JP2009071329A - 半導体素子駆動用集積回路及び電力変換装置 - Google Patents

半導体素子駆動用集積回路及び電力変換装置 Download PDF

Info

Publication number
JP2009071329A
JP2009071329A JP2008317813A JP2008317813A JP2009071329A JP 2009071329 A JP2009071329 A JP 2009071329A JP 2008317813 A JP2008317813 A JP 2008317813A JP 2008317813 A JP2008317813 A JP 2008317813A JP 2009071329 A JP2009071329 A JP 2009071329A
Authority
JP
Japan
Prior art keywords
circuit
semiconductor chip
semiconductor
driving
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008317813A
Other languages
English (en)
Other versions
JP5130193B2 (ja
Inventor
可昌 ▲高▼橋
Yoshimasa Takahashi
Naoki Sakurai
直樹 桜井
Masashi Yura
昌士 由良
Masahiro Iwamura
将弘 岩村
Mutsuhiro Mori
睦宏 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008317813A priority Critical patent/JP5130193B2/ja
Publication of JP2009071329A publication Critical patent/JP2009071329A/ja
Application granted granted Critical
Publication of JP5130193B2 publication Critical patent/JP5130193B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • H01L2224/48139Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate with an intermediate bond, e.g. continuous wire daisy chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance

Landscapes

  • Inverter Devices (AREA)

Abstract

【課題】
高出力(大電流)化,高電圧化及び低損失化などの要求に応えることができる電力変換装置の提供を課題とする。
【解決手段】
課題を解決するために、上アーム駆動回路212の駆動部,電流検知回路210を含むレベルシフト回路20,下アーム駆動回路222の駆動部及び駆動信号処理回路224を構成する回路素子を集積して1つの高耐圧ICチップ200に組み込み、上アーム駆動回路212の最終出力段バッファ部213を構成する回路素子を縦型構造のpチャネルのMOS−FETチップ213pと、縦型構造のnチャネルのMOS−FETチップ213nに組み込み、下アーム駆動回路222の最終出力段バッファ部223を構成する回路素子を縦型構造のpチャネルのMOS−FETチップ223pと、縦型構造のnチャネルのMOS−FETチップ223nに組み込みドライバIC2を構成した。
【選択図】図1

