JP2009006350A - レーザ加工装置とその加工方法、デブリ回収機構とその回収方法、並びに表示パネルの製造方法 - Google Patents

レーザ加工装置とその加工方法、デブリ回収機構とその回収方法、並びに表示パネルの製造方法 Download PDF

Info

Publication number
JP2009006350A
JP2009006350A JP2007169381A JP2007169381A JP2009006350A JP 2009006350 A JP2009006350 A JP 2009006350A JP 2007169381 A JP2007169381 A JP 2007169381A JP 2007169381 A JP2007169381 A JP 2007169381A JP 2009006350 A JP2009006350 A JP 2009006350A
Authority
JP
Japan
Prior art keywords
vortex
laser
film
laser light
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007169381A
Other languages
English (en)
Other versions
JP2009006350A5 (ja
Inventor
Eiju Murase
英寿 村瀬
Yoshinari Sasaki
良成 佐々木
Yukinari Aso
幸成 阿蘇
Naoki Yamada
尚樹 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2007169381A priority Critical patent/JP2009006350A/ja
Priority to US12/138,050 priority patent/US8283596B2/en
Priority to CN2008101317494A priority patent/CN101332535B/zh
Publication of JP2009006350A publication Critical patent/JP2009006350A/ja
Publication of JP2009006350A5 publication Critical patent/JP2009006350A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0026Etching of the substrate by chemical or physical means by laser ablation
    • H05K3/0032Etching of the substrate by chemical or physical means by laser ablation of organic insulating material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/066Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms by using masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • B23K26/0732Shaping the laser spot into a rectangular shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/123Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an atmosphere of particular gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/142Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor for the removal of by-products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1462Nozzles; Features related to nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/16Composite materials, e.g. fibre reinforced
    • B23K2103/166Multilayered materials
    • B23K2103/172Multilayered materials wherein at least one of the layers is non-metallic
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133371Cells with varying thickness of the liquid crystal layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • G02F1/133555Transflectors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/08Treatments involving gases
    • H05K2203/082Suction, e.g. for holding solder balls or components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0026Etching of the substrate by chemical or physical means by laser ablation
    • H05K3/0032Etching of the substrate by chemical or physical means by laser ablation of organic insulating material
    • H05K3/0038Etching of the substrate by chemical or physical means by laser ablation of organic insulating material combined with laser drilling through a metal layer

Abstract

【課題】レーザ光を加工対象物に照射してパターン加工する際に加工対象物から発生する加工飛散物を効率よく除去し、加工対象物に付着するデブリを削減する。
【解決手段】レーザ光3を利用して基板4上に形成される樹脂膜又は金属膜26のパターン加工を行なう際、レーザ光3を透過する透過窓19と、樹脂膜又は金属膜26のレーザ光照射部近傍に気体C1,C2,C3,C4を流入させることで渦気流Bを発生させる渦発生機構23aと、入射レーザ光3が通過できる開口部42aを備え加工飛散物の流れを遮る遮蔽手段42とを有するデブリ回収手段22を用いてデブリ回収を行う。まず、デブリ回収手段22を加工対象膜26に近接させ、レーザ光3を照射する。そして、レーザ光3照射により発生した加工対象膜26に堆積する前及び堆積した後の加工飛散物を、上記渦気流に巻き込み、遮蔽手段42の開口部42aを通して外部に排気する。
【選択図】図8

