号の時間変動成分のスペクトルに変換される。該スペクトルの主要なピークの位置が、所定の周波数を超過しているか否かを、閾値判定器205にて判定し、判定結果を制御装置111などへ出力する。
センサアレー201の間隔をd、上記スペクトルのピークの周波数をfとすると、速度vは、
v=2・f・d ・・・(1)
から算出することができる。よって、制限速度Vmaxの時、スペクトルの判定閾値周波数fthは、
fth=Vmax/(2・d) ・・・(2)
となる。
なお、図2において、各出力波形は、チェックポイントCPa〜CPc,Cpx、チェックポイントCP1〜CP3の位置により示し、図3に示す波形例の説明で用いる。
図3は、速度算出処理装置の波形例を示す説明図である。グラフG01〜G09は、図2における、チェックポイントCPa〜CPc,Cpx、チェックポイントCP1〜CP3の箇所に対応する波形を示している。また、ここでは、センサアレー201の構成をa,b,c,xの順で、空間的に等間隔で配置された4素子と仮定した。従って、チェックポイントCPa,CPb,CPc,CPxは、等間隔で配置された素子からの検波後の波形に相当する。今、センサアレー201の素子aの方向から素子xの方向へ、昇降路内構造物が通過したと仮定する。このとき、チェックポイントCPa〜CPc,CPxの波形は、それぞれグラフG01〜G04のようになる。
グラフG01〜G04の波形を、重畳器203により重畳処理することで、チェックポイントCP1ではグラフG05のような波形を得る。尚、グラフG01〜G05において、横軸は時間、縦軸は、検波器202若しくは重畳器203からの出力レベル(例えば電圧)である。
更に、周波数分析器204により、グラフG06若しくはグラフG08のようなパワースペクトルを得る。ここで、グラフG06,G08において、横軸は周波数、縦軸は電力である。
もし、チェックポイントCP2における主要なスペクトルが、判定閾値周波数fthより小さい場合(case1)、チェックポイントCP3出力は、グラフG07の如く正常(Normal)値となる。同様に判定閾値周波数fthより大きい場合(case2)、グラフG08の如く異常(Alert)値となる。なお、かご105の速度が速いほど、周波数の主要なスペクトルは、高い方向にシフトする。
グラフG07,G09において、横軸は時間、縦軸は判定値レベル(図示の例では、Alert,Normalの二値)である。グラフG07,G09においては、時間的に一定の判定値の例を示したが、判定閾値周波数fthは、時間的に一定ではなく、加速時、定速時、減速時などで、安全速度に対応する判定閾値周波数fthが決定される。基本的には、チェックポイントCP2の主要なスペクトルが判定閾値周波数fthを横切るタイミングで、判定される。
図4は、速度検出に利用できる昇降路内構造物の間隔に基づいたセンサアレー長の決定方法を示す説明図である。本発明では、昇降路内に存在する構造物を、かご105に設けられたセンサアレー201にて検出する構成をとっている。よって、センサアレー201の空間的長さは、かご105の空間的移動に伴い、構造物を連続的にカバー可能なように決定する。
いま、昇降路内構造物117のかご移動方向に対する最大の空間間隔をLrとすると、センサアレー201の長さLsは、短くとも、
Lr<Ls ・・・(3)
の関係を満たすよう決定する。より実用的には、センサアレー201の両端部において、それぞれ2素子程度が昇降路内構造物117を重複して検出するマージンLsm、および、センサ検知エリア形状を加味しセンサによる有効な検出を包含する昇降路内構造物間隔のマージンLrmを加え、
Lr+Lrm<Ls−Lsm ・・・(4)
の関係を満たすよう決定する。
図5は、複数のセンサアレーを用い、速度検出の方法を示す説明図である。図5においては、センサアレーとして、複数のセンサアレー201a,201bを用いる。複数のセンサアレーが必要となる状況として、センサで検知可能な昇降路内構造物117a、117bの空間配置間隔が、現実的な長さの単一のセンサアレー長を超える場合などがある。前記状況が発生する理由は、センサアレー長が搭載可能な素子数と素子間隔、処理回路の最大チャネル数、固定箇所の大きさ(かごの上下方向の長さ)など、複数の要因に依存するため、任意に長くはできないためである。
図5において、二つのセンサアレー201a,201bを、それぞれ昇降路の別個の箇所に対向させ、速度検知を行う例を説明する。それぞれのセンサアレー長Ls−a、Ls−bと、昇降路内構造物117の空間配置間隔Lr−a,Lr−bとの大小関係は、
Lr−a>Ls−a,Lr−b>Ls−b ・・・(5)
であるため、センサアレー201a,201bの個別処理では、かご位置に依存し、速度検知に不連続性を生じる。
