JP2009025158A - レーダ装置 - Google Patents

レーダ装置 Download PDF

Info

Publication number
JP2009025158A
JP2009025158A JP2007188626A JP2007188626A JP2009025158A JP 2009025158 A JP2009025158 A JP 2009025158A JP 2007188626 A JP2007188626 A JP 2007188626A JP 2007188626 A JP2007188626 A JP 2007188626A JP 2009025158 A JP2009025158 A JP 2009025158A
Authority
JP
Japan
Prior art keywords
wave
signal
fourier transform
phase
receivers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007188626A
Other languages
English (en)
Other versions
JP4903094B2 (ja
Inventor
Toshio Wakayama
俊夫 若山
Masa Mitsumoto
雅 三本
Naohisa Uehara
直久 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007188626A priority Critical patent/JP4903094B2/ja
Priority to US11/872,252 priority patent/US7548193B2/en
Priority to DE102007054298.6A priority patent/DE102007054298B4/de
Publication of JP2009025158A publication Critical patent/JP2009025158A/ja
Application granted granted Critical
Publication of JP4903094B2 publication Critical patent/JP4903094B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/583Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets
    • G01S13/584Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets adapted for simultaneous range and velocity measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/354Extracting wanted echo-signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/356Receivers involving particularities of FFT processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/358Receivers using I/Q processing

Abstract

【課題】受信信号として実数信号しか得られない場合にもドップラー周波数の正負または目標角度の正負を判定可能とする。
【解決手段】発振器1、発振器で発生された波動を空間に放射する送信素子3、発振器で発生された波動の一部を抽出しローカル波として出力する分配器2、互いに異なる位置に配置され波動を受信して受信波を出力する受信素子4a〜4d、ローカル波を用いて各受信波を検波し実数受信信号を生成する受信器5a〜5d、複数の実数受信信号に複素数で表される受信器毎に異なる位相補正係数を乗じる複数のチャネル間位相補正部7a〜7d、複数の位相補正後受信信号をまとめて得られる受信信号列を空間周波数領域の信号に変換する空間周波数情報生成部9、空間周波数情報生成部においておおよそ角度0の方向に対して正負に対称な2方向からの信号が検出された場合に空間周波数スペクトルの振幅が大きい方を選択する符号選択部11を備える。
【選択図】図1