Description

本発明は、フラットパネルディスプレイ(FPD)等の多層薄膜上に樹脂膜あるいは金属膜をパターン加工する技術に係わり、特に、加工対象物の表面にレーザ光を照射して、アブレーション、熱溶融あるいはそれらの複合作用によるレーザ加工時に発生する加工飛散物(デブリ:debris)を除去・回収するためのレーザ加工装置とその加工方法、及びデブリ回収機構とその回収方法、並びに表示パネルの製造方法に関するものである。
液晶パネルを始めとするフラットパネルディスプレイの製造工程では、ガラス基板の上に、樹脂膜や金属膜といった薄膜を何層も重ね合わせて、TFT(Thin Film Transistor)基板やCF(カラーフィルタ)基板等を形成している。これらの多層基板のパターンニングやエッチング加工には、多くのフォトリソグラフィー工程が用いられている。
フォトリソグラフィー工程では、例えばガラス、プラスチック、シリコンウェハ等の基板上に、樹脂膜あるいは金属膜を真空成膜し、その上にレジスト層を形成して、所定パターンを有するフォトマスクを通して光を照射しレジスト層を感光する。そして、現像、ポストベークすることでフォトマスクパターンをレジスト層に転写し、ウエットエッチングにて樹脂膜あるいは金属膜のレジストで被覆されていない部分を除去し、最後に残留レジスト層を除去することで所望の樹脂膜あるいは金属膜のパターンを得ている。
しかし、上述のフォトリソグラフィー工程では、コータディベロッパーなどの大型の装置が必要となり、設備投資及びフットプリントの面から問題がある。また、現像液などの薬液を大量に使用するため、環境保全の面でも問題となる。そこで、フォトリソグラフィー工程を省略し製造工程を簡略化するのに、レーザ光を用いて直接、樹脂膜や金属膜等の薄膜を加工する技術が提案されている(例えば、特許文献1参照)。
一般にレーザ加工を行う際、デブリと呼ばれる物質の回収が課題となる。デブリとは、被加工材料がレーザ光を吸収・反応してできる生成物や、被加工材料の微小パーティクル(ゴミ)である。これらは、空気中を舞って拡散し、基板に再付着する。特に反応生成物は、基板に付着すると熱を奪われて凝固し、ブラシなどを用いて物理的洗浄を行っても除去することができない。そのため、所望の加工品質、加工精度を得られずに製品不良の原因となる。液晶パネルを始めとするフラットパネルディスプレイを扱うファインプロセスの世界では、こういった再付着物質は100%不良となるレベルのパーティクル(ゴミ)である。よって、デブリを回収する技術が必須事項となっている。
デブリ回収方法として、例えば、加工領域近傍の表面に気体を噴出する流体送出装置を設け、反対側に流体を吸引する吸引ダクトを設置して加工飛散物やデブリを加工領域から吹き去り、同時にこれを吸引して除去する手法(手法1)が提案されている(例えば、特許文献2参照)。
また、加工飛散物の発生量を低減するために、加工対象物へのレーザ光の照射とともにアシストガスを吹き付けることが有効であることが知られている。レーザ加工ヘッドに内側ノズルと、例えば周面を取り囲むように外側ノズルを配置して、内側ノズルから加工領域に向けてアシストガスを噴出し、噴出したアシストガスを外側ノズルで吸引してデブリを排出する手法(手法2)が提案されている(例えば、特許文献3参照)。
また、加工飛散物の発生そのものを制御する方法としては、所定の雰囲気ガスによって分解、あるいは再付着を防止する方法や、真空度10Pa(10−2Torr)程度の減圧下で加工対象物を加工することにより、加工対象物上に堆積するデブリの付着量を大幅に減少できることが知られている。
さらに、加工対象物に向けてレーザ光を出力するレーザ加工ヘッドとその加工対象物側に装着されたノズルとを備え、レーザ光が出力したレーザ光がノズルを通して加工対象物に照射され、ノズルがアシストガスとともに加工対象物付近に生じたデブリを螺旋状に回転させながら吸引するレーザ加工方法(手法3)が提案されている。(例えば、特許文献4参照)。
特開2004−153171号公報 特開平10−99978号公報 特開平9−192870号公報 特開2004−337947号公報
しかしながら、手法1のように加工領域近傍の表面でデブリを吹き去って、吸引・排出しようとしても全てを吸引することはできず、残留したデブリは流れに沿って散布されたのと同じ結果になってしまう。たとえ吸引力を上げてもデブリを除去、回収することは困難であった。また、手法2のように内側ノズルから加工領域にアシストガスを吹き付けても、デブリは拡散して再付着してしまい、外側ノズルの吸引力を強くしても十分に除去することはできなかった。さらに、手法3のように雰囲気流体を環状に回転させながら吸引しても、四方八方に拡散するデブリを全て回収することはできなかった。
また、フラットパネルディスプレイで用いられる多層膜基板では、レーザが照射される表面の膜だけでなく、その下層の膜のエッチングメカニズムが複雑に絡み合う。このように複数のプロセス要因が混在している場合、デブリ回収は単純にはいかなくなり、デブリ発生メカニズムを詳細に解析してそれぞれに合ったデブリ回収方法を開発しなければならない。
一般に、多層膜上の透明電極に利用される透明導電膜として、ITO(Indium Tin Oxides)膜やZnO(酸化亜鉛)膜等が用いられる。図12に、一例として、ガラス、プラスチック、シリコンウェハ等よりなる基板101に成膜された樹脂膜102上に、ITO膜、ZnO膜等の透明導電膜103が成膜されてなる多層膜のエッチング反応のプロセスを示す。白抜きの矢印はレーザ光104のエネルギーの大きさ、通常の矢印は熱拡散方向を表している。
まず、表層の透明導電膜103にレーザ光104を照射すると、透明導電膜103がレーザ光104を吸収して熱105を発生する(図12A)。さらに透明導電膜103によるレーザ光104の吸収が進むと下層の樹脂膜102にまで熱106が拡散し、樹脂膜102の伸縮を促して微小な割れ目(マイクロクラック)を生じさせる(図12B)。樹脂膜と透明導電膜では、一般にITO膜などセラミック系の樹脂膜の方が膨張係数の値が1桁大きい。そして、透明導電膜103の下地の樹脂層102への熱107の拡散が進むと、樹脂層102が気化し、その気化した雰囲気の体積膨張によりクラックの入った透明導電膜103を吹き飛ばす(図12C)。このように、樹脂膜102上の透明導電膜103にレーザ光104を照射した場合、レーザ光照射による一般的なアブレーション反応に加えて熱反応が大きく関与して、デブリ108が発生する。このデブリ108は、機械的な破壊によるところが多く比較的大きな粒子からなるので、その拡散速度又は拡散範囲は後述する樹脂膜及び金属膜のものと比べて小さい。
一方、多層膜上の樹脂膜(高分子材料)は、樹脂層がレーザ光を吸収して分子間結合を切るアブレーション反応がエッチングメカニズムの主反応である。図13に、一例として、基板101に成膜された樹脂膜102上に、樹脂膜110が成膜されてなる多層膜のエッチング反応のプロセスを示す。
まず、表層の樹脂膜110にレーザ光104を照射すると、樹脂膜110がレーザ光104を吸収し、熱111を発生する(図13A)。さらに樹脂膜110がレーザ光104を吸収してアブレーション反応を起こすと、このアブレーション反応により発生したデブリはプルーム113となって拡散する(図13B)。そして、このデブリはcosρの法則に従い数十m/secの速度で大きなプルーム114を形成しながら上昇(拡散)する(図13C)。アブレーションが大勢を占める反応においては、樹脂層110の下地への熱の影響はほとんど見られない。よって、デブリ回収方法としては、cosρの法則に従い数十m/secの速度で上昇するプルームを回収することが必要になる。
また、多層膜上の金属膜は、金属膜がレーザ光を吸収して熱を発生し、溶融・蒸発してエッチングが進む。図14に、一例として、基板101に成膜された樹脂膜102上に、金属膜120が成膜されてなる多層膜のエッチング反応のプロセスを示す。
まず、表層の金属膜120にレーザ光104を照射すると、金属膜120がレーザ光104を吸収し、熱121を発生する(図14A)。さらに金属膜120がレーザ光104を吸収して熱122への変換が進むと、金属膜120が気化してデブリとなる。そのデブリはプルーム123を形成して蒸散する(図14B)。そして、このデブリはcosρの法則に従い数十m/secの速度で大きなプルーム125を形成しながら上昇(拡散)する(図14C)。
この時、熱の影響が大きすぎると樹脂膜102と金属膜120が熱で反応してしまう。金属膜の溶融温度は樹脂膜のそれと比較して高いため、樹脂層が下層にある場合は、樹脂膜が熱の影響を受けて溶融・気化が起こり、金属膜のエッチングに影響を与える。例えば、金属膜の下層にある樹脂膜が盛り上がったり、金属薄膜を突き破ったりしてしまう。よって、下層の樹脂層に影響を与えずに金属膜だけをエッチングしようとすると、溶融・蒸発させる温度を下げてその蒸発分子を回収する機構の開発が必要とされる。
本発明は上述の課題を解決するためになされたものであり、レーザ加工時に発生する加工飛散物を効率よく除去し、加工対象物に付着するデブリを削減することを目的とする。
本発明の一側面は、レーザ光を利用して基板上に形成される樹脂膜又は金属膜のパターン加工を行なう際に、入射レーザ光を透過する透過窓と、樹脂膜又は金属膜のレーザ光照射部近傍に気体を流入させることで渦気流を発生させる渦発生機構と、入射レーザ光が通過できる開口部を備え加工飛散物の流れを遮る遮蔽手段と、を有するデブリ回収手段を用いてデブリの回収を行う。まず、このデブリ回収手段の渦発生機構を基板上の樹脂膜又は金属膜に近接配置する。そして、レーザ光照射により発生した加工対象膜に堆積する前及び堆積した後の加工飛散物を、上記渦発生機構により発生させた渦気流に巻き込み、前記遮蔽手段を経由して外部に排気する構成としたことを特徴とする。
上記構成によれば、レーザ光照射により発生した加工飛散物をレーザ光照射部近傍の気体とともに渦気流に巻き込んで回収するので、加工飛散物が渦気流によりレーザ光の照射エリア中心付近に集められ、周囲への飛散を抑制しつつ加工飛散物を効率よく回収できる。さらに、遮蔽手段によって、開口部周辺の加工飛散物の流れを遮ることで、開口部を通過する加工飛散物の量を抑制する。
また上記発明において、上記デブリ回収手段は、レーザ光の光路であるとともに排気孔と通じる渦気流の流路である透過孔を備えた渦気流排気部と、基板と対向配置される渦形成部が形成されてなる。この渦形成部は、渦気流の回転方向に対応するとともに上記透過孔と連通する放射状の渦形成用溝が、当該渦形成部の基板との対向面に形成された渦形成用プレートを有し、この渦形成プレートの渦形成用溝に対し気体を導入して、渦形成用溝を流れて渦気流を形成する気体を、渦気流排気部の透過孔を介して排気孔より外部に排気する構成とする。
上記構成によれば、渦形成部の加工対象基板との対向面に、渦気流の回転方向に対応するとともに透過孔と連通する放射状の渦形成用溝を形成したので、この渦形成部に導入された気体が渦形成用溝に沿って流れ、それによって渦気流が発生する。そして、加工飛散物をその渦気流に巻き込み透過孔を経由して上方へ排気するので、加工飛散物がレーザ光の照射エリア中心付近に集められ、周囲への飛散を抑制しつつ加工飛散物を効率よく回収できる。
また、本発明の他の側面は、画素に対応する多数個の配線パターンによって構成される基板を備える表示パネルを製造する際に、前記基板に形成された樹脂膜上に樹脂膜又は金属膜を成膜する工程と、その樹脂膜又は金属膜に対し、レーザ光を照射してパターン加工を行う工程と、を含むものである。このレーザ光を用いて樹脂膜又は前記金属膜のパターン加工を行う工程は、レーザ光を透過する透過窓と、樹脂膜又は金属膜のレーザ光照射部近傍に気体を流入させることで渦気流を発生させる渦発生機構と、入射レーザ光が通過できる開口部を備え加工飛散物の流れを遮る遮蔽手段と、を有するデブリ回収手段を基板に近接させる工程と、レーザ光照射により発生した加工対象膜に堆積する前及び堆積した後の加工飛散物を、渦発生機構で発生させた渦気流に巻き込む工程と、その加工飛散物を遮蔽手段を経由して外部に排気する工程と、を有することを特徴とする。
上記構成によれば、表示パネルの基板上の樹脂膜又は金属膜に対するレーザ光照射により発生した加工飛散物を、レーザ光照射部近傍の気体とともに渦気流に巻き込んで回収するので、加工飛散物が渦気流によりレーザ光の照射エリア中心付近に集められ、周囲への飛散を抑制しつつ加工飛散物を効率よく回収できる。さらに、遮蔽手段によって、開口部周辺の加工飛散物の流れを遮ることで、開口部を通過する加工飛散物の量を抑制する。
本発明のデブリ回収機構及びその回収方法によれば、加工対象物上の樹脂膜又は金属膜をパターン加工する際に発生する加工飛散物を、効率よく回収することができる。
したがって、このデブリ回収機構及びその回収方法を利用したレーザ加工装置及びレーザ加工方法によれば、レーザ光を照射した際に加工対象物から発生する加工飛散物が効率よく除去されるので、加工対象物に付着するデブリを削減することができ、画素電極等のパターン加工の精度、品質が向上する。そしてそれによって、高品質な表示パネルの提供が実現できる。
本発明は、加工対象物であるガラス基板に形成した多層薄膜上の樹脂膜又は金属膜(加工対象膜)にレーザ光を照射して、アブレーション、熱溶融あるいはそれらの複合作用によるレーザ加工時に発生する加工飛散物(デブリ:debris)を除去・回収するレーザ加工装置及びレーザ加工方法、並びにデブリ回収機構とその回収方法を提供するものである。以下の説明において、レーザ加工時に発生した堆積前及び堆積後の加工飛散物を総称してデブリという。
本発明に用いるレーザ加工装置は、レーザ光源と、レーザ光源から出射されるレーザ光を加工対象物の加工面に所定パターンで光学的に投影する光学系とを有するレーザ加工装置であって、局所排気手段である排気孔が開けられたデブリ回収機構を備える。
そのデブリ回収機構を加工対象膜である樹脂膜又は金属膜に極近接して設置し、レーザ光照射面近傍の雰囲気をデブリ回収機構の排気孔より排気し、減圧雰囲気下でレーザ光を照射するようにする。