そこで、センサアレー201a,201bの長さLs−a,Ls−b、および複数のセンサアレー201a,201bの相対位置関係を、常に少なくとも一方のセンサアレー201が、昇降路内構造物を検出するよう設定し、なおかつ、複数のセンサアレー201a,201bからの信号を、所定の処理様式にて合成することで、任意のかご位置に対応する連続的な速度検知が可能となる。合成方法に関しては後述する。
複数のセンサアレー201a,201bの対向する昇降路内構造物117a,117bの空間配置と相対位置が固定的であれば、昇降路内構造物の空間周期の一周期分に関して、複数のセンサアレーの少なくとも一つが、昇降路内構造物を検知する位置関係を容易に決定できる。昇降路内構造物の空間分布に周期性が認められない場合においても、計算機によるシミュレーションにて、複数のセンサアレー長と相対位置関係を容易に決定が可能である。
図6は、複数のセンサアレーによる検出値の合成方法を示す内部構成図である。センサアレー201a,201bは、昇降路内の各々別個の場所に対向している。図示の都合上、同一直線上に配置しているが、一般的には前記の実施形態の如く、昇降路内構造物の配置とセンサアレー長により決定した箇所にセンサアレー201a,201bが対向するものとする。
複数のセンサアレー201a,201bからの出力は、周波数分析器204a,204bまで独立に処理される。すなわち、センサアレー201aからの信号は、検波器202aによりベースバンドの信号に変換される。該信号は、重畳器203aによりセンサの相対位置関係に応じた所定の規則、より具体的にはセンサ配置の順番に従い、交互に加法的若しくは減法的に重畳されたのち、周波数分析器204aによりベースバンド信号の時間変動成分のスペクトルに変換される。同様に、センサアレー201bからの信号は、検波器202bによりベースバンドの信号に変換される。該信号は、重畳器203bによりセンサの相対位置関係に応じた所定の規則、より具体的にはセンサ配置の順番に従い、交互に加法的若しくは減法的に重畳されたのち、周波数分析器204bによりベースバンド信号の時間変動成分のスペクトルに変換される。
周波数分析器204a,204bにより得られたパワースペクトルは、スペクトル重畳器206により重畳処理を行う。重畳した後のパワースペクトルに対し、閾値判定器205により閾値判定を行う。ここで、チェックポイントCP4〜CP6に対応する箇所の波形について、図7を参照して説明する。
図7は、複数のセンサアレーによる検出処理の波形例を示す説明図である。ここで、チェックポイントCP4で示される側(センサアレー201a側)は、センサアレー201aが検出対象として有効な昇降路内構造物117に対して対向していない位置関係にある状態、同様にチェックポイントCP5で示される側は、有効な検出対象に対向している位置関係にある状態とする。チェックポイントCP4では、判定閾値レベルPthを超える波高値のスペクトルのピークが現出しないのに対し、チェックポイントCP5では、当該ピークが認められる。同様にパワースペクトルの合成値であるチェックポイントCP6においても、判定閾値レベルPthを超える波高値の主要なスペクトルを確認できる。センサアレー201a,201bと昇降路内構造物117の位置関係が逆の場合でも同様にCP6のスペクトルにもとづき判定を行うことが可能である。
複数のセンサアレー201a,201bの出力を、例えば、検波器202a,202bの後に一括して合成しない理由は、複数センサアレー間の相対位相を明確に保証できないためである。また、閾値判定器205による処理を、各々のセンサアレー毎に行った後に合成する手法では、有効な検出対象の昇降路内構造物に対向していない側の判定出力が不定となる他、判定閾値レベルPthの設定によっては、誤判定となる。一方、パワースペクトルの段階で合成する本方式では、複数のパワースペクトルの合成により、突発的なスペクトルのピークに対する抑圧効果があり、S/N(Signal to Noise ratio)の向上を見込める。
図8は、複数の素子間隔センサアレーでの素子の共有の例を示す説明図である。図8に示すように、素子間隔(例えば、間隔d1,d2)の異なる複数のセンサアレーを同一線上に配置する場合、いくつかの素子を、共通に利用してもよい。図中で素子207は、間隔d1のセンサアレーと間隔d2のセンサアレーの双方で共用している。センサアレーの素子間隔を変えることで、測定可能な速度の範囲を変化させることができる。(2)式の如く制限速度Vmaxの検出を行う判定閾値周波数fthは、
fth=Vmax/(2・d)
となる。よって、素子間隔dを大きくすることで、遅いA/D変換器を用いる場合においても、より大きな制限速度の判定が可能となる。
