JP2009064005A - 光学素子、液晶装置、表示装置 - Google Patents

光学素子、液晶装置、表示装置 Download PDF

Info

Publication number
JP2009064005A
JP2009064005A JP2008198507A JP2008198507A JP2009064005A JP 2009064005 A JP2009064005 A JP 2009064005A JP 2008198507 A JP2008198507 A JP 2008198507A JP 2008198507 A JP2008198507 A JP 2008198507A JP 2009064005 A JP2009064005 A JP 2009064005A
Authority
JP
Japan
Prior art keywords
optical element
substrate
light
liquid crystal
diffractive structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008198507A
Other languages
English (en)
Other versions
JP5040847B2 (ja
Inventor
Atsushi Amako
淳 尼子
Daisuke Sawaki
大輔 澤木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2008198507A priority Critical patent/JP5040847B2/ja
Priority to US12/187,215 priority patent/US7755718B2/en
Publication of JP2009064005A publication Critical patent/JP2009064005A/ja
Priority to US12/790,252 priority patent/US7885004B2/en
Application granted granted Critical
Publication of JP5040847B2 publication Critical patent/JP5040847B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Polarising Elements (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

【課題】反射光による悪影響を抑制することが可能な光学素子を提供すること。
【解決手段】本発明に係る光学素子は、入射光を偏光分離する機能を有する光学素子であって、上記入射光に対して透明な基板(2)と、断面形状が矩形であり交互に配列された複数の凹部(3a)及び凸部(3b)を含み、上記基板の一面側に設けられた回折構造部(3)と、一方向に延在する複数の金属の細線(4a)を含み、上記基板の一面側であって上記回折構造部の上面に沿って設けられたグリッド部(4)と、を備え、上記入射光の波長をλ、上記複数の細線の相互間隔をd、上記複数の凸部の相互間隔をδ、上記基板の構成材料の屈折率をn、としたときに、これらのパラメータが、d<λ、かつ、λ/n<δ≦λ、の関係を満たすものである。
【選択図】図1