このような構成により、簡単な構成で樹脂膜又は金属膜のレーザ光照射面が減圧雰囲気になり、レーザ光照射時の樹脂膜又は金属膜がその下層より離脱する際の昇華圧が低くなり、加工に要する照射エネルギーを低減できる。また、レーザ光の照射によって離脱したデブリを含む加工領域近傍の表面に噴出する気体を、デブリ回収機構の排気孔を通して効率よく除去することができる。
以下、本発明のレーザ加工装置及びデブリ回収機構の一実施形態について、図1乃至図9を参照して説明する。図1は本発明のレーザ加工装置の一実施形態の例を示す全体的構成図、図2は本発明のレーザ加工装置に用いるデブリ回収機構の斜視図、図3は本発明のレーザ加工装置に用いるデブリ回収機構のベース部分の底面図、図4は本発明のレーザ加工装置に用いるデブリ回収機構の渦巻発生方法を説明するためのベース部分の底面図、図5は本発明のレーザ加工装置に用いるデブリ回収装置の同心円状溝による同心円状気流の発生方法を説明するための平面図、図6は本発明のレーザ加工装置に用いるデブリ回収装置の渦形成プレートの平面図、図7は図6のA−A断面矢視図である。図8は本発明の一実施形態に係るレーザ加工装置に用いるデブリ回収機構の概略断面図である。図9は、本発明の一実施形態に係るレーザ加工装置に使用される遮蔽板の例を示すものであり、Aは上面図、BはX−X断面図である。
また、図10は、本発明の他の実施形態に係るレーザ加工装置に用いるデブリ回収機構の概略断面図である。図11は、本発明の他の実施形態に係るレーザ加工装置に用いるデブリ回収機構の斜視図である。
図1において、レーザ加工装置20は、レーザ光源を備えるレーザ制御装置1と、ビーム整形器14と、マスク又は可変アパーチャ15と、投影レンズ16と、ステージ18と、デブリ回収手段22と、排気ポンプ(ラフィングポンプ)24と、気流導入手段を有する。
レーザ制御装置1のレーザ光源には、例えば、エキシマレーザを用いる。エキシマレーザには、レーザ媒質の異なる複数の種類が存在し、波長の長い方からXeF(351nm)、XeCl(308nm)、KrF(248nm)、ArF(193nm)、F2(157nm)が存在する。ただし、レーザはエキシマレーザに限ることはなく、固体レーザやCO2レーザ等であっても構わない。
ビーム整形器14は、レーザ光源からのレーザ光3を整形するとともに、ビーム強度の均一化を行い出力する。マスク又は可変アパーチャ15は所定のパターン形状を有し、ビーム整形器14で整形されたレーザ光3を通過させて所定パターンのビームに加工する。このマスク又は可変アパーチャ15は、例えば金属材料で形成された穴明きマスク、透明なガラス材料や金属薄膜で形成されたフォトマスク、誘電体材料で形成された誘電体マスク等が用いられる。投影レンズ16は、マスク又は可変アパーチャ15のパターンを通過したレーザ光3を、所定倍率で縮小してステージ18上の加工対象物である基板4の加工面に投影するものである。
ステージ18は、投影レンズ16から投影されるレーザ光3が基板4の加工面に合焦するように配置されている。このステージ18は、レーザ光3の光軸に垂直な平面に沿って移動位置決めが可能なX−Yステージあるいは3軸ステージなどで構成され、レーザ光3が加工対象物である基板4の加工面上を走査可能である。このステージ18は、加工対象物を固定する、例えば、真空チャック等の固定手段を備えており、レーザ光3を加工対象物の加工対象膜26上の所望の位置に照射し、かつ、レーザ光3を加工対象膜26上で合焦させることが可能なように、x、y,z方向及びθ方向に移動位置決めが可能となっている。
レーザ加工装置20において、レーザ制御装置1のレーザ光源から出射されたレーザ光3はビーム整形器14を介して所定形状寸法に整形された後に、マスク又は可変アパーチャ15で所定のパターニング形状となる。所定のパターニング形状とされたレーザ光3は投影レンズ16を透過し、デブリ回収手段22の上部透過窓19と透過孔21を介して基板4上の加工対象膜26に照射される。
レーザ光3は、デブリ回収手段22の筐体23の上部に形成した上部透過窓19、及び筐体23の底部に形成した透過孔21を介して、基板4の表面に形成されている加工対象膜26に照射される。デブリ回収手段22の筐体23には排気ポンプ24と、気流導入手段を構成する4個のパイプ(気体導入部25a〜25d)が突設されている。
なお、本実施形態において、加工対象膜26は、図13又は図14に示した樹脂膜110又は金属膜120等の薄膜とする。ただし、樹脂膜110を含む多層膜は、少なくとも樹脂膜110の下に樹脂膜102が成膜されているものであればよく、図13の例に限るものではない。また、金属膜120を含む多層膜は、少なくとも樹脂膜120の下に樹脂膜102が成膜されているものであればよく、図14の例に限るものではない。
図2にデブリ回収機構を有するデブリ回収手段22の斜視図を示す。デブリ回収手段22の筐体23は加工対象物と対向配置される略円盤状の渦形成用基盤23aと、この渦形成用基盤23aの略中心位置に立設した円筒状の気体導出部23bと、この気体導出部23b上に載置された略立方体形状のチャンバー23cより構成され、これらはアルミニウ又はステンレスなどで作製されている。渦形成用基盤23aは渦形成部として、また気体導出部23bとチャンバー23cは渦気流排気部として機能する。
チャンバー23cの上部には、例えばKrFレーザの場合は石英、ArFレーザの場合はフッ化カルシウムで作られた、レーザ光3が透過する上部透過窓19が形成されるとともに、チャンバー23cの一側板には排気孔32が穿たれている。この排気孔32に図示しない排気用ダクトが嵌入されて、図1に示されている排気ポンプ24を用いて、回収したデブリ13を矢印A方向に排気する。チャンバー23cの下部の気体導出部23b及び渦形成用基盤23aには渦形成機構が設置されており、デブリ13を渦形成用基盤23aの中心に矢印Bのように渦巻き状に集めて回収できる構造となっている。そして、チャンバー23cの上部と下部を繋ぐ部分の内部には、後述する遮蔽手段を設けてデブリが上部透過窓19に付着しないような構造にしている。
図2に示すように、渦形成用基盤23aの円周面を4等分した各位置には気体導入部25a、25b、25c、25dが配設されており、この気体導入部25a,25b,25c,25dに対してそれぞれ矢印C1、C2、C3、C4の方向から気体が供給されて、渦形成用基盤23a内に気体が導入される。
上記気体導入部25a、25b、25c、25dから導入される気体は所謂アシストガスであり、CDA(クリーンドライエアー)の他、ヘリウムやネオン等の不活性ガス、窒素などが挙げられる。このように渦形成用基盤23a内のレーザ光照射面近傍にアシストガスを供給すると、デブリの発生を抑制することができる。
図3は、デブリ回収手段22の筐体23を構成する略円盤状の渦形成用基盤23aの下面に形成した渦形成機構を示す。渦形成用基盤23aの円盤の中心にはレーザ光3が透過するための透過孔21が形成されている。また、この透過孔21の周りには、渦を形成する渦形成用プレート38が同心的に配置されている。
この渦形成用プレート38は、図6、図7に示すように、略円盤状に形成されたアルミニウム等の金属の中心部に、透過孔21と同じ径の内径38aが穿たれている。さらに、内径38aを囲むように、即ち透過孔21と渦形成用溝35との間に略六角形状溝(あるいは略円形状溝)の渦形成スペース36が形成される。この渦形成スペース36は後に図4を参照して説明するように渦気流(環状気流)を形成する空間として機能するものであり、各渦形成用溝35から渦形成スペース36に供給された気体が、渦形成用プレート38の壁面(図7参照)に衝突し、衝突した気体が渦形成用プレート38の壁面に沿って流れることにより環状の気流が生じる。この環状の気流を図1に示した排気ポンプ24で上方へ吸引することで乱れの少ない渦が形成される。
上述の渦形成スペース36の六角形状の各辺に沿うように内周側から外周側にかけて溝幅W2(図6参照)を持つ6個の放射状溝38bが形成されている。この放射状溝38bはそれぞれレーザ光3の照射によって生ずるデブリ13を高速で中心の内径38aに集めるための渦形成用溝35として機能する。
この渦形成用溝35は、渦形成用プレート38の基板4との対向面において、後述する透過孔21と同心円の同心円状溝37と当該渦形成用溝35の中心軸との接続点に引いた接線に対して所定の角度φ1を有し、かつ渦形成スペース36を介して透過孔21と連通する。角度φ1の大きさは、同心円状溝37を流れる気体の向き(渦気流の回転方向)によって決定される。例えば図3において気体が同心円状溝37を反時計回り方向に流れる場合、渦形成用溝35と接線とがなす角度φ1は風下側に位置し、このときの角度φ1が鋭角となるように渦形成用溝35を形成する。一方、風上側の渦形成用溝35と接線とがなす角度(180−φ1)は、鈍角となる。
図6に示す渦形成用溝35を構成する放射状溝38bについては、加工面より飛散するデブリ13を急速に渦形成スペース36に集めるため、渦形成スペース36側の気体を排出する排出部38fの溝幅W1に対し円盤の外周側の気体を供給する供給部38eの溝幅W2を大きくして所定比率の開口比とする。例えば、排出部38f付近の溝幅W1と供給部38e付近の溝幅W2との比を、W1:W2=1:1.5〜2.5の開口比に選択することが好ましい。
このように、渦形成用プレート38に設けた渦形成用溝35の排出部側と供給部側に適切な開口比を与えることにより、整流化された気体を同心円状溝37から渦形成用プレート38へ入れた際に、渦形成スペース36へ流入する気体の流速を向上させ、渦にデブリ13を巻き込み易くすることができる。
さらに、渦形成用プレート38の中央の渦形成スペース36に集まったデブリ13を効率良く回収するため、透過孔21の開口部付近の内径38a、即ち透過孔21が渦形成スペース36と繋がる壁面部分に、図7に示すようなR形状(曲線部)又はテーパー形状38dを形成する。このようにすることにより、渦形成用プレート38の開口部の空気抵抗が減るので、デブリをスムーズに排出することができる。
ところで、渦形成用プレート38の内周側に設けた渦形成スペース36が広すぎると渦の形成が起こらない。乱れの少ない渦気流つまり渦形成スペース36にて適切な環状気流を発生させるためには、渦形成スペース36の直径R2を、少なくとも透過孔21の直径R1の約1.5倍以内とするのが適当であることを確認した。この渦形成スペース36は、例えば渦形成用プレート38の略三角形状に残された凸状部の外周近傍に穿ったビス孔(図示略)を介して、渦形成用基盤23aの透過孔21と同心的に取り付けられる。勿論、この渦形成用プレート38は渦形成用基盤23aと一体成型してもよい。
また、渦形成用基盤23aに固定された渦形成用プレート38の周りには、図3に示すように、乱れの少ない渦を形成するために、渦形成用溝35と連通する同心円状(環状)溝37が形成され、この同心円状溝37の4等配位置に気体導入部25a、25b、25c、25dに連通する4個の気体供給孔34が穿たれている。このように、渦発生機構底部の渦形成用プレート38に気体を流入する前段部分において、渦形成用プレート38の外周側に透過孔21と同心円状の溝37を設けたことにより、気体供給孔34を介して導入された気体の流れが整流され、かつ、渦形成用溝35の形状(向き)に合わせた気流が作られる。その気流を渦形成用溝35の各々に供給することにより、渦形成スペース36にて乱れの少ない渦が形成される。本例では、気体供給孔34を4個としているが、これに限るものではない。
でき得る限り乱れの少ない渦を形成してデブリ13を中心に集めることにより、デブリ回収能力を最大限にすることを目的として、図5に示すように、同心円状溝37に気体を供給する気体供給孔34に対し気体導入部25a、25b、25c、25dにある一定の角度φ2をつける(理想的には90度)。つまり、透過孔21の中心と各気体供給孔34a、34b、34c、34dとを結ぶ直線に対し、各基体導入部25a、25b、25c、25dの中心軸をそれぞれ各渦形成用溝35の向きと対応づけて、すなわち同心円状溝37に発生すべき気流の向きに応じた角度φ2をつけて配置する。
例えば、図5において同心円状溝37内に反時計回り方向の気流を発生させたとき、同心円状溝37を流れる気体がより抵抗が少なく滑らかに渦形成溝35に取り込まれる。同心円状溝37に反時計回り方向の気流を発生させる場合、各気体導入部25a、25b、25c、25dを風上側に角度φ2傾けて設置する。それによって、同心円状溝37内において、各渦形成用溝35の向きに対応した反時計回りの整流化された円状の流れが生まれ、効率のよい渦気流を形成することができる。
上述の構成における渦発生方法を、図4を参照して説明する。図4は図3と同様の渦形成用基盤23aの底面を示す。渦形成用プレート38の外周に形成された同心円状溝37に穿たれた4個の気体供給孔34から供給された気体は、同心円状溝37に沿って矢印B1,B2、B3、B4に示すように反時計回りの環状気流を発生する。この環状気流は透過孔21から放射状に形成された放射状溝38bの気体が供給される側の供給部38eから透過孔21側の排出部38fへ矢印D1、D2、D3、D4、D5、D6で示される気流を生じて排出され、渦形成スペース36の円周部分に反時計方向の矢印E1、E2、E3、E4に示す円形気流を発生する。そして、矢印E1、E2、E3、E4で表される円形気流の雰囲気に対して排気ポンプ24により上昇気流を作用させることで、気体導出部23b及びチャンバー内で渦巻状又は螺旋状の上昇気流が発生し、透過孔21内を上昇した気体が排気孔32より外部へ排気される。
ここで、デブリ回収手段22を加工対象膜26から一定距離(例えば50μm以内)に保つ方法を説明する。まず、デブリ回収手段22の底面(加工対象膜26と対向する面)と同じ高さの位置に変位計を予め設置する。そして、レーザ光3の照射を実施しながら、次に照射する位置の変位を測定しておく。その測定したデータを基に、デブリ回収手段22の高さをモータ等の駆動手段により随時調整してレーザ光を照射する。これにより基板4上の加工対象膜26からデブリ回収手段22の底面までの距離が一定の狭い間隔に保たれて、デブリ回収手段22内部を減圧にすることができる。すなわち、加工対象物の照射面の凹凸を吸収し、デブリ回収手段22の底面から加工対象物までの距離を常に保つことができ、フォーカス調整が不要で、デブリを回収し易くなる。特に、加工対象膜26が金属膜である場合、融点が高くて蒸発し難いので、このように金属膜の蒸気圧を下げるためにレーザ光照射部近傍の減圧を保つことは重要である。