図9は、速度算出処理装置から出力する速度関連情報の例を示す説明図である。out0は、前述までの実施形態での出力情報で、速度超過(過速)の判定処理を行った結果に関し、二値(例えば、Alert/Normal,H/L,1/0など)で出力するものである。一方、out1の出力は、ピークスペクトルに対応する周波数位置をf/vol(周波数−>電圧)変換208など、適宜伝送に適した形式に適宜変換し、判定処理を行う前のスペクトルの情報を出力するものである。本出力方式により、後段の制御装置111にて、より柔軟な閾値判定を行う余地を残すことができる。これは、後述する終端階減速装置の適用時など、種々の条件下で制限速度閾値を変更する必要がある場合に特に有利である。
同様に、out2の出力は、スペクトル情報のまま出力を行うものである。本出力方式により、out1における主要なスペクトルのピーク周波数以外の情報も伝送されるため、速度検出のための判定情報を増やすことができ、信頼性向上につながる。例えば、主要なスペクトルのピークが他のピークと比較し、有意に大きいか否かをもって、速度検出の健全性を判定することができる。なお、スペクトル情報から、速度vへの変換は、(1)式を用いて容易にできる。
out3の出力は、周波数分析を行う前の時間領域の波形で出力するものである。本出力方式により、後段の制御装置111にて周波数分析処理を行うため、高度なフィルタリング処理や、種々の条件に応じた周波数分析を行うことができる。一例として、制御装置111では、かご運行状況や他のセンサ情報など多くの情報を利用できるため、ドア開状態でのout3の信号の変動は、人荷の乗り降りが原因である可能性が高いと判定できる。よって、上記変動レベルには感応せぬよう、閾値を動的に変更していく(例えばスペクトルのピーク電力値が小さい場合は外乱と判定)ことも可能となる。
out4の出力は、アレー素子出力の重畳処理を行う前の段階で出力するものである。本出力方式により、個別アレー素子毎の出力変動の情報が得られる。よって、後段の制御装置111にて素子毎の健全性の確認が可能である。健全性には、素子毎の良/不良に加え、アライメント変化など、速度検出性能に関わる要素を含む。更に上記構成では、一般的には重畳処理をA/D変換後に数値的に行う構成となるため、重畳可能な最大素子数の制限は、アナログ処理と比較して大幅に緩和される。加えて、個別素子毎のゲイン補正(オフセットその他のバラツキ一般含む)も可能となるため、安価でバラツキの大きな素子の適用の際に有利である。また、重畳処理に利用する素子も、任意に選択可能である。よって、最小素子間隔の倍数の素子のみを、重畳処理に利用すれば、擬似的に大きな素子間隔のアレー利用時と同様の効果が得られる。更に後述するように、素子欠損時に、電子的な対策処理を行うことも可能となる。
out4の出力に際しては、伝送のために、適宜マルチプレクサ(MUX)209を用いてもよい。以上、out1からout4まで、種々の段階での出力方法の特徴について説明したが、一般に後段の制御装置111における処理の工夫の余地が大きいほど、速度算出処理装置116から制御装置111への伝送量が多くなるため、利用できる伝送容量と必要となる速度検出処理機能との間でトレードオフする。
図10は、終端階減速装置適用時の制限速度閾値の例を示す説明図である。図10において、横軸は、昇降路内の基準位置からの高さである。例えば、ピット床面や、下部ファイナルリミットスイッチなどを基準にしてもよい。縦軸は、かご105の速度である。実線301は定格速度を示し、通常かご走行する速度である。2点鎖線302は、制限速度を示し、この速度を超過した場合、制動動作を行う必要がある。2点鎖線302は、1本に省略しているが、通常、主索を経由して制動を行うブレーキのトリガとなる閾値と、非常止め動作のためのトリガとなる閾値の少なくとも2本が存在する。点線303および点線304は、終端階減速装置動作域を示す。図示では、最上階付近と最下階付近の閾値のカーブが対称であるが、非対称の構成としてもよい。終端階減速装置を利用する場合、同機能は、制御装置111若しくは速度算出処理装置116に内蔵される。
制御装置111内にて終端階減速装置の機能を実行する場合、制御装置111へは、かご105の位置情報(図示せず)、および、かご105の速度情報を入力する。かご105の速度情報としては、図9におけるout1からout4の、閾値判定を行う前の生の速度情報(例えば、ピーク周波数値)を用いる。一方、かご105側に設置された速度算出処理装置116にて、終端階減速装置機能を実現する場合について、図11を参照して説明する。
図11は、終端階減速装置対応できる速度算出処理装置を示す説明図である。図11に示すように、速度算出処理装置116内へ、かご105の位置情報210を取り込む構成とする。更に、取り込んだかご105の位置情報に応じ、閾値判定器205の閾値を可変とすることで、図10に示す如く、かご105の位置に応じた制限速度のカーブを実現することができる。