Description

本発明は、偏光分離機能を有する光学素子およびこの光学素子を利用した液晶装置、表示装置に関する。
偏光分離機能を有する光学素子の1つとして、ワイヤーグリッド型偏光分離素子が知られている。このワイヤーグリッド型偏光分離素子は、ガラス基板等の表面に多数の微細なワイヤー(例えば、アルミニウム細線)が並べられたものであり、各ワイヤーの相互間隔(周期)は光の波長よりも短く設定される。ワイヤーグリッド型偏光分離素子は、偏光分離性能が高いことに加え、構成材料が無機物であることから耐光性にも優れるという特徴がある。このため、種々の光学系において、従来の高分子を素材とした偏光分離素子に代替して用いることが検討されている。ワイヤーグリッド型偏光分離素子の応用例の1つとして、液晶プロジェクタのような投写型表示装置が挙げられる。
上述の投写型表示装置においては、ワイヤーグリッド型偏光分離素子は、液晶パネル(液晶ライトバルブ)の前面又は背面の少なくとも一方に配置される。投写型表示装置では、表示される画像の輝度を向上させる等のために比較的に強度の高い光が液晶パネルに入力される。ところが、原理上、ワイヤーグリッド型偏光分離素子は、入射光のうちTM偏光成分はほぼ全て透過させるもののTE偏光成分についてはほぼ全て反射するため、この反射光(TE偏光成分)が液晶パネルに再度入射して液晶パネルの動作を不安定にすることが懸念される。また、このような懸念は投写型表示装置に限られたものではなく、ワイヤーグリッド型偏光分離素子を用いて構成される種々の光学的装置にも共通して言えることである。いかなる光学的装置においても、光路上において不要な反射光が発生することは好ましくないからである。
特開2002−372749号公報
本発明に係る具体的態様は、反射光による悪影響を抑制することが可能な光学素子を提供することを1つの目的とする。
本発明に係る具体的態様は、上記の光学素子を用いて構成される高性能な液晶装置を提供することを他の1つの目的とする。
本発明に係る具体的態様は、上記の光学素子を用いて構成される高性能な表示装置を提供することを他の1つの目的とする。
本発明に係る光学素子は、入射光を偏光分離する機能を有する光学素子であって、(a)上記入射光に対して透明な基板と、(b)断面形状が矩形であり交互に配列された複数の凹部及び凸部を含み、上記基板の一面側に設けられた回折構造部と、(c)一方向に延在する複数の細線を含み、上記基板の一面側であって上記回折構造部の上面に沿って設けられたグリッド部と、を備え、上記入射光の波長をλ、上記複数の細線の相互間隔をd、上記複数の凸部の相互間隔をδ、上記基板の構成材料の屈折率をn、としたときに、これらのパラメータが、d<λ、かつ、λ/n<δ≦λ、の関係を満たすものである。
この光学素子では、グリッド部の作用により入射光のうち一方の偏光成分が反射され、他方の偏光成分が透過する。また、この反射される偏光成分(反射光)は、回折構造部の作用により、十分に大きな角度で回折される。上記したパラメータの関係が満たされることにより、この回折された反射光は、基板の他面とその周囲の媒体(例えば空気)との界面において全反射され、基板中を伝搬し、基板端部へ向かう。したがって、本発明に係る光学素子を所望の光学系に用いた際には、グリッド部によって生じた反射光のほとんどが光路の前段側へ戻ることがなく、不要な反射光による悪影響が抑制される。
好ましくは、上記光学素子は、上記回折構造部の上記凹部と上記凸部との段差が(2m+1)λ/4nと設定される。ここで、mが0以上の整数(0,1,2・・・)である。λは上記のように入射光の波長、nは基板の構成材料の屈折率である。
この条件が満たされることにより、光学素子の回折構造部における反射光の回折効果を十分に高め、かつ透過光(透過する偏光成分)の回折効果を十分に抑えることが可能となる。それにより、透過光量の大部分が非回折成分となるため、光の利用効率をより高めることが可能となる。
上記光学素子においては、例えば、上記回折構造部の上記複数の凹部および上記複数の凸部の各々の延在方向と上記グリッド部の上記複数の細線の各々の延在方向とを略平行とすることができる。また、上記回折構造部の上記複数の凹部および上記複数の凸部の各々の延在方向と上記グリッド部の上記複数の細線の各々の延在方向とが交差していてもよい。
各凹部および凸部と各細線を交差させた場合には、各凹部と各凸部との段差の近傍における細線の形成がより容易となる。交差させる角度は任意であり、例えば、45°およびこの倍数の90°、135°などに設定することが可能である。
上記した光学素子は、上記基板の端部側に配置された光減衰部を更に備えることも好ましい。この光減衰部は、基板端部に接して配置されてもよいし、基板端部から離間した位置に配置されてもよい。光減衰部は、例えば暗色の樹脂膜や、反射防止膜等である。
これにより、基板中を伝搬して基板端部に到達した反射光を吸収することにより、或いは外部に逃がすことにより、光学素子に閉じ込められる光の強度を低下させることができる。
上記した光学素子は、前記一面の法線方向の前記基板の厚みをT、前記回折構造部で回折した1次回折光が平面視した前記一面で進行する方向の前記基板の幅をW、前記回折構造部で回折した1次回折光が前記法線方向となす回折角をθとしたときに、これらのパラメータが、θ>tan−1(W/2T)、の関係を満たすことも好ましい。
これにより、回折構造部における反射光のうちの1次以上の回折光は、基板における他面で反射回折した後に、基板の幅方向の端面に入射する。したがって、他面で反射回折した光が、一面に直接入射することがなく、回折構造部で再回折しない。よって、再回折した光が光路の前段側へ戻ることがなく、前段側に戻った光による悪影響が抑制される。なお、上記基板の幅Wとしては、例えば凹部が溝状である場合には凹部の延在方向に直交する方向の基板の幅Wを定義すればよい。また、例えば凹部が平面視略長方形の窪み状であり、1次回折光が平面視した一面において進行する方向が複数ある場合には、複数の方向で基板の幅が最小になる方向で基板の幅Wを定義すればよい。
上記した光学素子は、基板の一面側に複数の凹部と複数の凸部とを平坦化する平坦化層を備え、平坦化層の屈折率と基板の屈折率とが略同一であることも好ましい。
これにより、透過光が回折構造部でほとんど回折しなくなり、透過光量の大部分が非回折成分となるため、光の利用効率をより高めることが可能となる。
本発明に係る液晶装置は、光源から入射した光を変調して射出する透過型の液晶装置であって、(a)入射側に配置される第1基板と、(b)射出側に上記第1基板と対向して配置される第2基板と、(c)上記第1基板と上記第2基板との間に設けられる液晶層と、(d)上記第2基板における上記液晶層と反対側に該第2基板と間隙を介して接合され、偏光分離機能を有する光学素子と、を備え、上記光学素子として上記の本発明に係る光学素子が用いられる。
この液晶装置では、液晶層から射出された光が光学素子により偏光分離され、光学素子を透過した光が画像表示等に用いられる。また、光学素子の一面へ入射した光は、回折構造部の作用により、十分に大きな角度で反射回折される。この回折された反射光は、光学素子の基板と間隙との界面において全反射され、基板中を伝搬し、基板端部へ向かう。したがって、グリッド部によって生じた反射光のほとんどが第2基板や液晶層に再度入射することがなく、不要な反射光による悪影響が抑制される。また、光学素子と第2基板とが間隙を介して接合されているので、光学素子の熱が第2基板側に伝わることによる悪影響も抑制される。
上記の液晶装置は、上記第2基板と上記光学素子とが、上記間隙を環状に囲むシール材を介して接合され、上記第2基板、上記光学素子、及び上記シール材により上記間隙が封止されていることが好ましい。
これにより、第2基板と光学素子との間隙に塵埃が入り込むことが防止される。したがって、塵埃が画像光に影となって入り込むことを防止する防塵ガラスを取り付ける必要がなくなり、液晶装置を小型化することが可能になる。
本発明に係る投写型の表示装置は、(a)水銀ランプなどの光源と、(b)偏光分離機能を有し、上記光源の後段側に配置された第1の光学素子と、(c)入射光を変調する機能を有し、上記第1の光学素子の後段側に配置された液晶ライトバルブと、(d)偏光分離機能を有し、上記液晶ライトバルブの後段側に配置された第2の光学素子と、(e)上記第2の光学素子の後段側に配置された投射レンズと、を含み、少なくとも上記第2の光学素子として、上記の本発明に係る光学素子が用いられる。このとき、当該光学素子は、上記回折構造部及び上記グリッド部を設けた一面が後段側に配置される。
少なくとも第2の光学素子として上記光学素子が用いられることにより、グリッド部による反射光が液晶ライトバルブへ入射することを回避できる。それにより、不要な光が入射することによって液晶ライトバルブの安定動作が妨げられることがない。具体的には、例えば液晶ライトバルブに薄膜トランジスタが含まれる場合に、不要な光が入射するとこの薄膜トランジスタに誤動作を生じさせ、表示品質を低下させる等の不都合が考えられる。本発明に係る表示装置によれば、このような不都合が回避される。また、複数の金属細線からなるグリッド部によって偏光分離素子として用いるので、耐光性に優れた表示装置を実現できる。よって、本発明によれば高性能な表示装置を提供することが可能となる。
上記の表示装置において、更に上記第1の光学素子としても上記の本発明に係る光学素子が用いられることも好ましい。このとき、当該光学素子は、上記回折構造部及び上記グリッド部を設けた一面が後段側に配置される。
第1の光学素子として上記光学素子が用いられることにより、グリッド部による反射光が前段側(例えば、光源)へ戻ることを回避できる。また、複数の金属細線からなるグリッド部によって偏光分離素子として用いるので、耐光性に優れた表示装置を実現できる。よって、更に高性能、高品質な表示装置を提供することが可能となる。
好ましくは、上記表示装置は、上記第2の光学素子の後段側であって上記レンズよりも前段側に配置されたフィールドレンズを更に備える。
このようなフィールドレンズを備えることで、より多くの透過回折光を投射レンズへ入射させることが可能となる。それにより、表示画像の明るさをより向上させることが可能となる。
上記表示装置において、上記光源は、レーザー光源であってもよい。
レーザー光源は、光の波長幅が極めて狭いため、本発明に係る光学素子による光の制御性が更に向上する。それにより、表示装置の表示品質を更に高めることが可能となる。
