JP2009027207A - 部品実装順序決定方法 - Google Patents

部品実装順序決定方法 Download PDF

Info

Publication number
JP2009027207A
JP2009027207A JP2008286917A JP2008286917A JP2009027207A JP 2009027207 A JP2009027207 A JP 2009027207A JP 2008286917 A JP2008286917 A JP 2008286917A JP 2008286917 A JP2008286917 A JP 2008286917A JP 2009027207 A JP2009027207 A JP 2009027207A
Authority
JP
Japan
Prior art keywords
mounting
component
head
task
suction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008286917A
Other languages
English (en)
Other versions
JP4332586B2 (ja
Inventor
Yasuhiro Maenishi
康宏 前西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008286917A priority Critical patent/JP4332586B2/ja
Publication of JP2009027207A publication Critical patent/JP2009027207A/ja
Application granted granted Critical
Publication of JP4332586B2 publication Critical patent/JP4332586B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Installment Of Electrical Components (AREA)

Abstract

【課題】複数の装着ヘッドが交互に1枚の基板上に部品を装着する部品実装機を対象として、各装着ヘッドに備えられたノズル数が異なる場合であっても、生産効率を向上させることができる最適な部品実装順序を決定することができる方法を提供することを目的とする。
【解決手段】複数の装着ヘッドに備えられた吸着ノズルの本数に基づいて、基板に実装される部品を複数の装着ヘッドのいずれかに振り分けるステップ(S110)と、装着ヘッドによる部品の吸着・移動・装着という一連の動作の繰り返しにおける1回分の一連動作によって実装される部品群をタスクとした場合に、装着ヘッドごとに対応付けられた部品をタスクに分割し、分割したタスクの実装順序を決定するタスク順決定ステップ(S111〜S114)とを含む。
【選択図】図11

