JP2009038359A - 露光装置およびデバイス製造方法 - Google Patents

露光装置およびデバイス製造方法 Download PDF

Info

Publication number
JP2009038359A
JP2009038359A JP2008177422A JP2008177422A JP2009038359A JP 2009038359 A JP2009038359 A JP 2009038359A JP 2008177422 A JP2008177422 A JP 2008177422A JP 2008177422 A JP2008177422 A JP 2008177422A JP 2009038359 A JP2009038359 A JP 2009038359A
Authority
JP
Japan
Prior art keywords
substrate
measurement
measurement points
exposure
exposure apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008177422A
Other languages
English (en)
Inventor
Yuji Kosugi
祐司 小杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2008177422A priority Critical patent/JP2009038359A/ja
Publication of JP2009038359A publication Critical patent/JP2009038359A/ja
Priority to US12/498,176 priority patent/US20100002218A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B27/00Photographic printing apparatus
    • G03B27/32Projection printing apparatus, e.g. enlarger, copying camera
    • G03B27/42Projection printing apparatus, e.g. enlarger, copying camera for automatic sequential copying of the same original
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7023Aligning or positioning in direction perpendicular to substrate surface
    • G03F9/7034Leveling
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7092Signal processing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

【課題】露光装置の表面位置計測方法において、基板の表面の反射率分布に起因した誤差の影響を低減する。
【解決手段】基板上の複数のショット領域の複数の計測ポイントそれぞれに関して基板の表面の部分領域の位置を計測する計測手段に前記位置を計測させ、該計測された位置に基づいて前記基板のグローバルな形状を求め、該求められたグローバルな形状に基づいて前記複数の計測ポイントそれぞれに関して補正値を算出し、前記複数の計測ポイントに関してそれぞれ対応する前記補正値で補正された計測値に基づいてステージを移動させる制御手段を有し、前記制御手段は、前記複数の計測ポイントの前記計測された位置の再現性に基づいて、前記複数の計測ポイントから一部を選択し、該選択された一部に関する前記計測された位置の重みを他の計測ポイントに関する前記計測された位置の重みより大きくして前記補正値を算出する。
【選択図】図9