以下、本発明の実施の形態について図面を参照しながら説明する。なお、各図においては、各構成要素を図面上で認識し得る程度の大きさとするため、各構成要素の寸法や比率を実際のものとは適宜に異ならせてある。
図1は、本発明を適用した一実施形態の光学素子の断面構造を示す模式図である。図1に示す本実施形態の光学素子1は、基板2と、回折構造部3と、グリッド部4と、光減衰部5と、を備える。この光学素子1は、グリッド部4の作用により入射光を偏光分離する機能を有する。
基板2は、入射光の波長に対して透明な基板である。基板2としては、例えばガラス基板(石英基板)などの無機材料からなる基板が用いられる。基板2の厚さは、例えば0.7mm程度である。この基板2の一面側に回折構造部3が設けられている。また、基板2の他面は図示のように平面である。
回折構造部3は、基板2の一面側に設けられている。この回折構造部3は、交互に配列された複数の凹部3a及び凸部3bを含む。なお、図中では便宜上、各1つずつの凹部3aおよび凸部3bについて符号を付している。これらの凹部3aおよび凸部3bからなる回折構造部3は図示のようにその断面形状が矩形である。なお、多少のテーパを有する形状であってもよい。本実施形態では、回折構造部3は、基板2の一面側を加工することによって形成されている。すなわち、基板2と回折構造部3とは一体に構成されている。
グリッド部4は、基板2の一面側であって回折構造部3の上面に沿って設けられている。このグリッド部4は、一方向に延在する複数の細線(微細ワイヤー)4aを含む。なお、図中では便宜上、1つの細線4aについてのみ符号を付している。各細線4aは、例えばアルミニウム等の金属膜である。
光減衰部5は、基板2の各端部に設けられている。この光減衰部5は、例えば暗色の樹脂膜である。この光減衰部5には、回折構造部3において生じ、基板2の他面と空気との界面において全反射された回折光が入射する。光減衰部5は、この入射した回折光を吸収し、あるいはその強度を減衰させる。なお、光減衰部5は、基板2の各端部に接して配置される場合のほか、図2に示すように基板2の各端部と離間した位置に設けられてもよい。
図3は、光学素子の他の態様を説明する模式断面図である。図3に示す光学素子1aは、図1に示した光学素子1と同様の構成を有し、更に基板2の他面上に反射防止膜6を有する。この反射防止膜6は、例えば誘電体多層膜である。なお、反射防止膜6以外の構成要素については図1における光学素子1と共通の符号を付しており、それらについての説明を省略する。反射防止膜6を有することにより、基板2の他面側から入射する光の一部成分が反射することを抑制できる。
図4は、光学素子の他の態様を説明する模式断面図である。図4に示す光学素子1bは、図1に示した光学素子1と同様の構成を有し、基板2の各端部に光減衰部5aとして、ARフィルム等からなる反射防止膜が設けられている。ここでは、各端部と離間した位置に光減衰部5aを通った光を吸収する光吸収部材5bが設けられている。反射防止膜を設けた場合には、端部と空気との界面において光の反射率が格段に低くなるので、この界面で反射した光の強度が反射前に比べて減衰される。これにより、端部の界面で反射した光が、グリッド部4に再度入射することが格段に低減される。また、光減衰部5aを通った光は光吸収部5bに吸収され、この光が迷光になることが防止される。光吸収部材5bとしては、放熱板等の冷却手段を有するものであってもよく、これにより光の吸収による熱を管理して逃がすことができる。
図5は、光学素子の他の態様を説明する模式断面図である。図5に示す光学素子1cは、図1に示した光学素子1と同様の構成を有し、基板2の回折構造部3側に平坦化膜3cが設けられている。平坦化膜3cは、凹部3aと凸部3bとの段差を平坦化するものであり、ここでは凹部3a、凸部3b、細線4aを覆って設けられている。平坦化膜3cは、例えば塗布法等の液相法を用いてSOG(Spin On Glass)やポリシラザン等を成膜することにより形成されている。平坦化膜3cは、基板2と屈折率が略同一のものであり、光学素子1bを透過する光は、凹部3aと凸部3bとの段差に影響されなくなる。これにより、光学素子1bを透過する光がほとんど回折されなくなるので、光の利用効率をより高めることが可能となる。
図6は、グリッド部4の一部を拡大して示した模式的な斜視図である。この図6に基づいてグリッド部4の有する機能を説明する。グリッド部4への入射光80は、各細線4aの延在方向(長軸方向)と平行な偏光軸を有する成分p(TE偏光成分)が反射され、各細線4aの延在方向と直交する偏光軸を有する成分s(TM偏光成分)が透過する。すなわち、グリッド部4は入射光80を互いに偏光状態の異なる反射光80rと透過光80tとに分離する機能(偏光分離機能)を有する。本実施形態の光学素子1は、このような偏光分離機能を果たすグリッド部4が基板2の一面側に設けられている。
図7は、回折構造部3の一部を拡大して示した模式的な斜視図である。図7(A)に示すように、回折構造部3は、一方向(図示のY方向)に延在する複数の凹部3aおよび凸部3bを有する。これらの凹部3aおよび凸部3bは、図示のようにストライプ形状となっており、X方向に沿って周期的に配列されている。なお、各凹部3aおよび凸部3bは図7(A)に示したような一次元状の配列に限定されず、例えば図7(B)に示すように各凹部3aおよび凸部3bが二次元状に配列されていてもよい。
図8は、回折構造部3およびグリッド部4の一部を拡大して示した模式断面図である。この図8に基づいて回折構造部3およびグリッド部4の構造を更に詳細に説明する。図示のように、回折構造部3の各凸部3bの相互間隔(凹凸構造の周期)をδ(nm)、グリッド部4の各細線4aの相互間隔(グリッド周期)をd(nm)、入射光の波長をλ(nm)、基板2の構成材料の屈折率をn、基板2の周囲の空気の屈折率をnair(=1)、とする。本実施形態の光学素子1においては、この入射光の波長λと回折構造およびグリッド構造との間には以下の関係がある。
d<λ かつ λ/n<δ≦λ (1)
例えば、入射光の波長がλ=600nm、基板2の構成材料の屈折率がn=1.5(例えば、SiO2の場合)である場合、上記(1)の関係を満たすためには、例えばグリッド周期をd=140nm、凹凸構造の周期をδ=600nm、と設定することができる。また、基板2の周囲に部材を設ける場合には、この部材の屈折率に対する基板2の構成材料の屈折率の比をn(>1)として、グリッド周期、及び凹凸構造の周期を設定することができる。このような光学素子1に対して基板2の他面2bから入射した光は、グリッド部4の作用によって偏光分離される。すなわち、上記のようにTE偏光成分は反射され、TM偏光成分は基板2を透過する。また、これと併せて回折構造部3の作用により、TE偏光成分は大きな角度で回折される。この回折されたTE偏光成分は、空気と基板2との界面で全反射を生じることにより、基板2の内部を伝搬して基板2の端部へ進行する。上記のように基板2に光減衰部5が設けられている場合には、この基板2内部を伝搬したTE偏光成分は光減衰部5によって吸収され、又は強度が低下する。このように回折によって生じたTE偏光成分が基板2と空気との界面において全反射を生じるための条件、すなわち上記(1)式の条件について次に詳述する。
(A)λ/n<δの関係の導出
基板2の内部へm次の回折光が存在するためには、以下の関係式を満足する必要がある。
sinθm=mλ/(nδ)<1 (2)
ただし、図示のように基板2の内部での回折角をθmとする。また、上記のようにλは空気中での入射光の波長、nは基板2の構成材料の屈折率、δは凹凸構造の周期である。基板2の内部へ全ての回折光を閉じこめるとした場合、上記の(2)式において回折次数をm=1とする。これにより、下記の(3)式が導かれる。
λ/n<δ (3)
(B)δ≦λの関係の導出
基板2の内部へm次の回折光を閉じこめるには、回折角θmが臨界角θc(全反射が起こる角度)よりも大きいこと、すなわち基板2と空気との界面におけるm次の回折光の入射角θiが臨界角θcよりも大きいことが必要である。そのためには、以下の式を満足する必要がある。
sinθm=mλ/(nδ)≧sinθc (4)
基板2の内部へ全ての回折光を閉じこめるとした場合、上記の(4)式において回折次数をm=1とする。これにより、下記の(5)式が導かれる。
δ≦λ/(nsinθc) (5)
全反射条件では、nsinθc=1であるから、上記の(5)式は以下のようになる。
δ≦λ (6)
以上の(3)式および(6)式から、λ/n<δ≦λの関係が導かれる。
なお、1次の回折光の回折角θmと臨界角θcとを一致させるのも好ましい。具体的には、以下のようになる。
sinθm=mλ/(nδ)=sinθc (7)
全反射条件では、nsinθc=1であるから、m=1として、上記の(7)式は以下のようになる。
δ=λ (8)
すなわち、入射光の波長λと回折構造部3の凹凸構造の周期δとを等しくすることにより、1次の回折光の回折角θmと臨界角θcとを一致させることができる。
上記の説明は、入射媒質が空気である場合について行ったが、入射媒質が空気と異なる場合に基板2の内部へm次の回折光を閉じこめる条件は以下のようになる。
入射媒質が空気と異なる場合にも、基板2の内部へm次の回折光を閉じこめるには回折角θmが臨界角θcよりも大きいことが必要であり、上記の(4)式、(5)式を満たす必要がある。入射媒質が空気と異なる場合には、全反射条件が入射媒質の屈折率nsを用いてnsinθc=nsで表される。したがって、全反射条件と(5)式から以下の関係が導かれる。
δ≦mλ/ns (9)
このように、入射媒質が空気と異なる場合には、(9)式を用いて凹凸構造の周期の上限を設定することができる。すなわち、(9)式でm=1とおいてσ≦λ/nsの関係を満たす必要があることが分かる。
次に、回折構造部3の凹凸構造の深さ(凹部3aと凸部3bとの段差)についての好適な条件を説明する。図8に示すように凹凸構造の深さをgとする。また、光学素子1に対する入射光が基板2の他面2bに対して垂直となる状況を考える。他面2bで反射した偏光の強度に占めるm次回折光の強度をm次の反射回折効率とする。
TE偏光成分の0次の反射回折成分は、反射により180°折り返されて入射時と同じ光軸に沿って光学素子1から射出される。この成分を最小とする観点から、TE偏光成分の0次の反射回折効率が最小となることが好ましいと考えられる。凹凸構造の周期が波長に比べて十分大きいと仮定しスカラー領域で近似を行うと、反射回折効率の偏光依存性が無視できる。0次反射回折効率が最小となる場合の深さg(以下、便宜上「gh」とする)は、TE偏光成分及びTM偏光成分のいずれについても、以下の式で表される。