Description

本発明は、部品実装機によって電子部品等の部品を基板に実装する方法に関し、特に、部品の実装順序の決定方法に関する。
従来、電子部品等の部品をプリント基板に実装する部品実装機として、複数の装着ヘッドが交互に1枚の基板上に部品を装着する部品実装機が知られている。
このような部品実装機に対応するために、さまざまな部品実装方法が提案されている(例えば、特許文献1参照)。特許文献1に開示されている技術では、2つの装着ヘッドを用いて部品の実装を行なっているが、基板に実装される部品の実装点数が2つの装着ヘッドで等しくなるように、部品を割り当てている。
特開2004−186391号公報
しかしながら、特許文献1に記載の技術のように、各装着ヘッドに割り当てられる部品点数を均等化するだけでは、各装着ヘッドが交互に基板に部品を実装する動作におけるタクトロスを解消することはできない。すなわち、ある装着ヘッドの基板への部品実装動作が終了してから次の装着ヘッドによる基板への部品実装動作が開始するまでの時間的ロスを短縮することができないという問題がある。
例えば、他の装着ヘッドによる部品装着が終了した時点で、本装着ヘッドによる部品の吸着および認識が終了していなければ、それらが終了するまでの間、基板への部品の装着動作が中断し、その中断時間がタクトロスとなる。
また、部品実装機によっては、各装着ヘッドに備えられている部品の吸着ノズルの本数が相互に異なる場合がある。このような場合には、各装着ヘッドで実装される部品の実装点数を等しくしようとすると、各装着ヘッドのタスク数が異なってしまう場合がある。ここで、タスクとは、装着ヘッドによる部品の吸着・移動・装着という一連の動作の繰り返しにおける1回分の一連動作によって実装される部品群をいう。
例えば、2つの装着ヘッドにより交互に部品を実装する部品実装機において、一方の装着ヘッドのノズル数が8であり、他方の装着ヘッドが4であるものとする。また、部品の実装点数が240点であるものとする。この場合、上述の特許文献1に記載の方法に従い、各装着ヘッドが実装する部品の実装点数を算出すると、総実装点数240点を装着ヘッドの個数2で割った値120が実装点数となる。
このため、一方の装着ヘッドのタスク数は、15タスク(=120点/8ノズル)となり、他方の装着ヘッドのタスク数は、30タスク(=120点/4ノズル)となり、タスク数に違いが生じる。
よって、最初の15タスクでは、一方の装着ヘッドと他方の装着ヘッドとが交互に部品の装着を行なう。この時点で、一方の装着ヘッドは120点の部品をすべて装着し終えたにも関わらず、他方の装着ヘッドは60(=4ノズル×15タスク)点の部品しか実装していない。このため、残りの15タスクでは、一方の装着ヘッドは停止し、他方の装着ヘッドのみが稼動して部品を装着することとなり、生産効率の低減につながっている。
このように、装着ヘッドに備えられた吸着ノズルの個数が異なる場合には、特許文献1に記載された方法に従い、部品の装着順序を決定した場合には、生産効率の低減につながるという問題がある。
なお、上述のタスク数のアンバランスは、吸着ノズル数が同一であっても、部品サイズの違いによる吸着する部品同士の干渉により、物理的に吸着ノズル本数分の部品を吸着できないことによっても発生する。
そこで、本発明は、このような状況に鑑みてなされたものであり、複数の装着ヘッドが交互に1枚の基板上に部品を装着する部品実装機を対象として、基板への部品実装動作におけるタクトロスを最小にし、生産効率を向上させることができる最適な部品実装順序を決定する方法を提供することを目的とする。
また、複数の装着ヘッドが交互に1枚の基板上に部品を装着する部品実装機を対象として、各装着ヘッドに備えられたノズル数が異なる場合であっても、生産効率を向上させることができる最適な部品実装順序を決定する方法を提供することも目的とする。
上記目的を達成するために、本発明に係る部品実装順序決定方法は、1枚の基板に対して、2つの装着ヘッドが交互に部品を実装する際の実装順序を決定する部品実装順序決定方法であって、装着ヘッドによる部品の吸着・移動・装着という一連の動作の繰り返しにおける1回分の一連動作によって実装される部品群をタスクとした場合に、前記2つの装着ヘッドの各々について、他の装着ヘッドによる部品の装着時間と自身による部品の吸着時間および認識時間とを比較することにより、他の装着ヘッドによる部品の装着時間内に部品の吸着および認識を終えることができる部品の最大吸着回数を算出する算出ステップと、前記2つの装着ヘッドの各々について、部品の吸着回数が前記最大吸着回数以下となるように、割り付けられた部品群をタスクに分割することにより各タスクを生成するタスク生成ステップとを含むことを特徴とする。
この構成によると、ある装着ヘッドによるタスクの部品装着が終了してから次の装着ヘッドによる部品装着へすぐ取り掛かることができる。このため、基板への部品実装動作におけるタクトロスを最小にし、生産効率を向上させることができる。
また、一方の装着ヘッドが部品を装着している間に、他方の装着ヘッドによる部品の吸着および認識動作が終了するように、タスクを求めている。このため、一方の装着ヘッドによる装着動作が完了した時点で、滞りなく他方の装着ヘッドによる装着動作に移ることができ、生産効率を向上させることができる。
なお、本発明は、このような特徴的なステップを備える部品実装順序決定方法として実現することができるだけでなく、部品実装順序決定方法に含まれる特徴的なステップを手段とする部品実装順序決定装置として実現したり、部品実装順序決定方法に含まれる特徴的なステップをコンピュータに実行させるプログラムとして実現したりすることもできる。そして、そのようなプログラムは、CD−ROM(Compact Disc-Read Only Memory)等の記録媒体やインターネット等の通信ネットワークを介して流通させることができるのは言うまでもない。
本発明によると、生産効率を向上させることができる最適な部品実装順序を決定することができる部品実装順序決定方法を提供することができる。
以下、本発明の実施の形態について図面を参照しながら詳細に説明する。
図1は、本発明の実施の形態にかかる実装ライン10全体の構成を示す外観図である。
この実装ライン10は、上流から下流に向けて基板20を送りながら電子部品を実装していく生産ラインであり、複数の部品実装機100、200と、生産の開始等にあたり、各種データベースに基づいて使用するビーム数や電子部品の実装順序などの実装条件を最適化し、得られたNC(Numeric Control)データを部品実装機100、200にダウンロードして設定・制御する最適化装置300とを備えている。
部品実装機100は、部品テープを収納する部品カセット114の配列からなる2つの部品供給部115と、それら部品カセット114から電子部品を吸着し基板20に装着することができる複数の吸着ノズル(以下、単に「ノズル」ともいう。)を有するマルチ装着ヘッド112と、マルチ装着ヘッド112が取り付けられるビーム113と、マルチ装着ヘッド112に吸着された部品の吸着状態を2次元又は3次元的に検査するための部品認識カメラ116と、トレイ部品を供給するトレイ供給部117等を備える。なお、トレイ供給部117などはサブ設備によっては備えない場合もある。
ここで、「部品テープ」とは、同一部品種の複数の部品がテープ(キャリアテープ)上に並べられたものであり、リール(供給リール)等に巻かれた状態で供給される。主に、チップ部品と呼ばれる比較的小さいサイズの部品を部品実装機に供給するのに使用される。
この部品実装機100は、具体的には、高速装着機と呼ばれる部品実装機と多機能装着機と呼ばれる部品実装機それぞれの機能を併せもつ実装機である。高速装着機とは、主として□10mm以下の電子部品を1点あたり0.1秒程度のスピードで装着する高い生産性を特徴とする設備であり、多機能装着機とは、□10mm以上の大型電子部品やスイッチ・コネクタ等の異形部品、QFP(Quad Flat Package)・BGA(Ball Grid Array)等のIC部品を装着する設備である。
