JP2009076369A - 色素増感太陽電池 - Google Patents

色素増感太陽電池 Download PDF

Info

Publication number
JP2009076369A
JP2009076369A JP2007245519A JP2007245519A JP2009076369A JP 2009076369 A JP2009076369 A JP 2009076369A JP 2007245519 A JP2007245519 A JP 2007245519A JP 2007245519 A JP2007245519 A JP 2007245519A JP 2009076369 A JP2009076369 A JP 2009076369A
Authority
JP
Japan
Prior art keywords
dye
solar cell
sensitized solar
compound
nitroxy radical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007245519A
Other languages
English (en)
Inventor
Yoko Nanbu
洋子 南部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adeka Corp
Original Assignee
Adeka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adeka Corp filed Critical Adeka Corp
Priority to JP2007245519A priority Critical patent/JP2009076369A/ja
Publication of JP2009076369A publication Critical patent/JP2009076369A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

【課題】起電力や最大出力及びサイクル特性が向上した高効率を有する色素増感太陽電池を提供する。
【解決手段】電極基材、第一の透明導電層、色素が吸着した金属酸化物膜、電解質層、第二の透明導電層、対向基材の順に形成されてなる色素増感太陽電池であり、該電解質層にニトロキシラジカル化合物を含有する。光照射により極間電位が発生し、光誘起電流が得られる。ニトロキシラジカル化合物はヨウ素等のレドックスイオンをまったく含まない系でレドックスメディエイターとなる。
【選択図】図1