gh=λ/4n… (10)
一方、凹凸構造の周期が波長に比べて同程度以下である場合には、反射回折効率の偏光依存性が大きくなるため、ベクトル領域での考察が必要になる。
図9は、偏光を考慮した厳密結合波解析の手法を用いて、凹凸構造の深さに対する反射回折効率の厳密解を求めた結果を示すグラフである。図9(A)には、他面2bに対してほぼ垂直に入射したTE偏光成分の反射回折効率を示しており、図9(B)には、他面2bに対してほぼ垂直に入射したTM偏光成分の反射回折効率を示している。なお、図9(A)、(b)は、λ=633nm、n=1.46に対する解の例である。
TE偏光成分の0次の反射回折効率が極小となるgの値として、(10)式から計算される値はg=108nm程度であるのに対して、図9(A)のグラフから得られる値は190nm程度である。
TM偏光成分の0次の反射回折効率が極小となるgの値として、(10)式から計算される値はg=108nm程度であるのに対して、図9(B)のグラフから得られる値は100nm程度である。
以上のように、凹凸構造の周期が波長に比べて同程度以下である場合には、ベクトル領域での考察結果に基づいてgを設定すればよいことが分かる。
反射光の回折効果が最大となる場合の深さg(以下、便宜上「gr」とする)は近似的に以下の式で与えられる。
gr=(2m+1)λ/4n: m=0,1,2,… (11)
他方、透過光の回折効果が最大となる場合の深さg(以下、便宜上「gt」とする)は近似的に以下の式で与えられる。
gt=(2m+1)λ/2(n-1): m=0,1,2,… (12)
上記の(11)式および(12)式から、反射光の回折効果が最大となる深さgrと透過光の回折効果が最大となる深さgtとは異なることが分かる。したがって、回折構造部3の深さgをgrに等しくすれば、透過光の回折効果を十分に抑えることが可能である。例えば、λ=600nmの場合、m=0に対して、gr=100nm、gt=600nmとなる。ただし、屈折率nが1.5であるとする。そこで、例えば回折構造部3の深さgをgrに等しい100nmと設定したとすると、透過光量の96%が非回折成分とすることができる。例えば、この光学素子1の後段にレンズを配置した場合であれば、ほぼ全ての光をこのレンズへ入射させることができる。
図10は、回折構造部3とグリッド部4を部分的に拡大して示す模式斜視図である。この図に基づき、回折構造部3とグリッド部4との配置関係について説明する。回折構造部3とグリッド部4との相互の配置関係は、例えば図10(A)に示すような態様とすることができる。具体的には、図10(A)に示す例では、回折構造部3の各凹部3aおよび各凸部3bはそれぞれ図示のY方向に沿って延在しており、かつこれらの凹部3aおよび凸部3bはX方向に沿って交互に配置されている。同様に、グリッド部4の各細線4aはそれぞれ図示のY方向に沿って延在しており、かつこれらの細線4aはX方向に沿って交互に配置されている。すなわち、各凹部3aおよび各凸部3bの延在方向と細線4aの延在方向とが平行である。
また、回折構造部3とグリッド部4との相互の配置関係は、図10(B)や図10(C)に示すように、各凹部3aおよび各凸部3bの延在方向と各細線4aの延在方向とがある角度で交差するようにすることも好ましい。具体的には、図10(B)に示す例では、回折構造部3の各凹部3aおよび各凸部3bはそれぞれ図示のY方向に沿って延在しており、かつこれらの凹部3aおよび凸部3bはX方向に沿って交互に配置されている。これに対して、グリッド部4の各細線4aはそれぞれ図示のY方向に対してほぼ45°の角度で交差した方向に沿って延在しており、かつこれらの細線4aは当該交差方向と直交する方向に沿って交互に配置されている。図10(C)に示す例では、回折構造部3の各凹部3aおよび各凸部3bはそれぞれ図示のY方向に沿って延在しており、かつこれらの凹部3aおよび凸部3bはX方向に沿って交互に配置されている。これに対して、グリッド部4の各細線4aはそれぞれ図示のY方向に対してほぼ90°の角度で交差した方向(すなわちX方向)に沿って延在しており、かつこれらの細線4aは当該交差方向と直交する方向(すなわちY方向)に沿って交互に配置されている。このように、各凹部3aおよび凸部3bと各細線4aとの間を交差させることにより、各凹部3aと各凸部3bとの段差の近傍における細線4aの形成がより容易となる。各凹部3aおよび各凸部3bの延在方向と各細線4aの延在方向との交差角度は適宜設定すればよい。上記の一例とした交差角度である45°および90°は、光学系一般においてよく用いられる角度であるために好ましい。
本実施形態の光学素子1は以上のような構成を有しており、次にこの光学素子1の製造方法の一例について説明する。
図11および図12は、光学素子1の製造方法の一例を示す模式工程図である。光学素子1の断面の一部が拡大して示されている。
まず、基板2の一面に凹部3aおよび凸部3bからなる回折構造部3が形成される(図11(A))。本工程は、例えば周知のフォトリソグラフィ技術およびエッチング技術を用いて実現できる。具体的には、基板2の一面上に感光膜(レジスト膜等)を形成しておき、各凹部3aおよび凸部3bに対応した露光パターンを有する露光マスクを用いてこの感光膜を露光し、現像する。その後、この現像後の感光膜をエッチングマスクとして用いて、ドライエッチングまたはウェットエッチングを行う。それにより、露光マスクのパターンが基板2の一面に所定の凹凸形状が形成される。ここで、基板2は、例えば上記のようにガラス基板であり、その板厚は例えば0.7mmである。また、凹部3aと凸部3bとの段差(すなわち回折構造部3の深さg)は、例えば上記のように100nmである。この深さgは、エッチング時間等によって制御する。
次に、基板2の一面上に、各凹部3aおよび凸部3bを覆う金属膜7が形成される(図11(B))。この金属膜7は、後の工程において加工され、上記のグリッド部4を構成する各細線4aとなるものである。金属膜7は、例えばアルミニウム膜、銀膜、ニッケル膜などであり、その膜厚は例えば120nm程度である。このような金属膜7は、例えば真空蒸着法やスパッタリング法などの物理気相堆積法を用いて形成することができる。
次に、基板2の一面上に、金属膜7を覆う反射防止膜8が形成される(図11(C))。この反射防止膜8は、後の工程において感光膜を露光する際に露光精度を向上する目的で用いられる。このような反射防止膜8としては、例えばSiON(酸化窒化硅素)膜、SnO(酸化錫膜)、ITO(インジウム錫酸化物)膜などが適している。反射防止膜8の膜厚は、例えば数十nm程度である。ある膜が反射防止膜として利用できるかどうかはその膜の材料が有する複素屈折率に依存し、例えば、複素屈折率の実部の値が+1.4以上、複素屈折率の虚部の値が−0.1〜−1.5くらいであることが望ましい。
次に、基板2の一面上に、反射防止膜8(又は金属膜7)を覆う感光膜9が形成される(図11(C))。感光膜9は、例えばネガ型またはポジ型のレジスト膜である。感光膜9は、例えばスピンコート法を用いて形成することができる。この感光膜9の膜厚は適宜設定すればよいが、少なくとも各凹部3aおよび凸部3bに重畳する領域を全て覆い、かつ図示のように膜表面がほぼ平坦となるようにすることが望ましい。この場合、回折構造部3の上部(凸部3bに対応する領域)における感光膜9の膜厚と回折構造部3の下部(凹部3aに対応する領域)における感光膜9の膜厚との差は、上記した回折構造部3の深さgとほぼ等しい。
次に、基板2の一面上に形成された感光膜9に対して、レーザー干渉露光が行われる(図12(A))。レーザー干渉露光に用いられる光源としては、例えば波長266nmの連続発振DUV(Deep Ultra Violet)レーザーが挙げられる。このレーザーから出力されるレーザー光を適宜2本のレーザー光に分岐し、図示のように所定の角度θLで交叉させる。それにより、周期的な明暗からなる干渉縞を含む光(干渉光)が発生する。干渉縞のピッチ(明暗の周期)は上記の交叉角度θLによって決まる。例えば、交叉角度θLを72°に設定することにより、干渉縞のピッチを140nmとすることができる。このような干渉光を感光膜9に照射することにより、感光膜9には干渉縞のピッチに対応した潜像パターンが形成される。このとき、上述したように感光膜9の下側に反射防止膜8が設けられていることにより、レーザー光が金属膜7によって反射され、露光精度が低下するという不都合を回避することができる。
次に、干渉光を用いて潜像パターンが形成された感光膜9が現像される(図12(B))。それにより、図示のように干渉縞のピッチに対応した周期を有する感光膜パターン9aが形成される。例えば、干渉縞のピッチを140nmとした場合には、この感光膜パターン9aの周期も概ね140nmとなる。
次に、感光膜パターン9aをマスクとしてエッチング(例えば、ドライエッチング)が行われる(図12(C))。それにより、図示のように感光膜パターン9aのパターンが反射防止膜8に転写され、更に当該パターンが金属膜7に転写される。その後、感光膜パターン9aおよび反射防止膜8が除去される。それにより、図示のように基板2の一面上に、回折構造部3の各凹部3aおよび凸部3bの表面に沿ってグリッド部4(すなわち、各細線4a)が形成される。
なお、上述の製造方法においては、反射防止膜8と金属膜7との間に極薄い膜厚(例えば、20nm程度)のSiO2膜を設けておくことも好ましい。それにより、金属膜7に対するエッチング選択比をより向上させることが可能となり、感光膜9をより薄くすることができる。このことは、潜像パターンが浅くなることを意味し、安定した露光を行う点でより有利になる。この場合には、上記の反射防止膜8を形成する工程の後、金属膜7を形成する工程に先だって、SiO2膜を形成する工程を行えばよい。SiO2膜は、例えば化学気相堆積法によって形成することができる。また、プロセス条件等によっては反射防止膜8を省略することもできる。
上記した本実施形態の光学素子1は、種々の液晶装置に組み込んで用いることができる。以下、液晶装置の一例として、液晶ライトバルブについて説明する。
図13は、本実施形態に係る光学素子を含んで構成される液晶装置の構成例を示す模式図である。図13(A)には液晶ライトバルブ(液晶装置)70の概略斜視図を示しており、図13(B)には液晶装置70の要部断面図を示している。