図12は、センサアレー素子故障時の対策の例を示す説明図である。いま、図12(a)において、センサアレーの中ほどに位置する素子211が故障したとする。このとき、センサによる検出対象である昇降路内構造物117の空間分布状況によっては、速度検出値に影響を与える場合が考えられる。そこで、本実施形態では、センサアレーの素子の故障時に残存素子を用いて、動作を継続する場合の実施形態を示す。
いま、素子故障検出器401からの検出結果を、素子故障検出/制御器403に取り込み、故障素子のセンサアレー中での位置を特定する。このとき、故障素子がセンサアレーの端部に近い位置であれば、故障素子によりに分割される素子の少ないほうの素子群および故障素子の出力信号をマトリクススイッチ402により、遮断する。一方、故障素子の位置がセンサアレーの中央付近であれば、故障素子によって二分割されるセンサアレー群にマトリクススイッチ402を用い分割する。分割後の回路構成は、図12(b)のように、センサアレー201p,201qとなる。この場合、重畳器203p,203q、周波数分析器204p,204qが複数必要となる。重畳器203、周波数分析器204、閾値判定器205は、予め複数用意しておくか、素子故障検出/制御器403の制御により時分割処理を行う構成としてもよい。
図13は、素子故障検出/制御器における処理を示すフローチャートである。素子故障検出/制御器403は、センサアレーを構成する個別素子の状態を取り込む(ステップS1)。そして、故障の素子があるか否かを判定する(ステップS2)。故障素子が有る場合は(ステップS2,有り)、ステップS3へ進む。故障素子が無い場合(ステップS2,無し)、ステップS1へ戻る。
ステップS3において、素子故障検出/制御器403は、故障素子の位置を確認する。そして、分割処理が必要か否かを判定する(ステップS4)。分割が必要な場合(ステップS4,分割要)、センサアレーの分割の設定操作をする(ステップS5)。ステップS5の後の処理は、図6の実施形態で示した複数アレーを用いる場合と同様に、パワースペクトルの状態で加算を行う。分割が不要の場合(ステップS4,分割不要)、ステップS1へ戻る。
本実施形態の機能を実現する場合、少なくとも重畳器203より前段においてA/D変換を行えば、個別素子毎の健全性の検出と、ソフトウェア処理による重畳時のグルーピングの柔軟性確保が容易となる。制御装置111にて本機能を実現するためには、図9におけるout4に相当する出力を、制御装置111へ伝送する。
図14は、センサアレーの素子構成と駆動法の例を示す説明図である。本発明のセンサアレーの素子に適用できるセンサの例として超音波センサが挙げられる。図14(a)では、送受別体式の超音波センサを用いる場合の構成例である。図14(a)に示す例では送信側207sと受信側207rの組をもって、センサアレーの1素子を構成する。送信側207sは、センサ駆動装置212により、例えば、一定振幅の連続波で駆動する。受信側207rでは、昇降路内構造物117からの反射や、送信側207sからの直接の回り込み成分も含めて受信する。必要に応じ適宜センサ受信アンプ213を介し、後段へ出力する。また、図14(b)は、センサ素子として、送受一体型の素子207srを用いる場合の例である。別体式の場合と同様に、センサ駆動装置212により一定振幅の連続波で駆動し、受信波による変動分は、分離器214により抽出する。
比較例として、パルス波の伝播時間利用による距離計測(Time Of Flight方式)に対し、本実施形態の特徴である連続波を用いると、種々の利点がある。本発明の利点を、図15を参照して説明する。
図15は、パルス伝播時間による距離計測(比較例)に対する本発明の利点を示す説明図である。パルス波を利用する伝播時間計測では、図15(a)のように、素子207のビームプロファイル中に、複数の反射波成分215,216を有する場合、トータル受信出力は、217の如く、僅差の振幅をもち、判定が難しい複数のパルスとなる。
その結果、最大のピークをもつパルスの選択が変動することにより、距離の計測値は、図15(b)の219の如く、大きく変動する。昇降路内構造物117の距離の差が半波長の場合、受信パルスは220の如く打ち消しあうため、本来あるべきパルス位置からかけ離れたピークを選択してしまうか、受信パルス無しの判定となり、距離計測値は不定となる。よって、昇降路内構造物117との相対距離の分布や変化にもとづき、かごの速度を判定する方式の場合、上記状況下での速度値の算出は不可能である。
一方、本発明の方式では、距離計測が不可能となる地点での特異的な受信波の情報も、特徴点として計測に利用できる。つまり、上記の特異的な点が、アレー素子の前を順次通過することにより、速度値に正しく変換できる。