すなわち、この部品実装機100は、ほぼ全ての種類の電子部品(装着対象となる部品として、0.4mm×0.2mmのチップ抵抗から200mmのコネクタまで)を装着できるように設計されており、この部品実装機100を必要台数だけ並べることで、実装ラインを構成することができる。
なお、部品実装機200の構成は、部品実装機100と同様であるため、その詳細な説明は繰り返さない。
図2は、部品実装機100内部の主要な構成を示す平面図である。
部品実装機100は、その内部に基板の搬送方向(X軸方向)に並んで配置されるサブ設備を備え、さらに部品実装機100の前後方向(Y軸方向)にもサブ設備を備えており、合計4つのサブ設備110a、110b、120a、120bを備えている。X軸方向に並んで配置されるサブ設備(110aと110b、120aと120b)は相互に独立しており、同時に異なる実装作業を行うことが可能である。さらに、サブ設備(110aと120b、120bと120a)も相互に独立しており、同時に異なる実装作業を行うことが可能である。一方前後方向(Y軸方向)に向かい合って配置されるサブ設備(110aと120a、110bと120b)は、お互いが協調し一つの基板に対して実装作業を行う。
各サブ設備110a、110b、120a、120bは、それぞれのサブ設備110a、110b、120a、120bに対しビーム113と、マルチ装着ヘッド112と、部品供給部115a〜115dとが備えられている。また、部品実装機100には前後のサブ設備間に基板20搬送用のレール121が一対備えられている。
なお、部品認識カメラ116およびトレイ供給部117などは本願発明の主眼ではないため、同図においてその記載を省略している。
ビーム113は、X軸方向に延びた剛体であって、Y軸方向(基板20の搬送方向と垂直方向)に設けられた軌道(図示せず)上をX軸方向と平行を保ったままで移動することができるものである。また、ビーム113は、当該ビーム113に取り付けられたマルチ装着ヘッド112をビーム113に沿って、すなわちX軸方向に移動させることができるものであり、自己のY軸方向の移動と、これに伴ってY軸方向に移動するマルチ装着ヘッド112のX軸方向の移動とでマルチ装着ヘッド112をXY平面内で自在に移動させることができる。また、これらを駆動させるためのモータ(図示せず)など複数のモータがビーム113に備えられており、ビーム113を介してこれらモータなどに電力が供給されている。
図3は、マルチ装着ヘッド112と部品カセット114の位置関係を示す模式図である。
このマルチ装着ヘッド112は、複数個の吸着ノズル112a〜112bを搭載することが可能であり、理想的には最大吸着ノズル数分の電子部品を部品カセット114それぞれから同時に(1回の上下動作で)吸着することができる。
マルチ装着ヘッド112は、ビーム113に沿って移動することができ、この移動はモータ(図示せず)により駆動されている。また、電子部品を吸着保持する際や、保持している電子部品を基板20に装着する際の上下動もモータにより駆動されている。
図4および図5は、部品実装機100による部品実装について説明するための図である。なお、図4および図5では、左サブ設備のみについて図示しているが、右サブ設備についても同様の動作を行なうことにより、部品実装を行う。このため、図4および図5では図示を省略する。
図4に示されるように、サブ設備120aのマルチ装着ヘッド112は、部品供給部115cからの部品の「吸着」、吸着した部品の部品認識カメラ116による「認識」および認識された部品の基板20への「装着」という3つの動作を交互に繰り返すことにより、部品を基板20上に実装していく。
なお、サブ設備110aのマルチ装着ヘッド112も同様に、「吸着」、「認識」および「装着」という3つの動作を交互に繰り返すことにより、部品を基板20上に実装していく。
なお、2つのマルチ装着ヘッド112が同時に部品の「装着」を行うにおいて、マルチ装着ヘッド112同士の衝突を防ぐために、2つのマルチ装着ヘッド112は、協調動作を行ないながら部品を基板20上に実装していく。具体的には、図5(a)に示されるように、サブ設備120aのマルチ装着ヘッド112が「装着」動作を行なっている際には、サブ設備110aのマルチ装着ヘッド112は「吸着」動作および「認識」動作を行なう。逆に、図5(b)に示されるように、サブ設備110aのマルチ装着ヘッド112が「装着」動作を行なっている際には、サブ設備120aのマルチ装着ヘッド112は「吸着」動作および「認識」動作を行なう。このように、「装着」動作を2つのマルチ装着ヘッド112が交互に行なうことにより、マルチ装着ヘッド112同士の衝突を防ぐことができる。なお、理想的には、一方のマルチ装着ヘッド112による「装着」動作を行なっている間に、他方のマルチ装着ヘッド112による「吸着」動作および「認識」動作が終了していれば、一方のマルチ装着ヘッド112による「装着」動作が完了した時点で、滞りなく他方のマルチ装着ヘッド112による「装着」動作に移ることができ、生産効率を向上させることができる。
図6は、本発明の実施の形態における最適化装置300、すなわち、図1に示された最適化装置の一構成例を示すブロック図である。この最適化装置300は、生産ラインを構成する各設備の仕様等に基づく各種制約の下で、対象となる基板の部品実装におけるラインタクト(ラインを構成するサブ設備ごとのタクトのうち、最大のタクト)を最小化するように、部品実装用CAD装置等から与えられた全ての部品を対象として、各サブ設備で実装すべき部品および各サブ設備における部品の実装順序を決定し、最適なNCデータを生成するコンピュータ装置であり、演算制御部301、表示部302、入力部303、メモリ部304、最適化プログラム格納部305、通信I/F(インターフェース)部306およびデータベース部307等から構成される。
この最適化装置300は、本発明に係る最適化プログラムをパーソナルコンピュータ等の汎用のコンピュータシステムが実行することによって実現され、部品実装機100と接続されていない状態で、スタンドアローンのシミュレータ(部品実装順序の最適化ツール)としても機能する。なお、この最適化装置が部品実装機の内部に備わっていても構わない。
演算制御部301は、CPU(Central Processing Unit)や数値プロセッサ等であり、オペレータからの指示等に従って、最適化プログラム格納部305からメモリ部304に必要なプログラムをロードして実行し、その実行結果に従って、各構成要素302〜307を制御する。
表示部302はCRT(Cathode-Ray Tube)やLCD(Liquid Crystal Display)等であり、入力部303はキーボードやマウス等であり、これらは、演算制御部301による制御の下で、本最適化装置300とオペレータとが対話する等のために用いられる。
通信I/F部306は、LAN(Local Area Network)アダプタ等であり、本最適化装置300と部品実装機100、200との通信等に用いられる。メモリ部304は、演算制御部301による作業領域を提供するRAM(Random Access Memory)等である。
データベース部307は、この最適化装置300による最適化処理に用いられる入力データ(実装点データ307a、部品ライブラリ307b、実装装置情報307c、実装点数情報307d等)や最適化によって生成された実装点データ等を記憶するハードディスク等である。
図7〜図10は、それぞれ、実装点データ307a、部品ライブラリ307b、実装装置情報307cおよび実装点数情報307dの一例を示す図である。