図13(A)に示すように液晶ライトバルブ70は、入射側に配置される第1基板71と、射出側に配置される第2基板72とを備えている。図13(B)に示すように、第1基板71と第2基板72との間には、液晶層73が設けられている。第2基板72における液晶層73と反対側には、シール材725を介して光学素子727が接合されている。光学素子727は、本実施形態に係る光学素子を含んで構成されている。シール材725は、第2基板72の周縁部と平面的に重ね合わされる枠状のものである。第2基板72と光学素子727との間において、枠状のシール材725に囲まれる領域は間隙726になっている。間隙726は気密封止されており、ここに塵埃が侵入しないようになっている。
第1基板71は、ガラスや石英等からなる透明基板71Aを基体にして形成されている。透明基板71Aの液晶層73側には共通電極711が設けられている。共通電極711と液晶層73との間には、液晶層73の配向状態を制御する配向膜712が設けられている。透明基板71Aにおける液晶層73と反対側には、偏光板713が設けられている。
第2基板72は、例えばアクティブマトリクス型のものであり、ガラスや石英等からなる透明基板72Aを基体にして形成されている。透明基板72Aの液晶層73側には、スイッチング素子として機能する薄膜トランジスタ(以下、TFTと称す)721が設けられている。
TFT721は、例えば多結晶シリコン技術を用いて形成されている。TFT721のソース領域は、データ線(図示略)を介して、画像信号を供給する信号源と電気的に接続されている。TFT721のゲート電極は、走査線(図示略)を介して、走査信号を供給する信号源と電気的に接続されている。
TFT721を覆って層間絶縁膜722が設けられており、層間絶縁膜722において画素と重なる部分には島状の画素電極723が設けられている。層間絶縁膜722には、コンタクトホールが設けられており、画素電極723はコンタクトホールを介してTFT721のドレイン領域と電気的に接続されている。画素電極723と液晶層73との間には、液晶層73の配向状態を制御する配向膜724が設けられている。透明基板72Aにおける液晶層73と反対側には、間隙726を介して光学素子727が設けられている。光学素子727は、TE偏光成分の0次の反射回折効率が最小となるように凹凸の深さが調整されている。
以上のような構成の液晶ライトバルブ70において、TFT721のゲート電極に走査信号が供給されるとTFT721がオンになる。TFT721がオンになると、データ線及びTFT721を介して、画像信号が画素電極723に伝達される。すると、画素電極723と共通電極712との間に画像信号に応じた電圧が印加され、画素ごとに液晶層73に電界が印加される。これにより、液晶層73の液晶分子の方位角が、印加された電界に応じて制御される。
一方、図示略の光源から第1基板71に入射した光は、偏光板713を通ることにより、所定の偏光(例えば、直線偏光)になって液晶層73に入射する。液晶層73に入射した光は、液晶分子の方位角に応じて偏光状態が変化し、例えば液晶層に入射時と異なる方向の直線偏光になって第2基板72に入射する。第2基板72に入射した光は、間隙726を通って光学素子727に入射する。光学素子727に入射した光のTE偏光成分は光学素子727で反射し、そのTM偏光成分は727を透過する。光学素子727を通った光は、TM偏光成分が分離されることにより画像信号に応じた階調の光となる。
光学素子727で反射したTE偏光成分は、上記のように0次の回折光の強度が最小となるようにされている。また、1次以上の回折光が、間隙726と光学素子727との界面で全反射する。以上のように、TE偏光成分のうちのほとんどは、間隙726を通ることが防止されており、TE偏光成分に起因する反射光が第2基板72に再度入射することが格段に低減される。したがって、TFT721に反射光が入射することにより誤作動を生じることや、第1基板71と第2基板72との間に反射光が吸収されることにより発熱を生じること、光源から第1基板71に入射する光と反射光とが干渉することによるコントラスト低下等の悪影響が回避される。
また、第2基板72と光学素子727との間の間隙726が気密封止されており、ここに塵埃が侵入しないので、塵埃により間隙726を通る光に影を生じることが防止される。したがって、塵埃の侵入を防止する防塵ガラス等を設ける必要がなくなり、液晶ライトバルブ70を小型化することが可能になる。また、第2基板72と光学素子727とが間隙726を介していることにより、光学素子727の熱が第2基板72にほとんど伝播しなくなり、液晶ライトバルブ70の耐熱性が向上する。
なお、上記ではTE偏光を反射させTM偏光を画像形成に用いる場合の構成について述べたが、TM偏光を反射させTE偏光を画像形成に用いる構成も可能である。また、本発明の光学素子を適用可能な液晶装置としては、上記の液晶ライトバルブの他に、直視型の液晶表示装置に用いられる液晶装置が挙げられる。
上記した本実施形態の光学素子1は、種々の光学装置に組み込んで用いることもできる。以下、光学装置の一例として、液晶ライトバルブを用いた投写型の表示装置(液晶プロジェクタ)について説明する。なお、本例では上記の液晶装置と異なり、液晶ライトバルブと独立して光学素子1が設けられている。
図14は、本実施形態に係る光学素子を含んで構成される投写型の表示装置の構成例を示す模式図である。図14では原理的な構成を説明するために1つの光学系のみを示している。図14に示す表示装置は、水銀ランプ等の光源50、光学素子51、液晶ライトバルブ(液晶パネル)52、光学素子53、瞳54a、投射レンズ54、を含む。図中の1点鎖線は、光源50から出力される光の光路を示している。この光路上に、光学素子51、液晶ライトバルブ52、光学素子53、投射レンズ54が順に配置されている。この表示装置において、少なくとも光学素子53として本実施形態に係る光学素子が用いられる。
光学素子51は、偏光分離機能を有する素子である。すなわち、光源50から出力された光がこの光学素子51に入射すると、一方の偏光成分だけが透過し、他方の偏光成分は透過しない。光学素子51は、例えば樹脂を一軸延伸する等によって得られる高分子タイプの偏光板である。また、光学素子51は、上記のグリッド部のような微細な多数の細線を透明基板上に設けたものであってもよい。このような構造の光学素子は、耐光性に優れており、入射光のうち各細線と平行な偏光成分を反射し、各細線と直交する偏光成分を透過させる。
液晶ライトバルブ52は、対向配置された2つの透明基板間に液晶材料(液晶層)が配置されている。この液晶ライトバルブ52は、各透明基板に設けられた電極を通じて液晶材料に適宜電圧を印加することにより、液晶分子の配向状態が制御される。この液晶分子の配向状態を制御することにより、光学素子51を透過した光の偏光状態を適宜変化させることができる。この光の偏光状態の変化に基づいて、スクリーン60に投射されるべき画像が形成される。すなわち、液晶ライトバルブ52は、光変調装置(光変調手段)としての機能を果たす。
光学素子53は、上記したように本実施形態に係る光学素子である。この光学素子53は、回折構造部およびグリッド部(図示を省略)が設けられた一面53aが光路の後段側に配置され、これらの回折構造部等が設けられていない他面53bが光路の前段側(光源50側)に配置される。このように配置することにより、液晶ライトバルブ52を透過した光のうち、TE成分が上述したようにして回折および全反射し、光学素子53の基板中を基板端部へ向かって伝搬する。それにより、液晶ライトバルブ52への戻り光が著しく軽減され、液晶ライトバルブ52の誤動作等の不具合を防止することが可能となる。
なお、上記の光学素子51についても本実施形態に係る光学素子が用いられてもよい。その場合には、光学素子53と同様に配置される。すなわち、この場合の光学素子51は、回折構造部およびグリッド部(図示を省略)が設けられた一面51aが光路の後段側(液晶ライトバルブ52側)に配置され、これらの回折構造部等が設けられていない他面51bが光路の前段側(光源50側)に配置される。
これらの光学素子51、液晶ライトバルブ52および光学素子53によって形成された画像は、瞳54aを介して投射レンズ54に入射し、投射レンズ54によって拡大されてスクリーン60に結像する。それにより、拡大された画像がスクリーン60上に表示される。
図15は、図14に示す光学系の変形例である。なお、各図において共通する構成要素については同符号を付しており、それらの説明は省略する。図15に示す投写型の表示装置においては、フィールドレンズ55が更に追加されている。このフィールドレンズ55は、光路上における光学素子53の後段側であって投射レンズ54よりも前段側に(すなわち、光学素子53と投射レンズ54の間に)配置されている。このようなフィールドレンズ55を用いることによって、より多くの透過回折光を投射レンズ54の瞳54aへ集めることが可能となる。よって、スクリーン60上における画像の明るさ(輝度)をより高めることが可能となる。
次に、上記した投写型の表示装置の更なる応用例として、3つの光学系を有する投写型の表示装置の構成例を説明する。なお、以下の各応用例において、上記図14に示した表示装置と共通する構成要素については同符号を付し、それらの詳細な説明は省略する。
図16は、3つの光学系を有する投写型表示装置の構成例を示す模式図である。図16に示す投写型の表示装置は、図示のように、プリズム(光合成手段)56の有する4面のうち、1つの面に光学素子51B、液晶ライトバルブ52B及び光学素子53Bが対向配置され、他の1つの面に光学素子51G、液晶ライトバルブ52G及び光学素子53Gが対向配置され、他の1つの面に光学素子51R、液晶ライトバルブ52R及び光学素子53Rが対向配置されている。
この投写型表示装置においては、光源50から出力された光はダイクロイックミラー58aに入射する。この入射光のうち、青色成分は透過し、残りの成分は反射される。透過した青色成分(以下「青色光」という。)は、ミラー57aによって反射され、光学素子51Bに入射し、液晶ライトバルブ52Bによって適宜変調され、光学素子53Bを通過してプリズム56の1つの面に入射する。また、ダイクロイックミラー58aによって反射された光成分はダイクロイックミラー58bに入射する。この入射光のうち、赤色成分は透過し、緑色成分は反射される。透過した赤色成分(以下「赤色光」という。)は、各ミラー57b、57cによって反射され、光学素子51Rに入射し、液晶ライトバルブ52Rによって適宜変調され、光学素子53Rを通過してプリズム56の他の1面に入射する。反射した緑色成分(以下「緑色光」という。)は、光学素子51Gに入射し、液晶ライトバルブ52Gによって適宜変調され、光学素子53Gを通過してプリズム56の他の1面に入射する。プリズム56の3面にそれぞれ入射した青色光、緑色光、赤色光は、プリズム56によって合成され、当該プリズム56の他の1面から出射する。この出射した合成光が投射レンズ55によって拡大され、スクリーン60上に投射される。