Description

本発明は、半導体デバイス等のデバイスの製造に使用する露光装置およびデバイス製造方法に関する。
一般に、半導体素子、液晶表示素子、薄膜磁気ヘッド等をリソグラフィ工程で製造する際に、マスク又はレチクル(以下「レチクル」と総称する)パターンを、投影光学系を介して感光基板上に結像する露光装置が使用される。
露光装置においては、集積回路の微細化、高密度化に伴いレチクル面上の回路パターンを基板の表面上に、より高い解像力で投影露光することが要求される。
回路パターンの投影解像力は、投影光学系の開口数(NA)と露光波長に依存する。
そこで、露光波長を固定にして投影光学系のNAを大きくする方法が行われている。
また、露光波長においては、例えば、g線よりi線、i線よりエキシマレーザー発振波長、エキシマレーザー発振波長においても、248nm、193nm、更には157nmというように短波長化の取り組みが行われている。更に、露光面積の大画面化も進んでいる。
これらを達成する手段として、ほぼ正方形状に近い露光領域を基板の表面上に縮小して一括投影露光する方式のステッパーがある。また、露光領域を矩形、又は円弧のスリット形状とし、レチクルと基板を相対的に高速走査して大画面を精度良く露光する走査型露光装置、通称スキャナーがある。スキャナーは、走査露光スリット単位で基板の表面形状を最適露光像面位置に合わせ込むため、基板平面度の影響も低減できる効果を有する。スキャナーは、ステッパーと同等のレンズを使いながら、露光領域と、NAを、大きくすることができる。そのため、スキャナーは露光装置の主流となってきている。スキャナーは、走査露光スリット毎に基板の表面を露光像面位置にリアルタイムで合わせ込む。
そのために、露光スリットに差し掛かる前に、基板の表面位置を表面位置計測器を用いて計測し、駆動を補正する。表面位置計測器としては、斜入射光計測方式が多く用いられている。斜入射光計測方式では、基板の表面に光束を斜め方向から入射させ、基板の表面からの反射光の反射点の位置変化を、ポジションセンサ上への位置変化量として計測する。基板の表面の反射点位置を計測スポットと呼ぶ。露光スリットの長手方向、走査方向と直交方向には高さのみならず、表面の傾きを計測すべく複数の計測スポットを有している。
図11では、走査露光スリット900の前後に表面位置計測器の計測スポット901,902,903,904,905,906をそれぞれ三点ずつ有している。
図12では、走査露光スリット900の前後に表面位置計測器の計測スポット907,908,909,910,911,912,913,914,915,916を五点ずつ有している。
前後にフォーカス計測系を有することで、露光の為の走査が、図11、図12においては前後両方向から行われ、露光する前に基板のフォーカス計測が可能になっている。
また、図1のツインステージタイプの露光装置では、図2に示されるように多点の計測スポット4aを一列に並べたフォーカス計測系を露光装置とは別に構成して、基板4の面位置を事前に求める。高NA化に伴ってより狭くなった縮小投影光学系の許容深度内に確実に基板4の被露光領域全体を位置付ける必要がある。
そのための方法として、特開平09−045608号公報では、局所的なパターン段差(凹凸)の影響を除去して基板表面のグローバルな形状を求める。そして、計測スポットごとに、計測値(高さ)と当該グローバル形状から得られる対応する値(高さ)との差分を計測値に対する補正値とする。
特開平09−045608号公報
近年のネットワーク社会の広がりと共にLSIに対する(高集積化、チップサイズの縮小、高速化、低消費電力化等の高性能化の要求は厳しさを増している。こうした要求に対して、半導体国際ロードマップ(ITRS)にのっとり、世代毎に配線の更なる微細化と多層化の実現を推し進めた結果、新たな課題も現出している。配線の微細化に伴い、従来プロセスの延長では、配線層における信号遅延が大きくなり、LSIの高速化が妨げられる。配線遅延時間は配線抵抗と配線間容量に比例する。そのため、LSIのさらなる高性能化には配線の低抵抗化と配線間容量の低減が必要不可欠となる。
そこで、配線遅延時間の対策として、銅配線による低抵抗化が普及してきた。配線間容量の低減に関しては、層間絶縁膜の低誘電率化が必要である。低誘電率化には耐熱性を有する材料に空孔(空気の比誘電率:1)を導入する方法が一般的であり、多孔質(ポーラス)化と呼ばれる。銅はこれまで広く利用されてきたドライエッチング法による配線形成が困難であるため、ダマシン法が採用されている。ダマシン法では層間絶縁膜に配線用の溝をあらかじめ形成しておき、この上に銅を堆積する。その後、配線溝以外の銅をCMP(化学機械研磨)によって除去して、銅配線を形成する。このとき、多孔質化した層間絶縁膜の機械強度が低いと、CMPプロセス時のストレスで剥離や膜内部での破壊が多発する。
その対策の一つとして、多孔質化した層間絶縁膜にダミーの銅配線パターンを埋め込んで機械強度を高める方法がある。ダミーの銅配線パターンは基板の表面の全域で、機械強度を一様にするように埋め込まれている。
ここで、前述したように、露光装置の表面位置計測器としては光計測方式が多く用いられている。光計測方式の表面位置計測器は、次の場合に計測誤差が生じることが判っている。
基板上に塗布されたレジスト表面で反射した光と、レジストを透過して基板の表面で反射した光が干渉をおこす場合に計測誤差が生じる。さらに、前工程で基板の表面上に形成されたパターンがある場合、基板の表面で反射した光は、パターンの影響をうけてパターンの反射率分布に応じた分布を持つ場合に計測誤差が生じる。干渉、反射率、いずれについても基板からの反射光強度に占めるパターンでの反射光強度の割合が増大して、計測誤差量が相対的に大きくなる。この影響は、計測スポット領域内での反射率分布が部分的に異なった場合において生じることとなる。
微細化によるフォーカス深度の浅薄化に加え、レジスト膜圧の薄膜化による干渉影響の増大、銅配線など高反射率配線の使用により、基板の表面内の反射率分布に起因した誤差の影響は従来と比較して益々大きな課題となってきている。
これを図5、及び図6を用いて反射率分布のフォーカス計測に与える影響について説明する。図5(A)、(B)は、レジスト503が塗布された基板の模式図である。前工程で形成されたパターン501はメタル等からなる高い反射率を有する。
パターン502は層間絶縁膜等で形成されていて、パターン501よりも低い反射率を有する。ビーム径が一定で、且つビーム径内の強度分布が一様な光束504を入射する。この光束504がレジスト503の表面、パターン501及びパターン502の表面で反射して、ビーム径内で異なった強度分布を示す反射光束505又は506を形成する。
図6(A)、(B)はレジスト503、パターン501及びパターン502の表面で反射して形成された反射光束505及び506が受光素子上に結像した状態での強度分布を示すグラフ図である。