以上の実施形態では、センサ素子を超音波センサとしたが、昇降路内構造物117の形状や相対距離、反射率、電気伝導率などに応動するセンサであれば、任意のセンサを利用可能である。例えば、赤外線を利用し簡易的な三角測量の原理を用いて測定する距離センサも利用可能である。この場合、実際の距離と出力値との間に非線形性があってもよい。
更に、レーザを利用した距離計を用いてもよい。この場合壁面との伝播時間を利用する方式と反射強度を利用する方式の双方が利用できる。
加えて、本発明の方式では、昇降路内構造物との相対位置関係の変化に対応して変動を検知できればよいため、壁面との距離の正確性は必ずしも必要としない。よって本来光学式の測距(目標物までの距離を測定)では誤差の要因となる透明な壁面や昇降路内構造物があってもよい。
同様に、距離の計測ではなく、昇降路内構造物との相対位置に応じた変動の検出用途に用いる場合、超音波パルスの伝播時間方式のセンサも利用可能である。磁気センサも昇降路内構造物の着磁を検出できるため、利用可能である。
本実施形態では、移動体として、エレベータ装置の乗りかご105を例として説明した。しかしながら、移動体の速度の測定対象としては、エレベータの乗りかごと昇降路内構造物との組み合わせに限らず、移動体一般とその周囲構造物との相対速度の計測に利用可能である。例えば、移動体は、列車の車両であり、その周囲構造物としてレールであってもよい。センサアレー201によりレールの継ぎ目、レールのまくら木、レールの固定金具などを検知するとよい。
なお、図3に示す速度算出処理装置116の波形例で、センサアレー201の素子の数を偶数個(例えば、4個)として説明したが、これに限らない。センサアレー201の素子数は、図1に示すようにn個で構成することができ、奇数個としても速度算出処理を容易にすることができる。
本実施形態では、昇降路内構造物との位置関係に感応し出力変動を生じる複数のセンサの一例として、連続波で駆動した超音波センサを示した。本発明における利用法では、昇降路内構造物との位置関係の変化に応じた出力変動が得られればよいため、必ずしも、センサと構造物との相対距離に比例した出力が必須ではない。よって、従来の超音波センサによる伝播時間計測による距離算出法(Time Of Flight 法)などで問題となっていた、多重反射、回折、散乱などの外乱要素も、特徴量として計測に利用できる。
検波器202によるベースバンドへの変換や重畳器203による加減算による重畳処理に関しても、ハードウェアにより容易に構成可能である。周波数分析処理をソフトウェアで行う場合に際しても、必要となるA/D変換器は、最も簡便な構成とした場合、1チャネルのみである。更にベースバンド領域のため、低速なサンプリングレートのA/D変換器を利用できる他、ソフトウェア処理の負荷軽減に寄与することができる。
本発明の実施形態に係わる移動体検出装置を示す構成図である。 速度算出処理装置を示す内部構成図である。 速度算出処理装置の波形例を示す説明図である。 速度検出に利用できる昇降路内構造物の間隔に基づいたセンサアレー長の決定方法を示す説明図である。 複数のセンサアレーを用い、速度検出の方法を示す説明図である。 複数のセンサアレーによる検出値の合成方法を示す内部構成図である。 複数のセンサアレーによる検出処理の波形例を示す説明図である。 複数の素子間隔センサアレーでの素子の共有の例を示す説明図である。 速度算出処理装置から出力する速度関連情報の例を示す説明図である。 終端階減速装置適用時の制限速度閾値の例を示す説明図である。 終端階減速装置対応できる速度算出処理装置を示す説明図である。 センサアレー素子故障時の対策の例を示す説明図である。 素子故障検出/制御器における処理を示すフローチャートである。 センサアレーの素子構成と駆動法の例を示す説明図である。 パルス伝播時間による距離計測(比較例)に対する本発明の利点を示す説明図である。
符号の説明
100 エレベータ装置
102 ガイドレール
105 かご(乗りかご)
106 メインロープ
107 つりあい錘
108 巻き上げ機
109 ブレーキ
111 制御装置
113 かご移動方向
114 非常止め装置
115 かご側安全装置
116 速度算出処理装置(速度算出装置)
117 昇降路内構造物
200 移動体速度検出装置
201 センサアレー(検知子列)
202 検波器
203 重畳器
204 周波数分析器
205 閾値判定器
206 スペクトル重畳器
207 素子(検知子)
208 f/vol変換器
209 マルチプレクサ
210 位置情報
211 故障素子
212 センサ駆動装置
213 センサ受信アンプ
214 分離器
215 反射パルス1
216 反射パルス2
217 トータル受信出力1
218 距離真値
219 距離計測値
220 トータル受信出力2
301 定格速度
302 制限速度
303 終端階減速装置動作域
304 終端階減速装置動作域
401 素子故障検出器
402 マトリクススイッチ
403 素子故障検出/制御器