Description

本発明は、電解質層にニトロキシラジカル化合物を含有することを特徴とする色素増感太陽電池に関する。
現在に広く普及しているシリコン系太陽電池は、原料が高価で製造コストが掛かる等の問題があり、代替となる太陽電池が精力的に研究されている。中でも、Graetzelら(特許文献1及び非特許文献1)によって提案されたルテニウム錯体等の色素が担持された酸化チタン等の多孔質性酸化物からなる半導体電極膜を用いる色素増感太陽電池が、使用される原料の廉価さや、大面積化の容易さから様々な機関で活発に研究されている。
しかし、特許文献1及び非特許文献1で提案されている色素増感太陽電池は、量産には不向きであるが、変換効率が、10%と、様々な機関で研究されている色素増感太陽電池と比べて、最高級のレベルである。この要因としては、次ぎの点が挙げられる。
1)色素増感太陽電池には、通常、レドックス電解液(I-/I3 -系)の液体電解液が使用されており、該電解液の一部が多孔質性の半導体電極膜を通過し、電極に達するので電気的にショートし、変換効率の低下をもたらす。
これに対し、特許文献1及び非特許文献1で提案されている多孔質性酸化物からなる半導体電極膜は、電極も兼ねた金属チタン基材上に形成されたものである。金属チタンには、通常、不動態の酸化物膜が形成されており、色素増感太陽電池の作製過程で、これが結晶化し、前記半導体電極膜と一体化する。不動態由来の半導体電極膜は多孔質ではなく、緻密なものであるため、前記ショートを防ぐ。
2)特許文献1及び非特許文献1で提案されている多孔質性酸化物からなる半導体電極膜は、酸化チタンの前駆体を有する溶液を加水分解乃至重縮合反応させて得られた塗布液を、基材に塗布乃至焼成する方法により得られたもので、該方法による多孔質性酸化物からなる半導体電極膜は、電極との密着性が良好で、半導体電極膜と電極間の抵抗が小さい。
しかしながら、特許文献1及び非特許文献1で提案されている色素増感太陽電池は、前述したとおり、量産には不向きである。なぜなら、1回の塗布乃至焼成で得られる半導体電極膜の膜厚は、0.5μmが限度であり、発電に必要な5μm程度以上の膜厚を得るためには、何回もの塗布液の塗布乃至焼成が必要だからである。
前記問題を克服するため、酸化物半導体微粒子を有する塗布液を基材に塗布して得られる酸化物半導体微粒子が凝集してなる多孔質性の半導体電極膜が開示されており(例えば、特許文献2参照)、該半導体電極膜は、少ない塗布回数で厚膜の多孔質性の半導体電極膜を得ることができる。また、入射光を効率良く色素増感太陽電池に取り込むために該半導体電極膜を透明導電膜上に形成する方法が開示されている(例えば、特許文献3参照)。現在のところ、これら両方式を採用した色素増感太陽電池が主流となっている。
しかし、上記主流の色素増感太陽電池は、特許文献1及び非特許文献1での前記1)及び2)の利点、すなわち半導体電極膜の耐ショート性、及び半導体電極膜の導電膜への密着性がなく、変換効率も低いという欠点を有する。該欠点を克服しようと、特許文献4では、透明導電膜上に酸化物半導体の緻密膜を形成し、該緻密膜上に多孔質性の半導体電極膜を形成してなる太陽電池が開示されている。
しかし、特許文献4の太陽電池は、半導体電極膜の耐ショート性は克服されているが、緻密膜上への酸化物半導体微粒子の保持が良くないので、半導体電極膜の導電膜への密着性は改善されてはいない。また、特許文献5でも、同様の目的で、緻密膜を設けており、さらに半導体電極膜の強度を高めるために、緻密膜の膜厚、表面粗さを規定している。
特開平1−220380号公報 特開平10−92477号公報 特公平8−15097号公報 特開平11−312541号公報 特開2000−285974号公報 Brian O'Regan、 Michael Graetzel、"A low-cost, high-efficiency Solar cell based on dye-sensitized colloidal TiO2 films"、NATURE 、第353巻、737頁〜740頁、1991年
しかしながら、これまでの色素増感太陽電池では、起電力や最大出力及びリサイクル特性に満足いくものではなかった。また、電解質に含まれるハロゲンイオンの染み出しによる腐食等が避けられない。
そこで、本発明は、起電力や最大出力及びサイクル特性が向上した高効率を有する色素増感太陽電池を提供することを課題とする。更にヨウ素等のハロゲンイオンを含まない新しいタイプの色素増感太陽電池システムを構築することを課題とする。
本発明者らは、上記課題を鑑み、効率的な色素増感太陽電池を鋭意検討した結果、従来のI-/I3 -レドックス系の電解質にニトロキシラジカル化合物を含有させることにより、起電力や最大出力が向上し、該化合物のラジカルトラップ能によりリサイクル特性が向上することを知見した。またI-/I3 -レドックス系に替えてニトロキシラジカル化合物をレドックス系とすることにより、ヨウ素等のハロゲンイオンを含まない新しいタイプの色素増感太陽電池システムの構築が可能であることを知見した。
すなわち、本発明は、電極基材、第一の透明導電層、色素が吸着した金属酸化物膜、電解質層、第二の透明導電層、対向基材の順に形成されてなる色素増感太陽電池において、該電解質層にニトロキシラジカル化合物を含有してなる色素増感太陽電池を提供することにより、前記目的を達成したものである。
本発明の色素増感太陽電池は、電解質層にニトロキシラジカル化合物を含有した色素増感太陽電池であり、このような構成により、起電力や最大出力及びサイクル特性が向上した高効率を有する色素増感太陽電池を提供することができる。また、ヨウ素等のハロゲンイオンを含まない新しいタイプの色素増感太陽電池システムの構築が可能である。
以下に本発明の実施の形態を詳細に説明する。
本発明の色素増感太陽電池は、電極基材、第一の透明導電層、色素が吸着(担持)した金属酸化物膜、電解質層、第二の透明導電層、対向基材が順に形成されてなるものであり、該電解質層中にニトロキシラジカル化合物が含有していることを特徴とする色素増感太陽電池である。