図5において、ビーム径が一定でビーム径内の強度分布が一様な光束504の反射光束は、次の2通りの成分にわけられる。一つは、レジスト503の表面で反射する成分510及び511である。もう一つは、レジスト503を透過してパターン501、及びパターン502の表面で反射した後、再びレジスト503外に出て行く成分512及び513である。
この様に、反射光束505,506はレジスト503の表面で反射された成分510とパターン501の表面で反射された成分512とが合成される。これと共に、レジスト503の表面で反射された成分511とパターン502の表面で反射された成分513とが合成された光束になる。
従って、図5(A)、(B)においてパターン501の下地反射率がパターン502の反射率よりも大きい場合、図6(A)、(B)に示すようにビーム径内で異なった強度分布602を示す反射光束505、506が形成されることになる。ここで、図5(A)と図6(A)、図5(B)と図6(B)とが対応しており、入射光束のビーム径内に配置されるパターンの位置によって、反射光束のビーム径内の強度分布が変化することになる。
光計測方式の表面位置計測器では、例えばCCD等の位置検出素子を使って、このビーム径内で異なった強度分布を示す反射光束の重心601の位置を反射光束の素子への入射位置として計測するように設定される。
このとき、基板が同じ位置にあるときには、通常は反射光束の重心位置は変わらない。しかし、パターン501とパターン502が基板上に存在することで、パターン501、パターン502と入射光束の相対的な位置関係により、反射光束の強度分布の重心601は、図6(A)、(B)に示す様に異なる。そして、測定値はパターン501とパターン502の配置に応じた固有の検出誤差をもつことになる。即ち、パターン構造が異なる工程固有の検出誤差が生じることになっていた。同様の理屈で、例えばパターン501が層間絶縁膜等、光束を透過する場合においては透過しないパターン502とは干渉状態が変化し、同一の下地反射率を持っていたとしても、干渉による反射率は変化することとなる。
この現象が起こった場合も、反射光束強度分布の重心601は図5(A)、(B)に示す様に異なってしまう。
そこで、本発明は、基板の表面の反射率分布に起因した誤差の影響を低減することを目的とする。
上記課題を解決するための本発明は、基板を保持して移動するステージと、
前記基板に光を投影する投影光学系と、
前記投影光学系の光軸の方向に関して前記基板の表面の部分領域の位置を計測する計測手段とを備え、前記基板上のショット領域を露光する露光装置であって、
基板上の複数のショット領域それぞれのうちの複数の計測ポイントそれぞれに関して前記計測手段に前記位置を計測させ、該計測された位置に基づいて前記基板のグローバルな形状を求め、該求められたグローバルな形状に基づいて前記複数の計測ポイントそれぞれに関して補正値を算出し、前記複数の計測ポイントに関してそれぞれ対応する前記補正値で補正された計測値に基づいて前記ステージを移動させる制御手段を有し、
前記制御手段は、前記複数の計測ポイントそれぞれに関する前記計測された位置の再現性に基づいて、前記複数の計測ポイントから一部を選択し、該選択された一部に関する前記計測された位置の重みを他の計測ポイントに関する前記計測された位置の重みより大きくして前記補正値を算出する、
ことを特徴とする露光装置である。
本発明によれば、基板の表面の反射率分布に起因した誤差の影響を低減することができる。
以下、図面を参照して、本発明の実施例を説明する。
図1の部分概略図を参照して、本発明の実施例のスリット・スキャン方式の投影露光装置を説明する。
縮小投影レンズ系1において、その光軸は図中AXで示され、その像面は図1に示されるようZ方向と垂直な関係にある。レチクル2はレチクルステージ3上に保持され、レチクル2のパターンは縮小投影レンズ系1の倍率で1/4ないし1/2、或は1/5に縮小投影され、その像面に像を形成する。表面にレジストが塗布された基板4には、先の露光工程で形成された同一のパターン構造を有する多数個の被露光領域(ショット領域)が配列されている。基板4は、保持治具である基板チャック5に吸着・固定される。基板チャック5は基板ステージである露光ステージ6に固定される。基板ステージである露光ステージ6はX軸方向とY軸方向6aに各々水平移動可能なXYステージ、投影レンズ1の光軸AX方向であるZ軸方向への移動やX、Y軸回りに回転可能なレベリングステージ、Z軸回りに回転可能な回転ステージにより構成される。レチクルパターン像を基板4上の被露光領域に合致させるための6軸補正系を構成する基板ステージである露光ステージ6は定盤7上に設置されている。
図1に示される第一の高さ検出手段(検出器)は、基板4の表面位置及び傾きを計測するために設けた計測光学系で、光源10、コリメータレンズ11、スリット部材12、両テレセントリック系の光学系13、ミラー14、ミラー15から成る。さらに、両テレセントリック系の受光光学系16、ストッパー絞り17、補正光学系群18および光電変換手段群19から成る。光源10は、白色、または相異なる複数のピーク波長を持つ光を照射する照明ユニットより成る。コリメータレンズ11は、光源10からの光束は断面の強度分布がほほ均一の平行光束となって射出される。プリズム形状のスリット部材12は、一対のプリズムを互いの斜面が相対する様に貼り合わせており、この貼り合わせ面に複数の開口(例えば25個のピンホール) をクロム等の遮光膜を利用して設けている。両テレセントリック系の光学系13は、スリット部材12の複数のピンホールを通過した独立の25本の光束をミラー14を介して基板4面上の25個の計測ポイントである計測スポット4aに導光する。
図1では、1本の光束しか示されていないが、各光束は紙面垂直方向に25本の光束を有している。光学系13に対してピンホールの形成されている平面と基板4の表面を含む平面とはシャインプルーフの条件(Scheinmpflug’s
condition)を満足するように設定している。
本実施例において光照射手段からの各光束の基板4面上への入射角Φ(基板の表面にたてた垂線即ち光軸となす角) はΦ=70°以上である。
基板4の表面上には、図3に示されるように同一パターン構造を有する複数個のショット領域が配列されている。光学系13を通過した25本の光束は、図2に示されるようにパターン領域の互いに独立した各測定スポット4aに入射・結像している。
図2に示される25個の計測ポイントである計測スポット4aはX方向に、露光ステージにおける露光スリットの非スキャン方向の幅とほぼ等しいか、又はそれ以上の長さにわたって配置している。25個の計測スポットを、例えば露光ステージにおける露光スリット幅の倍の領域に亘って配置することで、少なくとも2つのショット領域を同時に計測することができ、全ショット領域を計測する時間が短縮される。25個の計測スポットが基板4の表面内で互いに独立して観察されるように、X方向(スキャン方向6a)からXY平面内で回転させた方向より入射させる。