Description

本発明は、半導体素子駆動用集積回路及びそれを搭載した電力変換装置に関する。
半導体素子を駆動するドライバ回路はあらゆる電気機器・電子機器に適用されている。その一例として電力変換装置、例えば電源から供給された直流電力を交流電力に変換し、負荷である電動機に供給するインバータ装置がある。ドライバ回路は、複数の回路、例えば外部指令に基づいて駆動信号を生成する回路,駆動信号に基づいて半導体素子に駆動電力を供給する回路などを構成する複数の回路素子から構成されている。
従来、ドライバ回路としては、例えば特許文献1及び非特許文献1に記載されたものが知られている。これらの文献に記載されたドライバ回路は、電力変換装置に適用されるものであって、複数の回路素子が同一の半導体チップに組み込まれて集積化されている。すなわちモノリシックIC(Integrated Circuit)化或いはSoC(System on Chip)IC化されている。
このように、ドライバ回路をIC化することにより、多数の個別部品(ディスクリート部品)を用いてプリント基板上に回路を構成する場合に比べて、次のような利点がある。すなわち(1)部品点数の大幅な削減及び小型化が可能となる。(2)保護・診断機能等の追加によるインテリジェント化が容易である。(3)同一チップ内であるため信号伝送遅延を小さくできる。(4)量産効果による大幅な低コスト化が達成できる。このため、電力変換装置の小型化,低コスト化及び高信頼性が求められている製品分野、例えば電気自動車及びハイブリッド自動車の駆動源として交流電動機を用いている自動車分野では、電力変換装置のドライバ回路のIC化が積極的に進められている。
特開平5−316755号公報 日立高耐圧モノリシックICデータブック モーター駆動用ICシリーズ,株式会社日立製作所,2001年3月,113頁〜116頁
近年、ドライバ回路のIC化の拡大に伴ってドライバ回路のIC化に新たな要求がなされている。すなわちこれまでよりも高出力,高電圧な電気機器・電子機器におけるドライバ回路のIC化、或いは既にドライバ回路のIC化が進められている製品分野、例えば自動車分野における電力変換装置の大容量化,省エネ化に伴ってドライバ回路の高出力(大電流)化,高電圧化及び低損失化などの新たな要求がなされている。しかしながら、従来のドライバ回路のIC化では、上記要求を満足することに限界が生じてきている。
そこで、本願の発明者らは、上記要求を満足することができるドライバ回路のIC化について研究を進めた。まず、本願の発明者らは、上記要求を満足させるにあたっての従来のドライバ回路のIC化における課題について検討した。この結果、次の課題が抽出された。
すなわち従来のドライバ回路のIC化では、ドライバ回路の高出力化によって半導体チップの面積が増大し、これまで利点とされてきた小型化が損なわれる課題がある。ドライバ回路は、半導体素子に駆動電力を供給する出力段バッファ部を備えている。この出力段バッファ部を構成する回路素子としては通常、横型構造のMOS(Metal-Oxide-Semiconductor)形電界効果トランジスタ(FET…Field Effect Transistor)(以下、「MOS−FET」という)が用いられている。横型構造のMOS−FETは、縦型構造のMOS−FETに比べて面積効率が悪い。このため、ドライバ回路の高出力化によって出力段バッファ部の面積が増大する。一方、特開昭64−4058号公報,特開昭64−13759号公報及び特開平3−105944号公報に記載されているように、出力段バッファ部に縦型構造のMOS−FETを適用して面積効率の向上を図ることも考えられる。しかし、ドライバ回路からの出力電力の電流が数Aになると、オン抵抗低減のために半導体チップの面積を増加させなければならず、出力段バッファ部の面積割合が半分以上となることもある。従って、半導体チップの面積の増加は、半導体チップの歩留まりを低下させる原因となると共に、半導体チップの単価を増加させることになる。
また、従来のドライバ回路のIC化では、ドライバ回路の高出力化によって出力段バッファ部からワイヤ及び外部リードを介して半導体素子に供給される駆動電力の電流変化率(di/dt)が従来よりも大きくなり、ワイヤ及び外部リードに存在するインダクタンスが出力能力に与える影響を無視できなくなる課題がある。上記インダクタンスを低減させるためには、半導体チップ上の出力段バッファ部構成回路素子を、上記インダクタンスが小さくなるように半導体チップ上に配置すればよく、半導体チップの設計時の制約事項にもなっている。特にパッケージ形態としてQFP(Quad Flat Package)を採用したICでは、半導体チップと外部との間の距離が最小となる経路から電流を取り出せるようにすればよい。しかし、このような手段をもって上記インダクタンスの低減を図っても、従来のドライバ回路のIC化では、上記インダクタンスの影響が避けられないのが現状である。
さらに、従来のドライバ回路のIC化では、ドライバ回路の高出力化によって出力段バッファ部における損失発熱が大きくなるので、同一半導体チップ内に発熱量が大きい部分と比較的小さい部分とが混在するという課題がある。ドライバ回路は、外部指令に基づいて駆動信号を生成するための回路部を備えている。出力段バッファ部の駆動部はその駆動信号を受けて出力段バッファ部を駆動させている。駆動信号を生成する回路部は、微細プロセスによる低消費電力化が図られているので発熱量が小さい。これに比べて出力段バッファ部は、電流が数Aの出力電力を出力するので発熱量が大きい。このため、同一半導体チップ内では、高温側から低温側に向かって損失発熱が容易に熱伝達されるので、高温側の放熱性能を向上させる必要がある。すなわち同一半導体チップ内に発熱量が異なる部位が混在する状態で、発熱量の異なる部位毎に最適な放熱設計を施すことが必要である。しかし、従来のドライバ回路のIC化においてそれを実現することは困難である。
さらにまた、従来のドライバ回路のIC化では、ドライバ回路の高出力化によって同一半導体チップ内における絶縁分離のための酸化膜の厚さを厚くしなければならず、これまで利点とされてきた低コスト化が損なわれる課題がある。半導体チップ内における絶縁分離の方式としては、例えばJI(Junction Isolation)型,DI(Dielectric Isolation)型,SoI(Silicon on Insulator)型が知られている。例えばDI型は、支持体であるポリシリコン(アース電位)と回路素子の各層が形成されたシリコン単結晶との間、回路素子の各電極とシリコン単結晶の対応しない層との間をそれぞれ酸化膜によって絶縁するものである。しかし、ドライバ回路の高出力化によってその耐圧が数百Vを超える場合、酸化膜の厚さを厚くする必要がある。このため、従来のドライバ回路のIC化では、酸化膜の厚さを厚くするために、半導体チップの製造プロセスにかかる時間が長くなると共に、歩留まりが低下する。従って、従来のドライバ回路のIC化では、半導体チップのコストが上昇する。
さらにまた、従来のドライバ回路のIC化では、同一半導体チップ内に高圧側回路と低圧側回路が寄生容量で結合された状態で存在する。この場合、ドライバ回路の高電圧化に伴って半導体チップ内における電圧変動率(dv/dt)が大きくなると、寄生容量による電流によってICの誤動作する確立が増える。このため、従来のドライバ回路のIC化では、寄生容量を考慮して半導体チップ内の回路素子を最適に配置し直す必要がある。従って、従来のドライバ回路のIC化では、ドライバ回路の高電圧化に伴う新たなICの開発に大きな開発期間が必要になる。
本願の発明者らは、抽出された課題を解決して上記要求を満足することができるドライバ回路のIC化について検討した。この結果、本願の発明者らは、従来のようなモノリシックIC化或いはSoCIC化ではなく、複数の回路を構成する複数の回路素子をそれぞれの電流,電力損失,電圧,必要耐圧などのレベルに応じて最適に分離し、そのレベルごとに複数の回路素子を集積し、それぞれ個別の半導体チップに組み込む、いわゆるSiP(System in Package)IC化することにより、抽出された課題を解決して上記要求を満足することができることを見出した。
ここに、本発明は、高出力(大電流)化,高電圧化及び低損失化などの要求に応えることができると共に、小型で低コストで信頼性の高い半導体素子駆動用集積回路を提供する。また、本発明は、前述した課題のいずれか或いは全てを解決することができる半導体素子駆動用集積回路を提供する。さらに、本発明は、上記半導体素子駆動用集積回路をドライバ回路として搭載した電力変換装置を提供する。
上記半導体素子駆動用集積回路は、複数の回路素子が集積され、半導体素子を駆動するもので、少なくとも半導体素子に駆動電力を供給する回路素子が、他の回路素子が組み込まれた半導体チップとは別の半導体チップに組み込まれて回路が構成されていることにより達成することができる。
上記電力変換装置は、電力変換用の半導体素子を有するモジュール部と、半導体素子を駆動するためのドライバ回路を有する制御部とを有するもので、ドライバ回路が、複数の回路素子が集積されたもので、少なくとも半導体素子に駆動電力を供給する回路素子を、他の回路素子が組み込まれた半導体チップとは別の半導体チップに組み込んでなる集積回路で構成されていることにより達成することができる。
本発明によれば、少なくとも半導体素子に駆動電力を供給する回路素子を、他の回路素子が組み込まれた半導体チップとは別の半導体チップに組み込んで集積回路を構成、すなわちSiP(System in Package)IC化しているので、ドライバ回路の高出力化に伴う半導体チップの面積,開発期間及びコストの増加,耐ノイズ信頼性の低下など、従来のモノリシックIC化或いはSoCIC化における課題を解決することができる。
図27乃至図30は、ドライバ回路の高出力化に伴う半導体チップの面積,開発期間,耐ノイズ信頼性,コストの変化について、本発明のSiPIC化と従来のモノリシックIC化或いはSoCIC化とを、本願の発明者らが実験によって定量的に比較し検証した結果である。各図において実線は本発明のSiPIC化を示し、破線は従来のモノリシックIC化或いはSoCIC化を示す。各図から明らかなように、高出力においては、本発明のSiPIC化が従来のモノリシックIC化或いはSoCIC化よりも有利である。
本発明によれば、高出力(大電流)化,高電圧化及び低損失化などの要求に応えることができると共に、小型で低コストで信頼性の高い半導体素子駆動用集積回路及びそれを搭載した電力変換装置を提供することができる。
(実施例1)
本発明の第1実施例を図1乃至図7に基づいて説明する。図1乃至図3は本実施例のドライバICの構成を示す。図4は本実施例のドライバICの絶縁配線基板の構成を示す。図5は本実施例のドライバICの回路構成を示す。図6,図7は本実施例のインバータ装置の構成を示す。本実施例のインバータ装置は、電動機を車両の唯一の駆動源とする電気自動車,内燃機関であるエンジンと電動機との両方を車両の駆動源とするハイブリッド自動車などの電動自動車に搭載された電機駆動システムに用いられる電力変換装置であり、車載電源であるバッテリから供給された直流電力を交流電力に変換して交流電動機(例えば誘導電動機,同期電動機)に供給するものである。