上記電解質層中に含有させるニトロキシラジカル化合物とは、NO・を含む化合物であり、例えば、下記一般式(1)で表される化合物が挙げられるが、これらに限定されるものではない。
Figure 2009076369
(式中、R1は有機基を示し、R2は水素原子又はR1と結合してオキシラン環を形成してもよい。)
上記一般式(1)においてR1で示される有機基としては、特に制限されないが、例えば、アルキル基、アルケニル基、シクロアルキル基、アリール基、アルコキシ基、アリールオキシ基、アシルオキシ基、アルコキシカルボニルオキシ基等が挙げられる。また、これらをヒドロキシ基、アルキル基、アルコキシ基、アリール基等で置換した基であってもよい。
上記一般式(1)で表される化合物としては、、下記一般式(2)で表される化合物、下記一般式(3)で表される化合物及び下記一般式(4)で表される化合物等が挙げられる。
Figure 2009076369
(式中、R3は炭素原子数1〜8のアルキル基を示す。)
Figure 2009076369
(式中、R4は炭素原子数1〜4のアルキル基を示す。)
Figure 2009076369
(式中、nは1〜100の数を表す。)
本発明で用いられるニトロキシラジカル化合物をより具体的に示すと、下記に示す化合物No.1〜化合物No.6が挙げられる。
Figure 2009076369
Figure 2009076369
Figure 2009076369
Figure 2009076369
Figure 2009076369
Figure 2009076369
上記ニトロキシラジカル化合物の含有量は、電解液100質量部に対して好ましくは5〜50質量部、より好ましくは10〜30質量部である。5質量部より少ない場合添加した効果が得られず、50質量部以上含有させた場合、かえって電池特性を低下させる。
上記電極基材に用いられる材料は、透明であれば特に限定されるものではない。具体的には、ガラスや強化ガラス等のガラス類、ポリカーボネート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリエチレンサルファイド、ポリスチレン、ポリメチルメタクリレート、ポリメタクリレート、アクリル樹脂、ポリ塩化ビニル等、トリアセチルセルロース、ポリイミド、環状ポリオレフィン、ポリエチレン、ポリプロピレン等のポリオレフィン系等のプラスチックフィルムを用いることができる。
上記電極基材の厚さは、材料がプラスチックフィルムの場合は、10μm以上500μm以下が好ましく、50μm以上200μm以下がより好ましく、さらに100μ以上200μm以下がより一層好ましい。ガラス類の場合は、0.1mm以上5mm以下が好ましく、0.5mm以上4mm以下がより好ましく、さらに0.5mm以上2mm以下がより一層好ましい。また、電極基材は光の入射面として用いる場合、可視光域の透過率が85%以上であって、耐候性に優れ、かつ指示材として耐えうる強度をもつことが好ましい。
このような電極基材は、必要に応じて表面がコロナ処理、プラズマ処理、薬品処理等によって改質されたものであってもよい。
本発明において、一方の電極基材は透明である必要があるが、他方の対向基材は透明である必要はない。導電性被膜を形成できる程度の平滑性を備えた表面を形成でき、かつ封止材を挟み込む程度の強度を有するものであれば、用いられる材料は特に限定されるものではなく、無機系材料、有機系材料、金属系材料等の材質を問わず用いることができる。
例えば、白金、金、銀等の貴金属や銅やアルミニウムや炭素等の導電性材料が挙げられる。腐食や長期耐久性を考慮すると、白金や金、銀等の貴金属材料や炭素が好ましく、これらの貴金属又は炭素を蒸着したガラス又はプラスチックを使用することが好ましい。また対向基材の厚さは、材質にもよるが、強度と製品の軽量性を考慮して10μm以上3000μm以下が好ましく、50μm以上1000μm以下がより好ましい。
本発明の色素増感太陽電池において、電極基材と色素が吸着した金属酸化物膜との間に透明導電層(第一の透明導電層)を設ける。透明導電層としては、公知の可視光領域の吸収が少なく導電性のある透明導電材料を用いることができる。透明導電材料としては、スズをドープした酸化インジウム(ITO)、亜鉛をドープした酸化インジウム(IZO)、フッ素やインジウムやアンチモン等をドープした酸化スズ、アルミニウムやガリウム等をドープした酸化亜鉛等が好ましい。また、銀あるいは銀合金(AgAuCu等)をITO、TiO2、ZnO等で挟んだ3層型透明導電材料も挙げられる。これらの中でも、特にITO又はフッ素をドープした酸化スズを使用することが好ましい。
上記透明導電層の形成方法としては、真空蒸着法、反応性蒸着法、イオンビームアシスト蒸着法、スパッタリング法、イオンプレーティング法、プラズマCVD法等の真空製膜プロセスによることができる。しかしこれらの例に限定されることはなく、いかなる成膜方法であっても構わない。透明導電層の厚さは50nm以上1μm以下が好ましい。条件にもよるが、ITOの場合は、100nm以上400nm以下の膜厚が好ましく、フッ素ドープ酸化スズの場合は、300nm以上900nm以下が好ましい。透明導電層は、可視光域の透過率が65%以上であることが好ましい。
本発明における色素が吸着した金属酸化物膜としては、n型あるいはp型半導体の性質を示す金属酸化物を用いることができる。具体的には、亜鉛、ニオブ、錫、チタン、バナジウム、インジウム、タングステン、タンタル、ジルコニウム、モリブデン、マンガン、鉄、銅、ニッケル、イリジウム、ロジウム、クロム、ルテニウムの酸化物等が挙げられる。また、SrTiO3、CaTiO3、BaTiO3、MgTiO3、SrNb26のようなペロブスカイト、あるいは、これらの複合酸化物又は酸化物混合物等も使用することができる。