両テレセントリック系の受光光学系16は、ミラー15を介して基板4面からの25本の反射光束を受光する。受光光学系16内に設けたストッパー絞り17は25個の各計測スポットに対して共通に設けられ、基板4上に存在する回路パターンによって発生する高次の回折光 (ノイズ光) をカットする。両テレセントリック系の受光光学系16を通過した光束は、補正光学系群18の25個の個別の補正レンズにより光電変換手段群19の検出面に、互いに同一の大きさのスポット光となる様に再結像する。受光する側の要素である受光光学系16、ストッパー絞り17および補正光学系群18は、基板4の表面上の各計測スポットと光電変換手段群19の計測面とが、互いに共役となるように倒れ補正を行っている。
そのため、各計測スポットの局所的な傾きにより計測面でのピンホール像の位置が変化することはなく各計測スポットの光軸方向AXでの高さ変化に応答して計測面上でピンホール像が変化する。この実施例では、光電変換手段群19は25個の例えば一次元CCDラインセンサであるが、複数、或いは単数の二次元位置計測素子でもよい。また、本実施例では計測スポットの数を25個としているが、特にこの個数に限るものではない。
レチクルステージ3にレチクル2は吸着・固定される。レチクル2は、図1に示す矢印3a(Y軸方向)方向に一定速度でスキャンすると共に矢印3aと直交する方向 (x軸方向) には常に目標座標位置を維持してスキャンする様に補正駆動される。レチクルステージのX、Y方向の位置情報は、レチクルステージ3に固定されたXYバーミラー20へレチクル干渉系21から複数のレーザービームが照射されることにより常時計測される。
照明光学系8はエキシマレーザー等のパルス光を発生する光源、不図示のビーム整形光学系、オプティカルインテグレイダー、コリメータ及びミラー等の部材で構成されうる。ビーム整形光学系は、入射ビームの断面形状(寸法含む)を所望の形に整形する。オプティカル・インテグレータは光束の配光特性を均一にしてレチクル2を均一照度で照明する。照明光学系8内のマスキングブレード(不図示)は、チップサイズに対応する矩形の照明領域を設定する。その照明領域で部分照明されたレチクル2上のパターンが投影レンズ1を介してレジストの塗布された基板4上の部分領域に投影される。
本実施例の露光系は、照明光学系8及び縮小投影光学系1から定盤7に至る各要素より構成される。基板チャック5はその一部に基準面9を設けている。定盤7上又は別に設けた定盤7a上には、露光ステージ6と同様に方向22a等の6軸方向に自由に移動可能な別の露光及び計測用の基板ステージである計測ステージ22が配置されている。
図1の基板チャック5及び基板4は、最初は計測ステージ22上にセットされる。
第一の高さ検出手段(10−19および130)は、計測ステージ22上にセットされた状態で基板チャック5上の基準面9に対する基板4上の各チップ又は任意のチップの高さ位置を計測する手段で、計測データをメモリ130に記憶する。ここで、メモリ130は、より正確には、光電変換手段群19からの出力に基づいて計測スポットごとに高さを算出する処理部130内のメモリである。基板チャック5上の基準面9は計測精度を高める為に基板4と略同一の高さとなるように、例えば金属薄膜や金属板等を付して構成される。その後、基板4は、真空吸着や静電気等の手段によって基板チャック5に吸着されたままで露光ステージ22上から露光ステージ6上へ移される。基板4が所定面上に位置するように合焦操作を行う。第二の高さ位置計測器100は、基準面9を利用して高さ計測に相当する合焦操作を行う。例えば、レチクル2上の露光可能領域(回路パターン)内又はその境界線上に設けた合焦用のマーク23と基準面9とを利用して合焦動作を行う。
マーク23は、例えばピンホールから成り、照明光学系8からの光が通過し、投影光学系1によって基板チャック5上の基準面9の近傍に結像する。基準面9で反射した光は再び投影光学系1でマーク23近傍に再結像する。レチクル2と基準面9が完全に合焦状態となったとき、ピンホール23を通過する光量は最大となる。計測器26は、Zステージを駆動させながらハーフミラー24と集光レンズ25を用いてこの最大光量を計測し、メイン制御部110へ入力する。
メイン制御部110は、光量が最大になった位置で露光ステージ6が止まるように、ドライバ120を介してステージ位置(Z方向)を制御する。ドライバ120は、露光ステージ6をX−Y面内で移動させて、コンソール140で設定される各種事前情報に従って基板の表面上の各チップを順次露光位置に移動させる。先に計測ステージ22上で計測し、メモリ130に記憶した基板5面上の基準面9に対する各チップの高さ位置がメイン制御部110に入力されてくる。ドライバ120は、その高さ位置に基づいて各チップが合焦位置にくるように露光ステージ6のZステージを駆動する。その後、露光を行う。第一の高さ検出手段で基板4上の高さ位置を計測する際に、上述した特開平09−045608号公報の方法を使って、計測値と最適フォーカス設定面との差となる計測オフセットを求める。
次に、本発明の実施例の露光方法を説明する。
本発明の実施例の露光方法は、基板の表面へ計測光を照射し、計測光の反射光を受光して、基板の表面の高さ情報を計測する面位置計測器を有する露光装置を用いて基板を露光する方法である。この面位置計測器を用いて、基板の表面の高さ情報と、基板の表面の反射率情報(反射光強度情報)を計測する。そして、基板の表面において、反射率分布に起因した誤差影響をうけにくい計測スポットを決定する。計測スポットの領域毎に反射率変化を求め、最も反射率変化が小さな計測スポットに決定する。
この反射率変化は、高い反射率を有する第1のパターン上の計測スポットと、低い反射率を有する第2のパターン上の計測スポットの間において現れる。もしくは、基板の表面内の各ショット領域同一ポイントでの反射率を計算し、最も低い反射率、もしくは、高い反射率のポイントを誤差影響の受けにくい計測スポットに決定する。もしくは、基板の表面内の各ショット領域同一ポイントでの反射率を計算し、ショット間で最も反射率変化の少ないポイントを誤差の影響の受けにくい計測スポットに決定する。
上述のいずれかの方法により決定した誤差の受けにくい計測スポットの高さ情報を基準にして全ての計測スポットの高さ情報の誤差成分を計測し、計測した誤差成分を計測スポット毎に補正する。
ここで、計測値と最適フォーカス設定面との差である計測オフセットを使って、各計測スポットの計測値を補正する。
図3には、ショット301〜351は、計測オフセットを求める為のショットが示される。