実装点データ307aは、実装の対象となる全ての部品の実装点を示す情報の集まりである。図7に示されるように、1つの実装点piは、部品種ci、X座標xi、Y座標yi、制御データφiからなる。ここで、「部品種」は、図8に示される部品ライブラリ307bにおける部品名に相当し、「X座標」および「Y座標」は、実装点の座標(基板上の特定位置を示す座標)であり、「制御データ」は、その部品の実装に関する制約情報(使用可能な吸着ノズルのタイプ、マルチ装着ヘッド112の最高移動速度等)である。なお、最終的に求めるべきNCデータとは、ラインタクトが最小となるような実装点の並びである。
部品ライブラリ307bは、部品実装機100、200が扱うことができる全ての部品種それぞれについての固有の情報を集めたライブラリであり、図8に示されるように、部品種ごとの部品サイズ、タクト(一定条件下における部品種に固有のタクト)、その他の制約情報(使用可能な吸着ノズルのタイプ、部品認識カメラ116による認識方式、マルチ装着ヘッド112の最高速度比等)からなる。なお、本図には、参考として、各部品種の部品の外観も併せて示されている。
実装装置情報307cは、生産ラインを構成する全てのサブ設備ごとの装置構成や上述の制約等を示す情報であり、図9に示されるように、マルチ装着ヘッド112のタイプ、すなわちマルチ装着ヘッド112に備えられている吸着ノズルの本数等に関するヘッド情報、マルチ装着ヘッド112に装着され得る吸着ノズルのタイプ等に関するノズル情報、部品カセット114の最大数等に関するカセット情報、トレイ供給部117が収納しているトレイの段数等に関するトレイ情報等からなる。
実装点数情報307dは、図2に示した部品実装機100の前後方向(X軸方向)に向かい合って配置されるサブ設備(110aと120a、110bと120b)ごとに設けられている。以下では、サブ設備110aおよび120aを「左サブ設備」と呼び、サブ設備110bおよび120bを「右サブ設備」と呼ぶこととする。
実装点数情報307dは、左サブ設備および右サブ設備の各々について設けられており、図10に示されるように、基板上に実装される実装点の部品種と、その員数(実装点数)とが対応付けられている情報である。例えば、同図に示されるように、左サブ設備で実装される部品種は、A、B、C、DおよびEの5種類であり、それぞれの実装点数は、40、20、20、5および15であることが示されている。
最適化プログラム格納部305は、本最適化装置300の機能を実現する各種最適化プログラムを記憶しているハードディスク等である。最適化プログラムは、部品の実装順序を最適化するプログラムであり、機能的に(演算制御部301によって実行された場合に機能する処理部として)、実装順序最適化部305c等から構成される。
実装順序最適化部305cは、データベース部307に記憶された各種データに基づいて、基板20への部品の実装時間が最小となるような部品の実装順序を求める。実装順序最適化部305cによる部品の実装順序決定方法については、後述する。
次に、以上のように構成された最適化装置300の動作について説明する。図11は、最適化装置300による部品実装順序を決定する処理のフローチャートである。以下の説明では、部品実装機100の左サブ設備を対象として部品実装順序の決定方法について説明するが、部品実装機100の右サブ設備および部品実装機200についても同様の処理を行うことにより、部品実装順序が決定される。
最適化装置300の実装順序最適化部305cは、1枚の基板20への装着対象となっている部品を、サブ設備120aのマルチ装着ヘッド112(以下「フロントヘッド」という。)またはサブ設備110aのマルチ装着ヘッド112(以下「リアヘッド」という。)のいずれかに振り分ける(S110)。すなわち、実装順序最適化部305cは、装着対象部品をフロントヘッドにより装着するのか、リアヘッドにより装着するのかを決定する。部品振り分け処理(S110)の詳細については後述する。
次に、実装順序最適化部305cは、部品振り分け処理(S110)での振り分け結果を維持した状態で、タスクおよびタスク順を決定する(S111)。タスク決定処理(S111)の詳細については後述する。
最後に、実装順序最適化部305cは、決定された各タスクについて、タスク内における部品の吸着順を決定する(S112〜S114)。タスク内に部品の吸着順の決定方法については、これまでも各種手法が提案されており、かつ本願の主眼ではないため、ここでは説明を繰り返さない。
まず、部品振り分け処理(図11のS110)について実例を示しながら説明する。図12は、部品振り分け処理(図11のS110)の詳細なフローチャートである。ここでは、図9に示されるようにフロントヘッドの吸着ノズルの本数は8本であり、リアヘッドの吸着ノズルの本数は4本であるものとする。また、実装対象部品の部品種とその実装点数とは、図10の実装点数情報307dに示されるとおりであるものとする。
まず、実装順序最適化部305cは、1枚の基板20あたりの総実装点数および吸着ノズルの本数の比に従い、フロントヘッドおよびリアヘッドが装着する部品の実装点数を算出する(S121)。例えば、図13に示されるように、1枚の基板20あたりの総実装点数100を8対4に分けることにより、フロントヘッドが実装する部品の実装点数は66.66個と求められ、リアヘッドが実装する部品の実装点数は33.33個と求められる。これらの実装点数が、理想的な部品の実装点数である。
次に、実装順序最適化部305cは、実装点数算出処理(S121)で算出された実装点数に近くなるように、部品種ごとに部品をフロントヘッドおよびリアヘッドのいずれかに振り分ける(S122)。例えば、図14に示されるように、実装点数情報307dに示された部品種A〜Eを、フロントヘッドの実装点数が66.66個、リアヘッドの実装点数が33.33個に近くなるように振り分ける。すなわち、フロントヘッドが実装する部品種を、実装点数情報307fに示されるように、A、BおよびDの3つとすることにより、その合計値が65個となり、66.66個に近くなる。また、リアヘッドが実装する部品種を実装点数情報307gに示されるようにCおよびEの2つとすることにより、その合計値が35個となり、33.33個に近くなる。
次に、タスク決定処理(図11のS111)について実例を示しながら説明する。図15は、タスク決定処理(図11のS111)の詳細なフローチャートである。まず、実装順序最適化部305cは、着目しているマルチ装着ヘッド112以外のマルチ装着ヘッド112による「装着」時間内に、着目しているマルチ装着ヘッド112による部品の「吸着」および「認識」を終えることができるような最大吸着回数を算出する(S131)。
すなわち、フロントヘッドの最大吸着回数を求める際には、次式(1)を満たす範囲内での最大吸着回数を求める。
リアヘッドによる装着時間
≧フロントヘッドによる吸着時間+フロントヘッドによる認識時間 …(1)
ここで、リアヘッドによる部品1個あたりの装着時間を0.2秒、フロントヘッドの1回あたりの部品吸着時間を0.2秒、フロントヘッドが吸着した部品の認識時間を0.2秒とし、フロントヘッドの最大吸着回数をnfとした場合、式(1)は次式(2)のように表すことができる。
0.2×4≧0.2×nf+0.2 …(2)
式(2)を満たす最大のnfの値を求めるとnf=3と求められる。したがって、フロントヘッドの最大吸着回数は3回として求められる。
同様にして、リアヘッドにより最大吸着回数を求める際には、次式(3)を満たす必要がある。
フロントヘッドによる装着時間
≧リアヘッドによる吸着時間+リアヘッドによる認識時間 …(3)
ここで、フロントヘッドによる部品1個あたりの装着時間を0.2秒、リアヘッドの1回あたりの部品吸着時間を0.2秒、リアヘッドが吸着した部品の認識時間を0.2秒とし、リアヘッドの最大吸着回数をnrとした場合、式(3)は次式(4)のように表すことができる。