Claims (9)

  1. 構造物と相対速度をなす移動体に設置した検知子と、前記検知子から与えられる検知信号に基づいて前記移動体の速度を算出する速度算出装置とを備える移動体速度検出装置であって、
    前記検知子は、前記移動体の移動方向に沿って所定間隔を隔てて複数配置されて検知子列をなし、
    前記速度算出装置は、
    前記検知子列の出力を所定の様式で重畳し、前記重畳の結果を周波数分析し、前記周波数分析から得られた周波数および前記検知子の前記所定間隔の距離に基づいて前記移動体の速度を算出する
    ことを特徴とする移動体速度検出装置。
  2. 前記検出子は、前記構造物の形状の変化を検知する
    ことを特徴とする請求項1に記載の移動体速度検出装置。
  3. 前記検知子列は、前記移動体に複数配置される
    ことを特徴とする請求項1に記載の移動体速度検出装置。
  4. 前記複数の検知子列のうち少なくともひとつは、前記移動体の任意の位置において、前記構造物に基づいて前記検知子に応動変化をもたらす箇所に配置される
    ことを特徴とする請求項3に記載の移動体速度検出装置。
  5. 前記検知子は、超音波式である
    ことを特徴とする請求項1から請求項4のうちのいずれか1項に記載の移動体速度検出装置。
  6. 前記検知子は、超音波の駆動が連続波を用いる
    ことを特徴とする請求項5に記載の移動体速度検出装置。
  7. 前記移動体は、昇降機の乗りかごであり、
    前記構造物は、昇降路内の構造物である
    ことを特徴とする請求項1から請求項6のうちのいずれか1項に記載の移動体速度検出装置。
  8. 前記移動体は、列車の車両であり、
    前記構造物は、レールである
    ことを特徴とする請求項1から請求項6のうちのいずれか1項に記載の移動体速度検出装置。
  9. 構造物と相対速度をなす移動体に設置した検知子と、前記検知子から与えられる検知信号に基づいて前記移動体の速度を算出する速度算出装置とを備える移動体速度検出装置であって、
    前記検知子は、前記移動体の移動方向に沿って所定間隔を隔てて複数配置されて検知子列をなし、
    前記速度算出装置は、
    前記検知子列の出力を所定の様式で重畳し、前記重畳の結果を周波数分析し、前記周波数分析から得られた周波数と、予め設定された周波数とを比較して、前記移動体の速度の過速を判定する
    ことを特徴とする移動体速度検出装置。
JP2007257656A 2007-10-01 2007-10-01 移動体速度検出装置 Pending JP2009084009A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007257656A JP2009084009A (ja) 2007-10-01 2007-10-01 移動体速度検出装置
CN200810005114XA CN101402429B (zh) 2007-10-01 2008-01-22 移动物体速度检测装置
HK09105430.8A HK1126740A1 (en) 2007-10-01 2009-06-17 Device for detecting speed of moving objects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007257656A JP2009084009A (ja) 2007-10-01 2007-10-01 移動体速度検出装置