Description

この発明は、空間に波動を放射し、空間中に存在する物体で反射された波動を受信して、受信した波動に信号処理を施すことにより物体の計測を行うレーダ装置に関するものである。
一般に、レーダは、空間に電磁波を放射し、空間中に存在する目標で反射された反射波を受信することにより、目標の有無を知る、すなわち目標検出を行うものである。目標がレーダに対して相対的に運動している場合には、ドップラー効果により生じる周波数変移、すなわちドップラー周波数を計測することにより、目標の相対速度、すなわちドップラー速度を計測することもできる。
ドップラー周波数を計測する場合、受信信号として、2つの直交する信号成分を得るI/Q検波方式が一般に用いられている。この方式では、受信波とローカル波をそれぞれ2分配することにより、受信波とローカル波の組み合わせを2組用意し、それぞれの組み合わせについて、ミキサを用いて混合することにより、2チャネルの受信信号を得る。2つの受信信号チャネルをIn-phaseチャネル(Iチャネル)と、Quadrature-phaseチャネル(Qチャネル)と呼ぶことにする。
2チャネルの受信信号のうちの、Qチャネルの受信信号を得る際に、受信波またはローカル波のいずれかの位相を90度回転させておく。これにより、IチャネルとQチャネルとで直交する成分が得られることになる。Iチャネルを実部、Qチャネルを虚部とみなすことにより得られる複素受信信号に対して、フーリエ変換を施すと、目標のドップラー周波数に対応する周波数の振幅が卓越するため、目標のドップラー周波数を知ることができる(例えば、非特許文献1参照)。
受信信号が1チャネル分しか得られないとき、すなわちIチャネルしか得られない場合は、受信信号が実数信号になる。この場合、受信信号のフーリエ変換は周波数0を中心に対称な振幅分布となる。そのため、目標のドップラー周波数が正であったとしても、フーリエ変換後には正の周波数と負の周波数の2点の周波数で振幅が卓越する(2点の周波数で振幅のピークを持つ)ようになる。逆に、目標のドップラー周波数が負の場合にも、同様に正負の2点の周波数で振幅が卓越する。すなわち、ドップラー周波数の絶対値は得られても、その符号を確定させることはできなく、ドップラー周波数の符号にあいまいさが残る。これは、目標が接近しているか、それとも離反しているかを判別できないことを意味する。
同様の周波数符号のあいまいさは、信号処理で受信ビームを合成する技術であるDBF(Digital Beam Forming)方式のレーダにも現れる。DBF方式では、複数の受信素子で得られた受信信号に対して、素子方向にフーリエ変換を施すことにより、角度方向の信号分布を得る。すなわち、受信ビームを信号処理で合成する技術である(例えば、非特許文献2参照)。
このようなDBF方式のレーダにおいて、受信信号が1チャネルのみからなる、すなわち実数受信信号しか得られない場合、受信信号をフーリエ変換した結果得られる受信ビームの振幅パターンは、正面を0度として、正負の角度で対称となる。すなわち、受信波の到来角度が正なのか負なのかが分からないことになる。
R.J.Doviak and D.S.Zrnic, "3. Radar and Its Environment," in Doppler Radar and Weather Observations, Second Ed., p. 30-53, Academic Press, Inc., 1993. M.I.Skolnik, Introduction to Radar Systems, Third Ed., pp.610-614, McGraw-Hill, 2001.
以上のように、ドップラーレーダにおいて、受信信号として実信号(Iチャネルのみ)しか得られない場合、ドップラー周波数の符号が得られない。さらに、アンテナがDBF方式の場合、目標角度(正面を角度0と定義)の正負の情報を得ることができない。しかし、Iチャネルのみでレーダ装置が構成されれば、IチャネルとQチャネルの2チャネルでレーダ装置を構成するよりも、部品点数が少なくなるため、小型化および低コスト化を図ることができる。
この発明は上述した符号あいまいさと小型化・低コスト化が相反するという問題点を解決するためになされたもので、受信信号として実数信号しか得られない場合にも、ドップラー周波数の正負、あるいは目標角度の正負を判定可能とすることができるレーダ装置を得ることを目的とする。
この発明に係るレーダ装置は、空間に波動を放射し、空間中に存在する物体で反射された波動を受信して、受信した波動に信号処理を施すことにより物体の計測を行うレーダ装置において、波動を発生する発振器と、前記発振器で発生された波動を空間に放射する送信素子と、前記発振器で発生された波動の一部を抽出し、ローカル波として出力するローカル波抽出部と、互いに異なる位置に配置され、到来した波動を受信して受信波を出力する、複数の受信素子と、前記ローカル波抽出部からのローカル波を用いて、各受信素子で受信された受信波を検波することにより、実数受信信号を生成する複数の受信器と、前記複数の受信器で得られた実数受信信号に複素数で表される受信器毎に異なる位相補正係数を乗じる複数のチャネル間位相補正部と、前記複数のチャネル間位相補正部から出力される位相補正後受信信号をまとめて得られる受信信号列を空間周波数領域の信号に変換する空間周波数情報生成部と、前記空間周波数情報生成部において、角度0の方向に対して正負に対称な2方向からの信号が検出された場合に、空間周波数スペクトルの振幅が大きい方を選択する符号選択部とを備えたことを特徴とする。
この発明によれば、受信信号として実数信号しか得られない場合にも、ドップラー周波数の正負、あるいは目標角度の正負を判定可能とすることができる。
実施の形態1.