0.2×8≧0.2×nr+0.2 …(4)
式(2)を満たす最大のnrの値を求めるとnr=7と求められる。したがって、リアヘッドの最大吸着回数は7回として求められる。
すなわち、1タスクあたりのフロントヘッドによる部品吸着は3回以内で行えばよく、1タスクあたりのリアヘッドによる部品吸着は7回以内で行えばよいことになる。
次に、実装順序最適化部305cは、着目しているマルチ装着ヘッド112の全タスクにおける吸着回数が最大吸着回数以下となるようなタスクを生成し、タスク順を決定する(S132)。実装順序最適化部305cは、最大吸着回数算出処理(S131)およびタスク生成処理(S132)をすべてのマルチ装着ヘッド112に対して実行することにより(ループB)、各マルチ装着ヘッド112におけるタスクを決定する。
図16は、フロントヘッドに対するタスク生成処理(図15のS132)を具体的に説明するための図である。図16(a)に示されるように、フロントヘッドに割り当てられた部品の種類はA、BおよびDの3種類であり、それぞれの員数(実装点数)は、40、20および5である。図16(b)に示すように、これらの部品合計数65をフロントヘッドの吸着ノズル本数8で割ると、8余り1となる。すなわち、フロントヘッドの8本の吸着ノズルに部品を満載して部品実装を行うことを考えた場合には、8タスクは部品を満載吸着し、残りの1タスクについては1つの部品を吸着して、基板20上に装着すればよいことになる。
なお、計9タスクの各々において、フロントヘッドの最大吸着回数3回以内で部品吸着が必ず行えるように、「部品分割」と呼ばれる処理を行なう。「部品分割」とは、1つの部品種に属する部品群(1本の部品テープ)を複数本の部品テープに分割することにより、部品供給部115cに同一種の部品テープを複数本並べることにより、一度に同一の部品種の部品を複数個吸着できるようにする処理である。
図16(c)は、部品分割した結果の部品供給部115cの部品の並びを示している。部品の並び位置はZ番号と呼ばれる番号により特定される。ここでは、部品種を8個ずつグループ化し、最大吸着回数が3回以内になるよう部品分割を行なうと、図16(c)に示されるような部品の並びが決定される。
この並びに基づいてタスクおよびタスク順を求めると、図16(d)に示されるようなタスクおよびタスク順が得られる。すなわち、最初の8タスク(タスク1からタスク8)の吸着の順序として、1回目の吸着動作でZ番号が1、2、3および4の部品(部品A、A、BおよびA)を吸着し、2回目の吸着動作でZ番号が1、2および3の部品(部品A、AおよびB)を吸着し、3回目の吸着動作でZ番号が5の部品(部品B)またはZ番号が6の部品(部品D)を吸着するようにすれば、3回の吸着動作でフロントヘッドの吸着ノズルに部品を満載吸着させることができる。
また、最後の1タスク(タスク9)では、残りのZ番号6に配置された部品Dを吸着する。以上のようにして、部品分割や、タスクおよびタスク順を求めることにより、最大吸着回数である3回の吸着動作ですべての部品が吸着されることが保障される。
図17は、リアヘッドに対するタスク生成処理(図15のS132)を具体的に説明するための図である。タスクの生成方法は、図16に示したフロントヘッドに関するものと同様である。図17(a)に示されるように、リアヘッドに割り当てられた部品の種類はCおよびEの2種類であり、それぞれの員数(実装点数)は、20および15である。図17(b)に示すように、これらの部品合計数35をリアヘッドの吸着ノズル本数4で割ると、8余り3となる。すなわち、リアヘッドの4本の吸着ノズルに部品を満載して部品実装を行うことを考えた場合には、8タスクは部品を満載吸着し、残りの1タスクについては3つの部品を吸着して、基板20上に装着すればよいことになる。
なお、計9タスクの各々において、リアヘッドの最大吸着回数7回以内で部品を吸着すればよいことになるが、リアヘッドの吸着ノズル本数は4本しかないため、1つずつ部品を吸着したとしても、必ず4回以内で部品を吸着することができる。このため、図16(c)に示したような「部品分割」と呼ばれる処理を行なう必要はない。
したがって、図17(c)に示すように、部品供給部115aの並びが決定される。また、図17(d)に示されるようなタスクおよびタスク順が得られる。すなわち、最初の7タスク(タスク1からタスク7)の部品吸着順序として、1回目および2回目の各吸着動作で、Z番号が1および2の部品(部品CおよびE)を吸着するようにすれば、2回の吸着動作でリアヘッドの吸着ノズルに部品を満載吸着させることができる。
また、次の1タスク(タスク8)の部品吸着順序として、1回目の吸着動作で、Z番号が1および2の部品(部品CおよびE)を吸着し、2回目および3回目の各吸着動作で、Z番号が1の部品(部品C)を吸着するようにすれば、3回の吸着動作でリアヘッドの吸着ノズルに部品を満載吸着させることができる。
さらに、最後の1タスク(タスク9)の部品吸着順序として、1回目から3回目の各吸着動作で、Z番号が1の部品(部品C)を吸着するようにすれば、3回の吸着動作でリアヘッドの吸着ノズルに残りの3個の部品を吸着させることができる。
以上のようにして、タスクおよびタスク順を求めることにより、最大吸着回数である7回以下の吸着回数ですべての部品が吸着させることが保障される。
以上のようにして求められたフロントヘッドおよびリアヘッドにおける各タスクの吸着回数を時系列に並べると図18に示すようになる。このように、すべてのタスクにおいて、最大吸着回数以下の吸着回数で部品を吸着することができる。すなわち、一方のマルチ装着ヘッド112による「装着」動作が完了した時点で、滞りなく他方のマルチ装着ヘッド112による「装着」動作に移ることができ、生産効率を向上させることができる。
以上説明したように、本実施の形態によると、マルチ装着ヘッドの吸着ノズルの本数比に基づいて、部品の実装点数を振り分けている。このため、フロントヘッドおよびリアヘッドのタスク数をほぼ等しくすることができる。よって、一方の装着ヘッドのみが部品を装着し、他方の装着ヘッドは停止しているというような状況がなくなり、2つの装着ヘッドが協調しながら1枚の基板に部品を装着することができる。よって、生産効率が向上する。
また、一方の装着ヘッドが部品を装着している間に、他方の装着ヘッドによる部品の吸着および認識動作が終了するように、タスクを求めている。このため、一方のマルチ装着ヘッド112による「装着」動作が完了した時点で、滞りなく他方のマルチ装着ヘッド112による「装着」動作に移ることができ、生産効率を向上させることができる。
以上、本発明に係る部品実装順序決定方法について、実施の形態に基づいて説明したが、本発明は、この実施の形態に限定されるものではない。
例えば、上述の実施の形態では、マルチ装着ヘッド112に備えられた吸着ノズルが吸着する部品はサイズの小さな小部品を想定していたため、マルチ装着ヘッド112で吸着する部品の個数は吸着ノズルの個数と等しいものとして、タスクを生成していた。しかし、実際には、部品には様々なサイズのものが含まれている。このため、大部品の場合には、部品同士の干渉により、マルチ装着ヘッド112に備えられた吸着ノズルの本数分の部品を吸着できない場合もあり得る。そのような場合には、実際にマルチ装着ヘッド112が吸着できる部品数に基づいて、上述の処理を行い、タスクを生成するようにしてもよい。
また、上述の実施の形態では、図3に示したような吸着ノズルが直列したマルチ装着ヘッド112を想定して部品実装順序の決定を行ったが、装着ヘッドの形状は必ずしもこれに限られるものではない。例えば、マルチ装着ヘッド112の代わりにロータリーヘッドを用いてもよい。
図19は、ロータリーヘッドを備えた部品実装機の上面図である。