次に、加工飛散物の流れを遮る遮蔽手段について説明する。
図8は、遮蔽手段の一例を説明するためのデブリ回収機構の概略断面図である。図8において、図1〜図7と対応する部分には同一符号を付している。図8に示すように、チャンバー23cの上部(透過孔28)と底面の透過孔21(下部)を繋ぐ部分の内部、即ち、気体導出部23bの内部に、開口部42aが形成された遮蔽板42が設置されている。この遮蔽板42の開口部42は略中央部分に形成され、レーザ光光路上に位置して加工対象膜26に照射されるレーザ光を通過させる。
レーザ加工により発生した加工飛散物は、気体導入部25a,25b,25c,25dから通気孔を経て渦形成用基盤23aの渦形成スペース36に導入された気体によって生成される渦気流に乗って、透過孔21から遮蔽板42へと巻き上げられる。このとき遮蔽板42によってその上昇が妨げられ加工飛散物が遮蔽板42の下面に付着する。そして、遮蔽板42により加工飛散物が除去された気体は開口部42aを通過して減圧チャンバー23cの透過孔28へ巻き上げられ、排気孔32より外部へ排出される。
図9は、遮断板42の概観を示す図であり、Aは上面図、BはX−X線断面図である。図9A,Bに示すように、遮蔽板42は高さが低く開口が形成された有底の筒状、あるいは、両底面に開口を有する高さの低い円柱もしくは円盤状である。遮蔽板42の一方は大きく開口しており、他方は底面に所定の大きさの開口部42aが貫通形成されている。本例の遮蔽板42は、開口部42が穿設された底面と反対側の開口端から開口部42aに向かって落ち込んでいくような、略すり鉢状の形状をしている。
遮蔽板42の底面に形成された開口部42aの大きさは、通過するレーザ光3のビームサイズ(対角寸法)と同等か若干大きい程度が望ましい。本例では、ビームサイズに対して、例えば+0.5mm〜1mmの大きさとする。これにより、加工対象膜26のレーザ光照射領域で発生して上部透過窓19に向かって上昇する加工飛散物のうち、レーザ光3のビームサイズの周辺を上昇してくる加工飛散物を遮ることができ、開口部42aを通る加工飛散物の量を最小限に抑えられる。
さらに、遮蔽手段の他の例を説明する。
図10は、遮蔽手段の他の例を説明するためのデブリ回収機構の概略断面図である。図10において、図8と対応する部分には同一符号を付し、説明を省略する。本例の遮蔽手段は、気体導出部内部に遮蔽板を付加するのではなく、気体導出部の円筒面又は内壁を凹凸構造としたものである。気体導出部50の周壁を異なる直径を持つ凹凸構造にして蛇腹部を形成している。この気体導出部50(蛇腹部)の小径部51,51の直径は、上記同様、通過するレーザ光のビームサイズ(対角寸法)と同等か若干大きい程度が望ましい。なお、2つの小径部51,51の径は、異なる大きさでもよいことは勿論である。
このような構成により、上記遮蔽板42のような別部品を追加することなく、デブリ回収機構に遮蔽手段を具備することができる。また、凹凸を持つ蛇腹構造によって、複数の遮蔽板を設けたのと同様のトラップ機能(遮蔽機能)を持つことができ、加工飛散物のトラップ機能が向上する。さらに本例は、その他、上記遮蔽板42を用いた場合と同様の作用効果を奏する。
ところで、レーザ加工において、樹脂膜はアブレーション、金属膜は熱溶融がエッチング反応を支配している。このとき加工飛散物は、プルームと呼ばれる風船状の塊となり、初期速度数十m/secのスピードで、cosρの法則に従って拡散していく。このような初速度を持った蒸気流は、デブリ回収手段22に封入する渦気流では方向を変えることができないため、遮蔽手段を設けて加工飛散物が上部透過窓19に付着しないよう遮る(トラップする)必要がある。しかし、レーザ光3の通り道を遮蔽するわけにいかないので、上記遮蔽手段によっても上部透過窓19の汚染を100%避けることはできない。よって、フラットディスプレイパネルの量産装置に用いられるレーザ加工装置においては、入射レーザ光を透過する上部透過窓を自動で交換する機構が必要となる。
以下、透過窓を交換可能に構成した実施形態について説明する。
図11は、透過窓を保護するための回転機構を示すデブリ回収機構の概略斜視図である。図11において、図2と対応する部分には同一符号を付している。本例において、図2との相違点は、複数の透過窓を持つリボルバー形状の回転式交換機構を備える点である。減圧チャンバー23cの上面に、上部透過窓19aと上部透過窓19bを備える円盤形状の回転機構60を装備する。回転機構60は、モータ等の駆動手段によってレーザ光光軸に平行な回転軸を回転中心として回転するように構成されている。また、図示しないが、気体導出部23b内部には、上記開口部42aが形成された遮蔽板42が設置されている。
このような構成において、まず上部透過窓19aを減圧チャンバー23cの上面中央に配置する。そして、その上部透過窓19aを利用して一定枚数の加工対象基板をレーザ加工処理した後、基板交換のタイミングで回転機構60を回転させ、新品の上部透過窓19bに交換してレーザ加工作業を継続する。この場合、遮蔽機能と透過窓交換機能の2つの機能の相乗効果が得られ、効率よくデブリを回収できるとともに、透過窓を適宜交換して適切な条件下でのレーザ加工が実施可能である。
また、本例の透過窓交換機構を備えた減圧チャンバーに、上述した蛇腹構造の遮蔽手段(気体導出部50)を組み合わせても同様の作用効果が得られることは勿論である。なお、図11に示す例では、透過窓は2個であるが、個数はこの例に限定されるものではない。
以上説明したように、本発明のデブリ回収機構及びそのデブリ回収方法によれば、加工対象物上の樹脂膜又は金属膜をパターン加工する際に発生する加工飛散物を、効率よく回収することができる。
したがって、このデブリ回収機構及びその回収方法を利用したレーザ加工装置及びレーザ加工方法によれば、レーザ光を照射した際に発生する加工飛散物が効率よく除去されるので、加工対象物に付着するデブリを削減することができる。それにより、加工エッジ形状を改善したり、残渣をなくしたりすることができるので、多層膜に対して所望の表面微細構造が得られる。
例えば、液晶ディスプレイ(液晶表示装置)などのフラットパネルディスプレイと呼ばれる表示パネルは、薄膜トランジスタ(TFT;Thin Film Transistor)やキャパシタなどの素子、及びこれらの素子に電気的に連結された複数の配線(例えば信号配線や電位供給配線)などの様々な導電部材を含む配線基板によって構成されている。さらに、有機EL(Electro Luminescence)ディスプレイ用TFT基板の場合、信号配線や走査配線の他に、複数の電位供給配線が存在するため、画素内の配線密度が増加し、画素構造がいっそう複雑になっている。このため、本発明のように所望の表面微細構造を得られるパターン加工技術は、ディスプレイ装置を構成する配線基板の量産において大変重要である。本発明のレーザ加工方法を用いることにより、フラットディスプレイパネル等の表示パネルなど、高品質の多層膜を含む製品の製造及び提供が実現できる。
また、レーザ加工による樹脂膜又は金属膜の高品質なパターンニング(ドライ法)を可能とし、従来フォトリソグラフィー工程で実施していたパターニング方法(ウェット法)に置き換わる新しいプロセスにより、デブリを残すことなく除去することができる。
そして、フォトリソグラフィー工程をなくすことにより、投資の軽減、環境負荷低減、製造コスト削減、フットプリント削減を実現する。
また上記発明において、同心円状溝37とその供給気体の気流に角度をつけることにより、渦形成プレート38へ流入する気体の流れを、整流化して乱れの少ない渦気体を形成することができる。
また上記発明において、渦形成用プレート38に渦形成用の放射上溝38bを付加し、所定の開口比をつけることにより、渦形成スペースへ入る気体の流速を向上させ、渦にデブリを巻き込み易くすることができる。
また上記発明において、渦形成プレート38に透過孔21の直径の例えば1.5倍以下の渦形成用スペース36を設けることにより、乱れの少ない渦を形成することができる。
また上記発明において、渦形成スペース36に設けた内径38aにR形状やテーパー形状38dを付加し渦に巻き込んだ加工飛散物を排気用の透過孔21から排出することにより、渦形成スペース36の開口部における渦の空気抵抗を減らして回収することができる。
また上記発明において、渦気流によりデブリがレーザ光の照射エリア中心の透過孔21に集まるので、レーザ光照射部周囲へのデブリの飛散を抑制することができる。さらに、仮にレーザ光照射部にデブリが残ったとしても、デブリは照射エリア中心の透過孔21に集められているので、そのデブリにレーザ光がオーバーラップ照射され、デブリを完全に除去することができる。
以下、上述したレーザ加工装置(デブリ回収機構)を利用して行われる、表示パネルの製造方法の一実施の形態について説明する。本実施形態では、表示パネルとして液晶表示装置に適用した例としてある。
図15は、本発明が適用される液晶表示装置における駆動基板の構成の一例を示す平面図である。図15に示すように、駆動基板(配線基板)201は、マトリクス状に配列された画素電極部202と、各画素電極部202に対して設けられたTFT素子230とを有する。画素電極部202は液晶表示装置の画素ごとに設けられ、各画素電極部202の間には、信号線205及びゲート線206が設けられている。
画素電極部202は、透過用画素電極210と、この透過用画素電極210上に形成された反射用画素電極212とを有する。また、反射用画素電極212には、開口212wが形成されている。
TFT素子230は、ゲート電極207とこのゲート電極207に交差するように配置されたポリシリコン層208とを有している。ゲート電極207は、ゲート線206に電気的に接続されている。ポリシリコン層208の一端部は信号線205に電気的に接続され、他端部は透過用画素電極210に電気的に接続されている。なお、ゲート線206はTFT素子230に走査信号を供給するための配線であり、信号線205はTFT素子230に信号電圧を印加するための配線である。
図16は、駆動基板201のTFT素子230の周辺の断面構造を示す断面図であって、図15におけるA−A線方向の断面を示している。また、図17は、駆動基板201の開口212wの周辺の断面構造を示す断面図であって、図15におけるB−B線方向の断面図である。また、図16及び図17に示すように、駆動基板201の電極形成面側に対向して配置された対向電極262、カラーフィルタ264、位相差板266及び偏光板268と、駆動基板201の裏面側に配置された位相差板270、偏光板272及び面状光源274とによって液晶表示装置は構成される。
駆動基板201は、基板240と、ゲート電極207と、バリア膜244と、ゲート絶縁膜246と、ポリシリコン層208と、ストッパ層250と、層間絶縁膜248,252と、拡散板254と、平坦化層256と、透過用画素電極210と、反射用画素電極12とを有する。
基板240は、例えば、ガラス材料等の光を透過する材料で形成されている。ゲート電極207は、基板240上に上記したゲート線206とともにパターニングされている。このゲート電極207は、例えば、CrやMo(モリブデン)等の導電材料を基板240上にスパッタリングにより成膜し、このCrやMo等の薄膜を、例えば、フォトリソグラフィーによってパターニングすることにより得られる。
バリア膜244は、ゲート電極207を被覆するように基板240上に成膜されている。このバリア膜244は、例えば、プラズマCVD法により、窒化シリコンを基板240上に成膜したものである。ゲート絶縁膜246は、バリア膜244上に形成されており、例えば、酸化シリコンをプラズマCVD法により成膜したものである。
ポリシリコン層208は、ゲート絶縁膜246上にパターニングされている。このポリシリコン層208は、例えば、非晶質シリコンをゲート絶縁膜246上にプラズマCVD法により成膜したのち、アニール処理を施して非晶質シリコンに含まれる水素を除去し、ポリシリコンに転換させ、このポリシリコンを、例えば、フォトリソグラフィーによりパターニングすることにより得られる。また、ポリシリコン層208のストッパ層250の両側には、例えば、リン(P)等の不純物が所定の濃度で注入され、活性化されることによりLDD(LightlyDoped Drain)領域及びN+領域が形成されている。
ストッパ層250は、例えば、酸化シリコンで形成されている。このストッパ層250は、例えば、CVD法によりポリシリコン層208を覆うようにゲート絶縁膜246上に酸化シリコンを成膜したのち、この酸化シリコンをゲート電極207をマスクとしてセルフアライメントによりパターニングすることにより得られる。このため、ストッパ層250は、ポリシリコン層208のゲート電極207上に位置する部分を被覆している。なお、上記のLDD領域は、このストッパ層250をマスクとして不純物がイオン注入されることにより形成される。また、このストッパ層250及び当該ストッパ層250の周辺をフォトレジストによりマスクしたのち、不純物をポリシリコン層208にイオン注入することにより、N+ 領域が形成される。その後、アニール処理により、不純物の活性化を図る。
層間絶縁膜248は、ストッパ層250及びポリシリコン層208を覆うようにゲート絶縁膜246上に形成されている。この層間絶縁膜248は、例えば、酸化シリコンがCVD法により成膜されている。層間絶縁膜252は、層間絶縁膜248上に形成されている。この層間絶縁膜248は、例えば、窒化シリコンがCVD法により成膜されている。
拡散板254は、層間絶縁膜252上に形成されている。この拡散板254は、表面に凹凸を有している。この凹凸により、当該拡散板254上層に形成される反射用電極212に凹凸を形成し、当該反射用電極212に入射する光を拡散させて画面の輝度を向上させるために設けられている。拡散板254は、層間絶縁膜252上にアクリル樹脂等からなるレジストをスピンコートにより塗布し、ポストベーク処理によりレジストを下地層に定着させ溶媒を除去し、このレジストの表面に凹凸を形成することにより得られる。レジスト表面への凹凸の加工は、例えば、フォトリソグラフィーあるいはレーザ加工によって行われる。