金属酸化物膜の形成方法は、以下の通りである。金属酸化物の成膜には、形成したい金属酸化物に対応する金属、金属酸化物、金属亜酸化物等を蒸着源として電子ビームやプラズマ銃による加熱を用いた蒸着法、あるいは酸素ガスを導入しながら蒸着を行なう反応性蒸着法を用いることができる。成膜圧力は用いる蒸着源の種類によって異なるが、1×10-2Pa〜1Paの範囲で行なう。成膜の際、任意のガスを用いたプラズマやイオン銃、ラジカル銃等でアシストを行なってもよい。基板温度は、−50℃から600℃の間で任意に選択することができるが、多孔性を高く保つためには300℃以下であることが好ましい。また目的の金属酸化物によっては、スパッタリング法、イオンプレーティング、CVD等の真空成膜法を用いてもよい。また基材にプラスチックフィルムを用いた場合には、ロールトゥロール方式で成膜すればより高い生産性を得ることができる。
以上で得られた金属酸化物膜は、プラズマ処理、コロナ処理、UV処理、薬品処理等の任意の方法で表面処理することができる。また、熱による焼成や圧縮機を用いた加圧処置、レーザアニーリング等の任意の手段を用いて後処理することもできる。
本発明において、金属酸化物膜に吸着させる色素としては、例えば、ルテニウム錯体色素としては、N3、ブラックダイ、ビピリジン−カルボン酸基、ビピリジン系、フェナントロリン、キノリン、β−ジケトナート錯体等、種類を問わず使用することができる。他に、Os金属錯体、Fe金属錯体、Cu金属錯体、Pt金属錯体、Re金属錯体等の金属錯体色素や、シアニン色素やメロシアニン色素等のメチン色素、マーキュロクロム色素、キサンテン系色素、ポルフィリン色素、フタロシアニン色素、シアニジン色素、ローダミン色素、アゾ系色素、クマリン系色素等の有機系色素等を用いることもできる。
これらの色素は、吸収係数が大きくかつ繰り返しの酸化還元に対して安定であることが好ましい。また、上記色素は金属酸化物半導体上に化学的に吸着することが好ましく、カルボキシル基、スルホン基、リン酸基、アミド基、アミノ基、カルボニル基、ホスフィン基等の官能基を有することが好ましい。
本発明における電解質層に使用される電解液は、電解質、溶媒、及び添加物から構成されることが好ましい。好ましい電解質は、ヨウ化リチウム、ヨウ化ナトリム、ヨウ化カリウム、ヨウ化セシウム、ヨウ化カルシウム等の金属ヨウ化物−ヨウ素の組み合わせ、テトラアルキルアンモニウムヨーダイド、テトラプロピルヨーダイド(TPAI)、ピリジニウムヨーダイド、イミダゾリウムヨーダイド等の4級アンモニウム化合物のヨウ素塩−ヨウ素の組み合わせ、臭化リチウム、臭化ナトリウム、臭化カリウム、臭化セシウム、臭化カルシウム等の金属臭化物−臭素の組み合わせ、テトラアルキルアンモニウムブラマイド、ピリジニウムブロマイド、テトラ−n−ブチルアンモニウムパークロレート(TBAP)等の4級アンモニウム化合物もしくは臭素塩−臭素との組み合わせ、フェロシアン酸塩−フェリシアン酸塩、フェロセン−フェリシニウムイオン等の金属錯体、ポリ硫化ナトリウム、アルキルチオール−アルキルジスルフィド等のイオウ化合物、ビオロゲン色素、ヒドロキノン−キノン等が挙げられる。上述の電解質は単独の組み合わせであっても混合であってもよい。また、電解質として、室温で溶融状態の塩を用いることもできる。この溶融塩を用いた場合は、特に溶媒を用いなくともよい。
電解液における電解質濃度は、0.05〜20Mが好ましく、0.1〜15Mが更に好ましい。電解液に用いる溶媒としては、エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶媒、3−メチル−2−オキサゾリジノン等の複素環化合物、ジオキサン、ジエチルエーテル、エチレングリコールジアルキルエーテル等のエーテル系溶媒、メタノール、エタノール、ポリプロピレングリコールモノアルキルエーテル等のアルコール系溶媒、アセトニトリル、ベンゾニトリル等のニトリル系溶媒、ジメチルスルホキシド、スルホラン等の非プロトン性極性溶媒等が好ましい。
本発明では、電解質は、ポリマー添加、オイルゲル化剤添加、多官能モノマー類を含む重合、ポリマー架橋反応等の手法によりゲル化させることもできる。ポリマー添加によちゲル化させる場合の好ましいポリマーとしては、ポリアクリロニトリル、ポリフッ化ビニリデン等を挙げることができる。オイルゲル化剤添加によりゲル化させる場合の好ましいゲル化剤としては、ジベンジルデン−D−ソルビトール、コレステトール誘導体、アミノ酸誘導体、トランス−(1R,2R)−1,2−シクロヘキサンジアミンのアルキルアミド誘導体、アルキル尿素誘導体、N−オクチル−D−グルコンアミドベンゾエート、双頭型アミノ酸誘導体、4級アンモニウム誘導体等を挙げることができる。
本発明における電解質の形成方法としては、マイクログラビアコーティング、ディップコーティング、スクリーンコーティング、スピンコーティング等を用いることができる。固体電解質又はp型半導体を用いる場合は、任意の溶媒を用いた溶液にした後、上記方法を用いて塗工し、基材を任意の温度に加熱して溶媒を蒸発させる等により形成する。
対向電極(第二の透明導電層)としては、白金や金、銀等の貴金属材料、銅やアルミニウムや炭素等の導電性材料が挙げられる。腐食や長期耐久性を考慮すると、白金や金、銀等の貴金属材料や炭素が望ましく、これらの貴金属又は炭素を蒸着したガラス又はプラスチックを使用することが好ましい。また、可視光透過性を有する色素増感太陽電池を得るために、該対向電極には、ITO、酸化錫、弗素ドープされた酸化錫等の透明導電膜を使用することもできる。
また、本発明における色素増感太陽電池において、必要に応じて導電性触媒層を設けてもよい。導電性触媒層としては、任意の導電性材料を用いることができ、白金や金、銀、銅等の金属、もしくは炭素等を挙げることができる。また、ポリアニリン、ポリチオフェン、PEDOT、ポリピロール等の導電性材料を用いることもできる。これらを形成する際には、透明導電層と同様の真空成膜法、あるいはこれら材料の微粒子をペーストにしたものをウェットコーティングする方法を用いることができる。