ロータリーヘッドを備えた部品実装機は、基台400と、基台400の中央部に配設され、基板20を搬送して位置決めする搬送路401と、テープフィーダ402が複数並設され、複数種類の部品を供給する部品供給部403と、部品供給部403から部品を取り出して基板20に移送搭載するロータリーヘッド405と、ロータリーヘッド405に吸着された部品を下方から認識する認識カメラ406と、ロータリーヘッド405をXY方向に移動させるXYロボット407と、部品が廃棄される廃棄トレイ408と、ロータリーヘッド405の交換用の吸着ノズルを保持するノズルステーション409とを備える。
図20は、ロータリーヘッド405の斜視図である。
ロータリーヘッド405は、並設された同一機能の第1ヘッドユニット405aおよび第2ヘッドユニット405bを備える。各ヘッドユニットは略同一機能のユニットであるため、以下では第1ヘッドユニット405aの構造についてのみ説明する。
第1ヘッドユニット405aは、固定台410と、固定台410上に配置された複数(図20においては6つ)のノズル昇降モータ411と、部品を吸着保持する複数の吸着ノズル412と、吸着ノズル412を着脱自在に保持する吸着部413と、複数のカム管414と、A軸またはA’軸を中心として吸着ノズル412を回転させるθモータ415とを備える。
上記構造を有する第1ヘッドユニット405aにおいて、θモータ415による回転動により、複数の吸着ノズル412は、相対位置を変化させることなく、A軸を中心として回転する。そして、ノズル昇降モータ411の直下に移動した吸着ノズル412は、直上のノズル昇降モータ411による押圧により下方に移動する。また、吸着ノズル412に吸着した部品の角度を補正する場合には、θモータ415による回転動により、吸着ノズル412は、A’軸を中心として回転する。
なお、ロータリーヘッドは、吸着ノズルの組が複数備えられ各組の吸着ノズルが同一方向を向いて回転する構造を有するとしたが、放射状に異なる方向を向いた吸着ノズルの組が回転する構造を有していてもよい。すなわち、ロータリーヘッドは、図21に示されるように、並設された同一機能の第1ヘッドユニット460aおよび第2ヘッドユニット460bを備え、第1ヘッドユニット460aおよび第2ヘッドユニット460bが、ユニット外枠461と、回転自在にユニット外枠461に取り付けられたサブヘッド462と、サブヘッド462を回転駆動するサブヘッド回転モータ463と、部品を吸着保持する吸着ノズル464と、サブヘッド462の下端位置の吸着ノズル464を下降動作させる押し下げ機構465と、撮像部466とをそれぞれ備える構造をしていてもよい。
なお、図21に示したロータリーヘッドのように、部品の吸着から装着までの間に撮像部466(部品認識カメラ)を備える場合には、部品の吸着から装着までの間に、部品の認識が終了している。このため、このような場合には、吸着ノズルが部品を吸着してから装着位置に移動するまでの間に部品認識の動作が行なわれるため、部品認識時間を無視することができ、装着時間と吸着時間とが等しいとみなせるという特徴がある。
このため、タスク決定処理(図11のS111)において、一方の装着ヘッドが部品を装着している間に、他方の装着ヘッドによる部品の吸着および認識動作が終了するように、タスクを求めるのではなく、ある時間区間内における部品吸着数をリアヘッドとフロントヘッドとで同じになるようにするのがよい。なお、ここでは、リアヘッドとフロントヘッドとの吸着ノズルの本数は等しいものと仮定している。
図22は、ロータリーヘッドにおけるタスク決定処理(図11のS111)の詳細を説明するためのフローチャートである。
実装順序最適化部305cは、各タスクにおける部品吸着回数が他のヘッドの部品吸着回数と等しくなるようにタスクおよびタスク順を決定する(S141)。これをすべての装着ヘッドに対して行う。
図23は、図22に示したタスク決定処理に従い求められたタスク順の一例を示す図である。このように、各タスクにおいて、フロントヘッドおよびリアヘッドの吸着回数が等しくなっている。このようにすることにより、一方の装着ヘッドが部品を装着している間に、他方の装着ヘッドが部品を吸着することができ、部品の実装効率を向上させることができる。
なお、図24は、好ましくないタスク順の一例を示す図である。例えば、タスク2においては、フロントヘッドが4個の部品を吸着した後に、装着を行うが、フロントヘッドによる4個の部品装着時に、リアヘッドは8個の部品を吸着しなければならず、フロントヘッドによる部品装着よりも時間がかかってしまうという問題がある。しかし、上述したように、各タスクにおいて、タスク数をなるべく同じにすることにより、このような問題は生じなくなる。
このような特徴は、部品認識カメラを搭載したマルチ装着ヘッド112であっても同じである。すなわち、上述の式(1)における「フロントヘッドによる認識時間」および式(3)における「リアヘッドによる認識時間」を無視することができる。
なお、ロータリーヘッドであっても、部品認識カメラが搭載されていなければ、部品の吸着から装着までの間に、部品実装機内に備え付けられた部品認識カメラの位置までロータリーヘッドを移動させてから、部品認識を行なわなければならない。しかし、このような場合であっても、図22に示したのと同様の方法により、各タスクにおける部品吸着回数が他のヘッドの部品吸着回数と等しくなるようにタスクおよびタスク順を決定する。
本発明は、部品実装機における部品実装順序決定方法や部品実装機に適用でき、特にプリント基板に電子部品等の部品を実装する部品実装機における部品実装順序決定方法や部品実装機等に適用できる。
本発明の実施の形態にかかる実装ライン全体の構成を示す外観図である。 部品実装機内部の主要な構成を示す平面図である。 マルチ装着ヘッドと部品カセットの位置関係を示す模式図である。 部品実装機による部品実装について説明するための図である。 部品実装機による部品実装について説明するための図である。 本発明の実施の形態における最適化装置の一構成例を示すブロック図である。 実装点データの一例を示す図である。 部品ライブラリの一例を示す図である。 実装装置情報の一例を示す図である。 実装点数情報の一例を示す図である。 最適化装置による部品実装順序を決定する処理のフローチャートである。 部品振り分け処理の詳細なフローチャートである。 部品振り分け処理について説明するための図である。 部品振り分け処理について説明するための図である。 タスク決定処理の詳細なフローチャートである。 フロントヘッドに対するタスク生成処理を具体的に説明するための図である。 リアヘッドに対するタスク生成処理を具体的に説明するための図である。 タスクの吸着回数をタスク順に並べた図である。 ロータリーヘッドを備えた部品実装機の上面図である。 ロータリーヘッドの斜視図である。 他のロータリーヘッドの斜視図である。 ロータリーヘッドにおけるタスク決定処理の詳細を説明するためのフローチャートである。 図22に示したタスク決定処理に従い求められたタスク順の一例を示す図である。 好ましくないタスク順の一例を示す図である。
符号の説明
100,200 部品実装機
110a,110b,120a,120b サブ設備
112 マルチ装着ヘッド
112a,112b,412 吸着ノズル
113 ビーム
114 部品カセット
115,115a〜115d 部品供給部
116 部品認識カメラ
117 トレイ供給部
121 レール
300 最適化装置
301 演算制御部
302 表示部
303 入力部
304 メモリ部
305 最適化プログラム格納部
305c 実装順序最適化部
306 通信I/F部
307 データベース部
307a 実装点データ
307b 部品ライブラリ
307c 実装装置情報
307d,307f,307g 実装点数情報
405 ロータリーヘッド