Publications (1)

Publication Number Publication Date
JP2009084009A true JP2009084009A (ja) 2009-04-23

Family

ID=40536614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007257656A Pending JP2009084009A (ja) 2007-10-01 2007-10-01 移動体速度検出装置

Country Status (3)

Country Link
JP (1) JP2009084009A (ja)
CN (1) CN101402429B (ja)
HK (1) HK1126740A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106429697A (zh) * 2016-09-13 2017-02-22 江苏旭云物联信息科技有限公司 一种电梯安全预警系统
CN114945529A (zh) * 2020-01-07 2022-08-26 Tk电梯诺特股份公司 预测乘客移动系统的劣化的方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103159101A (zh) * 2011-12-16 2013-06-19 深圳市一兆科技发展有限公司 一种电梯轿厢速度测量方法、装置和系统
CN102976175B (zh) * 2012-11-30 2014-12-10 江南嘉捷电梯股份有限公司 一种电梯测速装置
CN105187020A (zh) * 2014-12-26 2015-12-23 天津光电高斯通信工程技术股份有限公司 磁钢放大器
CN104931715A (zh) * 2015-06-25 2015-09-23 国新电梯科技有限公司 一种高速电梯试验塔用智能测速装置
DE112015006721T5 (de) * 2015-07-22 2018-04-12 Mitsubishi Electric Corporation Aufzugsvorrichtung
DE102017220766A1 (de) * 2017-11-21 2019-05-23 Thyssenkrupp Ag Aufzugsanlage mit einer an einem Fahrkorb der Aufzugsanlage angeordneten Signalerzeugungseinheit
CN110127478B (zh) * 2019-04-02 2020-10-23 日立楼宇技术(广州)有限公司 电梯轿厢位置的确定方法、装置和电梯测距系统
CN112897272A (zh) * 2021-03-02 2021-06-04 猫岐智能科技(上海)有限公司 电梯状态判断系统和方法
CN112777444A (zh) * 2021-03-02 2021-05-11 猫岐智能科技(上海)有限公司 电梯定位系统和定位方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5451874A (en) * 1977-09-30 1979-04-24 Yokogawa Hokushin Electric Corp Velocity detector
JPH06127851A (ja) * 1992-10-14 1994-05-10 Mitsubishi Electric Corp エレベータ速度制御装置
JPH0711527A (ja) * 1993-06-21 1995-01-13 Murata Mach Ltd ワインダの管理システム
JPH08324366A (ja) * 1995-03-30 1996-12-10 Mitsubishi Motors Corp 物体検知装置
JPH10506182A (ja) * 1994-07-04 1998-06-16 エイビービー ダイムラー − ベンツ トランスポーテーション シグナル アクチーボラグ レール搭載車両の速度測定装置
JP2002157679A (ja) * 2000-11-17 2002-05-31 Mitsubishi Electric Corp 車両感知装置
JP2002226149A (ja) * 2000-12-11 2002-08-14 Otis Elevator Co 昇降路内部のエレベータかごの位置を検出する装置および方法
WO2007085704A1 (en) * 2006-01-30 2007-08-02 Visicamet Oy Method and measuring device for measuring translation of surface