図1は、この発明の実施の形態1に係るレーダ装置の構成を示すブロック図である。図1に示すレーダ装置は、送信波(波動)を発生させる発振器1、発振器1から出力された送信波を分配して一部をローカル波として抽出するローカル波抽出部となる分配器2、分配器2から送信波出力の1つを入力し、空間へ送信波を放射する送信素子である送信空中線3、互いに異なる位置に配置されて、送信波が空間中の物体により反射されることにより生じた反射波を受信することにより受信波を得る受信素子である複数の受信空中線4a〜4d、複数の受信空中線4a〜4から受信波を入力するとともに、分配器2から入力した送信波出力と混合することにより実数受信信号を生成する複数の受信器5a〜5d、複数の受信器5a〜5dから出力された受信信号をAD(Analog to Digital)変換することによりディジタル受信信号を生成する複数のAD変換器6a〜6d、ディジタル受信信号に対してチャネル間の位相のばらつきを補正することにより位相補正後受信信号を生成するチャネル間位相補正部7a〜7dを備える。このチャネル間位相補正部7a〜7dは、各受信器からの実数受信信号に複素数で表される受信器毎に異なる位相補正係数を乗じる。
また、このレーダ装置は、チャネル間位相補正部7a〜7dから出力される位相補正後受信信号にフーリエ変換を施すチャネル方向フーリエ変換部9、チャネル方向フーリエ変換部9からチャネル方向フーリエ変換後信号を入力し、振幅の大きい空間周波数を検出する検出部10、検出部10で検出されたものから、正しい符号の角度の検出結果のみを抽出する符号選択部11を備える。ここで、チャネル方向フーリエ変換部9は、複数のチャネル間位相補正部7a〜7dから出力される位相補正後受信信号をまとめて得られる受信信号列を空間周波数領域の信号に変換する空間周波数情報生成部として機能し、符号選択部11は、検出部10において、おおよそ角度0の方向に対して正負に対称な2方向からの信号が検出された場合に、空間周波数スペクトルの振幅が大きい方を選択するようになされている。
次に、実施の形態1に係るレーダ装置の動作について説明する。発振器1は、送信波を発生する。レーダ装置で良く用いられる送信周波数帯はマイクロ波帯やミリ波帯などであるが、この発明ではレーダ装置の送信周波数を特に限定するものではない。また、以後では送信波として電波を想定して説明を進めるが、電磁波の一種であるレーザ光を用いる場合、すなわちレーザレーダの場合にも同様に適用できるものである。さらに、電磁波に限らず、音波を用いたレーダ(ソーダ)にも適用可能である。
発振器1から出力される送信波として、ここでは無変調連続波を想定することとする。しかし、この発明では送信波の変調方式を特に限定するものでなく、パルス変調や周波数変調など、任意の変調方式のレーダ装置に適用可能なものである。
発振器1で生成された送信波は、分配器2に入力される。分配器2では、送信波を複数に分配して出力する。分配された送信波出力の1つは送信空中線3へと出力される。他の分配された送信波出力は、ローカル波として受信器5a〜5dへと出力される。
送信波の送信周波数がf、分配器2の出力端での初期位相がφ、振幅Aがであるとき、分配器2の出力端における送信波の時間波形s(t)が次式(1)で表されるとする。
Figure 2009025158
送信素子3は、分配器2から入力された送信波を空間へ放射する。放射された送信波は、空間中に存在する反射物体で反射される。これにより生じた反射波の一部は、レーダ装置の位置に戻ってくる。レーダ位置に到来した反射波は受信素子4a〜4dによってレーダに取り込まれる。ここでは、各受信素子が取り込んだ反射波を受信波と呼ぶことにする。
受信素子4a〜4dは、異なる空間位置に配置されている。そのため、反射波の到来方向に依存する位相差が、各素子で受信した受信波に生じる。例えば、受信素子がx軸上に直線的に等間隔に配列されているとし、各々の位置がxで表されるとすると、受信素子に入力される受信波は、次式(2)で表される。
Figure 2009025158
ここで、fはドップラー周波数、θはレーダ装置から見た反射物体の存在する角度、ψはレーダと反射物体の間の距離と反射物体の電波反射特性によって定まる位相角、lは分配器から送信空中線の出力端までの電気的経路長である。また、反射物体は遠方界になるものと近似している。この式(2)のcosの位相角の第2項は受信素子の位置の相違による位相差、第3項は送信波がレーダ装置内部を伝搬する際に生じる時間遅延による位相回転量、第4項は送信波が空中へ放射されてから反射波を受信素子で受信するまでに生じる位相回転量をそれぞれ表すものである。
受信素子4a〜4dは、それぞれ受信器5a〜5dと接続されており、各受信素子4a〜4dで得られた受信波が、給電線路を介して受信器5a〜5dへと入力される。受信器5a〜5dの入力端における受信波は次式(3)で表される。
Figure 2009025158
ただし、lr,mは受信波を受信素子4a〜4dから受信器5a〜5dまで給電する給電線路の電気的経路長である。
一方、m番目の受信器に入力されるローカル波は次式(4)で表される。
Figure 2009025158
ただし、lL,mはローカル波を分配器2から受信器5a〜5dまで給電する給電線路の電気的経路長である。
受信器5a〜5dでは、受信波とローカル波を混合することにより、両者の差の周波数(差周波数)を持つ受信信号を生成する。送信波は無変調連続波を想定しているため、差周波数は反射物体のドップラー周波数に等しいものとなる。受信信号は、式(3)と式(4)を乗算し、高調波成分を除去した次の式(5)で表される。
Figure 2009025158
ただし、ドップラー周波数fは送信周波数fに比べて十分小さいと仮定している。また、受信信号の初期位相は、全受信素子に共通する量であるψと、受信素子毎にばらついている量であるΔψとで表されるとしている。
Figure 2009025158
なお、受信器5a〜5dは、必要に応じて増幅器を備えていても良いが、この発明のレーダ装置の方式を限定するものではないため、図1には特に明示的に示していない。