平坦化層256は、拡散板254上に形成されており、拡散板254の表面の凹凸を滑らかにし、透過用画素電極210及び反射用画素電極212が定着しやすいようにするために設けられている。このため、平坦化層256の表面は拡散板54の表面よりも滑らかになっている。
図17に示すように、上記のバリア膜242、ゲート絶縁膜246、層間絶縁膜248,252、拡散板254及び平坦化層256には、基板240にまで達するテーパー状の穴Hが形成されている。透過用画素電極210は、図17に示すように、平坦化層256上に形成されているとともに、図17に示すように、上記のテーパー状の穴Hの内周面及び穴Hの底部である基板240の表面を覆うように形成されている。この透過用画素電極210は、例えば、ITO等の導電性の透過膜によって形成されている。また、透過用画素電極210は、図17に示したように、矩形状にパターニングされている。
反射用画素電極212は、透過用画素電極210の表面に全面的に形成されている。この反射用画素電極212は、図17に示すように、開口212wが形成されている。反射用画素電極212は、例えば、Al等で形成された導電性の反射膜(金属膜)で形成されている。このため、反射用画素電極212は、透過用画素電極210と電気的に接続されている。なお、反射用画素電極12は、後述するように、透過用画素電極210上に成膜された導電性反射膜11が、レーザ光によるアブレーション加工によりパターニングされる。さらにこのパターニングの際、透過用画素電極210のテーパー状の穴Hには、樹脂等からなるストッパ層215を予め形成しておくようにする。
対向電極262、カラーフィルタ264、位相差板266及び偏光板268は、一体化されて駆動基板1の画素電極形成側に対向配置される。また、位相板270、偏光板272及び面状光源274は、一体化されて駆動基板201の非画素電極形成側に対向配置される。対向電極262は、ITO等の導電性の透過膜によって形成されており、透過用画素電極210及び反射用画素電極212との間で電界を形成する。
偏光板268及び272は、入射する光を直線偏光にする。位相差板266,270は、液晶表示装置のコントラストの向上、色変化の低減、防止のために、偏光板268または272を通じて入射する直線偏光を円偏光にする光学補償を行う。カラーフィルタ264は、赤(R)、緑(G)、青(B)の三原色の微細な着色層とブラックマトリックスと呼ばれる遮光層とが所定パターンに形成されたものである。面状光源274は、例えば、冷陰極蛍光管等の光源を内蔵しており、面状の光BLを基板240側に向けて出力する。
対向電極262と透過用画素電極210及び反射用画素電極212との間に封入される液晶260には、例えば、ツイスティッドネマティック(TN)液晶が使用される。
上記構成の液晶表示装置では、偏光板268側から入射した外光OLは、偏光板268、位相差板266、カラーフィルタ264及び対向電極262を通過して反射用画素電極210に入射し、この反射用画素電極212で反射されて偏光板268から外部に再び出力される。反射用画素電極212の表面は、拡散板254の凹凸により凹凸を有しているので、反射用画素電極212に入射された外光OLは、散乱し画面の輝度が向上する。
一方、面状光源274から出力された光BLは、図16に示すように、反射用画素電極212が存在する領域では、反射用画素電極212によって遮断され、偏光板268から外部へ出力されないが、図17に示すように、透過用画素電極210に入射した光BLの一部は反射用画素電極212の開口212wを通過し、対向電極262、カラーフィルタ264、位相差板266及び偏光板268を通じて外部に出力される。この結果、暗所では面状光源274を利用し、明所では外光を反射用画素電極212で反射させることにより、高輝度で省消費電力化された液晶表示装置が得られる。
次に、上述した反射用画素電極12の形成方法について説明する。反射用画素電極12の形成(パターンニング)は、図1に示したデブリ回収手段22を備えるレーザ加工装置20を用いて行う。
レーザ光源であるレーザ制御装置1は、レーザ光3(後述するレーザビームLB)を出力する。このレーザ制御装置1から出力されるレーザ光3によって加工対象物の被加工面(加工対象膜26)が加工される。レーザ制御装置1には、例えば、エキシマレーザや、YAGレーザが用いられる。エキシマレーザには、既述のとおりレーザ媒質の異なる複数の種類が存在する。エキシマレーザが熱エネルギーを利用した加工を行うYAGレーザ(1.06μm)、CO2 レーザ(10.6μm)と大きく異なる点は、発振波長が紫外線の領域にあることである。エキシマレーザは、本質的にパルスでのみ発振し、例えばパルス幅は約20nsでありレーザビームの形は長方形である。また、エキシマレーザは、アブレーションと呼ばれる、光化学的に直接結合を解離する熱的な影響を受けにくい加工を行うため、被加工面のエッジの仕上がりが非常にシャープとなる。これに対して、YAGレーザ、CO2 レーザでは加工部分が溶融後蒸発するため、熱の影響で周辺部が丸くなりきれいな端面とならない。さらに、エキシマレーザは、初期のビームの断面が例えば約10×10mmの寸法を有し、このレーザビームをビーム整形器14により長面積化、大面積化することにより比較的広い面積を一括して加工できる。したがって、大面積の領域を同時に加工するのにエキシマレーザは適している。
本実施形態では、導電性のない材料、例えば樹脂材料からなるストッパ層を用いた場合でも、透過用画素電極210と反射用画素電極212とを導通させるとともに、透過用画素電極210のレーザビームLBによるダメージを防ぐことができる電極形成方法について図18〜図21を参照して説明する。なお、図18〜図21において、図16及び図17と同一構成部分については同一の符号を使用している。
まず図18に示すように、駆動基板201の基板240上に積層されたバリア膜242、ゲート絶縁膜246、層間絶縁膜248,252、拡散板254及び平坦化層256にエッチングによって穴Hを形成したのち、平坦化層256上に導電性透過膜を形成し、この導電性透過膜をパターニングして透過用画素電極210を形成する。この透過用画素電極210のパターニングには、上記したレーザ加工装置20を用いることができる。また、透過用画素電極210を構成する導電性透過膜には、例えば、アニール処理をしたITOが用いられる。この導電性透過膜の形成には、例えば、スパッタリング法が用いられる。
図18は、上記した穴Hを形成したのち、平坦化層256上に導電性透過膜を形成し、この導電性透過膜をパターニングして透過用画素電極210を形成したのち、穴H内の透過用画素電極210表面にストッパ層215を形成した状態を示している。ストッパ層215は、可視光を透過する材料で形成されている。例えば、透明な樹脂材料が用いられる。樹脂材料を用いる場合には、レーザ加工装置20のレーザビームLBの波長付近でできるだけ吸収率の高いものが好ましい。例えば、KrFエキシマレーザの場合は波長248nmであるが、この波長248nm付近で吸収率が高いものである。また、ストッパ層215は、例えば、上記したレーザ加工装置20を用いてレーザ加工やフォトリソグラフィー工程によって形成することができる。
樹脂材料を用いてストッパ層215を形成後、図19に示すように、ストッパ層215及び矩形状にパターニングされた透過用画素電極210を覆うように、導電性反射膜211を形成する。この導電性反射膜211は、例えば、Al等の導電性を有する反射膜(金属膜)が用いられる。導電性反射膜11の形成には、例えば、スパッタリング法が用いられる。これにより、導電性反射膜211と透過用画素電極210とは電気的に接続される。
次いで、導電性反射膜211が形成された駆動基板201を上記のレーザ加工装置20にセットし、図20に示すように、導電性反射膜211の表面に向けて、所定パターンのレーザビームLBを照射する。レーザビームLBは、パルス状に断続的に導電性反射膜211に照射される。レーザビームLBのパワーは、導電性反射膜211の被照射領域Rが一回の照射によりすべて除去されずに、導電性反射膜211の一部のみがアブレーションにより除去される程度に設定する。このとき、図8又は図10に示すようなデブリ回収手段22を用いたデブリ回収方法により、レーザビームLBの照射によって加工面から発生する加工飛散物を、レーザ光照射部近傍の気体とともに渦気流に巻き込んで効率よく回収、除去する。
レーザビームLBが導電性反射膜211の被照射領域Rに繰り返し照射されると、被照射領域Rが徐々に除去される。そして、導電性反射膜211の被照射領域Rが完全に除去されると、導電性反射膜211に形成された開口からストッパ層215が露出する。さらに、レーザビームLBを照射し、ストッパ層215もアブレーションにより除去されたところで、レーザビームLBの照射を停止する。なお、レーザビームLBの照射は、下層の透過用画素電極10がレーザビームLBによりダメージを受ける前に停止する。
このように、導電性反射膜211への所定パターンのレーザビームLBの照射により、導電性反射膜211がパターニングされ、図21に示すように、開口212wをもつ反射用画素電極212が形成される。このとき、ストッパ層215の一部215pは、反射用画素電極212と透過用画素電極210との間に残存する可能性がある。しかしながら、ストッパ層215は透過膜であるので、開口における透過用画素電極210の可視光の透過を妨げることはない。
以上の工程により、図15に示した開口212wをもつ矩形状の反射用画素電極212がパターニングされる。本実施形態によれば、ストッパ層215を反射用画素電極212のための導電性反射膜と透過用画素電極10との間に形成したことにより、反射用画素電極12をレーザビームLBによりパターニングしたときに、透過用画素電極10が除去されたり、あるいは、基板240から剥離する等のダメージを防止することが可能となる。この結果、レーザビームLBによる反射用画素電極12の形成が可能となる。
上述したように、本実施形態に係る表示パネルの製造方法よれば、加工対象物上の金属膜(反射用画素電極12)をパターン加工する際に発生する加工飛散物を、デブリ回収手段2を用いて効率よく回収することができる。したがって、レーザ光を照射した際に発生する加工飛散物が効率よく除去されるので、加工対象物に付着するデブリを削減することができる。それにより、加工エッジ形状を改善したり、残渣をなくしたりすることができるので、微細かつ精度のよい表面構造を持つ多層膜から構成された液晶表示装置を製造することができる。
また、ストッパ層215が導電性を有していない、すなわち樹脂材料の場合、透過用画素電極210と反射用画素電極212とを電気的に接続できるとともに、透過用画素電極210にレーザビームLBによるダメージを与えることなく反射用画素電極212を加工することができる。なお、ストッパ層215の材料は、レーザ加工装置20に用いるレーザの波長により任意に選択することができる。
さらに、上記実施の形態では、樹脂(ストッパ層215)上に成膜された金属膜(反射用画素電極12)を加工する工程を含む液晶表示装置を製造する場合について述べたが、樹脂上に成膜された樹脂膜を加工する工程を含む液晶表示装置についても、本発明によるレーザ加工装置(デブリ回収機構)を利用して、製造することができる。なお、液晶表示装置は表示パネル(フラットディスプレイパネル)の一例であって、この例に限られるものではなく、種々の表示パネルの製造に適用できる。
本発明の一実施形態に係るレーザ加工装置の全体構成図である。 本発明の一実施形態に係るレーザ加工装置に用いるデブリ回収機構の斜視図である。 本発明の一実施形態に係るレーザ加工装置に用いるデブリ回収機構のベース部分の底面図である。 本発明の一実施形態に係るレーザ加工装置に用いるデブリ回収機構の渦巻発生方法を説明するためのベース部分の底面図である。 本発明の一実施形態に係るレーザ加工装置に用いるデブリ回収機構の同心円状溝による同心円状気流の発生方法を説明するための平面図である。 本発明の一実施形態に係るレーザ加工装置に用いるデブリ回収機構の渦形成プレートの平面図である。 図6のA−A断面矢視図である。 本発明の一実施形態に係るレーザ加工装置に用いるデブリ回収機構の概略断面図である。 本発明の一実施形態に係るレーザ加工装置に使用される遮蔽板の例を示すものであり、Aは上面図、BはX−X断面図である。 本発明の他の実施形態に係るレーザ加工装置に用いるデブリ回収機構の概略断面図である。 本発明の他の実施形態に係るレーザ加工装置に用いるデブリ回収機構の斜視図である。 A,B,Cは多層膜上の透明導電膜のエッチング反応の説明に供する図である。 A,B,Cは多層膜上の樹脂膜のエッチング反応の説明に供する図である。 A,B,Cは多層膜上の金属膜のエッチング反応の説明に供する図である。 液晶表示装置における駆動基板の構成の一例を示す平面図である。 図15のTFT素子230の周辺の断面構造を示す断面図である。 図15における駆動基板201の開口212wの周辺の断面構造を示す断面図である。 本発明における表示パネルの製造方法の手順を説明するための断面図である。 図18に続く本発明における表示パネルの製造方法の手順を説明するための断面図である。 図19に続く本発明における表示パネルの製造方法の手順を説明するための断面図である。 反射用画素電極がパターニングされた状態の表示パネルを示す断面図である。
符号の説明
1…レーザ制御装置、3…レーザ光、4…基板、13…デブリ(加工飛散物)、18…ステージ、19,19a,19b…上部透過窓、20…レーザ加工装置、21…透過孔、22…デブリ回収手段、23…筐体、23a…渦形成用基盤、23b…気体導出部、23c…チャンバー、24…排気ポンプ、25a〜25d…気体導入部、26…加工対象膜、32…排気孔、34…気体供給孔、35…渦形成用溝、36…渦形成スペース、37…同心円状溝、38…渦形成用プレート、38a…内径、38b…放射状溝、38d…R形状又はテーパー部、38e…供給部、38f…排出部、42…遮蔽板、42a…開口部、50…気体導出部(蛇腹部)、51…小径部、60…回転機構、110…樹脂膜、120…金属膜、201…駆動基板、211…導電性反射膜、212…反射用画素電極、215…ストッパ層