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4504004B2 (ja) * 2003-12-17 2010-07-14 株式会社東芝 超音波診断装置
EP1679279B2 (de) * 2005-01-07 2011-03-30 ThyssenKrupp Elevator AG Aufzugsanlage mit einer Steuervorrichtung
WO2007039641A1 (de) * 2005-10-06 2007-04-12 Gutehoffnungshütte Radsatz Gmbh Verfahren zur berührungslosen dynamischen erfassung des profils eines festkörpers

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5451874A (en) * 1977-09-30 1979-04-24 Yokogawa Hokushin Electric Corp Velocity detector
JPH06127851A (ja) * 1992-10-14 1994-05-10 Mitsubishi Electric Corp エレベータ速度制御装置
JPH0711527A (ja) * 1993-06-21 1995-01-13 Murata Mach Ltd ワインダの管理システム
JPH10506182A (ja) * 1994-07-04 1998-06-16 エイビービー ダイムラー − ベンツ トランスポーテーション シグナル アクチーボラグ レール搭載車両の速度測定装置
JPH08324366A (ja) * 1995-03-30 1996-12-10 Mitsubishi Motors Corp 物体検知装置
JP2002157679A (ja) * 2000-11-17 2002-05-31 Mitsubishi Electric Corp 車両感知装置
JP2002226149A (ja) * 2000-12-11 2002-08-14 Otis Elevator Co 昇降路内部のエレベータかごの位置を検出する装置および方法
WO2007085704A1 (en) * 2006-01-30 2007-08-02 Visicamet Oy Method and measuring device for measuring translation of surface

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106429697A (zh) * 2016-09-13 2017-02-22 江苏旭云物联信息科技有限公司 一种电梯安全预警系统
CN114945529A (zh) * 2020-01-07 2022-08-26 Tk电梯诺特股份公司 预测乘客移动系统的劣化的方法
CN114945529B (zh) * 2020-01-07 2024-02-27 Tk电梯诺特股份公司 预测乘客移动系统的劣化的方法

Also Published As

Publication number Publication date
HK1126740A1 (en) 2009-09-11
CN101402429B (zh) 2011-07-27
CN101402429A (zh) 2009-04-08

Similar Documents

Publication Publication Date Title
JP2009084009A (ja) 移動体速度検出装置
JP4907533B2 (ja) エレベータかご位置決定システム
JP4827854B2 (ja) エレベータ・ユニット及びエレベータ・ユニット用の制御装置
JP5602613B2 (ja) エレベータ装置
US9926170B2 (en) Movement-monitoring system of an elevator installation
JP5932577B2 (ja) エレベータの安全システム
JP4907097B2 (ja) エレベータ装置
US20150014098A1 (en) Method and control device for monitoring travel movements of an elevator car
JP2009215057A (ja) エレベータの強制減速制御システム
JP4589424B2 (ja) エレベーター非常止め装置の検査システムおよび検査方法
US20150274485A1 (en) Elevator load detection system and method
JP2009539725A (ja) 複数のかごが走行しているエレベータ昇降路内における離間保証
JPWO2005049468A1 (ja) エレベータ装置
JP5345210B2 (ja) エレベータの異常検出装置
JP2009215046A (ja) エレベータの終端階強制減速装置
CN107207187B (zh) 电梯制动器释放监测
JP2010052924A (ja) エレベータの制御装置
EP3663248A1 (en) Device and method for monitoring an elevator system
WO2020053925A1 (ja) エレベータの異常検出装置
CN101723218B (zh) 电梯的管制运行控制装置
JPS632868B2 (ja)
CN107585650A (zh) 电梯
JP5535441B2 (ja) エレベータの管制運転装置
JP6680179B2 (ja) エレベータ装置
JP5107393B2 (ja) エレベータシステム

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100202

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20120306

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Written amendment

Effective date: 20120508

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121016