Claims (5)

  1. 1枚の基板に対して、2つの装着ヘッドが交互に部品を実装する際の実装順序を決定する部品実装順序決定方法であって、
    装着ヘッドによる部品の吸着・移動・装着という一連の動作の繰り返しにおける1回分の一連動作によって実装される部品群をタスクとした場合に、前記2つの装着ヘッドの各々について、他の装着ヘッドによる部品の装着時間と自身による部品の吸着時間および認識時間とを比較することにより、他の装着ヘッドによる部品の装着時間内に部品の吸着および認識を終えることができる部品の最大吸着回数を算出する算出ステップと、
    前記2つの装着ヘッドの各々について、部品の吸着回数が前記最大吸着回数以下となるように、割り付けられた部品群をタスクに分割することにより各タスクを生成するタスク生成ステップとを含む
    ことを特徴とする部品実装順序決定方法。
  2. 前記タスク生成ステップでは、
    同一の部品種の部品を複数の部品テープで供給するように部品テープの本数を決定することにより、部品の吸着回数を減少させ、前記2つの装着ヘッドの各々について、部品の吸着回数が前記最大吸着回数以下となるように、割り付けられた部品群をタスクに分割することにより各タスクを生成する
    ことを特徴とする請求項1に記載の部品実装順序決定方法。
  3. 1枚の基板に対して、2つの装着ヘッドが交互に部品を実装する際の実装順序を決定する部品実装順序決定装置であって、
    装着ヘッドによる部品の吸着・移動・装着という一連の動作の繰り返しにおける1回分の一連動作によって実装される部品群をタスクとした場合に、前記2つの装着ヘッドの各々について、他の装着ヘッドによる部品の装着時間と自身による部品の吸着時間および認識時間とを比較することにより、他の装着ヘッドによる部品の装着時間内に部品の吸着および認識を終えることができる部品の最大吸着回数を算出する算出手段と、
    前記2つの装着ヘッドの各々について、部品の吸着回数が前記最大吸着回数以下となるように、割り付けられた部品群をタスクに分割することにより各タスクを生成するタスク生成手段とを備える
    ことを特徴とする部品実装順序決定装置。
  4. 1枚の基板に対して、2つの装着ヘッドが交互に部品を実装する際の実装順序を決定するプログラムであって、
    装着ヘッドによる部品の吸着・移動・装着という一連の動作の繰り返しにおける1回分の一連動作によって実装される部品群をタスクとした場合に、前記2つの装着ヘッドの各々について、他の装着ヘッドによる部品の装着時間と自身による部品の吸着時間および認識時間とを比較することにより、他の装着ヘッドによる部品の装着時間内に部品の吸着および認識を終えることができる部品の最大吸着回数を算出する算出ステップと、
    前記2つの装着ヘッドの各々について、部品の吸着回数が前記最大吸着回数以下となるように、割り付けられた部品群をタスクに分割することにより各タスクを生成するタスク生成ステップとをコンピュータに実行させる
    ことを特徴とするプログラム。
  5. 1枚の基板に対して、2つの装着ヘッドが交互に部品を実装する部品実装機であって、
    請求項1に記載の部品実装順序決定方法により決定された部品実装順序に従い、基板上に部品を実装する
    ことを特徴とする部品実装機。
JP2008286917A 2008-11-07 2008-11-07 部品実装順序決定方法 Active JP4332586B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008286917A JP4332586B2 (ja) 2008-11-07 2008-11-07 部品実装順序決定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008286917A JP4332586B2 (ja) 2008-11-07 2008-11-07 部品実装順序決定方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005056549A Division JP4242355B2 (ja) 2004-12-15 2005-03-01 部品実装順序決定方法、装置、プログラム及び部品実装機