上記導電性触媒層の厚さは、0.1nm以上500nm以下が好ましく、5nm以上200nm以下がより好ましく、5nm以上150nm以下がさらに好ましい。また、導電性触媒はヨウ素等の酸化還元系を使用する場合、白金、炭素等の酸化能の強い材料を用いる。固体状電化輸送材料を用いる場合、仕事関数がそれに近い材料を用いることが好ましい。具体的には仕事関数4.5eV以上が好ましい。
また、本発明の色素増感太陽電池は、前記電極基材と前記対抗基材との間に前記電解質層を封止する封止材を設けてもよい。封止材としては、耐候性、耐光性、高防湿性、耐熱性が求められる。さらに、電解液の蒸散を防止するために、電解液に不溶な物質が好ましく、フィルム状の樹脂(例えば、ポリエチレン樹脂、エチレンビニルアセテート等)を電極周辺に張り合わせて、加熱若しくは圧力を加えながら加熱することにより、フィルムを融着させて封止する。さらに、その周囲を接着剤(例えば、エポキシ系樹脂、シリコン系樹脂等)を用いて封止することで、完全に電解液の蒸散を防ぐことができる。
以下、本発明を実施例によって具体的に説明するが、本発明は以下の実施例に制限されるものではない。
〔実施例1〕
ニトロキシラジカル化合物をレドックス系とする色素増感太陽電池セルの評価
酸化チタン焼結ITO電極(西野田電工(株)製)上に増感色素(ルテニウム錯体、ペクセル・テクノロジーズ社製「PECD−07」)をt−BuOH/アセトニトリル(1:1)に溶解した溶液(0.30mM)に浸漬して酸化チタンに色素を吸着させて、アセトニトリルで洗浄し乾燥して光電極を作成した。ITO電極(西野田電工(株)製)上に黒鉛微粒子をコーティングした対向電極を作成し、スペーサー(63μm)を介して色素を吸着させた酸化チタン膜電極と黒鉛コーティング電極を対向させ、クリップで固定した。電解液を浸透させ色素増感太陽電池セルを作成した。セル上部を開口部1cm2のマスクで覆い、光電極と対向電極をポテンシオスタットの作用極側及び対極側に結線し、100Wハロゲンランプ照射時(190mW/cm2)のLV(リニアースイープボルタンメトリー)を電気化学測定システムHZ−3000(北斗電工(株)製)で測定した。
電解液としては、ニトロキシラジカル化合物No.1もしくはNo.2を0.2Mテトラn−ブチルアンモニウムパークロレート(TBAP)/メトキシプロピオニトリル(MPN)溶液(TBAP:MPN=1:1)に0.5M含有させた。電解液にニトロキシラジカル化合物No.1を含有させた結果を〔図1〕に示す。
〔図1〕のI−V曲線に示すごとく、化合物No.1/TBAP/MPNを電解液とする系で光照射により極間電位が発生し、光誘起電流が得られた。ヨウ素等のレドックスイオンをまったく含まない系でニトロキシラジカル化合物をレドックスメディエイターとする色素増感光電池が構築された。
自然電位(絶対値)及び電位0mVにおける電流値より、開放起電力Vpo及び短絡光電流Ipsを求めた。尚、光電池の最大出力Pmax=I’V’及びフィルファクターffを自然電位V0から0mVまでのスキャンカーブより算出した。ニトロキシラジカル化合物No.1もしくはNo.2の結果を〔表1〕に示す。
Figure 2009076369
上記〔表1〕の結果より、ニトロキシラジカル化合物No.1において時間とともに各パラメーターは増大した。ffは一定値を保った。ニトロキシラジカル化合物No.2においても光照射により極間電位が発生し、光誘起電流が得られffが上昇した。
〔実施例2〕
オリゴマータイプのニトロキシラジカル化合物レドックス系の評価
実施例1の化合物No.1を化合物No.4に変えてレドックス系とする電解液を使用して光電池セルを作成し、LV測定を行った。尚、化合物No.4の分子量は1720であった。
測定結果を〔図2〕に示した。尚、比較参考例として〔表1〕の実施例1−2の結果も併せて示した。さらに実施例1と同様にIps、Vpo及びPmaxを算出し、ffを求めた。ニトロキシラジカル化合物No.4の結果を〔表2〕に示す。
Figure 2009076369
上記〔表2〕の結果より、化合物No.4は、化合物No.1に比較してffは低下するが、光電流Ips出力Pmaxともに大幅に増大した。
〔実施例3及び比較例1〕
-/I3 -レドックス系へのニトロキシラジカル化合物の添加効果
-/I3 -電解液を還元剤とする光電池セルに化合物No.1を添加した系(実施例3)とI-/I3 -電解液を還元剤とする光電池セルに化合物No.1を添加しない系(比較例1)について、実施例1と同様にしてI−V特性を評価した。結果を〔図3〕に示す。
結果は、〔図3〕で示すようにI-/I3 -電解液に化合物No.1を0.5M添加することにより光誘起電位が増加し、電流の増加も認められた。
光電池の各パラメータを求めた。結果を〔表3〕に示す。
Figure 2009076369
上記〔表3〕の結果より、I-/I3 -レドックス系に化合物No.1を添加することにより起電力及び最大出力が増大し、ffも増加した。また時間とともにパラメーターの向上がみられた。
〔実施例4〕
酸化チタンを焼結してインドリン系増感色素(D149、三菱製紙(株)製)を吸着させたITO電極を作用電極とし、カーボンコートITO電極を対向電極として〔実施例1〕と同様にしてI−V特性を評価した。結果を〔表4〕に示す。
Figure 2009076369
上記〔表4〕の結果より、インドリン系増感色素においてもNO化合物がレドックスメディエイターとして機能し、NOオリゴマーにおいて効率の向上が見られた。
実施例1の化合物No.1/TBAP/MPNを電解液とする系のI−V曲線を示すグラフである。 実施例2の化合物No.4/TBAP/MPNを電解液とする系のI−V曲線を示すグラフである。 実施例3及び比較例1のI−V曲線を示すグラフである。