受信器5a〜5dは、それぞれで生成した受信信号をAD変換器6a〜6dへと出力する。それぞれのAD変換器6a〜6dは、入力した受信信号をアナログ−ディジタル変換し、得られたディジタル受信信号を生成する。AD変換器6a〜6dの出力端は、それぞれチャネル間位相補正部7a〜7dの入力端に接続されており、AD変換器6a〜6dで生成されたディジタル受信信号は、チャネル間位相補正部7a〜7dへと入力される。
各チャネル間位相補正部7a〜7dでは、チャネル毎に設定された位相補正量を用いて、ディジタル受信信号に対して、チャネル間でばらついている位相を補正する処理を施し、位相補正後受信信号を生成する。位相補正は、次式(7)のように、ディジタル受信信号にexp(−jΔψ)を乗じることより行われる。
Figure 2009025158
この式(7)の右辺第1項をsc+(t)、右辺第2項をsc−(t)と置く。すなわち、
Figure 2009025158
Figure 2009025158
チャネル方向フーリエ変換部9は、チャネル間位相補正部7a〜7dから出力された位相補正後受信信号を入力し、チャネル方向にフーリエ変換を施す。チャネル方向フーリエ変換部9におけるフーリエ変換処理は、到来方向を仮定して得られる受信素子間位相差を補償した後にコヒーレント積分を行う処理を、複数通りの仮定到来方向で行う。したがって、実際に反射波が到来した方向と等しい方向に到来波を仮定した場合に、信号の振幅が大きくなる。よって、チャネル方向フーリエ変換後の受信信号の振幅のピークを検出することにより、到来方向を知ることができる。チャネル方向フーリエ変換の角度θ方向の成分は次式(10)で算出される。
Figure 2009025158
この式の右辺第1項をS(θ)、第2項をS(θ)と置くことにする。θ=θの場合に、S(θ)のΣ内の各項の位相が揃うため、
Figure 2009025158
となる。S(θ)では、Σ内の各項の位相にxに比例する項が残るため、Σ内の各項の位相が揃わない。よって、|S(θ)|は小さな値となり、
Figure 2009025158
となる。
次に、θ=−θの場合、S(θ)では、Σ内の各項の位相にxに比例する項が消える。しかし、受信チャネルによってばらつく位相である2Δψの項が残るため、S(θ)の位相にばらつきが残る。すなわち、
Figure 2009025158
となる。これは、係数
Figure 2009025158
がMより小さくなる分だけ振幅が減少する、すなわち位相補正が正しく行われなかった分だけ振幅が減少することを意味する。
(θ)については、Σ内の各項の位相にxに比例する項が残るため、Σ内の各項の位相はばらつき、|S(θ)|は小さな値となる。θ≠θかつθ≠−θの場合は、S(θ)のΣ内のいずれの項にも、xに比例する位相項が残るため、振幅|S(θ)|は小さな値となる。
ここで、この発明のレーダ装置において、受信器5a〜5dではIチャネルのみが得られることを想定しており、受信信号は実数信号である。この信号にそのままフーリエ変換を適用した場合、フーリエ変換後の受信信号は、空間周波数0を中心に対称な振幅を持つようになる。これは、反射波の到来方向の正負が分からないことを意味する。
しかし、チャネル間位相補正部7a〜7dによる位相補正を前述のように行うことにより、チャネル方向フーリエ変換部9に入力される位相補正後受信信号は、虚数成分を持つようになっている。したがって、チャネル方向フーリエ変換後の信号は、空間周波数0を中心に対称とはならなくなる。
具体的には、チャネル間位相補正は、正しい符号の空間周波数成分にのみ適切に行われ、フーリエ変換の符号あいまいさにより生じた誤った符号の空間周波数成分には、式(10)で示したように、位相ばらつきが残るため、コヒーレント積分効果が低減する。その結果、正しい周波数符号の成分の方が、誤った周波数符号の成分よりも、フーリエ変換後の振幅が大きくなる。
図2は、このような特性を模式的に示したものである。この図2において、101は実際に反射物体が存在する角度のピーク、102は符号あいまいさにより、ピーク101の角度の符号を反転させた角度に現れたピークである。両者を比較すると、符号あいまいさにより現れたピーク102は、ピーク101よりも振幅が低くなっている。よって、振幅の大きい方のピークを選択すれば、角度の符号あいまいさを解消することが可能となる。
以上の特性に基づき、検出部10および符号選択部11を用いて、検出された空間周波数のうち、正しい符号の信号のみを抽出し、誤った周波数符号に対応する信号を除去する。まず、検出部10では、チャネル方向フーリエ変換部9から出力されたチャネル方向フーリエ変換の振幅に対して、しきい値を用いたピーク検出処理を行う。すなわち、チャネル方向フーリエ変換の振幅、すなわち振幅スペクトルが極大値となる角度を抽出し、その角度における振幅が、予め設定したしきい値を超える場合に、信号が検出されたと判断し、検出結果として、角度と振幅の組み合わせを出力する。
ただし、検出部10から出力される検出結果、符号あいまいさにより、正しく検出された信号の角度の符号を反転した角度にも、誤った検出結果が得られる場合がある。そこで、符号選択部11では、入力した各検出結果について、角度符号を反転させた角度にも検出結果が得られているかどうかを調べる。もし符号反転させた角度にも検出結果が得られている場合は、元の角度で検出された振幅と、符号反転した角度で検出された振幅とを比較し、振幅の小さい方の検出結果を削除する。これにより、符号あいまいさにより生じる偽像が検出されるのを防ぐことが可能となる。
本実施の形態1に係るレーダ装置における信号処理のフローチャートを図3に示す。ステップs001では、AD変換器6a〜6dで得られたディジタル受信信号に対して、チャネル間位相補正部7a〜7dにて式(7)のようなチャネル間位相ばらつきを補償する位相補正を行う。
ステップs002では、位相補正後の受信信号に対して、チャネル方向フーリエ変換部9にて、チャネル方向にフーリエ変換を施す。ステップs003では、検出部10にて、チャネル方向フーリエ変換の振幅に対してピーク検出処理を行い、ピーク位置の角度を抽出する。