インバータ装置3は、バッテリから供給された直流電力を交流電極に変換する変換回路が構成されたパワーモジュール部と、パワーモジュール部の変換回路の駆動を制御部から構成されている。パワーモジュール部の変換回路は、電力変換用半導体素子(電力スイッチング素子)である絶縁ゲートバイポーラトランジスタ(Insulated Gate Bipolar Transistor)(以下、「IGBT」という)が電気的に2つ直列接続された1相分(1アーム分)回路をU相,V相,W相の3相分(3アーム分)、バッテリに対して電気的に並列接続したもので構成されている。各アームのIGBT間には、交流負荷の対応する相の入力側が電気的に接続されている。
実際のハード構成としては、各相毎に上アーム側のIGBTチップ32H及びこれに対応する還流用ダイオードチップ33Hと、下アーム側のIGBTチップ32L及びこれらに対応する還流用ダイオードチップ33Hとをセラミックス絶縁基板352の配線パターン351上に半田で固着し、これらを、ケース37のベース板36(ヒートシンク)上に並設して半田で固着している。ケース37の長手方向の1辺には、バッテリに電気的に接続された正極側主電源端子30H及び負極側主電源端子30Lが、ケース37の長手方向のもう1つの1辺には、負荷である電動機のU相の入力側が電気的に接続された出力端子31U、そのV相の入力側が電気的に接続された出力端子31V及びそのW相の入力側が電気的に接続された出力端子31Wがそれぞれ埋設され、ケース37の短手方向両外方に突出している。
正極側主電源端子30Hは、各相の上アーム側のIGBTチップ32Hが固着された配線パターン351にワイヤ38で電気的に接続されている。負極側主電源端子30Lは、各相の下アーム側のIGBTチップ32Lが固着された配線パターン351にワイヤ38で電気的に接続されている。出力端子31Uは、U相の下アーム側のIGBTチップ32Lが固着され、上アーム側のIGBTチップ32Hがワイヤ38で電気的に接続された配線パターン351にワイヤ38で電気的に接続されている。出力端子31Vは、V相の下アーム側のIGBTチップ32Lが固着され、上アーム側のIGBTチップ32Hがワイヤ38で電気的に接続された配線パターン351にワイヤ38で電気的に接続されている。出力端子31Wは、W相の下アーム側のIGBTチップ32Lが固着され、上アーム側のIGBTチップ32Hがワイヤ38で電気的に接続された配線パターン351にワイヤ38で電気的に接続されている。
各相の変換回路に対向するベース板36上の部位には、各相毎に、配線基板4上に受動部品5と共にドライバIC2を固着したものが対向配置され、ベース板36上に接着剤などで固着されている。各相毎に、ドライバIC2と上アーム側のIGBTチップ32Hは、ベース板36上に設けられた駆動信号配線321H及び電流検出用配線322Hを介して、ドライバIC2と下アーム側のIGBTチップ32Lは駆動信号配線321L及び電流検出用配線322Lを介してそれぞれ電気的に接続されている。ケース37内にはシリコン樹脂39がポッティング注入されている。
セラミックス絶縁基板352はその表面に配線パターン351が、裏面にメタライズ層353がそれぞれ固着されたものである。セラミックス絶縁板352の材質としては、窒化アルミのような高熱伝導性のものが好ましいが、アルミナや窒化けい素などのものとしてもよい。ベース板36の材質としては、熱伝導性に優れて低コストなCu(銅)が好ましいが、セラミックス絶縁基板352との半田接続の信頼性などを考慮し、Mo(モリブデン),Cu−Mo,Al/SiC複合材,Cu/Cu2O複合材などのものとしてもよい。配線基板4にはプリント配線基板或いはセラミックス配線基板を用いている。
次に、ドライバIC2の回路構成について説明する。図5に示すように、主電源(バッテリ)の高圧端子30H(正極側…電位VCCH)には第1の電力スイッチング素子(上アーム側のIGBTチップ32H)のコレクタが電気的に接続されている。主電源(バッテリ)の接地端子30L(負極側…電位VCCL)には第2の電力スイッチング素子(下アーム側のIGBTチップ32L)のエミッタが電気的に接続されている。第1の電力スイッチング素子のエミッタとコレクタとの間には第1の還流用ダイオード(上アーム側の還流用ダイオードチップ33H)が電気的に接続されている。第2の電力スイッチング素子のエミッタとコレクタとの間には第2の還流用ダイオード(下アーム側の還流用ダイオードチップ33L)が電気的に接続されている。第1の電力スイッチング素子のエミッタと第2の電力スイッチング素子のコレクタは電気的に直列接続され、インバータ装置3の出力端子31(電位VOUT)に電気的に接続されている。
尚、本実施例では、第1の電力スイッチング素子及び第2の電力スイッチング素子をIGBTを用いているが、その素子の代わりとしてMOS−FETを用いてもよい。
第1の電力スイッチング素子のゲートのゲート端子321Hには上アーム駆動回路212が、第2の電力スイッチング素子のゲートのゲート端子321Lには下アーム駆動回路222がそれぞれ電気的に接続されている。下アーム駆動回路222の正極側には、主電源(バッテリ)の接地端子30L(負極側)に負極側が接続された電源34Lの正極側が、負極側には電源34Lの負極側がそれぞれ電気的に接続されている。下アーム駆動回路222には、電源34Lから出力された直流電力が供給される。
第1の電力スイッチング素子のエミッタは、インバータ装置3の出力端子31に接続されている。このため、第1の電力スイッチング素子は主電源(バッテリ)の接地端子30L(負極側)に対して電位的に浮動状態にある。従って、上アーム駆動回路212と電源34Hとの間はトランスなどの絶縁回路素子(図示省略)によって絶縁されている。上アーム駆動回路212の正極側には、負極側がインバータ装置3の出力端子31に接続された電源34Hの正極側が、負極側には電源34Hの負極側がそれぞれ電気的に接続されている。上アーム駆動回路212には、電源34Hから出力された直流電力が絶縁用の回路素子を介して供給される。
駆動信号処理回路224は、外部コントローラ(図示省略)から出力された入力指令を受け、上アーム駆動回路212の駆動部(図示省略)及び下アーム駆動回路222の駆動部(図示省略)への駆動信号を生成して出力する。下アーム駆動回路222の駆動部は、駆動信号処理回路224から出力された駆動信号を受け、最終出力段バッファ部223を駆動する駆動信号を生成して出力する。最終出力段バッファ部223は、第2の電力スイッチング素子をオンさせるべく駆動電力を出力するものであり、駆動部から出力された駆動信号を受けてゲート端子321Lに所定の駆動電力を供給する。
一方、駆動信号処理回路224から上アーム駆動回路212に出力された駆動信号は、レベルシフト回路20を介して所定の電圧に変換(昇圧)された後に上アーム駆動回路212の駆動部に供給される。上アーム駆動回路212の駆動部は、レベルシフト回路20から出力された駆動信号を受け、最終出力段バッファ部213を駆動する駆動信号を生成して出力する。最終出力段バッファ部213は、第1の電力スイッチング素子をオンさせるべく駆動電力を出力するものであり、駆動部から出力された駆動信号を受けてゲート端子321Hに所定の駆動電力を供給する。
尚、第1の電力スイッチング素子の電気的な大きさは最終出力段バッファ部213の電流容量(駆動能力)で、第2の電力スイッチング素子の電気的な大きさは最終出力段バッファ部223の電流容量(駆動能力)でそれぞれ決定されている。
ところで、従来のドライバICでは、レベルシフト回路20,最終出力段バッファ部213を含む上アーム駆動回路212,最終出力段バッファ部223を含む下アーム駆動回路222及び駆動信号処理回路224を構成する複数の回路素子は集積されて、同一の半導体チップ上に組み込まれていた。すなわちモノリシックIC化或いはSoCIC化されていた。これに対して本実施例では、複数の回路素子をその電力レベル(例えば電流容量)によって最適に分離し、そのレベルごとに複数の回路素子を集積し、それぞれ個別の半導体チップに組み込む、いわゆるSiP方式によってドライバ回路をIC化している。すなわち本実施例では、上アーム駆動回路212の駆動部,電流検知回路210を含むレベルシフト回路20,下アーム駆動回路222の駆動部及び駆動信号処理回路224を構成する回路素子を集積して1つの高耐圧ICチップ200に組み込み、上アーム駆動回路212の最終出力段バッファ部213を構成する回路素子を縦型構造のpチャネルのMOS−FETチップ213pと、縦型構造のnチャネルのMOS−FETチップ213nに組み込み、下アーム駆動回路222の最終出力段バッファ部223を構成する回路素子を縦型構造のpチャネルのMOS−FETチップ223pと、縦型構造のnチャネルのMOS−FETチップ223nに組み込みドライバIC2を構成している。
尚、図5中の一点鎖線はドライバIC2の範囲を、破線は半導体チップの範囲をそれぞれ示す。
次に、本実施例のドライバIC2の実装構成について説明する。図1乃至図4に示すように、高耐圧ICチップ200は、矩形状の絶縁配線基板24のほぼ中央部に配置されていると共に、接続部材25で絶縁配線基板24上に固着されており、かつ絶縁配線基板24の表面に露出した複数のボンディングパッド27にワイヤ26で電気的に接続されている。
MOS−FETチップ213n,213pは、矩形状の絶縁配線基板24上の長手方向の一方側端部にかつその短手方向に高耐圧ICチップ200に沿って並設されるように、高耐圧ICチップ200に対向配置されていると共に、接続部材25′で絶縁配線基板24上に固着されており、かつ絶縁配線基板24の表面に露出した複数のボンディングパッド27にワイヤ26で電気的に接続されている。
MOS−FETチップ223n,223pは、矩形状の絶縁配線基板24上の長手方向の他方側端部に、かつその短手方向に高耐圧ICチップ200に沿って並設されるように高耐圧ICチップ200に対向配置されていると共に、接続部材25′で絶縁配線基板24上に固着されており、かつ絶縁配線基板24の表面に露出した複数のボンディングパッド27にワイヤ26で電気的に接続されている。
このように、MOS−FETチップ213n,213p,223n,223pを絶縁配線基板24上に配置することにより、外部出力端子28′との距離が最短となる。すなわち本実施例では、外部出力端子28′に近接するように、外部出力端子28′の近傍に配置している。
尚、本実施例では、ドライバIC2の出力電流が大きいので、MOS−FETチップ213n,213p,223n,223pのソース(半導体チップ表面側)と絶縁配線基板24上のボンディングパッド27とを、ワイヤ26を複数本並列にして電気的に接続している。また、半導体チップはいずれもベアチップ(裸のチップ)で構成されている。