なお、図15に示す光学素子51R、51G、51Bが上記実施形態の光学素子51に相当し、液晶ライトバルブ52R、52G、52Bが上記実施形態の液晶ライトバルブ52に相当し、光学素子53R、53G、53Bが上記実施形態の光学素子53に相当する。各光学素子53R、53G、53Bは、それぞれ回折構造部およびグリッド部が設けられる一面側が光路上の後段側(プリズム側)に配置され、他面側が光路上の前段側(液晶ライトバルブ側)に配置される。また、各光学素子51R、51G、51Bにも回折構造部等を設ける場合には、各光学素子51R、51G、51Bは、それぞれ回折構造部およびグリッド部が設けられる一面側が光路上の後段側(液晶ライトバルブ側)に配置され、他面側が光路上の前段側(ミラー又はダイクロイックミラー側)に配置される。
図17は、3つの光学系を有する投写型表示装置の他の構成例を示す模式図である。この構成例は、上記図12に示した投写型表示装置とは異なり、プリズムを用いないで構成された投写型表示装置である。
この投写型表示装置においては、光源50から出力された光はダイクロイックミラー58aに入射する。この入射光のうち、赤色成分のみが反射され、残りの各成分は透過する。透過した各成分は、ダイクロイックミラー58bに入射する。この入射光のうち、緑色成分(緑色光)は反射され、青色成分(青色光)は透過する。透過した青色光は光学素子51Bに入射し、液晶ライトバルブ52Bによって適宜変調され、光学素子53Bを通過してミラー57bに入射する。ミラー57bに入射した青色光は反射され、ダイクロイックミラー58dに入射し、当該ダイクロイックミラー58dによって反射され、投射レンズ55に入射する。また、ダイクロイックミラー58aによって反射された赤色光はミラー57aに入射し、反射される。この反射された赤色光は光学素子51Rに入射し、液晶ライトバルブ52Rによって適宜変調され、光学素子53Rを通過してダイクロイックミラー58cに入射する。ダイクロイックミラー58cに入射した赤色光は、当該ダイクロイックミラー58cを透過してダイクロイックミラー58dに入射する。ダイクロイックミラー58dに入射した赤色光は当該ダイクロイックミラー58dを透過し、投射レンズ55に入射する。また、ダイクロイックミラー58bによって反射された緑色光は光学素子51Gに入射し、液晶ライトバルブ52Gによって適宜変調され、光学素子53Gを通過してダイクロイックミラー58cに入射する。ダイクロイックミラー58cに入射した緑色光は当該ダイクロイックミラー58cに反射され、ダイクロイックミラー58dに入射し、当該ダイクロイックミラー58dを透過し、投射レンズ55に入射する。このようにして最終的に合成され、投射レンズ55に入射した合成光(青色光、緑色光、赤色光の合成光)が投射レンズ55によって拡大され、スクリーン60上に投射される。
本例においても、光学素子51R、51G、51Bが上記実施形態の光学素子51に相当し、液晶ライトバルブ52R、52G、52Bが上記実施形態の液晶ライトバルブ52に相当し、光学素子53R、53G、53Bが上記実施形態の光学素子53に相当する。各光学素子53R、53G、53Bは、それぞれ回折構造部およびグリッド部が設けられる一面側が光路上の後段側(ミラー又はダイクロイックミラー側)に配置され、他面側が光路上の前段側(液晶ライトバルブ側)に配置される。また、各光学素子51R、51G、51Bにも回折構造部等を設ける場合には、各光学素子51R、51G、51Bは、それぞれ回折構造部およびグリッド部が設けられる一面側が光路上の後段側(液晶ライトバルブ側)に配置され、他面側が光路上の前段側(ミラー又はダイクロイックミラー側)に配置される。
なお、上記図16、図17に示す実施形態の投写型表示装置においても、更にフィールドレンズを備えることも好ましい(図15参照)。また、各実施形態の投写型表示装置において、光源50はレーザー光源であってもよい。その場合、光の波長幅が極めて狭いため、本実施形態に係る光学素子による光の制御性が更に向上する。
また、各光学素子は、それぞれが対象とする光の波長λに応じて回折構造部およびグリッド部の構造が最適化されることも好ましい。例えば、上記図16又は図17に示す光学系において、青色光に対応する光学素子53Bに対しては波長λを450nm、緑色光に対応する光学素子53Gに対しては波長λを550nm、赤色光に対応する光学素子53Rに対しては波長λを650nmとして上記(1)式〜(12)式の各関係式を適用することにより、各光学素子の構造を各波長ごとに最適化することができる。
このように、本実施形態の光学素子によれば、グリッド部の作用により入射光のうち一方の偏光成分が反射され、他方の偏光成分が透過する。また、この反射される偏光成分(反射光)は、回折構造部の作用により、十分に大きな角度で回折される。上記したパラメータの関係が満たされることにより、この回折された反射光は、基板の他面とその周囲の媒体(例えば空気)との界面において全反射され、基板中を伝搬し、基板端部へ向かう。したがって、本発明に係る光学素子を所望の光学系に用いた際には、グリッド部によって生じた反射光が光路の前段側へ戻ることがなく、不要な反射光による悪影響が抑制される。
また、本実施形態の投写型表示装置によれば、少なくとも液晶ライトバルブの後段側の光学素子として回折構造部とグリッド部とを有する上記の光学素子が用いられることにより、グリッド部による反射光が液晶ライトバルブへ入射することを回避できる。それにより、不要な光が入射することによって液晶ライトバルブの安定動作が妨げられることがない。また、複数の金属細線からなるグリッド部によって偏光分離素子として用いるので、耐光性に優れた表示装置を実現できる。よって、本発明によれば高性能な表示装置を提供することが可能となる。また、液晶ライトバルブの前段側の光学素子としても回折構造部とグリッド部とを有する上記の光学素子が用いられた場合には、更に高性能、高品質な表示装置を提供することが可能となる。
なお、本発明は上述した実施形態の内容に限定されず、本発明の要旨の範囲内において種々に変形して実施をすることが可能である。
例えば、上述した実施形態では、基板の一面側に対してエッチング等の加工を行うことによって回折構造部を形成していたが、他の製造方法を採用することも可能である。具体的には、基板の一面上にポリマー(高分子樹脂)膜を形成し、その後このポリマー膜に対してフォトマスク露光およびウェットエッチングを行うことによって、上記と同様な光学素子を形成することも可能である。この方法によって形成した光学素子の構造例を図14に示す。図18に示す光学素子101は、ガラス等の基板102の一面側に、ポリマー膜を用いて形成された回折構造部103が配置されている。回折構造部103は凹部103aおよび凸部103bを含み、これらの凹部103aおよび凸部103bの表面に沿って、複数の細線104aからなるグリッド部104が配置されている。また、これ以外にも、型成形が可能な光屈折率ガラス(n=2.0程度)を用いて、回折構造部を有する基板を一体成形してもよい。この場合、屈折率が高いことにより、回折構造部の深さgをより小さくすることが可能となるので、グリッド部を形成する上で好ましい。また、基板上に他の膜(例えば、SiO2などの無機膜)を形成し、この膜を選択的にエッチングすることにより回折構造部を形成することもできる。この方法によって形成された光学素子の構造例を図19に示す。図19に示す光学素子111は、ガラス等の基板112の一面側に、SiO2などの膜を用いて形成された回折構造部113が配置されている。回折構造部113は凹部113aおよび凸部113bを含み、これらの凹部113aおよび凸部113bの表面に沿って、複数の細線114aからなるグリッド部114が配置されている。
また、上述した実施形態では、光学素子の用途の一例として投写型表示装置を例示していたが、本発明に係る光学素子の応用例はこれに限定されるものではない。投写型表示装置は本発明に係る光学素子を備える光学装置の一例に過ぎない。本発明に係る光学素子は、他にも例えば偏光分離層を必要とする液晶ディスプレイへも適用することが可能である。もちろん、本発明に係る光学素子の表示用途の光学装置に限定されず、偏光分離機能を必要とする種々の光学装置一般に対し、本発明に係る光学素子を用いることが可能である。
一実施形態の光学素子の断面構造を示す模式図である。 一実施形態の光学素子の断面構造を示す模式図である。 一実施形態の光学素子の断面構造を示す模式図である。 一実施形態の光学素子の断面構造を示す模式図である。 一実施形態の光学素子の断面構造を示す模式図である。 グリッド部の一部を拡大して示した模式的な斜視図である。 回折構造部の一部を拡大して示した模式的な斜視図である。 回折構造部およびグリッド部の一部を拡大して示した模式断面図である。 凹凸構造の深さに対する反射回折効率を示すグラフである。 回折構造部とグリッド部を部分的に拡大して示す模式平面図である。 光学素子の製造方法の一例を示す模式工程図である。 光学素子の製造方法の一例を示す模式工程図である。 液晶装置の構成例を示す模式図である。 投写型の表示装置の構成例を示す模式図である。 投写型の表示装置の構成例を示す模式図である。 3つの光学系を有する投写型表示装置の構成例を示す模式図である。 3つの光学系を有する投写型表示装置の構成例を示す模式図である。 他の実施形態の光学素子の断面構造を示す模式図である。 他の実施形態の光学素子の断面構造を示す模式図である。
符号の説明
1:光学素子、2:基板、3:回折構造部、3a:凹部、3b:凸部、4:グリッド部、4a:細線、5:光減衰部、6:反射防止膜、7:金属膜、8:反射防止膜、9:感光膜、50:光源、51R、51G、51B:光学素子、52R、52G、52B:液晶ライトバルブ、53R、53G、53B:光学素子、54:投射レンズ、55:フィールドレンズ、56:プリズム、70:液晶ライトバルブ(液晶装置)、71:第1基板、72:第2基板、73:液晶層、725:シール材、726:間隙、727:光学素子