Publications (2)

Publication Number Publication Date
JP2009027207A true JP2009027207A (ja) 2009-02-05
JP4332586B2 JP4332586B2 (ja) 2009-09-16

Family

ID=40398648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008286917A Active JP4332586B2 (ja) 2008-11-07 2008-11-07 部品実装順序決定方法

Country Status (1)

Country Link
JP (1) JP4332586B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010089938A1 (ja) 2009-02-09 2010-08-12 日本電気株式会社 回転推定装置、回転推定方法および記録媒体
WO2013190608A1 (ja) * 2012-06-18 2013-12-27 富士機械製造株式会社 部品実装機
US8793867B2 (en) 2010-03-03 2014-08-05 Samsung Techwin Co., Ltd. Head nozzle and apparatus for mounting electronic parts
JP2016165019A (ja) * 2016-06-16 2016-09-08 富士機械製造株式会社 部品実装機
JP2016171347A (ja) * 2016-06-16 2016-09-23 富士機械製造株式会社 部品実装機
JP2020043212A (ja) * 2018-09-10 2020-03-19 パナソニックIpマネジメント株式会社 実装方法およびデータ生成装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010089938A1 (ja) 2009-02-09 2010-08-12 日本電気株式会社 回転推定装置、回転推定方法および記録媒体
US8793867B2 (en) 2010-03-03 2014-08-05 Samsung Techwin Co., Ltd. Head nozzle and apparatus for mounting electronic parts
WO2013190608A1 (ja) * 2012-06-18 2013-12-27 富士機械製造株式会社 部品実装機
JPWO2013190608A1 (ja) * 2012-06-18 2016-02-08 富士機械製造株式会社 部品実装機
JP2016165019A (ja) * 2016-06-16 2016-09-08 富士機械製造株式会社 部品実装機
JP2016171347A (ja) * 2016-06-16 2016-09-23 富士機械製造株式会社 部品実装機
JP2020043212A (ja) * 2018-09-10 2020-03-19 パナソニックIpマネジメント株式会社 実装方法およびデータ生成装置
JP7162191B2 (ja) 2018-09-10 2022-10-28 パナソニックIpマネジメント株式会社 実装方法およびデータ生成装置

Also Published As

Publication number Publication date
JP4332586B2 (ja) 2009-09-16

Similar Documents

Publication Publication Date Title
US7899561B2 (en) Operating time reducing method, operating time reducing apparatus, program and component mounter
JP4332586B2 (ja) 部品実装順序決定方法
JP4996634B2 (ja) 実装条件決定方法および実装条件決定装置
JP4584960B2 (ja) 部品実装方法
JP4580972B2 (ja) 部品実装方法
KR101062511B1 (ko) 부품 장착 순서의 최적화 방법 및 부품 장착 순서의 최적화장치
JP4551319B2 (ja) 部品実装方法及び部品実装機
JP4995845B2 (ja) 実装条件決定方法
JP4242355B2 (ja) 部品実装順序決定方法、装置、プログラム及び部品実装機
JP5009939B2 (ja) 実装条件決定方法
KR20090038856A (ko) 부품 장착 조건 결정 방법
US20090043414A1 (en) Method for determining arrangement of production equipment
JP4643425B2 (ja) 部品実装順序決定方法
JP4995848B2 (ja) 実装条件決定方法
JP5038970B2 (ja) 実装条件決定方法、実装条件決定装置、部品実装方法、部品実装機およびプログラム
JP4387991B2 (ja) 部品配置位置決定方法
JP4328274B2 (ja) 部品実装順序最適化方法および部品実装順序最適化装置
JP4767884B2 (ja) パーツフィーダ種別決定方法およびパーツフィーダ種別決定装置
JP4891196B2 (ja) 部品実装方法
JP4580809B2 (ja) バルクフィーダ本数決定方法
JP2010021531A (ja) 実装条件決定方法
JP2009105217A (ja) 実装条件決定方法、実装条件決定装置、部品実装機及びプログラム
JP4891201B2 (ja) 部品振り分け方法
JP4242356B2 (ja) 部品実装順序決定方法、装置、プログラム、部品実装方法及び部品実装機
JP2007013103A (ja) 生産設備配置決定方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090622

R150 Certificate of patent or registration of utility model

Ref document number: 4332586

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4