複数の外部出力端子28は接続部材(図示省略)によって絶縁配線基板24に固着され、絶縁配線基板24に電気的に接続されている。上記半導体チップ,絶縁配線基板24及び複数の外部出力端子28を含む構造体は、複数の外部出力端子28の一部が外部に露出するように、封止部材29によってモールドされ、パッケージ化されている。尚、図1では、ドライバIC2内の実装構成が判るように、封止部材29を破線で示している。
絶縁配線基板24は図4に示すように多層配線基板である。本実施例では、配線導体241にAg(銀)導体を使用したガラスセラミックス3層配線基板を用いている。セラミックス層243の各層の配線導体241はビアホール242によって電気的に接続されている。配線導体241には、Ag−Pt(白金)導体,Ag−Pd(パラジウム)導体などの貴金属導体或いはNi(ニッケル)導体,Cu(銅)導体などの卑金属導体を用いている。セラミックス層243にはアルミナのような酸化物系或いは窒化アルミのような窒化物系を用いている。他の絶縁性セラミックスを用いてもよい。また、本実施例では、低コスト化を図るために、絶縁配線基板24としてガラスエポキシなどの樹脂型絶縁多層基板を用いてもよい。
接続部材25,25′には半田,Agペーストなどを用いている。ワイヤ26には金,アルミニウムなどを用いている。尚、ワイヤ26の材質及び径を一種類のものに統一することにより、ボンディング工程における効率化を図ることができる。場所によって使い分ける必要がある場合には、異種のワイヤを適宜用いればよい。
封止部材29によるモールドは、主に組み立て後のドライバIC2の保管時或いは稼動時の温湿雰囲気、並びに搬送・稼動時の機械的・熱的衝撃から固着部分やボンディング部分を保護する目的で施されている。封止部材29には、エポキシ樹脂などの絶縁部材を用いている。本実施例では、上記半導体チップ,絶縁配線基板24及び複数の外部出力端子28を含む構造体を、シリカフィラー入りのエポキシ樹脂によってトランスファーモールドしている。尚、封止としては、ポッティングによって封止部材29を絶縁配線基板24の部品搭載面のみに施すこともできる。
本実施例のドライバIC2では、第1の電力スイッチング素子のオン時、図1の矢印Ponに示すように、絶縁配線基板24に内蔵された電源配線導体(図示省略)から、ワイヤ26,MOS−FETチップ213p,ワイヤ26,絶縁配線基板24に内蔵された配線導体(図示省略),外部出力端子28を介してゲート端子321Hの順に電流が流れ、第1の電力スイッチング素子に供給される。これにより、第1の電力スイッチング素子はオン状態になる。第2の電力スイッチング素子のオン時も同様に、図1の矢印Ponに示すように、絶縁配線基板24に内蔵された電源配線導体(図示省略)から、ワイヤ26,MOS−FETチップ223p,ワイヤ26,絶縁配線基板24に内蔵された配線導体(図示省略),外部出力端子28を介してゲート端子321Lの順に電流が流れ、第2の電力スイッチング素子に供給される。これにより、第2の電力スイッチング素子はオン状態になる。
一方、第1の電力スイッチング素子のオフ時は、図1の矢印Poffに示すように、ゲート端子321Hから、外部出力端子28,絶縁配線基板24に内蔵された配線導体(図示省略),ワイヤ26,MOS−FETチップ213n,ワイヤ26を介して絶縁配線基板24に内蔵された接地配線導体(図示省略)の順に電流が流れる。これにより、第1の電力スイッチング素子はオフ状態になる。第2の電力スイッチング素子のオフ時も同様に、図1の矢印Poff に示すように、ゲート端子321Lから、外部出力端子28,絶縁配線基板24に内蔵された配線導体(図示省略),ワイヤ26,MOS−FETチップ213n,ワイヤ26を介して絶縁配線基板24に内蔵された接地配線導体(図示省略)の順に電流が流れる。これにより、第2の電力スイッチング素子はオフ状態になる。
以上説明した本実施例によれば、最終出力段バッファ部213を構成する回路素子をMOS−FETチップ213p,213nに、最終出力段バッファ部223を構成する回路素子をMOS−FETチップ223p,223nにそれぞれ組み込み、高耐圧ICチップ200とは個別化しているので、MOS−FETチップ213p,213n,223p,223nの配置の自由度を向上させることができる。これにより、本実施例では、外部出力端子28′との間の距離が最短となるように、MOS−FETチップ213p,213n,223p,223nを絶縁配線基板24上に配置することができる。従って、本実施例によれば、ドライバIC2の内部における出力電流の導通経路を常に最短とすることができるので、電流経路上におけるインダクタンスの値を、従来のドライバ回路のICに比べて低減することができ、その影響による出力電流の低下を小さくすることができる。尚、本願の発明者らが行った実験によれば、電流経路上におけるインダクタンスの値を、従来のドライバ回路のICに比べて約1/5にできるということを確認することができた。
また、本実施例によれば、MOS−FETチップとして縦型構造のものを採用したので、最終出力段バッファ部213,223として割り当てられる半導体チップの面積を、従来のドライバ回路のICに比べて削減することができる。本願の発明者らが行った実験によれば、オン抵抗を同一として、半導体チップの面積を、従来のドライバ回路のICに比べて約45%低減することができるということを確認することができた。逆に、半導体チップの割り当て面積を同じにした場合には、オン抵抗を大幅に低減することができ、電力損失を低減することができる。
また、本実施例によれば、高耐圧ICチップ200から最終出力段バッファ部213,223を分離しているので、相対的に電力損失による発熱が大きい最終出力段バッファ部213,223から高耐圧ICチップ200にその熱が直接熱伝達されることがないので、温度上昇時の動作安定性を、従来のドライバ回路のIC化に比べて向上させることができる。従って、本実施例によれば、ドライバIC2の駆動能力を向上させることができるとともに、従来のドライバ回路のIC化ではコストが増加しかつ動作安定性確保が困難であった出力電流10Aを超えるドライバ回路のIC化を低コストで実現することができる。
また、本実施例によれば、高出力・高電圧(例えば10A,1700V)のドライバ回路として、前述のドライバIC2を用いたので、それをインバータ装置3のモジュール部内に搭載することができる。これにより、本実施例では、ドライバ回路の据付面積を従来のインバータ装置に比べて縮小することができる。従って、本実施例によれば、インバータ装置3の小型化,低コスト化を図ることができる。また、本実施例によれば、インバータ装置3の高さTを小さくすることができるので、インバータ装置3の体積も縮小することができ、インバータ装置3全体の小型化を図ることができる。さらに、本実施例によれば、ドライバ回路の小型化により、EMI(Electro Magnetic Interference)耐性を向上させることができる。従って、本実施例によれば、1700Vという高電圧にも関わらずノイズによる誤作動を少なくすることができるので、信頼性の高いインバータ装置3を提供することができる。
尚、本実施例では、インバータ装置として3相のものについて説明したが、単相のインバータ装置においても同様の効果が得られる。
(実施例2)
本発明の第2実施例を図8乃至図13に基づいて説明する。図8乃至図11は本実施例のドライバICの構成を示す。図12は本実施例のドライバICのレベルシフト回路内の寄生容量を示す。図13は本実施例のドライバICの回路構成を示す。尚、以下においては、前例と異なる構成についてのみ説明し、その他の説明は省略する。
本実施例は第1実施例の変形例であり、最終出力バッファ部213,223の個別チップ化に加えて、レベルシフト回路20を構成する回路素子を個別チップ化すると共に、高耐圧ICチップ200を高圧側と低圧側に分離して個別チップ化している。すなわち本実施例では、上アーム駆動回路212の駆動部とレベルシフト回路20の電流検知回路211を構成する回路素子を上アームICチップ210に組み込んでいる。下アーム駆動回路222の駆動部と駆動信号処理回路224を構成する回路素子は下アームICチップ220に組み込んでいる。レベルシフト回路20を構成する回路素子は縦構造のnチャネルのMOS−FETチップ230に組み込んでいる。
上アーム駆動回路212の最終出力段バッファ部213を構成する回路素子は縦型構造のpチャネルのMOS−FETチップ213pと、縦型構造のnチャネルのMOS−FETチップ213nに組み込んでいる。下アーム駆動回路222の最終出力段バッファ部223を構成する回路素子は縦型構造のpチャネルのMOS−FETチップ223pと、縦型構造のnチャネルのMOS−FETチップ223nに組み込んでいる。
次に、本実施例のドライバIC2の実装構成について説明する。本実施例においては、上アームICチップ210と下アームICチップ220を、矩形状の絶縁配線基板24の長手方向に並設されるように配置している。これらは、絶縁配線基板24の表面に露出した複数のボンディングパッド27にワイヤ26で電気的に接続されている。上アームICチップ210と下アームICチップ220との間には、それらに挟み込まれるように、或いはそれらと絶縁配線基板24の長手方向に対向するように、MOS−FETチップ230を配置し、絶縁配線基板24上に接続部材25′で固着している。MOS−FETチップ230は、絶縁配線基板24の表面に露出した複数のボンディングパッド27にワイヤ26で電気的に接続されている。
MOS−FETチップ213n,213p,223n,223pは、矩形状の絶縁配線基板24上の短手方向の一方側端部にかつ上アームICチップ210と下アームICチップ220の配列方向に沿って並設されている。MOS−FETチップ213n,213pは、矩形状の絶縁配線基板24上の長手方向の上アームICチップ210と対向する部位に配置されている。また、MOS−FETチップ223n,223pは、矩形状の絶縁配線基板24上の長手方向の下アームICチップ220と対向する部位に配置されている。
このように、MOS−FETチップ213n,213p,223n,223pを絶縁配線基板24上に配置することにより、本実施例においても外部出力端子28′との距離が最短となる。
前例で封止部材29は、主に組み立て後の保管時や稼動時の温湿雰囲気、並びに搬送・稼動時の機械的・熱的衝撃から前記固着部分やボンディング部分を保護する目的で施されていた。本実施例では、それに加え、チップや配線パターン間の高電圧絶縁性の確保と維持という目的も併せ持つ。例えばVCCHが300V程度の高電圧となる場合、上下アーム間には通常600V程度の耐圧が必要となる。このため、上下アーム間を単に空間及び基板沿面で絶縁するだけでなく、樹脂を充填することによって、異物による短絡を防ぐのみならず、高湿度バイアス等の雰囲気下でも長期に渡って絶縁性を保つことができる。このため、特に高耐圧用途の場合、封止部材29によって適宜パッケージすることが好ましい。