Claims (13)

  1. 入射光を偏光分離する機能を有する光学素子であって、
    前記入射光に対して透明な基板と、
    断面形状が矩形であり交互に配列された複数の凹部及び凸部を含み、前記基板の一面側に設けられた回折構造部と、
    一方向に延在する複数の細線を含み、前記基板の一面側であって前記回折構造部の上面に沿って設けられたグリッド部と、
    を備え、
    前記入射光の波長をλ、前記複数の細線の相互間隔をd、前記複数の凸部の相互間隔をδ、前記基板の構成材料の屈折率をnとしたときに、これらのパラメータが、d<λ、かつ、λ/n<δ≦λ、の関係を満たす、
    光学素子。
  2. mを0以上の整数としたときに、前記回折構造部の前記凹部と前記凸部との段差が(2m+1)λ/4nと設定された、
    請求項1に記載の光学素子。
  3. 前記回折構造部の前記複数の凹部および前記複数の凸部の各々の延在方向と前記グリッド部の前記複数の細線の各々の延在方向とが略平行である、
    請求項1に記載の光学素子。
  4. 前記回折構造部の前記複数の凹部および前記複数の凸部の各々の延在方向と前記グリッド部の前記複数の細線の各々の延在方向とが交差している、
    請求項1に記載の光学素子。
  5. 前記基板の端部側に配置された光減衰部を更に備える、
    請求項1に記載の光学素子。
  6. 前記一面の法線方向の前記基板の厚みをT、前記回折構造部で回折した1次回折光が平面視した前記一面で進行する方向の前記基板の幅をW、前記回折構造部で回折した1次回折光が前記法線方向となす回折角をθとしたときに、これらのパラメータが、θ>tan−1(W/2T)、の関係を満たす、
    請求項1に記載の光学素子。
  7. 前記基板の一面側に前記複数の凹部と前記複数の凸部とを平坦化する平坦化層を備え、前記平坦化層の屈折率と前記基板の屈折率とが略同一である、
    請求項1に記載の光学素子。
  8. 光源から入射した光を変調して射出する透過型の液晶装置であって、
    入射側に配置される第1基板と、
    射出側に前記第1基板と対向して配置される第2基板と、
    前記第1基板と前記第2基板との間に設けられる液晶層と、
    前記第2基板における前記液晶層と反対側に該第2基板と間隙を介して接合され、偏光分離機能を有する光学素子と、
    を備え、
    前記光学素子として請求項1乃至請求項7の何れか1項に記載の光学素子が用いられる、
    液晶装置。
  9. 前記第2基板と前記光学素子とが、前記間隙を環状に囲むシール材を介して接合され、
    前記第2基板、前記光学素子、及び前記シール材により前記間隙が封止されている、
    請求項8に記載の液晶装置。
  10. 投写型の表示装置であって、
    光源と、
    偏光分離機能を有し、前記光源の後段側に配置された第1の光学素子と、
    入射光を変調する機能を有し、前記第1の光学素子の後段側に配置された液晶ライトバルブと、
    偏光分離機能を有し、前記液晶ライトバルブの後段側に配置された第2の光学素子と、
    前記第2の光学素子の後段側に配置された投射レンズと、
    を含み、
    前記第2の光学素子として請求項1乃至請求項7の何れか1項に記載の光学素子が用いられ、かつ当該光学素子は前記回折構造部及び前記グリッド部を設けた一面が後段側に配置される、
    表示装置。
  11. 更に、前記第1の光学素子として請求項1乃至請求項7の何れか1項に記載の光学素子が用いられ、かつ当該光学素子は前記回折構造部及び前記グリッド部を設けた一面が後段側に配置される、
    請求項10に記載の表示装置。
  12. 前記第2の光学素子の後段側であって前記投射レンズよりも前段側に配置されたフィールドレンズを更に備える、
    請求項10又は11に記載の表示装置。
  13. 前記光源がレーザー光源である、
    請求項10乃至請求項12の何れか1項に記載の表示装置。
JP2008198507A 2007-08-10 2008-07-31 光学素子、液晶装置、表示装置 Active JP5040847B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008198507A JP5040847B2 (ja) 2007-08-10 2008-07-31 光学素子、液晶装置、表示装置
US12/187,215 US7755718B2 (en) 2007-08-10 2008-08-06 Optical element, liquid crystal device, and display
US12/790,252 US7885004B2 (en) 2007-08-10 2010-05-28 Optical element, liquid crystal device, and display