Claims (5)

  1. 電極基材、第一の透明導電層、色素が吸着した金属酸化物膜、電解質層、第二の透明導電層、対向基材の順に形成されてなる色素増感太陽電池において、該電解質層にニトロキシラジカル化合物を含有してなる色素増感太陽電池。
  2. 上記ニトロキシラジカル化合物が下記一般式(1)で表される化合物である請求項1記載の色素増感太陽電池。
    Figure 2009076369
    (式中、R1は有機基を示し、R2は水素原子又はR1と結合してオキシラン環を形成してもよい。)
  3. 上記ニトロキシラジカル化合物が下記一般式(2)で表される化合物である請求項1記載の色素増感太陽電池。
    Figure 2009076369
    (式中、R3は炭素原子数1〜8のアルキル基を示す。)
  4. 上記ニトロキシラジカル化合物が下記一般式(3)で表される化合物である請求項1記載の色素増感太陽電池。
    Figure 2009076369
    (式中、R4は炭素原子数1〜4のアルキル基を示す。)
  5. 上記ニトロキシラジカル化合物が下記一般式(4)で表される化合物である請求項1記載の色素増感太陽電池。
    Figure 2009076369
    (式中、nは1〜100の数を表す。)
JP2007245519A 2007-09-21 2007-09-21 色素増感太陽電池 Pending JP2009076369A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007245519A JP2009076369A (ja) 2007-09-21 2007-09-21 色素増感太陽電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007245519A JP2009076369A (ja) 2007-09-21 2007-09-21 色素増感太陽電池