図11においてd1はリード端子間距離である。この距離は、封止樹脂沿面におけるトラッキング破壊,封止樹脂剥離時における配線基板表面での沿面破壊及び端子間の空間絶縁破壊などに対して、十分に余裕がある値となるよう決められている。d2は基板上の配線間距離である。この距離は、封止樹脂剥離時における配線基板表面での沿面破壊等に対して、十分に余裕がある値となるよう決められている。d3はワイヤ26(低電位)とMOS−FETチップ230の側面(高電圧)との間の最短距離部分を示す。この間を絶縁する封止部材29には、ドライバIC2の動作によって高圧の交流電圧が印加される。d3が小さいと、ワイヤ26とMOS−FETチップ230のドレイン電極との間の寄生容量が大きくなる。
図12に示すように、ワイヤ26がゲート配線である場合にはゲートとドレインとの間に寄生容量231が存在し、ワイヤ26がソース配線である場合にはソースとドレインとの間の寄生容量232が存在する。d3が小さいと、寄生容量231,232これらが大きくなり、これらがドライバICの動作に影響を与える可能性がある。このため、d3は交流電圧に対する封止部材29の絶縁性、及び上記寄生容量231,232がドライバICの動作に与える影響などを考慮して、十分に余裕がある値となるよう決める必要がある。本実施例では、MOS−FETチップ230のワイヤ26の材質として硬質のAu線を選択し、ループ高さを他の部分よりも大きくすることでd3を十分に大きくしている。具体的に本実施例においては、ドライバICの耐圧にもよるが、d3を50〜3000μmの範囲としている。
MOS−FETチップ230のソースは主電源の低圧端子30Lに、ドレインは電流検知回路211にそれぞれ電気的に接続されている。電流検知回路211のもう一方の端子は上アーム駆動回路の電源34Hの高電位側に電気的に接続されている。駆動信号処理回路224から出力された駆動信号がMOS−FETチップ230のゲートに加わると、レベルシフト回路20のMOS−FETがオン状態となり、信号伝達電流が電流検知回路211流れる。電流検知回路211では、信号伝達電流を電圧に変換し、上アーム駆動回路212の駆動部に供給している。これにより、第1の電力スイッチング素子がON状態になる。レベルシフト回路20のMOS−FETは、その内部抵抗によって信号電圧(レベル)を低圧から高圧に変化(シフト)させるものであり、この電位差を受け持つ働きをする。
尚、MOS−FETチップ230の内部抵抗は、ドレインとソースとの間における耐圧(すなわち電位差)が大きくなるほど増加する傾向にあるので、MOS−FETチップ230を流れる電流を小さくしない限り、信号伝達時の損失は低減されない。従って、本実施例では、信号伝達電流を上アームICチップ210及び下アームICチップ220内と同等の微小電流に抑える高耐圧(1000V以上)性のMOS−FETチップ230とすることにより、損失を1W以下に抑えている。
以上説明した本実施例によれば、前例と同様の効果を奏することができる。また、本実施例によれば、MOS−FETチップ230に個別の縦型構造のチップを用いているので、従来のドライバ回路のIC化では避けられなかった高電圧化に伴うプロセス上の問題を回避することができる。すなわち上アームICチップ210,下アームICチップ220においては、IC内部における耐圧が数10V程度であることから、DIやSOIのような高価な絶縁分離基板及びFLRなどの特別な耐圧構造が不要になり、通常のプロセスルールにしたがうことができる。従って、本実施例によれば、駆動の高速化,低損失化及びチップの小型化を図ることができる。また、本実施例によれば、MOS−FETチップ230として、絶縁分離基板に作り込む場合よりも歩留まりが高く、低コストで特性の良い高耐圧性の縦型構造のMOS−FETチップを採用することができるので、従来の横型構造のMOS−FETチップを採用したときに比べて面積効率も向上させることができる。
さらに、本実施例によれば、上アームICチップ210,下アームICチップ220,MOS−FETチップ230に分離したので、ノイズ耐量の向上を図ることができる。従来のドライバ回路のIC化では、寄生容量で結合された高圧側と低圧側が同一半導体チップ内に存在したため、電圧変化(dv/dt)に起因するノイズ電流によってICが誤動作を起こす可能性が大きかった。しかし、本実施例のようなドライバ回路のIC化は、高圧側と低圧側との絶縁距離を十分に確保することができ、また、これらの間の寄生容量を無視できるほど小さくすることができるので、ノイズ耐量を向上させることができ、耐圧レベル(1000V超)での動作信頼性を確保することができる。
(実施例3)
本発明の第3実施例を図14乃至図18に基づいて説明する。図14乃至図16は、本実施例のドライバICの構成を示す。図17,図18は、本実施例のインバータ装置の構成を示す。尚、以下においては、前例と異なる構成についてのみ説明し、その他の説明は省略する。
本実施例は第2実施例の改良例であり、上アームICチップ210,下アームICチップ220を、半田ボール26(BGA…Ball Grid Array)で配線基板24上にフェースダウン(フリップチップ)接続している。このような構成とすることにより、本実施例では、ワイヤ及びボンディングパッドを省略し、上アームICチップ210,下アームICチップ220の占有面積を低減している。また、本実施例では、占有面積低減により、前例において配線基板4上に設置されていたフィルタ用の受動部品5を同一パッケージ内に配置することができる。受動部品5としてはチップ抵抗,チップコンデンサなどがあり、制御電源用のノイズフィルタや制御タイマー機能に供され、ドライバIC2の高機能化及び高付加価値化に寄与している。
上アームICチップ210及び下アームICチップ220と配線基板24との間には樹脂262を充填している。このような構成とすることにより、本実施例では、半田ボール261に加わる熱ひずみを緩和し、この部分における接続信頼性の向上を図っている。
また、本実施例では、外部出力端子281にも半田ボールを用いている。このような構成とすることにより、本実施例では、MOS−FETチップ213p,213n,223p,223nから外部に出力される電流経路上のインダクタンスを低減している。尚、第1及び第2の電力スイッチング素子をオン・オフさせるときの電流の流れは前例と同様である。
また、本実施例では、ドライバIC2を封止部材でモールドせず、配線基板4を介してベース板36上に固着している。すなわち本実施例では、インバータ装置3の製作最終工程において、ケース37内にポッティング注入されるシリコン樹脂39により、ドライバIC2の高圧側と低圧側との間の絶縁を兼ねる構造としている。尚、本実施例では、配線基板4としてプリント配線基板を用いている。
以上説明した本実施例によれば、前例と同様の効果を奏することができる。また、本実施例によれば、ドライバIC2のパッケージの実装にBGA方式を採用し、ノイズフィルタや制御タイマー機能用の受動部品5を内蔵するようにしているので、配線基板4を合わせても、従来の大型ドライバ回路に比べて据付面積を縮小することができ、インバータ装置3の小型化,低コスト化を図ることができる。さらに、本実施例によれば、ドライバ回路の小型化によってEMI耐性を向上させることができるので、高電圧(例えば1700V)であっても、ノイズによる誤作動を小さくすることができる。
(実施例4)
本発明の第4実施例を図19乃至図23に基づいて説明する。図19乃至図21は本実施例のドライバICの構成を示す。図22,図23は本実施例のDC−DCコンバータ装置の構成を示す。
本実施例では、他の電力変換装置であるDC−DCコンバータ装置7にドライバIC6を適用した場合を一例にとり説明する。DC−DCコンバータ装置7は昇圧型コンバータであり、入力端子70(Vin)からの入力直流電力を、低圧側のMOS−FETにて矩形スイッチングし、高圧側のMOS−FETで同期整流した後、出力端子71(Vout)から所定の直流電力を出力するものであり、パワーモジュール部と、パワーモジュール部の半導体素子を駆動する制御部から構成されている。
パワーモジュール部は、低圧側のMOS−FETチップ73と高圧側のMOS−FETチップ74とをセラミックス絶縁基板75の配線パターン751上に半田で固着し、これをケース77のベース板76(ヒートシンク)上に半田で固着している。ケース77の短手方向の1辺には、バッテリの正極側に電気的に接続された入力端子70が、ケース77の長手方向の1辺には、バッテリの負極側及び負荷である電動機(直流機)の負極側の入力側が電気的に接続されたGND端子72と、負荷である電動機(直流機)の正極側の入力側が電気的に接続された出力端子71がそれぞれ埋設され、ケース37の短手方向の一方の外方及び長手方向の一方の外方に突出している。
制御部は、低圧側のMOS−FETと高圧側のMOS−FETを各々独立して駆動するものであり、高圧側のMOS−FETの駆動をレベルシフトによる非絶縁方式で行うドライバIC6と、他の外付け受動部品5を備えている。ドライバIC6及び受動部品5は配線基板4上に固着され、ベース板76の短手方向の一端に接着剤などにより固着されている。低圧側のMOS−FETチップ73と入力端子70及びGND端子72は、高圧側のMOS−FETチップ74と出力端子71はそれぞれワイヤ78で電気的に接続されている。また、MOS−FETチップ73,74とドライバIC6はそれぞれ駆動信号配線781及び電流検出用配線782によって電気的に接続されている。ケース77内にはシリコン樹脂79がポッティング注入されている。
セラミックス絶縁基板752はその表面に配線パターン751が、裏面にメタライズ層753がそれぞれ固着されたものである。セラミックス絶縁板752の材質としては、窒化アルミのような高熱伝導性のものが好ましいが、アルミナや窒化けい素などのものとしてもよい。ベース板76の材質としては、熱伝導性に優れて低コストなCu(銅)が好ましいが、セラミックス絶縁基板752との半田接続の信頼性などを考慮し、Mo(モリブデン),Cu−Mo,Al/SiC複合材,Cu/Cu2O 複合材などのものとしてもよい。配線基板4にはプリント配線基板或いはセラミックス配線基板を用いている。
次に、本実施例のドライバIC6の実装構成について説明する。ドライバIC6の回路構成は基本的に第1実施例及び第2実施例と同様であり、その実装構成は基本的に第2実施例と同様である。尚、本実施例では、高圧側駆動回路の最終出力バッファ部を構成する回路素子をMOS−FETチップ613p,613nに組み込んでいる。低圧側駆動回路の最終出力バッファ部を構成する回路素子をMOS−FETチップ623p,623nに組み込んでいる。レベルシフト回路を構成する回路素子はMOS−FETチップ630に組み込んでいる。高圧側駆動回路の駆動部とレベルシフト回路の電流検知回路を構成する回路素子を高圧側ICチップ610に組み込んでいる。低圧側駆動回路の駆動部と駆動信号処理回路を構成する回路素子は低圧側ICチップ620に組み込んでいる。