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007210244 2007-08-10
JP2007210244 2007-08-10
JP2008198507A JP5040847B2 (ja) 2007-08-10 2008-07-31 光学素子、液晶装置、表示装置

Publications (2)

Publication Number Publication Date
JP2009064005A true JP2009064005A (ja) 2009-03-26
JP5040847B2 JP5040847B2 (ja) 2012-10-03

Family

ID=40558589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008198507A Active JP5040847B2 (ja) 2007-08-10 2008-07-31 光学素子、液晶装置、表示装置

Country Status (1)

Country Link
JP (1) JP5040847B2 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011123474A (ja) * 2009-11-16 2011-06-23 Seiko Epson Corp 偏光素子及びプロジェクター
JP2011128135A (ja) * 2009-11-19 2011-06-30 Seiko Epson Corp センサーチップ、センサーカートリッジ及び分析装置
JP2011141264A (ja) * 2009-12-11 2011-07-21 Seiko Epson Corp センサーチップ、センサーカートリッジ及び分析装置
JP2011170136A (ja) * 2010-02-19 2011-09-01 Seiko Epson Corp 偏光素子及びプロジェクター
JP2011170135A (ja) * 2010-02-19 2011-09-01 Seiko Epson Corp 偏光素子及びプロジェクター
JP2012063155A (ja) * 2010-09-14 2012-03-29 Seiko Epson Corp 光デバイスユニット及び検出装置
JP2012063156A (ja) * 2010-09-14 2012-03-29 Seiko Epson Corp 光デバイスユニット及び検出装置
JP2012063154A (ja) * 2010-09-14 2012-03-29 Seiko Epson Corp 検出装置
JP2012150370A (ja) * 2011-01-21 2012-08-09 Hitachi High-Technologies Corp 回折格子,キャピラリアレイ電気泳動装置,液体クロマトグラフ,分光光度計,生化学自動分析装置
US8415611B2 (en) 2009-11-19 2013-04-09 Seiko Epson Corporation Sensor chip, sensor cartridge, and analysis apparatus
US8553220B2 (en) 2010-05-13 2013-10-08 Seiko Epson Corporation Optical device and analyzing apparatus
JP2017067896A (ja) * 2015-09-29 2017-04-06 東芝ライテック株式会社 紫外線照射装置
JP7492675B2 (ja) 2020-04-30 2024-05-30 大日本印刷株式会社 光学構造体、光学構造体付き偏光板、光学構造体付き表示パネル及び光学構造体付き表示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003090908A (ja) * 2001-09-18 2003-03-28 Toppan Printing Co Ltd 光反射シートおよび光透過シート、並びにそれらを用いた表示体
JP2005266188A (ja) * 2004-03-18 2005-09-29 Nikon Corp 拡散素子及び照明装置
JP2006133275A (ja) * 2004-11-02 2006-05-25 Sony Corp 偏光子、液晶パネルおよび投射型表示装置
JP2006285222A (ja) * 2005-03-09 2006-10-19 Konica Minolta Holdings Inc 回折光学素子及び光通信モジュール
JP2007114358A (ja) * 2005-10-19 2007-05-10 Seiko Epson Corp 照明装置および画像表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003090908A (ja) * 2001-09-18 2003-03-28 Toppan Printing Co Ltd 光反射シートおよび光透過シート、並びにそれらを用いた表示体
JP2005266188A (ja) * 2004-03-18 2005-09-29 Nikon Corp 拡散素子及び照明装置
JP2006133275A (ja) * 2004-11-02 2006-05-25 Sony Corp 偏光子、液晶パネルおよび投射型表示装置
JP2006285222A (ja) * 2005-03-09 2006-10-19 Konica Minolta Holdings Inc 回折光学素子及び光通信モジュール
JP2007114358A (ja) * 2005-10-19 2007-05-10 Seiko Epson Corp 照明装置および画像表示装置

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8350992B2 (en) 2009-11-16 2013-01-08 Seiko Epson Corporation Polarization element and projector
JP2011123474A (ja) * 2009-11-16 2011-06-23 Seiko Epson Corp 偏光素子及びプロジェクター
JP2011128135A (ja) * 2009-11-19 2011-06-30 Seiko Epson Corp センサーチップ、センサーカートリッジ及び分析装置
JP2011128133A (ja) * 2009-11-19 2011-06-30 Seiko Epson Corp センサーチップ、センサーカートリッジ及び分析装置
US9151666B2 (en) 2009-11-19 2015-10-06 Seiko Epson Corporation Sensor chip, sensor cartridge, and analysis apparatus
US8710427B2 (en) 2009-11-19 2014-04-29 Seiko Epson Corporation Sensor chip, sensor cartridge, and analysis apparatus
US8415611B2 (en) 2009-11-19 2013-04-09 Seiko Epson Corporation Sensor chip, sensor cartridge, and analysis apparatus
JP2011141264A (ja) * 2009-12-11 2011-07-21 Seiko Epson Corp センサーチップ、センサーカートリッジ及び分析装置
JP2011141265A (ja) * 2009-12-11 2011-07-21 Seiko Epson Corp センサーチップ、センサーカートリッジ及び分析装置
US8696131B2 (en) 2010-02-19 2014-04-15 Seiko Epson Corporation Polarization element and projector
US8300158B2 (en) 2010-02-19 2012-10-30 Seiko Epson Corporation Polarization element and projector
JP2011170135A (ja) * 2010-02-19 2011-09-01 Seiko Epson Corp 偏光素子及びプロジェクター
JP2011170136A (ja) * 2010-02-19 2011-09-01 Seiko Epson Corp 偏光素子及びプロジェクター
US8553220B2 (en) 2010-05-13 2013-10-08 Seiko Epson Corporation Optical device and analyzing apparatus
JP2012063154A (ja) * 2010-09-14 2012-03-29 Seiko Epson Corp 検出装置
JP2012063156A (ja) * 2010-09-14 2012-03-29 Seiko Epson Corp 光デバイスユニット及び検出装置
JP2012063155A (ja) * 2010-09-14 2012-03-29 Seiko Epson Corp 光デバイスユニット及び検出装置
JP2012150370A (ja) * 2011-01-21 2012-08-09 Hitachi High-Technologies Corp 回折格子,キャピラリアレイ電気泳動装置,液体クロマトグラフ,分光光度計,生化学自動分析装置
JP2017067896A (ja) * 2015-09-29 2017-04-06 東芝ライテック株式会社 紫外線照射装置
JP7492675B2 (ja) 2020-04-30 2024-05-30 大日本印刷株式会社 光学構造体、光学構造体付き偏光板、光学構造体付き表示パネル及び光学構造体付き表示装置

Also Published As

Publication number Publication date
JP5040847B2 (ja) 2012-10-03

Similar Documents

Publication Publication Date Title
JP5040847B2 (ja) 光学素子、液晶装置、表示装置
US7885004B2 (en) Optical element, liquid crystal device, and display
US8593593B2 (en) Polarization element, projector, liquid crystal device, electronic apparatus, and method of manufacturing polarization element
JP4497041B2 (ja) ワイヤーグリッド偏光子の製造方法
US8773615B2 (en) Liquid crystal device and projector
JP6450965B2 (ja) マイクロレンズアレイ基板、マイクロレンズアレイ基板を備えた電気光学装置、及び投写型表示装置
JP2009015305A (ja) 光学素子及び投写型表示装置
JP2003131013A (ja) レンズアレイ基板及び液晶表示装置
JP4501813B2 (ja) 光学素子の製造方法、投射型表示装置
JP5256941B2 (ja) 液晶装置およびプロジェクタ
JP6460148B2 (ja) 電気光学装置および電子機器
JP4968234B2 (ja) 光学素子及び表示装置
JP5359128B2 (ja) 偏光素子及びその製造方法
JP2010160504A (ja) プロジェクタ
TWI744383B (zh) 液晶顯示裝置及投射型顯示裝置
JP5182060B2 (ja) 偏光素子および偏光素子の製造方法、液晶装置、電子機器および投射型表示装置
JP2010160503A (ja) 液晶装置
JP7266031B2 (ja) 液晶表示装置及び投射型表示装置
JP4449841B2 (ja) ワイヤーグリッド偏光子の製造方法、液晶装置、プロジェクタ
JP2008145649A (ja) 液晶表示装置および投射型表示装置
JP2014092600A (ja) マイクロレンズアレイ基板の製造方法、マイクロレンズアレイ基板、電気光学装置、および電子機器
JP2018185417A (ja) 電気光学装置および電子機器
JP7491851B2 (ja) 表示素子及び投射型表示装置
JP4830598B2 (ja) パターンの形成方法及びデバイスの製造方法
JPH11326931A (ja) 反射型表示素子、投射型表示装置および基板の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110324

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120625

R150 Certificate of patent or registration of utility model

Ref document number: 5040847

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350