Publications (1)

Publication Number Publication Date
JP2009076369A true JP2009076369A (ja) 2009-04-09

Family

ID=40611143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007245519A Pending JP2009076369A (ja) 2007-09-21 2007-09-21 色素増感太陽電池

Country Status (1)

Country Link
JP (1) JP2009076369A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010033902A (ja) * 2008-07-29 2010-02-12 Kyushu Institute Of Technology 色素増感太陽電池及びその製造方法
WO2011118197A1 (ja) * 2010-03-24 2011-09-29 日本電気株式会社 光電変換素子、光センサ及び太陽電池
JP2012253012A (ja) * 2011-05-09 2012-12-20 Asahi Kasei Corp 光電変換素子及びπ共役型有機ラジカル化合物
WO2015068725A1 (ja) * 2013-11-07 2015-05-14 住友精化株式会社 光電気化学素子用電荷輸送材料
US20150340164A1 (en) * 2014-05-21 2015-11-26 Panasonic Corporation Photoelectric converter
WO2016171153A1 (ja) * 2015-04-21 2016-10-27 住友精化株式会社 色素増感太陽電池および色素増感太陽電池用電解液
WO2019116865A1 (ja) 2017-12-13 2019-06-20 株式会社ダイセル 電解質組成物及びその用途

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000235867A (ja) * 1999-02-15 2000-08-29 Asahi Denka Kogyo Kk 難燃性電解液および非水電解液二次電池
JP2003100360A (ja) * 2001-09-26 2003-04-04 Nec Corp 光電気化学デバイス
JP2007224094A (ja) * 2006-02-21 2007-09-06 Adeka Corp ピペリジル基含有高分子及び該高分子の製造方法
JP2009021212A (ja) * 2007-06-14 2009-01-29 Panasonic Electric Works Co Ltd 光電変換素子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000235867A (ja) * 1999-02-15 2000-08-29 Asahi Denka Kogyo Kk 難燃性電解液および非水電解液二次電池
JP2003100360A (ja) * 2001-09-26 2003-04-04 Nec Corp 光電気化学デバイス
JP2007224094A (ja) * 2006-02-21 2007-09-06 Adeka Corp ピペリジル基含有高分子及び該高分子の製造方法
JP2009021212A (ja) * 2007-06-14 2009-01-29 Panasonic Electric Works Co Ltd 光電変換素子