本実施例では、高圧側ICチップ610,低圧側ICチップ620を、矩形状の絶縁配線基板64の長手方向に並設されるように配置している。これらは、絶縁配線基板64の表面に露出した複数のボンディングパッド67にワイヤ66で電気的に接続されている。高圧側ICチップ610,低圧側ICチップ620との間には、それらに挟み込まれるように、或いはそれらと絶縁配線基板64の長手方向に対向するように、MOS−FETチップ630を配置し、絶縁配線基板64上に接続部材(図示省略)で固着している。MOS−FETチップ630は、絶縁配線基板24の表面に露出した複数のボンディングパッド67にワイヤ66で電気的に接続されている。
MOS−FETチップ613n,613p,623n,623pは、矩形状の絶縁配線基板24上の短手方向の一方側端部にかつ高圧側ICチップ610と低圧側ICチップ620の配列方向に沿って並設されている。MOS−FETチップ613n,613pは、矩形状の絶縁配線基板64上の長手方向の高圧側ICチップ610と対向する部位に配置されている。また、MOS−FETチップ623n,623pは、矩形状の絶縁配線基板64上の長手方向の低圧側ICチップ620と対向する部位に配置されている。
本実施例では、MOS−FETチップ613n,613p,623n,623pが絶縁配線基板64上において外部出力端子68′との距離が最短になるように配置している。また、本実施例では、MOS−FETチップ613n,613p,623n,623p,630には縦型構造のものを用いている。また、本実施例では、封止部材69でドライバIC6をモールドしている。また、本実施例では、外部出力端子68に半田ボールを、すなわちBGA方式を採用し、ドライバIC6から出力される電流経路上のインダクタンスの低減を図っている。尚、低圧側MOS−FET及び高圧側MOS−FETをオン・オフさせるときの電流の流れは前例と同様である。
以上説明した本実施例によれば、前例と同様の効果を奏することができる。また、本実施例によれば、ドライバIC6の内部における出力電流の導通経路を常に最短とし、しかもBGA接続を採用しているので、電流経路上におけるインダクタンスの値を、従来のドライバ回路のICに比べて低減することができ、その影響による出力電流の低下を小さくすることができる。尚、本願の発明者らが行った実験によれば、電流経路上におけるインダクタンスの値を、従来のドライバ回路のICに比べて約1/10にできるということを確認することができた。
従来のパワーモジュールにおけるドライバ回路は、通常、大型のプリント配線基板上に多数のディスクリート部品を搭載する方法で作製されていた。ドライバ回路基板は、MOS−FETチップ73,74の上に被せるようにしてパワーモジュール部に組み込まれていた。しかし、本実施例では、ドライバ回路の小型化を図ることができるので、ドライバ回路をパワーモジュール内に設けることがでる。従って、本実施例によれば、DC−DCコンバータ装置7の小型化及び低コスト化を図ることができる。
(実施例5)
本発明の第5実施例を図24,図25に基づいて説明する。図24,図25は本実施例のドライバICの構成を示す。
本実施例では、制御部回路(マイクロコントローラ),駆動・保護回路を内蔵したLSIチップ80化し、微細プロセス採用による低電圧(3.3V)駆動及び低消費電力化を図っている。入出力数が多いため、LSIチップ80は絶縁配線基板84に半田ボール801によって、すなわちBGA方式によるフリップチップ実装方式によって接続されている。
一方、MOS−FETチップ81p,81nは、最終出力段バッファ部を構成する回路素子を組み込んだものであり、オン時にはMOS−FETチップ81pを介して、オフ時にはMOS−FETチップ81nを介して出力電流(7A)が流れる。MOS−FETチップ81p,81nは、チップ裏面(ドレイン側)を電極とする縦型構造を採用しており、接続部材83によって絶縁配線基板84に電気的に固着されている。それらのゲート電極,ソース電極はボンディングパッド87を介してワイヤ88で配線基板84に電気的に接続されている。
配線基板84上には、制御・駆動回路電源用のノイズフィルタや制御タイマー機能用の受動部品82(チップコンデンサやチップ抵抗)も搭載されており、多機能化が図られている。パッケージ全体は、封止部材86によって保護されている。外部出力端子としては半田ボール85、すなわちBGA方式によるエリアバンプ接続を採用し、機器の小型化に好適な形態としている。
以上説明した本実施例では、MOS−FETチップを81p,81nに個別化しているので、LSIチップ80における高性能化と歩留まり向上による低コスト化を図ることができる。
また、本実施例によれば、MOS−FETチップを81p,81nとして縦型構造のものを採用しているので、面積効率が良くなると共に、オン抵抗を低減することができる。
また、本実施例によれば、MOS−FETチップを81p,81n外部出力端子85を近接させているので、インダクタンスの影響をほとんど無視できる程度まで抑えることができる。
さらに、本実施例によれば、損失発熱が最も大きいMOS−FETチップを81p,81nから、比較的発熱が小さいLSIチップ80に伝導される熱を、図中の矢印Hのような経路を取るようにすることができる。従って、本実施例によれば、各回路機能間における熱的な相互干渉が低減され、ドライバICとしての動作安定性を大きく向上させることができる。
(実施例6)
本発明の第6実施例を図26に基づいて説明する。図26は本実施例のドライバICの実装構成を示す。
ドライバ回路において、高圧側は、インバータ装置の動作に従ってU相,V相,W相の基準電位が変動する。このため、本実施例では、上アームICチップを各相毎のチップ210U,210V,210Wに分けている。一方、低圧側は、各相における基準電位が同一である。このため、本実施例では、下アームICチップを同一のチップ220に集約している。各相のMOS−FETチップ213p及び223nは絶縁配線基板24上の外部出力端子28の近傍に配置している。上アームICチップ210U,210V,210Wと下アームICチップ220との間の異なる電位間の通信は、MOS−FETチップ230n,230pを介して行われる。ここで、MOS−FETチップ230nは、外部コントローラ(図示省略)からの上アーム駆動信号電圧を高圧側レベルへ変換し、上アームICチップ210へ伝える役割を果たす。一方、MOS−FETチップ230pは上アームICチップを通した異常信号(例えば過温度信号等)電圧を低圧側レベルへ変換し、下アームICチップへ伝える役割を果たす。従って、各相毎にMOS−FET230n,203pが一つずつ配置されている。
上記半導体チップはそれぞれ絶縁配線基板24上に固着されて、ワイヤ26によって各半導体チップ間が接続されている。絶縁配線基板24には外部リード端子部品28が電気的に接続されている。ドライバIC2は封止部材29によってモールドされ、QFPパッケージ化されている。
本実施例のドライバICは、出力がかなり大きい(15A)ため、出力段バッファとして個別の縦型構造MOSチップを採用することが功を奏した。一方、電圧に関しては、上下アーム間の電圧が100V以下であり、従来のSoC方式を採用しても十分に作製が可能な電圧レベルである。しかし、レベルシフトMOSの個別化とそれに伴うSiP方式の採用によって、様々な点で従来よりも優れたものとなっている。
まず、上アームICチップ210,下アームICチップ220においては、DIやSOIのような高価な絶縁分離基板をあえて用いる必要が無くなり、通常のプロセスルールに従うことで駆動の高速化,低損失化及びチップの小型化が可能になった。
MOS−FETチップ230n,230pは縦型構造のものであるが、絶縁分離基板に作り込む従来の場合よりも歩留まりが高く、低コストで従来の横型構造のものに比べて面積効率も良くなった。
また、個別チップ化することで、ノイズ耐量の向上を図ることができた。従来のドライバ回路のIC化では、寄生容量で結合された高圧側/低圧側が同一チップ内に存在したため、電圧変化(dv/dt)に起因するノイズ電流によってICが誤動作を起こす可能性が大きかった。一方、本実施例のドライバ回路のIC化では、高圧側と低圧側との間の距離のスケールが十分に大きく、これらの間の寄生容量を無視できるほど小さくできる。このため、ノイズ耐量が格段に向上し、従来のドライバ回路のIC化に比べて動作安定性が極めて高いドライバICとすることができた。
さらに、本実施例のドライバIC2は、上下アーム間の電圧が100V以下であり、従来のドライバ回路のICと同様の設計で高圧側と低圧側との間の絶縁が十分に確保され、封止樹脂沿面におけるトラッキング破壊,封止樹脂剥離時における配線基板表面での沿面破壊,端子間の空間絶縁破壊など高電圧向けの特別な配慮が不要である。
本発明の第1実施例であるドライバICの実装構成を示す平面図。 図1のA−A′断面図。 図1のB−B′断面図。 図1のドライバICの絶縁配線基板の構成を示す断面図。 図1のドライバICの回路構成を示す回路ブロック図。 図1のドライバICをドライバ回路として搭載したインバータ装置の実装構成を示す平面図。 図6のA−A′断面図。 本発明の第2実施例であるドライバICの実装構成を部分的に示す平面図。 図8のA−A′断面図。 図8のB−B′断面図。 図10のC部分の拡大断面図。 図8のドライバICのレベルシフト回路における寄生容量を示す回路図。 図8のドライバICの回路構成を示す回路ブロック図。 本発明の第3実施例であるドライバICの実装構成を示す平面図。 図14のA−A′断面図。 図14のB−B′断面図。 図14のドライバICをドライバ回路として搭載したインバータ装置の実装構成を示す平面図。 図17のA−A′断面図。 本発明の第4実施例であるドライバICの実装構成を示す平面図。 図19のA−A′断面図。 図19のB−B′断面図。 図19のドライバICをドライバ回路として搭載したDC−DCコンバータ装置の実装構成を示す平面図。 図22のA−A′断面図。 本発明の第5実施例であるドライバICの実装構成を示す平面図。 図14のA−A′断面図。 本発明の第6実施例であるドライバICの実装構成を示す平面図。 ドライバ回路の高出力化に伴う半導体チップの面積の変化について本発明のSiPIC化と従来のモノリシックIC化或いはSoCIC化とを比較した結果を示す特性図。 ドライバ回路の高出力化に伴う開発期間の変化について本発明のSiPIC化と従来のモノリシックIC化或いはSoCIC化とを比較した結果を示す特性図。 ドライバ回路の高出力化に伴う耐ノイズ信頼性の変化について本発明のSiPIC化と従来のモノリシックIC化或いはSoCIC化とを比較した結果を示す特性図。 ドライバ回路の高出力化に伴うコストの変化について本発明のSiPIC化と従来のモノリシックIC化或いはSoCIC化とを比較した結果を示す特性図。
符号の説明
2…ドライバIC、3…インバータ装置、20…レベルシフト回路、200…高耐圧ICチップ、210…電流検知回路、212…上アーム駆動回路、213,223…最終出力段バッファ部、213p,213n,223p,223…MOS−FETチップ、222…下アーム駆動回路、224…駆動信号処理回路。