Claims (16)

  1. レーザ光を利用して基板上に形成される樹脂膜又は金属膜のパターン加工を行なうレーザ加工装置において、
    前記レーザ光を透過する透過窓と、前記樹脂膜又は前記金属膜のレーザ光照射部近傍に気体を流入させることで渦気流を発生させる渦発生機構と、入射レーザ光が通過できる開口部を備え加工飛散物の流れを遮る遮蔽手段と、を有するデブリ回収手段を備え、
    前記デブリ回収手段の渦発生機構が前記基板上の前記樹脂膜又は前記金属膜に近接配置され、レーザ光照射により発生した加工対象膜に堆積する前及び堆積した後の加工飛散物を、前記渦発生機構により発生させた渦気流に巻き込み、前記遮蔽手段を経由して外部に排気する
    ことを特徴とするレーザ加工装置。
  2. 前記デブリ回収手段は、レーザ光の光路であるとともに排気孔と通じる渦気流の流路である透過孔を備えた渦気流排気部と、前記基板と対向配置される渦形成部からなり、
    前記渦形成部は、前記渦気流の回転方向に対応するとともに前記透過孔と連通する放射状の渦形成用溝が、当該渦形成部の基板との対向面に形成された渦形成用プレートを有し、
    前記渦形成プレートの渦形成用溝に対し気体を導入して、前記渦形成用溝を流れて渦気流を形成する気体を、前記渦気流排気部の透過孔を介して前記排気孔より外部に排気する
    ことを特徴とする請求項1に記載のレーザ加工装置。
  3. 前記遮蔽手段は、前記デブリ回収手段内部の前記渦気流の通り道に設けられ、前記レーザ光光路上に開口部が形成されてなる遮蔽板である
    ことを特徴とする請求項2に記載のレーザ加工装置。
  4. 前記遮蔽手段は、前記デブリ回収手段内部の前記渦気流の通り道に形成された凹凸の蛇腹構造よりなる
    ことを特徴とする請求項2に記載のレーザ加工装置。
  5. 前記遮蔽手段の渦気流の通り道における開口の大きさは、前記レーザ光のビームサイズと同等、若しくは、若干大きい
    ことを特徴とする請求項3又は4に記載のレーザ加工装置。
  6. 前記渦形成用溝は、該渦形成用溝が前記透過孔と同心円の接線に対してなす角度のうち前記渦気流の風下側にあたる角度が鋭角となるよう形成される
    ことを特徴とする請求項2に記載のレーザ加工装置。
  7. 前記渦形成用プレートの前記基板との対向面の外周側に前記渦形成用溝と連通する環状の溝を設け、
    該環状の溝に形成した気体供給孔から気体を導入して前記渦形成用溝に該気体を供給し、前記環状の溝内に前記渦気流の回転方向と同じ気流を発生させる
    ことを特徴とする請求項2に記載のレーザ加工装置。
  8. 前記環状の溝に形成された気体供給孔に気体を導入する気体導入部を備え、
    前記気体導入部は、前記渦形成用溝の配置と対応付けられ、前記透過孔の中心と前記環状の溝の気体供給孔を結ぶ直線に対し発生すべき渦気流の回転方向の風上側に傾斜して設置される
    ことを特徴とする請求項7に記載のレーザ加工装置。
  9. 前記渦形成用プレートに形成された前記渦形成用溝における前記環状の溝側の溝幅を同透過孔側の溝幅に対して所定の比で大きくする
    ことを特徴とする請求項2に記載のレーザ加工装置。
  10. 前記渦形成用プレートに形成された前記渦形成用溝における前記環状の溝側の溝幅をW1、同透過孔側の溝幅をW2と定義するとき、
    W1:W2=1:1.5〜2.5
    の関係式を満たす
    ことを特徴とする請求項9に記載のレーザ加工装置。
  11. 前記渦気流排気部の前記透過孔と前記渦形成用プレートの渦形成用溝との間に環状気流を生成する空間が設けられてなる
    ことを特徴とする請求項2に記載のレーザ加工装置。
  12. 前記環状気流を形成する空間と繋がる前記透過孔の開口部付近の壁面に曲面形状又はテーパー形状が形成されてなる
    ことを特徴とする請求項11に記載のレーザ加工装置。
  13. レーザ光を利用して基板上に形成される樹脂膜又は金属膜のパターン加工を行なうレーザ加工方法において、
    前記レーザ光を透過する透過窓と、前記樹脂膜又は前記金属膜のレーザ光照射部近傍に気体を流入させることで渦気流を発生させる渦発生機構と、入射レーザ光が通過できる開口部を備え加工飛散物の流れを遮る遮蔽手段と、を有するデブリ回収手段を前記基板に近接させ、
    レーザ光照射により発生した加工対象膜に堆積する前及び堆積した後の加工飛散物を、前記渦発生機構で発生させた渦気流に巻き込み、前記遮蔽手段を経由して外部に排気する
    ことを特徴とするレーザ加工方法。
  14. レーザ光を利用して基板上に形成される樹脂膜又は金属膜のパターン加工時に、レーザ光照射で発生する加工飛散物を除去するデブリ回収機構において、
    前記レーザ光を透過する透過窓と、前記樹脂膜又は前記金属膜のレーザ光照射部近傍に気体を流入させることで渦気流を発生させる渦発生部と、入射レーザ光が通過できる開口部を備え加工飛散物の流れを遮る遮蔽手段とを備え、
    前記基板上の前記樹脂膜又は前記金属膜に近接配置された前記渦発生部により渦気流を発生させ、レーザ光照射で発生した加工対象膜に堆積する前及び堆積した後の加工飛散物を、前記渦発生部で発生させた渦気流に巻き込み、前記遮蔽手段を経由して外部に排気する
    ことを特徴とするデブリ回収機構。
  15. レーザ光を利用して基板上に形成される樹脂膜又は金属膜のパターン加工時に、レーザ光照射で発生する加工飛散物を除去するデブリ回収方法において、
    前記入射レーザ光を透過する透過窓と、前記樹脂膜又は前記金属膜のレーザ光照射部近傍に気体を流入させることで渦気流を発生させる渦発生部と、入射レーザ光が通過できる開口部を備え加工飛散物の流れを遮る遮蔽手段と、を有するデブリ回収手段を前記基板に近接させ、
    レーザ光照射により発生した加工対象膜に堆積する前及び堆積した後の加工飛散物を、前記渦発生部で発生させた渦気流に巻き込み、前記遮蔽手段を経由して外部に排気する
    ことを特徴とするデブリ回収方法。
  16. 画素に対応する多数個の配線パターンによって構成される基板を備える表示パネルの製造方法であって、
    前記基板に形成された樹脂膜上に樹脂膜又は金属膜を成膜する工程と、
    前記樹脂膜又は前記金属膜に対し、レーザ光を照射してパターン加工を行う工程と、を含み、
    前記レーザ光を用いて前記樹脂膜又は前記金属膜のパターン加工を行う工程は、前記レーザ光を透過する透過窓と、前記樹脂膜又は前記金属膜のレーザ光照射部近傍に気体を流入させることで渦気流を発生させる渦発生機構と、入射レーザ光が通過できる開口部を備え加工飛散物の流れを遮る遮蔽手段と、を有するデブリ回収手段を前記基板に近接させる工程と、
    前記レーザ光照射により発生した加工対象膜に堆積する前及び堆積した後の加工飛散物を、前記渦発生機構で発生させた渦気流に巻き込み、前記遮蔽手段を経由して外部に排気する工程と、
    を有することを特徴とする表示パネルの製造方法。
JP2007169381A 2007-06-27 2007-06-27 レーザ加工装置とその加工方法、デブリ回収機構とその回収方法、並びに表示パネルの製造方法 Pending JP2009006350A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007169381A JP2009006350A (ja) 2007-06-27 2007-06-27 レーザ加工装置とその加工方法、デブリ回収機構とその回収方法、並びに表示パネルの製造方法
US12/138,050 US8283596B2 (en) 2007-06-27 2008-06-12 Laser processing apparatus and laser processing method, debris collection mechanism and debris collection method, and method for producing display panel
CN2008101317494A CN101332535B (zh) 2007-06-27 2008-06-27 激光加工设备、碎片收集机构及方法与显示板的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007169381A JP2009006350A (ja) 2007-06-27 2007-06-27 レーザ加工装置とその加工方法、デブリ回収機構とその回収方法、並びに表示パネルの製造方法