図4はショット領域内の各計測スポットを表した概略図である。
図4のショット領域内の格子点が各計測スポット401,402に対応しており、基板4上の高さ位置を計測する。例えば、図4における格子点は17行12列の計204点ある。
従って、ショット領域内の計測スポット401,402は204点であることを示している。
本実施例では、例えば、各ショット領域301〜351内の各計測スポットの計測結果を基に、ショット内の全ての計測スポットにおいて、図9のフロー図により、計測値と最適フォーカス設定面との差となる計測オフセットを求め、補正する。
ステップ901でメイン制御部110は制御を開始する。
ステップ902でメイン制御部110は搬送ハンド(不図示)に基板4を計測ステージ22上に搬入させ、チャック5に吸着固定させる。
ステップ903でメイン制御部110は、基板サイズ、レイアウト情報からショット領域内計測間隔と、隣接ショット領域間の計測タイミング変化量を求めて計測位置情報とし、それを記憶する。
基板サイズ・レイアウト情報は、例えば、コンソール140で設定される各種事前情報、スキャン計測領域の大きさ、ショット領域配置情報、走査スピードでありうる。
ステップ904で、メイン制御部110は第一の高さ検出器10〜19等に、計測ステージ22において各ショット領域301〜351にてスキャンと同期して計測スポット毎の高さ位置と反射率強度を計測させる。
図3の矢印360に示す様に、Y方向に配列している複数個のショットを一度のスキャン駆動で計測する。
ショット領域361の手前でステージを加速して一定速度に達したあとは、等速スキャンでショット領域361−367の各計測スポットを連続的に計測する。本実施例では計測効率を高める為に、X方向に並んだ2ショット幅で隣接ショット領域も同時に計測する。ショット領域367の領域内での計測が完了したら速やかに減速しつつX方向に移動を開始して隣の2列に移る。スキャン方向を反転してステージを加速する。等速スキャンでY方向の複数ショット領域を連続的に計測した後、終端ショット領域の計測が完了したら減速しつつ次の2列に移動する。これを繰り返して基板全域を計測する。このようにすれば、ショット領域毎にステージを加速/減速する必要が無くなる為、短時間で基板全面の面位置計測が実現できる。
尚、基板全面を計測する際に、本実施例では2ショット幅としたが、これに限るものではなく、1〜複数ショット幅で行っても良い。メモリ130は基板全面の高さ位置と反射光強度を記憶する。
ステップ905で、メイン制御部110の反射率判定ユニット111は基板の表面の反射光強度から各計測スポット毎に誤差混入判定(誤差の大きさの推定)をする。
図4の各格子点がショット領域内の各計測スポットに対応する。従って、図4からあきらかなように、任意の計測スポット401の周囲には、複数個の計測スポットが分布する。
第一に反射率変化により誤差混入を判定する方法が考えられる。
図7の模式図を参照して、直線上に並んだ複数の計測スポット701〜709の位置が、反射光強度の異なる領域に亘って配置されている状態を説明する。
図7(a)において、スキャン方向712にスキャンされ、計測スポット701〜709の位置が示される。
矩形711は計測スポットの大きさを表していて、計測スポット701から順に計測スポット709まで反射光強度と高さ位置を計測している。
図7(b)は計測スポット毎の反射光強度を表した模式図である。
計測スポット領域内のパターン501、パターン502の配置に応じて計測スポット毎の反射光強度は変化する。
図7(c)は隣接計測スポットとの反射率変化量を表した模式図である。
高い反射率を有するパターン501上の計測スポット702と、低い反射率を有するパターン502上の計測スポット705の間において、反射率変化が現れる。即ち、反射率変化を検知することにより、パターン501とパターン502の配置に応じた固有の検出誤差をもつ計測スポット703、704の検出が可能となる。
ここで、図7(a)〜(c)ではスキャン方向に反射率変化を判定する例を示したが、非スキャン方向、及び斜め方向においても直線上に並んだ複数の計測スポットの反射光強度から同様の判定を行う。
図8(a)、(b)は、計測スポット801の反射率変化を求める場合に、2次元で反射率変化を検知することの有用性を示した図である。
図8(a)のように、スキャン方向の計測スポット801〜805において、パターン501とパターン502の配置方向との関係から反射光強度の変化が小さく計測されてしまう場合がある。
しかしながら、図8(b)のように、非スキャン方向の計測スポット801、及び811〜814からの反射光強度の変化と合わせることで、パターン501とパターン502の配置に応じた反射率変化を判定することが出来る。反射率変化を判定する方向は、2次元で検出するなど、多いほど確実性が増すと言える。このようにして、図4に示した周囲の複数個の計測スポットとの反射率変化を、計測スポットの領域毎に基板全面に亘って求めている。
第二に各ショット位置における同一ポイントでの反射率バラツキが基板の表面内で少ないことにより判定する方法が考えられる。例えば、相関絶縁膜のCMP研磨ムラ、レジスト塗布ムラが基板の表面内に発生することが知られている。そのため、各ショット領域における各計測スポットにおいても、これらの膜圧ムラの影響を受けにくい計測スポットがある。
そのため、各ショットにおける、各計測スポットの反射率バラツキが少ない計測スポットが、パターン501とパターン502の配置に応じた固有の検出誤差の少ない計測スポットと判定できる。
第三に、各ショット位置における同一ポイントでの反射率が最大の計測スポット、もしくは最小の計測スポットにより判定する方法が考えられる。
反射率が最大、もしくは最小の計測スポットは、光束照射領域での反射率にばらつきの少ない計測スポットと考えることが出来る。そのため、反射率の違うパターン501、パターン502と入射光束の相対的な位置関係による強度分布の重心601の変化は少ないと考えられる。即ち、パターン構造が異なる工程固有の検出誤差が生じにくい、計測スポットであると判定できる。
この他に、一部の計測結果によって間違った判定がされることを防止する目的で、例えば平均値から一定量の閾値を越えた結果を無効として除外する方法が一般に知られており、これを用いても良い。また、反射率変化量がもっとも小さな計測スポットを、基板の表面内の複数ショット領域に着目して決定したが、これに限るものではなく、複数の基板間から決定しても良い。そうすることで基板の個体差ばらつきに依らないで、基板の表面内の反射率分布に起因した誤差影響を高精度に計測することができる。