ステップs004からステップs007は、ステップs003で検出された各ピークに対して処理を繰り返すループを構成している。まず、ステップs005では、検出されたピーク角度の1つを抽出し、その符号を判定させた角度の空間スペクトル振幅値を抽出する。
ステップs006では、正負の角度、すなわち、ループ処理で選択中の検出ピーク角度とs005で抽出された角度において、両者の振幅を比較する。そして、振幅の小さい方の角度を削除し、振幅の大きい方の角度を反射物体の測角値として残す。
以上の処理により、おおよそ角度0に対して正負に対称な角度のピークが検出された場合は、振幅の大きい方が測角値として選択され、正負の一方のみの角度にピークが検出された場合には、検出された角度がそのまま測角値として残る。
なお、本実施の形態1に係るレーダ装置では、チャネル間位相ばらつき量Δψは既知である必要がある。これについては、例えばレーダ装置の製造時において、レーダ装置から見た相対位置が既知である反射物体を観測し、受信信号のチャネル間の位相差を計測することにより得ることが可能である。
また、以上では、チャネル方向の信号を空間周波数領域の信号に変換する方法として、フーリエ変換を用いる実施の形態を説明したが、空間周波数領域の信号に変換する方法は、特にフーリエ変換に制限されるものではない。例えば超分解能の手法として従来から知られているMUSIC(Multiple SIgnal Classfication)などの手法を用いて、空間周波数領域の信号へと変換するような構成でも良い。
以上のように、実施の形態1によれば、チャネル間ばらつきの位相補正を行うとともに、符号選択処理を行うようにしているため、受信器が実数信号のみを生成するような安価な装置構成の場合にも、目標角度を符号のあいまいさなく計測することが可能である。
実施の形態2.
前述した実施の形態1では、チャネル方向のみに対してフーリエ変換を行うようにしたものであるが、次に時間方向にもフーリエ変換を行う場合の実施の形態を示す。
図4は、この発明の実施の形態2に係るレーダ装置の構成を示すブロック図である。図4に示す実施の形態2に係る構成において、図1に示す実施の形態1に係る構成と同一部分は同一符号を付してその説明は省略する。図4に示す実施の形態2においては、図1に示す実施の形態1に係る構成に対し、複数のチャネル間位相補正部7a〜7dとチャネル方向フーリエ変換部9との間に、チャネル間位相補正部7a〜7dから出力された位相補正後受信信号に対して、時間方向にフーリエ変換を行う時間方向フーリエ変換部8a〜8dをさらに備えている。
次に、実施の形態2に係るレーダ装置の動作を説明する。本実施の形態2のレーダ装置の動作のうち、チャネル間位相補正部7a〜7dによる位相補正処理までは、前述の実施の形態1のものと同じである。チャネル間位相補正部7a〜7dから出力された位相補正後受信信号は、時間方向フーリエ変換部8a〜8dに入力される。時間方向フーリエ変換部8a〜8dは、複数時刻分の位相補正後受信信号を蓄積する。所定の点数の位相補正後受信信号が蓄積されると、時間方向フーリエ変換を行う。これにより、各チャネル毎に受信信号のフーリエ変換が得られることになる。ここでは、送信波として無変調連続波を仮定しているため、フーリエ変換後の信号は、ドップラー周波数分布を表すことになる。すなわち、反射物体の相対速度に対応するドップラー周波数に卓越した振幅を持つ信号となる。
次に、チャネル方向フーリエ変換部9では、時間方向フーリエ変換部8a〜8dから入力した時間方向フーリエ変換信号に、チャネル方向のフーリエ変換を施す。具体的には、同じドップラー周波数の信号を抽出してチャネル方向に配列し、その信号列にフーリエ変換を施す。時間方向フーリエ変換部8a〜8dとチャネル方向フーリエ変換部9の処理を合わせると、時間方向とチャネル方向の2次元空間上で定義された位相補正後受信信号に対して、2次元フーリエ変換を施したのと等価となる。
受信器5a〜5dでは、Iチャネルのみが得られることを想定しており、受信信号は実数信号となっている。したがって、チャネル間位相補正を行わなかったとすると、2次元フーリエ変換へは実数信号が入力されることになる。そのため、周波数−空間周波数の空間上で定義されるフーリエ変換後の信号の振幅は、原点を中心に点対称に分布することになる。例えば、図5は、1目標が存在する場合の例を模式的に表したものである。ドップラー周波数と空間周波数(角度)の両方に符号あいまいさが生じるが、その生じ方としては、ドップラー周波数の符号と空間周波数の符号の組み合わせが2通りに生じる。
ただし、チャネル間位相ばらつきに対する位相補正を行うと、位相補正は正しいドップラー周波数の符号と空間周波数の符号の組み合わせの場合のみに適切に行われ、もう一つの誤った符号組み合わせの信号成分では位相ばらつきが消えずに残る。そのため、時空間スペクトル上の2つのピークのうち、正しいピークの振幅の方が誤ったピークの振幅より大きくなる。
そこで、以上の特性に基づき、符号選択部11では、検出された時空間周波数のうち、正しい符号の信号のみを抽出し、誤った周波数符号に対応する信号を除去する。
なお、以上では、図4に示したように、チャネル間位相補正部7a〜7dの後段に時間方向フーリエ変換部8a〜8dが配置されている。しかし、時間方向フーリエ変換は各チャネル毎に閉じた処理である。そのため、図6に示すように、チャネル間位相補正部7a〜7dの前段に時間方向フーリエ変換部8a〜8dを配置する構成でも、図4と等価な効果を得ることができる。
また、図4に示す構成は、時間方向フーリエ変換部8a〜8dとチャネル方向フーリエ変換部9により時間方向フーリエ変換とチャネル方向フーリエ変換を別々に行うような構成となっているが、図7に示す如く、2次元フーリエ変換部として時空間フーリエ変換部12を備えて、両者を同時に実行する構成としても、図4に示す構成のレーダ装置と等価の効果が得られる。