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010033902A (ja) * 2008-07-29 2010-02-12 Kyushu Institute Of Technology 色素増感太陽電池及びその製造方法
WO2011118197A1 (ja) * 2010-03-24 2011-09-29 日本電気株式会社 光電変換素子、光センサ及び太陽電池
JP2012253012A (ja) * 2011-05-09 2012-12-20 Asahi Kasei Corp 光電変換素子及びπ共役型有機ラジカル化合物
WO2015068725A1 (ja) * 2013-11-07 2015-05-14 住友精化株式会社 光電気化学素子用電荷輸送材料
JPWO2015068725A1 (ja) * 2013-11-07 2017-03-09 住友精化株式会社 光電気化学素子用電荷輸送材料
TWI646082B (zh) * 2013-11-07 2019-01-01 住友精化股份有限公司 光電化學元件用電荷輸送材料
US20150340164A1 (en) * 2014-05-21 2015-11-26 Panasonic Corporation Photoelectric converter
JP2016001730A (ja) * 2014-05-21 2016-01-07 パナソニック株式会社 光電変換素子
WO2016171153A1 (ja) * 2015-04-21 2016-10-27 住友精化株式会社 色素増感太陽電池および色素増感太陽電池用電解液
CN107430942A (zh) * 2015-04-21 2017-12-01 住友精化株式会社 色素敏化太阳能电池及色素敏化太阳能电池用电解液
CN107430942B (zh) * 2015-04-21 2019-12-13 住友精化株式会社 色素敏化太阳能电池及色素敏化太阳能电池用电解液
WO2019116865A1 (ja) 2017-12-13 2019-06-20 株式会社ダイセル 電解質組成物及びその用途

Similar Documents

Publication Publication Date Title
JP4909256B2 (ja) 修飾酸化チタン微粒子及びそれを用いた光電変換素子
JP5143476B2 (ja) 光電変換素子
JP5572029B2 (ja) 金属錯体色素、光電変換素子及び光電気化学電池
WO2011152284A1 (ja) 光電変換素子、光電気化学電池、光電変換素子用色素及び光電変換素子用色素溶液
US8895849B2 (en) Photoelectric conversion element, manufacturing method thereof, optical sensor, and solar cell
JP5475145B2 (ja) 光電変換素子
EP1981047A2 (en) Photoelectric conversion device
JP2009076369A (ja) 色素増感太陽電池
JP4356865B2 (ja) 金属−金属酸化物複合電極の作製方法、光電変換素子及び光電池
JP2012051952A (ja) 色素、光電変換素子及び光電気化学電池
JP4493921B2 (ja) 色素増感型太陽電池
WO2012017874A1 (ja) 金属錯体色素、光電変換素子及び光電気化学電池
JP2007200714A (ja) 色素増感型太陽電池及びその製造方法
JP5439869B2 (ja) 光電変換素子およびその製造方法、光センサならびに太陽電池
JP2004124124A (ja) 金属−金属酸化物複合電極の作製方法、光電変換素子及び光電池
JP5996255B2 (ja) 光電変換素子及びπ共役型有機ラジカル化合物
JP5960033B2 (ja) 酸化還元対およびそれを用いた光電変換素子
JPWO2012120784A1 (ja) ヘプタメチン構造を有する化合物、増感色素および光電変換素子
JP2004238213A (ja) 酸化チタン粒子の製造方法、及びそれを用いた光電変換素子
JP4804050B2 (ja) 光電変換素子
Yun et al. Influence of diffusion coefficient of cobalt redox mediator using triphenylamine dyes with various number of anchoring groups: photovoltaic performance of DSSCs
JP6445378B2 (ja) 光電変換素子
JP2004127579A (ja) 金属−金属酸化物複合電極の作製方法、光電変換素子及び光電池
JP2011150881A (ja) 光電変換素子、光センサ、および、太陽電池
JP4947951B2 (ja) チタン酸化物電極、その製造方法および光電変換素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130219