ステップ906ではこれらのうち少なくとも一つの判定結果に基づき、誤差が最小となる(誤差が最小と推定される)計測スポットを決定する。ここで、決定する計測スポットは、複数あってもよく、その場合、誤差が相対的に小さいと推定される所定の判定基準を満たすものを選択すればよい。この所定の判定基準は、複数の計測スポットそれぞれに関する計測された位置の再現性である。
ステップ907において、反射率変化判定ユニット111によって決定されたショット領域内の計測スポットの高さ情報を基準に、全ての計測スポットの補正値を算出する。ここで、当該補正値は、上述した特開平09−045608号公報における計測スポットごとの補正値のことである。すなわち、基板上の全ショットまたはサンプルされた複数ショットの各計測スポットでの計測値から、局所的な凹凸の影響を除去した、基板表面全体またはショットの表面のグローバルな形状を求める。当該グローバル形状は、例えば、最小自乗法等を用いて、二次元座標に関する所定の多項式関数で各計測スポットでの計測値を近似することにより、求めることができる。そして、計測ポイントである計測スポットごとに、計測値(高さ)と当該グローバル形状から得られる対応する値(高さ)との差分を計測値に対する補正値とする。ここで、ステップ907で決定された信頼性の高い基準計測スポットでの計測値に基づいてより適切な補正値を算出する。具体的には、例えば、1または複数の基準計測スポットでの計測値の重みを高くして、信頼性の高いグローバル形状を求めて補正値を算出する。ここで、1または複数の基準計測スポットでの計測値のみに基づいて(他の計測スポットでの計測値の重みをゼロにして)グローバル形状を求めてもよい。なお、補正値を算出する方法は、これに限られない。1または複数の基準計測スポットでの計測値の重みを高くして信頼性の低い計測スポットでの計測値のばらつきが信頼性の高い計測スポットに対する補正値に影響するのを抑制(低減)するような方法であればよい。
図1の面位置決定ユニット112は、第一の高さ検出手段によって計測された計測スポットごとの高さを上記の補正値で補正する。さらに、同時に計測された複数の計測スポットに関してそれぞれ補正された高さに基づいて、ショット領域内の対応する基板表面領域の高さや傾き(およびその補正量)を算出する。
ステップ908で、ステップ907で算出したショット内の面位置補正駆動量、及び有効計測ポイントである有効計測点の位置情報をメイン制御部110に記憶する。
ステップ909で基板を基板チャックに吸着したまま露光ステージに移動する。
ステップ910でレチクル合焦用のマークと基板チャック上の基準面を使って合焦駆動させる。
その後、ステップ911で基板チャック上の基準面に対する高さ情報を上記補正値を用いて補正して像面位置への補正量を算出し、ショット露光領域を像面へ補正しつつ露光する。
ステップ912で基板上の全ショットの露光が終了したかを判定し、終了していなければ、 ステップ911へ戻ってショット露光領域を像面へ補正しつつ交互スキャンしながらショット毎に露光を繰り返す。
全ショットの露光が終了したらステップ913で基板を露光ステージから搬出して、ステップ914で一連の露光シーケンスを終了する。
ここで、本実施例は図1に示したように、計測ステージと露光ステージとが別個に存在する露光装置を実施例としている。
しかしながら、所謂オフラインでシステムが成立すれば、複数台の走査露光装置、又は一台の計測ステージと複数台の露光ステージで構成することも適用可能である。
図10に示すようなシングルステージタイプの走査露光装置においても同様に適用することができる。
また、図9ではステップ901〜ステップ914まで一連の流れとして説明した。ここで、計測ステージと露光ステージが別個に存在することから明らかなように、次のように処理を行っても良い。
ステップ909以降のスキャン露光と並行して次の基板を計測ステージに搬入する。
ステップ901からステップ908の処理を行うことは充分に可能である。この場合、無駄なく連続的に基板を処理できる為、高効率な基板露光処理を実現できる。
また、図7、及び図8では一箇所の計測スポットを矩形一つで表しているが、図13に示すように一箇所の計測スポットを複数マーク1301−1304で計測しても良い。
この場合、図13(b)に示すようにマーク毎の光強度を処理することで、より細かく下地反射率の変化を捕捉することができ、誤差影響を受け難くなる効果がある。
(デバイス製造方法の実施例)
次に、上述の露光装置を利用したデバイス製造方法の実施例を説明する。デバイス(半導体集積回路素子、液晶表示素子等)は、前述のいずれかの実施形態の露光装置を使用して、感光剤が塗布された基板(ウエハ、ガラスプレート等)を露光する工程と、該工程で露光された基板を現像する工程と、他の周知の工程とを経ることにより製造する。当該周知の工程は、例えば、酸化、成膜、蒸着、ドーピング、平坦化、エッチング、レジスト剥離、ダイシング、ボンディング、パッケージング等の各工程である。
本発明の面位置検出方法を用いるスリット・スキャン方式の投影露光装置の一例を示す部分的概略図である。 検出光学系による面位置検出での露光スリットと各計測スポットの位置関係を示す説明図である。 基板上の被露光領域のショット配置例を示す図である。 ショット領域内の計測スポット位置の配置例を示す図である。 下地パターンによる反射光束の挙動を示す模式図である。 下地パターンによる反射光強度の挙動を示す模式図である。 計測スポット位置の下地パターンと反射率変化量の関係を説明した図である。 計測スポット位置の下地パターンと反射率変化量の判定方向の関係を説明した図である。 本発明の面位置検出方法を用いたシーケンスの概略例を示すフローチャート図である。 本発明の面位置検出方法を用いるスリット・スキャン方式の投影露光装置の一例を示す部分的概略図である。 露光スリット内3点の従来フォーカス計測システムの光学構成概略を示す平面図である。 露光スリット内5点の従来フォーカス計測システムの光学構成概略を示す平面図である。 計測スポット位置の下地パターンと反射光強度の関係を説明した図である。
符号の説明
1・・・縮小投影レンズ系
2・・・レチクル
3・・・レチクルステージ
4・・・基板
5・・・基板チャック
6・・・露光ステージ
7・・・定盤
8・・・露光照明光学系
9・・・基準面
10・・・光源
11・・・コリメータレンズ
12・・・プリズム形状のスリット部材
13,16・・・検出レンズ
14,15・・・折り曲げミラー
17・・・ストッパー絞り
18・・・補正光学系群
19・・・光電変換手段群
20・・・レチクルXYバーミラー
21・・・レチクルステージ干渉計
22・・・計測ステージ
23・・・合焦用マーク
24・・・ハーフミラー
25・・・集光レンズ
26・・・検出器
27・・・ステージバーミラー
28・・・ステージ干渉計
100・・・高さ検出手段
110・・・メイン制御部
120・・・ドライバ
130・・・メモリ
140・・・コンソール

Claims (6)

  1. 基板を保持して移動するステージと、
    前記基板に光を投影する投影光学系と、
    前記投影光学系の光軸の方向に関して前記基板の表面の部分領域の位置を計測する計測手段とを備え、前記基板上のショット領域を露光する露光装置であって、
    基板上の複数のショット領域それぞれのうちの複数の計測ポイントそれぞれに関して前記計測手段に前記位置を計測させ、該計測された位置に基づいて前記基板のグローバルな形状を求め、該求められたグローバルな形状に基づいて前記複数の計測ポイントそれぞれに関して補正値を算出し、前記複数の計測ポイントに関してそれぞれ対応する前記補正値で補正された計測値に基づいて前記ステージを移動させる制御手段を有し、
    前記制御手段は、前記複数の計測ポイントそれぞれに関する前記計測された位置の再現性に基づいて、前記複数の計測ポイントから一部を選択し、該選択された一部に関する前記計測された位置の重みを他の計測ポイントに関する前記計測された位置の重みより大きくして前記補正値を算出する、
    ことを特徴とする露光装置。
  2. 前記計測手段が、前記基板の表面に対して斜めに光を投影して前記基板の表面で反射された光を検出し、該検出された光の重心位置に基づいて前記部分領域の位置を計測することを特徴とする請求項1に記載の露光装置。
  3. 前記制御手段は、前記複数の計測ポイントそれぞれに関する、前記検出された光の量に基づいて、前記複数の計測ポイントから前記一部を選択することを特徴とする請求項2に記載の露光装置。
  4. 前記制御手段は、前記複数の計測ポイントそれぞれに関する、前記複数のショット領域にわたる、前記量のばらつきに基づいて、前記複数の計測ポイントから前記一部を選択することを特徴とする請求項3に記載の露光装置。
  5. 前記制御手段は、前記複数の計測ポイントに関する前記量の変化に基づいて、前記複数の計測ポイントから前記一部を選択することを特徴とする請求項3に記載の露光装置。
  6. 請求項1乃至5のいずれかに記載の露光装置を用いて基板を露光する工程と、
    前記工程で露光された基板を現像する工程と、
    を有することを特徴とするデバイス製造方法。
JP2008177422A 2007-07-06 2008-07-07 露光装置およびデバイス製造方法 Pending JP2009038359A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008177422A JP2009038359A (ja) 2007-07-06 2008-07-07 露光装置およびデバイス製造方法
US12/498,176 US20100002218A1 (en) 2007-07-06 2009-07-06 Exposure apparatus and method for manufacturing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007178567 2007-07-06
JP2008177422A JP2009038359A (ja) 2007-07-06 2008-07-07 露光装置およびデバイス製造方法

Publications (1)

Publication Number Publication Date
JP2009038359A true JP2009038359A (ja) 2009-02-19

Family

ID=40221151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008177422A Pending JP2009038359A (ja) 2007-07-06 2008-07-07 露光装置およびデバイス製造方法

Country Status (4)

Country Link
US (2) US8068211B2 (ja)
JP (1) JP2009038359A (ja)
KR (1) KR20090004776A (ja)
TW (1) TW200919104A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019077797A1 (ja) * 2017-10-17 2019-04-25 Ckd株式会社 投影装置及び三次元計測装置
WO2020145208A1 (ja) * 2019-01-08 2020-07-16 オムロン株式会社 三次元形状測定装置、三次元形状測定方法及びプログラム

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4846510B2 (ja) * 2006-10-11 2011-12-28 株式会社東芝 表面位置計測システム及び露光方法
US8068211B2 (en) * 2007-07-06 2011-11-29 Canon Kabushiki Kaisha Exposure apparatus and method for manufacturing device
NL1036009A1 (nl) * 2007-10-05 2009-04-07 Asml Netherlands Bv An Immersion Lithography Apparatus.
JP2010098143A (ja) * 2008-10-16 2010-04-30 Canon Inc 露光装置およびデバイス製造方法
JP5335380B2 (ja) * 2008-11-14 2013-11-06 キヤノン株式会社 露光装置およびデバイス製造方法
US11885738B1 (en) 2013-01-22 2024-01-30 J.A. Woollam Co., Inc. Reflectometer, spectrophotometer, ellipsometer or polarimeter system including sample imaging system that simultaneously meet the scheimpflug condition and overcomes keystone error
CN104749901B (zh) * 2013-12-31 2017-08-29 上海微电子装备有限公司 一种调焦调平装置
CN105807570B (zh) 2014-12-31 2018-03-02 上海微电子装备(集团)股份有限公司 自适应沟槽的调焦调平装置及其方法
CN107450287B (zh) * 2016-05-31 2019-10-25 上海微电子装备(集团)股份有限公司 调焦调平测量装置及方法
JP6616368B2 (ja) * 2017-09-14 2019-12-04 ファナック株式会社 レーザ加工前に光学系の汚染レベルに応じて加工条件を補正するレーザ加工装置
JP7451141B2 (ja) * 2019-10-30 2024-03-18 キヤノン株式会社 インプリント装置、インプリント方法、および物品の製造方法
JP2021149000A (ja) * 2020-03-19 2021-09-27 キオクシア株式会社 露光方法、露光装置、及び半導体装置の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3376179B2 (ja) * 1995-08-03 2003-02-10 キヤノン株式会社 面位置検出方法
US6018614A (en) * 1999-04-30 2000-01-25 Northrop Grumman Corporation Portable compressed air heater system
JP2008042036A (ja) * 2006-08-08 2008-02-21 Canon Inc 露光装置及びデバイス製造方法
JP2008066634A (ja) * 2006-09-11 2008-03-21 Canon Inc 露光装置
US20090042115A1 (en) * 2007-04-10 2009-02-12 Nikon Corporation Exposure apparatus, exposure method, and electronic device manufacturing method
JP2008288347A (ja) * 2007-05-16 2008-11-27 Canon Inc 露光装置及びデバイス製造方法
US8068211B2 (en) * 2007-07-06 2011-11-29 Canon Kabushiki Kaisha Exposure apparatus and method for manufacturing device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019077797A1 (ja) * 2017-10-17 2019-04-25 Ckd株式会社 投影装置及び三次元計測装置
WO2020145208A1 (ja) * 2019-01-08 2020-07-16 オムロン株式会社 三次元形状測定装置、三次元形状測定方法及びプログラム
JP2020112369A (ja) * 2019-01-08 2020-07-27 オムロン株式会社 三次元形状測定装置、三次元形状測定方法及びプログラム
JP7139953B2 (ja) 2019-01-08 2022-09-21 オムロン株式会社 三次元形状測定装置、三次元形状測定方法及びプログラム

Also Published As

Publication number Publication date
TW200919104A (en) 2009-05-01
KR20090004776A (ko) 2009-01-12
US20090009739A1 (en) 2009-01-08
US8068211B2 (en) 2011-11-29
US20100002218A1 (en) 2010-01-07

Similar Documents

Publication Publication Date Title
JP2009038359A (ja) 露光装置およびデバイス製造方法
JP3376179B2 (ja) 面位置検出方法
KR100875008B1 (ko) 노광장치 및 디바이스 제조방법
KR101444981B1 (ko) 노광 장치, 노광 방법 및 디바이스 제조 방법
JP2003254710A (ja) 面位置検出装置及び方法並びに露光装置と該露光装置を用いたデバイスの製造方法
US7852458B2 (en) Exposure apparatus
JP2001093807A (ja) 位置計測方法及び位置計測装置
JPH09320921A (ja) ベースライン量の測定方法及び投影露光装置
JP2009182334A (ja) 露光装置及びデバイス製造方法
JP2004247476A (ja) 面位置計測方法
US20100110400A1 (en) Scanning exposure apparatus, control method therefor, and device manufacturing method
JP7022611B2 (ja) 露光装置の制御方法、露光装置、及び物品製造方法
JP7114370B2 (ja) 露光装置および物品の製造方法
JPH07201713A (ja) 露光装置及び露光方法
JP3376219B2 (ja) 面位置検出装置および方法
JPH104055A (ja) 自動焦点合わせ装置及びそれを用いたデバイスの製造方法
JP7336343B2 (ja) 露光装置、露光方法、および物品の製造方法
JP3313543B2 (ja) 露光装置用位置合せ装置及び位置合わせ方法
JP2006024681A (ja) 位置計測装置及び方法並びに露光装置及び方法
JP2005209926A (ja) マーク検出方法とその装置、露光方法とその装置、及び、デバイス製造方法
JP2022160187A (ja) 露光装置、露光方法及び物品の製造方法
JP3733180B2 (ja) 投影露光装置及びそれを用いたデバイスの製造方法
KR20030006829A (ko) 반도체 웨이퍼 레벨링 장치 및 그것을 구비하는 노광 장치
KR20020046917A (ko) 투영 노광 장치, 노광 방법 및 반도체 장치
JP2005243710A (ja) 露光装置及びその制御方法、デバイス製造方法

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090629

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100713