Publications (2)

Publication Number Publication Date
JP2009006350A true JP2009006350A (ja) 2009-01-15
JP2009006350A5 JP2009006350A5 (ja) 2010-05-06

Family

ID=40195559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007169381A Pending JP2009006350A (ja) 2007-06-27 2007-06-27 レーザ加工装置とその加工方法、デブリ回収機構とその回収方法、並びに表示パネルの製造方法

Country Status (3)

Country Link
US (1) US8283596B2 (ja)
JP (1) JP2009006350A (ja)
CN (1) CN101332535B (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101825780B (zh) * 2009-03-05 2011-08-24 北京京东方光电科技有限公司 液晶面板周边残材检出和去除的装置及其方法
CN102364994A (zh) * 2011-09-28 2012-02-29 南京创能电力科技开发有限公司 低温等离子发生器的阴极电弧控制器
CN102368887A (zh) * 2011-09-28 2012-03-07 南京创能电力科技开发有限公司 低温等离子发生器的阴极组件
JP2012232314A (ja) * 2011-04-28 2012-11-29 Nagase Integrex Co Ltd レーザー加工装置
JP2013134996A (ja) * 2011-12-23 2013-07-08 Ngk Spark Plug Co Ltd 多数個取り配線基板の製造方法および該製造方法に用いる支持台
JP2014504804A (ja) * 2011-01-13 2014-02-24 タマラック サイエンティフィック カンパニー インコーポレイテッド 導電性シード層のレーザ除去
JP2014508032A (ja) * 2011-01-11 2014-04-03 ガス、テクノロジー、インスティチュート 穴をパージして穴から屑を除去する方法
KR20140046719A (ko) * 2012-10-10 2014-04-21 삼성디스플레이 주식회사 레이저 가공장치
JP2014519996A (ja) * 2011-05-20 2014-08-21 スネクマ 粉末を選択的に溶融させることによって部品を製造するための装置
JP2015134364A (ja) * 2014-01-16 2015-07-27 株式会社デンソー レーザ加工装置およびレーザ加工方法
WO2015114853A1 (ja) * 2014-01-31 2015-08-06 国立大学法人岡山大学 レーザー加工機のシールドガス供給装置及びレーザー加工機
US11394170B2 (en) 2018-12-14 2022-07-19 Nichia Corporation Light emitting device and method for manufacturing light emitting device
WO2022168551A1 (ja) * 2021-02-04 2022-08-11 住友重機械工業株式会社 レーザ光導入装置

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009047801B4 (de) * 2009-09-30 2014-06-12 Siemens Aktiengesellschaft Durchflusskammer mit Zellleiteinrichtung
US8461042B2 (en) * 2009-12-01 2013-06-11 Cochlear Limited Electrode contact contaminate removal
US8782884B2 (en) * 2009-12-01 2014-07-22 Cochlear Limited Manufacturing an electrode assembly having contoured electrode contact surfaces
KR101256430B1 (ko) * 2011-03-15 2013-04-18 삼성에스디아이 주식회사 레이저 용접 장치
CN102284792B (zh) * 2011-07-26 2013-11-13 江苏捷捷微电子股份有限公司 在半导体器件芯片玻璃钝化膜上划切的装置的使用方法
CN103074614B (zh) * 2012-12-25 2015-10-28 王奉瑾 激光cvd镀膜设备
CN103041935B (zh) * 2012-12-27 2015-10-21 武汉三工光电设备制造有限公司 一种旋风除尘装置
JP5663776B1 (ja) * 2014-03-27 2015-02-04 福井県 吸引方法及び吸引装置並びにレーザ加工方法及びレーザ加工装置
CN203950784U (zh) * 2014-05-29 2014-11-19 京东方科技集团股份有限公司 一种激光退火设备
CN111496379B (zh) * 2014-08-19 2022-08-26 亮锐控股有限公司 用于减少在管芯级激光剥离期间所受机械损伤的蓝宝石收集器
CN105458495B (zh) * 2014-09-11 2017-03-22 大族激光科技产业集团股份有限公司 一种用于激光精密加工的配套系统
JP6807334B2 (ja) * 2015-05-13 2021-01-06 ルミレッズ ホールディング ベーフェー ダイレベルのリフトオフの最中におけるメカニカルダメージを低減するためのサファイアコレクタ
JP6516624B2 (ja) * 2015-08-11 2019-05-22 株式会社ディスコ レーザ加工装置
KR20180034551A (ko) * 2015-08-26 2018-04-04 일렉트로 싸이언티픽 인더스트리이즈 인코포레이티드 기체 흐름에 대한 레이저 스캔 시퀀싱 및 방향
TWI599431B (zh) * 2015-11-03 2017-09-21 財團法人工業技術研究院 雷射加工裝置及雷射排屑裝置
JP6999264B2 (ja) * 2016-08-04 2022-01-18 株式会社日本製鋼所 レーザ剥離装置、レーザ剥離方法、及び有機elディスプレイの製造方法
WO2018039248A1 (en) * 2016-08-23 2018-03-01 Electro Scientific Industries, Inc. Removal of debris associated with laser drilling of transparent materials
CN106291287B (zh) * 2016-09-05 2018-04-20 中国商用飞机有限责任公司 用于闪电直接效应试验的碎片收集装置
JP6508549B2 (ja) * 2017-05-12 2019-05-08 パナソニックIpマネジメント株式会社 レーザ加工装置
DE102018209143A1 (de) * 2018-06-08 2019-12-12 Robert Bosch Gmbh Verfahren zur Herstellung einer stoffschlüssigen Laserbondverbindung sowie Vorrichtung zur Ausbildung einer Laserbondverbindung
JP7114708B2 (ja) 2018-06-27 2022-08-08 ギガフォトン株式会社 レーザ加工装置、レーザ加工システム、及びレーザ加工方法
WO2020091065A1 (ja) * 2018-11-02 2020-05-07 日東電工株式会社 偏光性光学機能フィルム積層体のレーザー切断加工方法
KR20210093906A (ko) * 2018-11-30 2021-07-28 도쿄엘렉트론가부시키가이샤 기판 세정 방법, 처리 용기 세정 방법 및 기판 처리 장치
CN110549014A (zh) * 2019-09-20 2019-12-10 广东捷泰克智能装备有限公司 除渣方法、除渣机构及所应用的管材激光切割机
DE102019006647A1 (de) * 2019-09-23 2021-03-25 Rj Lasertechnik Gmbh Schutzgasdüse zu Laserbearbeitung und Verfahren zum Laserbearbeiten
US11690162B2 (en) * 2020-04-13 2023-06-27 Kla Corporation Laser-sustained plasma light source with gas vortex flow
CN114054974B (zh) * 2021-11-02 2024-04-09 深圳市信维智能装备技术有限公司 一种自动收废料机构
AT526274A2 (de) * 2022-06-15 2024-01-15 Trotec Laser Gmbh Laserplotter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04258394A (ja) * 1991-02-05 1992-09-14 Fanuc Ltd レーザ加工機の加工ヘッド
JPH05228681A (ja) * 1992-02-21 1993-09-07 Sumitomo Metal Ind Ltd レーザ溶接法およびこれに使用する冷却ヘッド
JPH06246465A (ja) * 1993-03-03 1994-09-06 Nippon Steel Corp レーザー加工装置
JP2007007724A (ja) * 2005-06-02 2007-01-18 Sony Corp レーザ加工装置とその加工方法及びデブリ回収機構とその回収方法