Claims (16)

  1. 複数の回路素子が集積され、半導体素子を駆動するものであって、
    少なくとも前記半導体素子に駆動電力を供給する回路素子が、他の回路素子が組み込まれた半導体チップとは別の半導体チップに組み込まれて回路が構成され、
    前記駆動電力供給回路素子が組み込まれた半導体チップ及び前記別の半導体チップは、外部接続端子を有する絶縁配線基板上に搭載され、
    前記駆動電力供給回路素子が組み込まれた半導体チップは、前記別の半導体チップよりも、前記外部接続端子に近い側に配置されることとする半導体素子駆動用集積回路。
  2. 請求項1において、前記外部接続端子は球状の半田によって構成されていることを特徴とする半導体素子駆動用集積回路。
  3. 請求項1において、前記駆動電力供給回路素子は縦型構造素子であることを特徴とする半導体素子駆動用集積回路。
  4. 請求項1において、前記半導体チップ,前記絶縁配線基板及び前記外部接続端子を含む構造体は、前記外部接続端子の一部が外部に露出するように、絶縁部材によってモールドされ、パッケージ化されていることを特徴とする半導体素子駆動用集積回路。
  5. 請求項1において、前記複数の回路素子は、前記半導体素子を少なくとも二つ電気的に直列接続した回路の一方の半導体素子を駆動する高圧側回路と、その他方の半導体素子を駆動する低圧側回路とを構成しており、少なくとも前記高圧側回路の前記駆動電力供給回路素子及び前記低圧側回路の前記駆動電力供給回路素子はそれぞれ、前記高圧側回路の他の回路素子及び前記低圧側回路の他の回路素子が組み込まれた半導体チップとは別の半導体チップに組み込まれていることを特徴とする半導体素子駆動用集積回路。
  6. 請求項5において、前記半導体チップは、外部接続端子を有する絶縁配線基板上に搭載されて電気的に接続されており、前記駆動電力供給回路素子が組み込まれた半導体チップは、前記外部接続端子の近傍に配置されていることを特徴とする半導体素子駆動用集積回路。
  7. 請求項6において、前記外部接続端子は球状の半田によって構成されていることを特徴とする半導体素子駆動用集積回路。
  8. 請求項5において、前記駆動電力供給回路素子は縦型構造素子であることを特徴とする半導体素子駆動用集積回路。
  9. 請求項6において、前記半導体チップ,前記絶縁配線基板及び前記外部接続端子を含む構造体は、前記外部接続端子の一部が外部に露出するように、絶縁部材によってモールドされ、パッケージ化されていることを特徴とする半導体素子駆動用集積回路。
  10. 請求項1において、前記複数の回路素子は、前記半導体素子を少なくとも二つ電気的に直列接続した回路の一方の半導体素子を駆動する高圧側回路と、その他方の半導体素子を駆動する低圧側回路とを構成しており、少なくとも前記高圧側回路の前記駆動電力供給回路素子は、前記高圧側回路を構成する他の回路素子が組み込まれた半導体チップとは別の半導体チップに、少なくとも前記低圧側回路の前記駆動電力供給回路素子は、前記低圧側回路を構成する他の回路素子が組み込まれた半導体チップとは別の半導体チップにそれぞれ組み込まれていることを特徴とする半導体素子駆動用集積回路。
  11. 請求項10において、前記低圧側回路側から出力された信号を所定の電圧に変換して前記高圧側回路側に供給するレベルシフト用回路素子が前記半導体チップとは別の半導体チップに組み込まれていることを特徴とする半導体素子駆動用集積回路。
  12. 請求項11において、前記半導体チップは、外部接続端子を有する絶縁配線基板上に搭載されて電気的に接続されており、前記高圧側回路を構成する他の回路素子が組み込まれた半導体チップと、前記低圧側回路を構成する他の回路素子が組み込まれた半導体チップとは、前記絶縁配線基板上に、前記レベルシフト用回路素子が組み込まれた半導体チップを挟んで対向配置され、前記駆動電力供給回路素子が組み込まれた半導体チップは、前記外部接続端子の近傍に配置されていることを特徴とする半導体素子駆動用集積回路。
  13. 請求項12において、前記外部接続端子は球状の半田によって構成されていることを特徴とする半導体素子駆動用集積回路。
  14. 請求項11において、前記駆動電力供給回路素子及び前記レベルシフト用回路素子は縦型構造素子であることを特徴とする半導体素子駆動用集積回路。
  15. 請求項12において、前記レベルシフト用回路素子が組み込まれた半導体チップの主面の縁と、前記レベルシフト用回路素子が組み込まれた半導体チップと前記絶縁配線基板上の配線とを電気的に接続する接続部材との間の最短距離を50〜3000μmの範囲としたことを特徴とする半導体素子駆動用集積回路。
  16. 請求項12において、前記半導体チップ,前記絶縁配線基板及び前記外部接続端子を含む構造体は、前記外部接続端子の一部が外部に露出するように、絶縁部材によってモールドされ、パッケージ化されていることを特徴とする半導体素子駆動用集積回路。
JP2008317813A 2008-12-15 2008-12-15 半導体素子駆動用集積回路及び電力変換装置 Expired - Fee Related JP5130193B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008317813A JP5130193B2 (ja) 2008-12-15 2008-12-15 半導体素子駆動用集積回路及び電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008317813A JP5130193B2 (ja) 2008-12-15 2008-12-15 半導体素子駆動用集積回路及び電力変換装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003035931A Division JP2004265931A (ja) 2003-02-14 2003-02-14 半導体素子駆動用集積回路及び電力変換装置