また、図4に示す構成では、時間方向フーリエ変換部8a〜8dの後にチャネル方向フーリエ変換部9を設けて、時間方向フーリエ変換の後にチャネル方向フーリエ変換を行う構成となっているが、図8に示す如く、これらフーリエ変換部の設置順序を変えた構成、すなわち、チャネル方向フーリエ変換部9の後に時間方向フーリエ変換部8a〜8dを設けて、チャネル方向フーリエ変換を行った後に時間方向フーリエ変換を行う構成でも、図4に示す構成のレーダ装置と等価の効果が得られる。
以上のように、実施の形態2によれば、チャネル間ばらつきの位相補正を行うとともに、符号選択処理を行うようにしているため、受信器が実数信号のみを生成するような安価な装置構成の場合にも、目標のドップラー速度と角度を符号のあいまいさなく計測することが可能である。
実施の形態3.
以上の実施の形態では、製造過程あるいは経年変化などで生じたチャネル間位相ばらつきを補正することにより、計測の符号あいまいさの問題を解消するものであった。しかし、製造を高精度に行うことができ、経年変化が小さいと見込める場合には、チャネル間位相ばらつきを予め与えて設計および製造を行うことも考えられる。ここでは、そのような実施の形態を示す。
図9は、この発明の実施の形態3に係るレーダ装置の構成を示すブロック図である。図9に示す実施の形態3に係る構成において、図1に示す実施の形態1に係る構成と同一部分は同一符号を付してその説明は省略する。図9に示す実施の形態2においては、図1に示す実施の形態1に係る構成に対し、信号の位相をπ/2だけ回転させる移相器13aおよび13cをさらに備えている。
次に、実施の形態3に係るレーダ装置の動作を説明する。図9に示すレーダ装置の動作は前述した図1に示すレーダ装置とほぼ同様のものである。ただし、受信器5a〜5dに入力される受信波の位相のばらつきはないものとする。すなわち、レーダ装置の正面方向から受信波が到来した場合の、受信器5a〜5d入力端の位相がチャネル間で一致するようになっている。その代わりに、受信波と混合する送信波出力の位相が、チャネル間で異なるようになっている。これにより、受信器5a〜5dから出力される受信信号の位相にばらつきが生じるようになる。
送信波出力の位相は、移相器13aおよび13cによって回転される。分配器2から受信器5a〜5dに送信波成分が出力されるが、このうちの受信器5aと受信器5cに入力する送信波成分のみに移相器による位相回転を施す。ここでは、位相回転量としてπ/2の位相回転を与える。これにより、受信器5aと受信器5cの出力端における受信信号の位相は、位相ばらつきがないときに比べてπ/2だけ位相が回転することになる。
この位相回転は、チャネル間位相補正部7a〜7dによって補正される。この位相補正は、正しい空間周波数符号を持つ信号成分のみに正しく行われ、符号あいまいさにより生じた誤った空間周波数符号を持つ信号成分に対しては、位相ばらつきが残る。
誤った空間周波数符号を持つ信号成分に対しては、前述の式(9)のように、位相ばらつき量が倍になる特性がある。したがって、予め与えられていたπ/2の位相のずれは、位相補正処理後にπになる。すなわち、位相が反転する。よって、誤った空間周波数符号の成分は、チャネル方向フーリエ変換によるコヒーレント積分処理において打ち消されるため、積分後の振幅は小さくなる。すなわち、空間周波数の符号あいまいさはほとんどなくなる。
実際には、誤った空間周波数符号の信号成分が十分に打ち消されない可能性がある。例えば、位相のランダムばらつきの影響により、このようなことが起こりうる。この場合にも、実施の形態1の場合と同様に、符号選択部11により誤った符号を持つ成分を取り除くことが可能となる。
なお、以上の説明では、移相器13aおよび13cにより、π/2の位相差を与えるようにしていたが、位相差の値が既知であれば、必ずしも位相差がπ/2と等しくなくても良い。その場合は、誤った空間周波数の符号を持つ成分の抑圧度が低下するが、実施の形態1の場合と同様に、符号選択部11により誤った符号を持つ成分を取り除くことが可能である。
また、図9では、移相器13aおよび13cにより、送信波(ローカル信号)をπ/2位相を変えるような構成を示したが、図10に示す如く、受信空中線4aおよび4cと受信器5aおよび5cとの間に、移相器13aおよび13cを設けて、受信波の位相をπ/2回転させるような構成としても、図9と同じ効果を得ることができる。具体的な形態として、受信空中線と受信器との間に移相器を配置する他、単純に給電線の電気的経路長を変えることにより、位相差が生じるようにしても良い。
また、図9および図10では、フーリエ変換をチャネル方向のみに行う構成を示したが、図4、図6または図7のように、時間方向とチャネル方向の両方でフーリエ変換を行うような構成とすることも可能であり、これにより前述の実施の形態2と同様の効果を得ることができる。
この発明の実施の形態1に係るレーダ装置の構成を示すブロック図である。 この発明の実施の形態1に係るレーダ装置で得られる空間スペクトルの模式図である。 この発明の実施の形態1に係るレーダ装置の符号選択部の動作を表すフローチャートである。 この発明の実施の形態2に係るレーダ装置の構成を示すブロック図である。 この発明の実施の形態2に係るレーダ装置の動作過程で得られる時空間スペクトルの例の模式図である。 この発明の実施の形態2に係るレーダ装置の第2の構成例を表すブロック図である。 この発明の実施の形態2に係るレーダ装置の第3の構成例を表すブロック図である。 この発明の実施の形態2に係るレーダ装置の第4の構成例を表すブロック図である。 この発明の実施の形態3に係るレーダ装置の構成を示すブロック図である。 この発明の実施の形態3に係るレーダ装置の第2の構成例を表すブロック図である。
符号の説明
1 発振器、2 分配器、3 送信空中線、4a〜4d 受信空中線、5a〜5d 受信器、6a〜6d AD変換器、7a〜7d チャネル間位相補正部、8a〜8d 時間方向フーリエ変換部、9 チャネル方向フーリエ変換部、10 検出部、11 符号選択部、12 時空間フーリエ変換部、13a,13c 移相器。

Claims (11)

  1. 空間に波動を放射し、空間中に存在する物体で反射された波動を受信して、受信した波動に信号処理を施すことにより物体の計測を行うレーダ装置において、
    波動を発生する発振器と、
    前記発振器で発生された波動を空間に放射する送信素子と、
    前記発振器で発生された波動の一部を抽出し、ローカル波として出力するローカル波抽出部と、
    互いに異なる位置に配置され、到来した波動を受信して受信波を出力する、複数の受信素子と、
    前記ローカル波抽出部からのローカル波を用いて、各受信素子で受信された受信波を検波することにより、実数受信信号を生成する複数の受信器と、
    前記複数の受信器で得られた実数受信信号に複素数で表される受信器毎に異なる位相補正係数を乗じる複数のチャネル間位相補正部と、
    前記複数のチャネル間位相補正部から出力される位相補正後受信信号をまとめて得られる受信信号列を空間周波数領域の信号に変換する空間周波数情報生成部と、
    前記空間周波数情報生成部において、角度0の方向に対して正負に対称な2方向からの信号が検出された場合に、空間周波数スペクトルの振幅が大きい方を選択する符号選択部と
    を備えたことを特徴とするレーダ装置。
  2. 請求項1に記載のレーダ装置において、
    前記複数のチャネル間位相補正部と前記空間周波数情報生成部との間に、位相補正後受信信号に対して時間軸方向にフーリエ変換する複数の時間方向フーリエ変換部を設け、
    前記空間周波数情報生成部は、前記複数の時間方向フーリエ変換部からのフーリエ変換信号を複数受信器分まとめて得られる受信信号列を空間周波数領域の信号に変換し、
    前記符号選択部は、角度0の方向に対して正負に対称な2方向で、かつ周波数が正負に対称な2つの信号が検出された場合に、振幅が大きい方を選択する
    ことを特徴とするレーダ装置。
  3. 請求項1に記載のレーダ装置において、
    前記複数の受信器と前記複数のチャネル間位相補正部との間に、各受信器で得られた実数受信信号に対して時間軸方向にフーリエ変換する複数の時間方向フーリエ変換部を設け、
    前記複数のチャネル間位相補正部は、前記複数の時間方向フーリエ変換部からのフーリエ変換信号に対して複素数で表される位相補正係数を乗じ、
    前記空間周波数情報生成部は、前記複数の時間方向フーリエ変換部からのフーリエ変換信号を複数受信器分まとめて得られる受信信号列を空間周波数領域の信号に変換し、
    前記符号選択部は、角度0の方向に対して正負に対称な2方向で、かつ周波数が正負に対称な2つの信号が検出された場合に、振幅が大きい方を選択する
    ことを特徴とするレーダ装置。
  4. 請求項1に記載のレーダ装置において、
    前記空間周波数情報生成部と前記符号選択部との間に、前記空間周波数情報生成部で得られる空間周波数領域の信号に対して各周波数毎に時間軸方向にフーリエ変換を施す複数の時間方向フーリエ変換部を設け、
    前記符号選択部は、角度0の方向に対して正負に対称な2方向で、かつ周波数が正負に対称な2つの信号が検出された場合に、振幅が大きい方を選択する
    ことを特徴とするレーダ装置。
  5. 請求項1から4までのいずれか1項に記載のレーダ装置において、
    前記複数の受信器のうちおよそ半数の受信器は、入力されるローカル波の位相が、他の受信器に入力されるローカル波に比べて90度ずれるように給電される
    ことを特徴とするレーダ装置。
  6. 請求項5に記載のレーダ装置において、
    前記複数の受信器のうちおよそ半数の受信器と前記ローカル波抽出部との間に、信号の位相を90度回転させる移相器を設けた
    ことを特徴とするレーダ装置。
  7. 請求項5に記載のレーダ装置において、
    前記複数の受信器のうちおよそ半数の受信器と前記ローカル波抽出部との間の給電線の電気的経路長を変えて、信号の位相を90度ずれるようにする
    ことを特徴とするレーダ装置。
  8. 請求項1から4までのいずれか1項に記載のレーダ装置において、
    前記複数の受信器のうちおよそ半数の受信器は、入力される受信波の位相が、他の受信器に入力される受信波に比べて90度ずれるように給電される
    ことを特徴とするレーダ装置。
  9. 請求項8に記載のレーダ装置において、
    前記複数の受信器のうちおよそ半数の受信器と前記複数の受信素子のうちおよそ半数の受信素子との間に、信号の位相を90度回転させる移相器を設けた
    ことを特徴とするレーダ装置。
  10. 請求項8に記載のレーダ装置において、
    前記複数の受信器のうちおよそ半数の受信器と前記複数の受信素子のうちおよそ半数の受信素子との間の給電線の電気的経路長を変えて、信号の位相を90度ずれるようにする
    ことを特徴とするレーダ装置。
  11. 空間に波動を放射し、空間中に存在する物体で反射された波動を受信して、受信した波動に信号処理を施すことにより物体の計測を行うレーダ装置において、
    波動を発生する発振器と、
    前記発振器で発生された波動を空間に放射する送信素子と、
    前記発振器で発生された波動の一部を抽出し、ローカル波として出力するローカル波抽出部と、
    互いに異なる位置に配置され、到来した波動を受信して受信波を出力する、複数の受信素子と、
    前記ローカル波抽出部からのローカル波を用いて、各受信素子で受信された受信波を検波することにより、実数受信信号を生成する複数の受信器と、
    前記複数の受信器で得られた実数受信信号に複素数で表される受信器毎に異なる位相補正係数を乗じる複数のチャネル間位相補正部と、
    前記複数のチャネル間位相補正部から出力される位相補正後受信信号に対して時間軸方向と受信素子方向に2次元フーリエ変換を施す時空間フーリエ変換部と、
    前記時空間フーリエ変換部において、角度0の方向に対して正負に対称な2方向で、かつ周波数が正負に対称な2つの信号が検出された場合に、振幅が大きい方を選択する符号選択部と
    を備えたことを特徴とするレーダ装置。
JP2007188626A 2007-07-19 2007-07-19 レーダ装置 Active JP4903094B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007188626A JP4903094B2 (ja) 2007-07-19 2007-07-19 レーダ装置
US11/872,252 US7548193B2 (en) 2007-07-19 2007-10-15 Radar device
DE102007054298.6A DE102007054298B4 (de) 2007-07-19 2007-11-09 Radarvorrichtung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007188626A JP4903094B2 (ja) 2007-07-19 2007-07-19 レーダ装置

Publications (2)

Publication Number Publication Date
JP2009025158A true JP2009025158A (ja) 2009-02-05
JP4903094B2 JP4903094B2 (ja) 2012-03-21

Family

ID=40176021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007188626A Active JP4903094B2 (ja) 2007-07-19 2007-07-19 レーダ装置

Country Status (3)

Country Link
US (1) US7548193B2 (ja)
JP (1) JP4903094B2 (ja)
DE (1) DE102007054298B4 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011033498A (ja) * 2009-08-03 2011-02-17 Fujitsu Ten Ltd レーダ装置
KR20140083708A (ko) * 2012-12-26 2014-07-04 현대모비스 주식회사 레이더 장치 및 이에 적용되는 위상편차 보상방법
JP2017516116A (ja) * 2014-04-04 2017-06-15 日本テキサス・インスツルメンツ株式会社 駐車アシストレーダーのためのアンテナ構成
JP2017521669A (ja) * 2014-07-17 2017-08-03 日本テキサス・インスツルメンツ株式会社 レーダーシステムにおける分配されたレーダー信号処理
WO2019123613A1 (ja) * 2017-12-21 2019-06-27 三菱電機株式会社 位相差検出回路およびレーダ装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8902101B1 (en) * 2011-09-28 2014-12-02 Rockwell Collins, Inc. System for and method of wind shear detection
US9759807B2 (en) * 2013-10-25 2017-09-12 Texas Instruments Incorporated Techniques for angle resolution in radar
KR20200035560A (ko) * 2018-09-27 2020-04-06 삼성전자주식회사 오브젝트 상태 결정 방법 및 그 방법을 수행하는 전자 장치
US11681017B2 (en) * 2019-03-12 2023-06-20 Uhnder, Inc. Method and apparatus for mitigation of low frequency noise in radar systems
CN110346798B (zh) * 2019-07-24 2021-04-20 电子科技大学 一种双基合成孔径雷达波数域高效成像处理方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01308985A (ja) * 1988-06-07 1989-12-13 Nec Corp レーダ方式
JPH11311668A (ja) * 1998-04-28 1999-11-09 Toyota Motor Corp Fm−cwレーダ装置
JP2000284044A (ja) * 1999-03-31 2000-10-13 Denso Corp レーダ装置
JP2001124846A (ja) * 1999-10-28 2001-05-11 Denso Corp レーダ装置,調整方法,調整システム
JP2003315447A (ja) * 2002-04-24 2003-11-06 Honda Elesys Co Ltd 走査型fmcwレーダのアンテナ切り換え方法及び走査型fmcwレーダ
JP2003315445A (ja) * 2002-04-24 2003-11-06 Honda Elesys Co Ltd 走査型車載レーダの方位補正方法及び走査型車載レーダ
JP2006308542A (ja) * 2005-03-29 2006-11-09 Honda Motor Co Ltd 電子走査型ミリ波レーダ装置およびコンピュータプログラム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4717916A (en) * 1986-05-16 1988-01-05 Holodyne Ltd., 1986 High resolution imaging doppler interferometer
JPH02194388A (ja) * 1989-01-23 1990-07-31 Mitsubishi Electric Corp 気象用ドップラレーダの信号処理装置
US5027122A (en) * 1990-03-12 1991-06-25 Raytheon Company Method and apparatus for doppler velocity de-aliasing
EP0898718B1 (en) * 1996-05-14 2002-02-27 AlliedSignal Inc. Radar based terrain and obstacle alerting function
JP3335544B2 (ja) * 1997-02-13 2002-10-21 三菱電機株式会社 レーダ装置及びそのレーダ信号処理方法
EP1435143A2 (en) * 2001-10-08 2004-07-07 QinetiQ Limited Signal processing system and method
JP3794361B2 (ja) * 2002-08-28 2006-07-05 三菱電機株式会社 レーダ信号処理装置及びレーダ信号処理方法
US7417578B1 (en) * 2005-03-08 2008-08-26 Rockwell Collins, Inc. Removal of spurious aircraft detections on weather radar
US20080074307A1 (en) * 2006-05-17 2008-03-27 Olga Boric-Lubecke Determining presence and/or physiological motion of one or more subjects within a doppler radar system
FR2902526B1 (fr) * 2006-06-16 2008-09-12 Agence Spatiale Europeenne Radiometre interferometrique
JP4987456B2 (ja) * 2006-12-25 2012-07-25 三菱電機株式会社 レーダ装置
JP4468402B2 (ja) * 2007-04-19 2010-05-26 三菱電機株式会社 レーダ装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01308985A (ja) * 1988-06-07 1989-12-13 Nec Corp レーダ方式
JPH11311668A (ja) * 1998-04-28 1999-11-09 Toyota Motor Corp Fm−cwレーダ装置
JP2000284044A (ja) * 1999-03-31 2000-10-13 Denso Corp レーダ装置
JP2001124846A (ja) * 1999-10-28 2001-05-11 Denso Corp レーダ装置,調整方法,調整システム
JP2003315447A (ja) * 2002-04-24 2003-11-06 Honda Elesys Co Ltd 走査型fmcwレーダのアンテナ切り換え方法及び走査型fmcwレーダ
JP2003315445A (ja) * 2002-04-24 2003-11-06 Honda Elesys Co Ltd 走査型車載レーダの方位補正方法及び走査型車載レーダ
JP2006308542A (ja) * 2005-03-29 2006-11-09 Honda Motor Co Ltd 電子走査型ミリ波レーダ装置およびコンピュータプログラム

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011033498A (ja) * 2009-08-03 2011-02-17 Fujitsu Ten Ltd レーダ装置
KR20140083708A (ko) * 2012-12-26 2014-07-04 현대모비스 주식회사 레이더 장치 및 이에 적용되는 위상편차 보상방법
KR102126754B1 (ko) * 2012-12-26 2020-06-25 현대모비스(주) 레이더 장치 및 이에 적용되는 위상편차 보상방법
JP2017516116A (ja) * 2014-04-04 2017-06-15 日本テキサス・インスツルメンツ株式会社 駐車アシストレーダーのためのアンテナ構成
JP2017521669A (ja) * 2014-07-17 2017-08-03 日本テキサス・インスツルメンツ株式会社 レーダーシステムにおける分配されたレーダー信号処理
WO2019123613A1 (ja) * 2017-12-21 2019-06-27 三菱電機株式会社 位相差検出回路およびレーダ装置
JPWO2019123613A1 (ja) * 2017-12-21 2020-04-02 三菱電機株式会社 位相差検出回路およびレーダ装置

Also Published As

Publication number Publication date
JP4903094B2 (ja) 2012-03-21
DE102007054298A1 (de) 2009-02-05
US20090021421A1 (en) 2009-01-22
US7548193B2 (en) 2009-06-16
DE102007054298B4 (de) 2015-03-05

Similar Documents

Publication Publication Date Title
JP4903094B2 (ja) レーダ装置
JP5376777B2 (ja) レーダ装置
US10539645B2 (en) Angle of arrival estimation
JP4737165B2 (ja) レーダの物標検知方法、およびこの物標検知方法を用いたレーダ装置
JP6818541B2 (ja) レーダ装置および測位方法
JP4987456B2 (ja) レーダ装置
US9234956B2 (en) Radar device
US8884810B2 (en) Compact beacon radar and full ATC services system
US20130016003A1 (en) Beam forming device and method using frequency-dependent calibration
WO2013080570A1 (ja) レーダ装置
CN110462430B (zh) 雷达装置
JP2016151425A (ja) レーダ装置
WO2020196575A1 (ja) レーダ装置及びレンジサイドローブ判定方法
JP4082442B2 (ja) 方位検出装置
EP3059609B1 (en) Radar apparatus
EP2096457B1 (en) Digital beam forming using frequency-modulated signals
JP2019168444A (ja) レーダ・ビームフォーミング方法
JP2006091029A (ja) レーダ装置
JP7345099B2 (ja) レーダ装置、及び、レーダ方法
JP4784332B2 (ja) パルスレーダ装置
WO2019082269A1 (ja) レーダ装置
JP5501578B2 (ja) レーダ装置
JP7251993B2 (ja) 位置推定装置および位置推定方法
EP3742196A1 (en) Radar device
WO2023210451A1 (ja) 測位システムおよびそれを備える車両、並びに測位方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120104

R150 Certificate of patent or registration of utility model

Ref document number: 4903094

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250