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5552675A (en) * 1959-04-08 1996-09-03 Lemelson; Jerome H. High temperature reaction apparatus
US4707585A (en) * 1986-03-17 1987-11-17 Cincinnati Milacron Inc. Laser wrist with sealed beam pathway
US4722591A (en) * 1986-03-17 1988-02-02 Cincinnati Milacron Inc. Laser beam combiner
US4695701A (en) * 1986-03-17 1987-09-22 Cincinnati Milacron Inc. Laser wrist
US4698482A (en) * 1986-03-17 1987-10-06 Cincinnati Milacron Inc. Laser robot
US5302237A (en) * 1992-02-13 1994-04-12 The United States Of America As Represented By The Secretary Of Commerce Localized plasma processing
US5886316A (en) * 1994-05-03 1999-03-23 Consolidated Fusion Technologies, Inc. Method and apparatus for treating waste and for obtaining usable by-product
JP3838580B2 (ja) 1995-09-30 2006-10-25 大日本印刷株式会社 イージーオープン性を有する蓋材および該蓋材を用いた容器
JPH09192870A (ja) 1996-01-10 1997-07-29 Sumitomo Heavy Ind Ltd レーザ加工ヘッド、レーザ加工装置及びレーザ加工方法
US7569790B2 (en) * 1997-06-26 2009-08-04 Mks Instruments, Inc. Method and apparatus for processing metal bearing gases
US7166816B1 (en) * 1997-06-26 2007-01-23 Mks Instruments, Inc. Inductively-coupled torodial plasma source
US6150628A (en) * 1997-06-26 2000-11-21 Applied Science And Technology, Inc. Toroidal low-field reactive gas source
US6815646B2 (en) * 2000-07-25 2004-11-09 Ibiden Co., Ltd. Ceramic substrate for semiconductor manufacture/inspection apparatus, ceramic heater, electrostatic clampless holder, and substrate for wafer prober
US7591957B2 (en) * 2001-01-30 2009-09-22 Rapt Industries, Inc. Method for atmospheric pressure reactive atom plasma processing for surface modification
US7622693B2 (en) * 2001-07-16 2009-11-24 Foret Plasma Labs, Llc Plasma whirl reactor apparatus and methods of use
JP4465954B2 (ja) 2002-10-31 2010-05-26 ソニー株式会社 透明導電膜を有する表示装置の製造方法
US6880646B2 (en) * 2003-04-16 2005-04-19 Gas Technology Institute Laser wellbore completion apparatus and method
JP4205486B2 (ja) * 2003-05-16 2009-01-07 株式会社ディスコ レーザ加工装置
US20050258149A1 (en) * 2004-05-24 2005-11-24 Yuri Glukhoy Method and apparatus for manufacture of nanoparticles
GB0412000D0 (en) * 2004-05-28 2004-06-30 Cambridge Display Tech Ltd Apparatus and method for extracting debris during laser ablation
US7602822B2 (en) * 2004-09-28 2009-10-13 Hitachi Via Mechanics, Ltd Fiber laser based production of laser drilled microvias for multi-layer drilling, dicing, trimming of milling applications
US7262384B2 (en) * 2004-09-30 2007-08-28 Novacentrix, Corp. Reaction vessel and method for synthesizing nanoparticles using cyclonic gas flow
GB2426010B (en) * 2005-05-14 2011-04-06 Jeffrey Boardman semiconductor materials and methods of producing them
JP4993886B2 (ja) * 2005-09-07 2012-08-08 株式会社ディスコ レーザー加工装置
FR2891483B1 (fr) * 2005-10-05 2009-05-15 Commissariat Energie Atomique Procede et installation de decoupe/de soudage laser
US7863542B2 (en) * 2005-12-22 2011-01-04 Sony Corporation Laser processing apparatus and laser processing method as well as debris extraction mechanism and debris extraction method
EP1996320A2 (en) * 2006-03-10 2008-12-03 The President and Fellows of Harvard College Methods and apparatus for near field irradiation
US7628865B2 (en) * 2006-04-28 2009-12-08 Asml Netherlands B.V. Methods to clean a surface, a device manufacturing method, a cleaning assembly, cleaning apparatus, and lithographic apparatus
US20080213978A1 (en) * 2007-03-03 2008-09-04 Dynatex Debris management for wafer singulation
TWI510320B (zh) * 2008-10-10 2015-12-01 Ipg Microsystems Llc 雷射加工系統、雷射加工方法及光學頭
US8361415B2 (en) * 2010-09-13 2013-01-29 The Regents Of The University Of California Inertial particle focusing system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04258394A (ja) * 1991-02-05 1992-09-14 Fanuc Ltd レーザ加工機の加工ヘッド
JPH05228681A (ja) * 1992-02-21 1993-09-07 Sumitomo Metal Ind Ltd レーザ溶接法およびこれに使用する冷却ヘッド
JPH06246465A (ja) * 1993-03-03 1994-09-06 Nippon Steel Corp レーザー加工装置
JP2007007724A (ja) * 2005-06-02 2007-01-18 Sony Corp レーザ加工装置とその加工方法及びデブリ回収機構とその回収方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101825780B (zh) * 2009-03-05 2011-08-24 北京京东方光电科技有限公司 液晶面板周边残材检出和去除的装置及其方法
JP2014508032A (ja) * 2011-01-11 2014-04-03 ガス、テクノロジー、インスティチュート 穴をパージして穴から屑を除去する方法
JP2014504804A (ja) * 2011-01-13 2014-02-24 タマラック サイエンティフィック カンパニー インコーポレイテッド 導電性シード層のレーザ除去
JP2012232314A (ja) * 2011-04-28 2012-11-29 Nagase Integrex Co Ltd レーザー加工装置
JP2014519996A (ja) * 2011-05-20 2014-08-21 スネクマ 粉末を選択的に溶融させることによって部品を製造するための装置
CN102368887A (zh) * 2011-09-28 2012-03-07 南京创能电力科技开发有限公司 低温等离子发生器的阴极组件
CN102364994A (zh) * 2011-09-28 2012-02-29 南京创能电力科技开发有限公司 低温等离子发生器的阴极电弧控制器
JP2013134996A (ja) * 2011-12-23 2013-07-08 Ngk Spark Plug Co Ltd 多数個取り配線基板の製造方法および該製造方法に用いる支持台
KR20140046719A (ko) * 2012-10-10 2014-04-21 삼성디스플레이 주식회사 레이저 가공장치
KR102096048B1 (ko) * 2012-10-10 2020-04-02 삼성디스플레이 주식회사 레이저 가공장치
JP2015134364A (ja) * 2014-01-16 2015-07-27 株式会社デンソー レーザ加工装置およびレーザ加工方法
WO2015114853A1 (ja) * 2014-01-31 2015-08-06 国立大学法人岡山大学 レーザー加工機のシールドガス供給装置及びレーザー加工機
US11394170B2 (en) 2018-12-14 2022-07-19 Nichia Corporation Light emitting device and method for manufacturing light emitting device
US11855409B2 (en) 2018-12-14 2023-12-26 Nichia Corporation Light emitting device
WO2022168551A1 (ja) * 2021-02-04 2022-08-11 住友重機械工業株式会社 レーザ光導入装置

Also Published As

Publication number Publication date
US20090068598A1 (en) 2009-03-12
CN101332535A (zh) 2008-12-31
US8283596B2 (en) 2012-10-09
CN101332535B (zh) 2012-05-30

Similar Documents

Publication Publication Date Title
JP2009006350A (ja) レーザ加工装置とその加工方法、デブリ回収機構とその回収方法、並びに表示パネルの製造方法
JP5008849B2 (ja) レーザ加工方法及び透明樹脂層を有する表示装置の製造方法
CN100557513C (zh) 薄膜蚀刻方法以及使用该方法制造液晶显示器件的方法
KR101299042B1 (ko) 레이저 가공 장치와 그 가공 방법 및 데브리 회수 기구와그 회수 방법
JP2007237215A (ja) レーザ加工装置、レーザ加工ヘッド及びレーザ加工方法
US7767555B2 (en) Method for cutting substrate using femtosecond laser
US6926801B2 (en) Laser machining method and apparatus
KR101415131B1 (ko) 레지스트 패턴의 형성방법 및 반도체 장치의 제작방법
US8564759B2 (en) Apparatus and method for immersion lithography
US20020023907A1 (en) Laser correction method and apparatus
KR20080040601A (ko) 레이저 가공 장치, 레이저 가공 헤드 및 레이저 가공 방법
WO2004110693A1 (ja) レーザー加工方法及びレーザー加工装置
JP2007007724A (ja) レーザ加工装置とその加工方法及びデブリ回収機構とその回収方法
JP4465954B2 (ja) 透明導電膜を有する表示装置の製造方法
KR20120034868A (ko) 레이저 패턴 마스크 및 이의 제조 방법
JP2003332215A (ja) 加工方法、半導体装置の製造方法、及び加工装置
JPH08222565A (ja) 電子回路基板の金属膜形成方法及びその装置並びにその配線修正方法
JP2008192877A (ja) パターニング装置及びパターニング方法
JPH11258630A (ja) カラー液晶表示装置の製造方法
JP5009352B2 (ja) 透明導電膜を有する基板の製造方法、レーザパターニング装置およびパターニング方法
JP2006261223A (ja) スペーサ付カバーガラスの洗浄方法及びバレル型アッシング装置
TW202122914A (zh) 在紫外線光刻應用中從光罩移除黏著材料
JP2004288860A (ja) 基板処理装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100318

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121023