Publications (2)

Publication Number Publication Date
JP2009071329A true JP2009071329A (ja) 2009-04-02
JP5130193B2 JP5130193B2 (ja) 2013-01-30

Family

ID=40607181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008317813A Expired - Fee Related JP5130193B2 (ja) 2008-12-15 2008-12-15 半導体素子駆動用集積回路及び電力変換装置

Country Status (1)

Country Link
JP (1) JP5130193B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013223419A (ja) * 2012-04-16 2013-10-28 Internatl Rectifier Corp 電力インバーター用のシステムオンチップ
US10229867B2 (en) 2013-06-13 2019-03-12 Mitsubishi Electric Corporation Power semiconductor device
CN113632216A (zh) * 2019-03-27 2021-11-09 NexFi技术株式会社 功率基板及具备该功率基板的高电压模块
CN113725199A (zh) * 2021-07-27 2021-11-30 南瑞联研半导体有限责任公司 一种低电感压接型半导体模块

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06153533A (ja) * 1992-11-02 1994-05-31 Hitachi Ltd レベルシフト回路及びこれを用いたインバータ装置
JPH09139461A (ja) * 1995-11-15 1997-05-27 Mitsubishi Electric Corp 半導体パワーモジュール
JPH10144863A (ja) * 1989-11-16 1998-05-29 Internatl Rectifier Corp 電力モジュール
JP2000091499A (ja) * 1998-09-11 2000-03-31 Hitachi Ltd パワー半導体モジュール並びにそれを用いた電動機駆動システム
JP2002232280A (ja) * 2001-02-06 2002-08-16 Denso Corp 負荷制御装置
JP2002368191A (ja) * 2001-06-07 2002-12-20 Hitachi Ltd 電気車用制御装置
JP2002373971A (ja) * 2001-03-30 2002-12-26 Hitachi Ltd 半導体装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10144863A (ja) * 1989-11-16 1998-05-29 Internatl Rectifier Corp 電力モジュール
JPH06153533A (ja) * 1992-11-02 1994-05-31 Hitachi Ltd レベルシフト回路及びこれを用いたインバータ装置
JPH09139461A (ja) * 1995-11-15 1997-05-27 Mitsubishi Electric Corp 半導体パワーモジュール
JP2000091499A (ja) * 1998-09-11 2000-03-31 Hitachi Ltd パワー半導体モジュール並びにそれを用いた電動機駆動システム
JP2002232280A (ja) * 2001-02-06 2002-08-16 Denso Corp 負荷制御装置
JP2002373971A (ja) * 2001-03-30 2002-12-26 Hitachi Ltd 半導体装置
JP2002368191A (ja) * 2001-06-07 2002-12-20 Hitachi Ltd 電気車用制御装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013223419A (ja) * 2012-04-16 2013-10-28 Internatl Rectifier Corp 電力インバーター用のシステムオンチップ
US10229867B2 (en) 2013-06-13 2019-03-12 Mitsubishi Electric Corporation Power semiconductor device
CN113632216A (zh) * 2019-03-27 2021-11-09 NexFi技术株式会社 功率基板及具备该功率基板的高电压模块
CN113725199A (zh) * 2021-07-27 2021-11-30 南瑞联研半导体有限责任公司 一种低电感压接型半导体模块
CN113725199B (zh) * 2021-07-27 2023-11-28 南瑞联研半导体有限责任公司 一种低电感压接型半导体模块

Also Published As

Publication number Publication date
JP5130193B2 (ja) 2013-01-30

Similar Documents

Publication Publication Date Title
JP2004265931A (ja) 半導体素子駆動用集積回路及び電力変換装置
US7763974B2 (en) Integrated circuit for driving semiconductor device and power converter
US9929079B2 (en) Leadless electronic packages for GAN devices
EP2851950B1 (en) Power semiconductor module
TW498550B (en) Semiconductor device
US8466561B2 (en) Semiconductor module with a power semiconductor chip and a passive component and method for producing the same
US8735957B2 (en) Vertical MOSFET transistor with a vertical capacitor region
US9129933B2 (en) Semiconductor module and an inverter mounting said semiconductor module
CN107731779B (zh) 电子装置
JP5787784B2 (ja) 半導体装置
CN109952639B (zh) 半导体装置、逆变器单元及汽车
CN108511396B (zh) 电子装置
TW201145477A (en) Semiconductor device and power supply system
US9275966B2 (en) Semiconductor device apparatus and assembly with opposite die orientations
JPWO2011145219A1 (ja) パワー半導体モジュール
WO2015072060A1 (ja) バスバー、およびそれを用いた電力変換装置
JP5130193B2 (ja) 半導体素子駆動用集積回路及び電力変換装置
EP3147941A1 (en) Semi-finished product and method for producing a power semiconductor module
JP2010225952A (ja) 半導体モジュール
US10373890B1 (en) Cooling techniques for semiconductor package
US20220216135A1 (en) Semiconductor Device and Method For Manufacture of Semiconductor Device
WO2022176690A1 (ja) 半導体装置、半導体装置の設計方法および半導体装置の製造方法
JP6383265B2 (ja) 半導体装置
CN219917172U (zh) 电子器件和功率电子模块
WO2023138873A1 (en) Semiconductor device, semiconductor module and manufacturing method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121105

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5130193

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees