JP2009002539A - Exhaust-heat driving type absorption refrigerating device - Google Patents

Exhaust-heat driving type absorption refrigerating device Download PDF

Info

Publication number
JP2009002539A
JP2009002539A JP2007161488A JP2007161488A JP2009002539A JP 2009002539 A JP2009002539 A JP 2009002539A JP 2007161488 A JP2007161488 A JP 2007161488A JP 2007161488 A JP2007161488 A JP 2007161488A JP 2009002539 A JP2009002539 A JP 2009002539A
Authority
JP
Japan
Prior art keywords
generator
solution
heat exchanger
heat
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007161488A
Other languages
Japanese (ja)
Other versions
JP5217264B2 (en
Inventor
Mitsushi Kawai
満嗣 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2007161488A priority Critical patent/JP5217264B2/en
Publication of JP2009002539A publication Critical patent/JP2009002539A/en
Application granted granted Critical
Publication of JP5217264B2 publication Critical patent/JP5217264B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • Y02B30/625Absorption based systems combined with heat or power generation [CHP], e.g. trigeneration

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce a heat load of a generator by utilizing discharged hot water remaining at a generator side to improve the heat efficiency of the generator, and further to effectively miniaturize the generator. <P>SOLUTION: In this exhaust-heat driving type absorption refrigerating device having a solution separating cooling method, and comprising a supercooling means for removing absorption heat generated in an absorber A, and the generator G generating refrigerant vapor and an absorption dense solution by heating the absorption dilute solution supplied from the absorber A by prescribed discharged hot water, a second heat exchanger 4 for reducing the heat load by heating the absorption dilute solution from the absorber A in advance by residual discharged hot water in the discharged hot water is disposed at the absorption dilute solution inlet side of the generator G independently from a first heat exchanger at a generator side generating the refrigerant vapor and the absorption dense solution by heating the absorption dilute solution supplied from the absorber A by the prescribed discharged hot water, and thus the heat load of the generator G is further reduced, the heat efficiency of the generator G is enhanced, and the generator G can be miniaturized. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本願発明は、間接空冷方式を採用した排熱駆動型吸収式冷凍装置の構造に関するものである。   The present invention relates to a structure of an exhaust heat drive type absorption refrigeration apparatus employing an indirect air cooling system.

従来の一般的な空冷吸収式冷凍装置の吸収器は、例えば図4に示すように、吸収器30を、多数の伝熱フィン9,9・・・を備えた複数本の伝熱管3a,3a・・・(溶液流入口3c,3c・・・)と、吸収溶液分配トレイ11とから構成し、溶液循環路12に設けた溶液循環ポンプPを介して吸収器30の伝熱管3a,3a・・・内の管壁に吸収溶液を流し、同伝熱管3a,3a・・・内の冷媒蒸気通路3b,3b・・・部分で蒸発器側からの冷媒蒸気を流入し、吸収溶液に吸収させながら、吸収溶液を伝熱管3a,3a外周のファンFの冷却風により冷却される空冷フィン9,9・・・で冷却する直接空冷方式であり、吸収器30では、冷媒蒸気の吸収と吸収溶液の冷却とを同時に行うための気液界面の拡大が重要であるため、小型化への制約が大きい。   As shown in FIG. 4, for example, an absorber of a conventional general air-cooled absorption refrigeration apparatus includes an absorber 30 and a plurality of heat transfer tubes 3a, 3a each having a large number of heat transfer fins 9, 9,. ... (solution inlets 3c, 3c ...) and the absorption solution distribution tray 11, and the heat transfer tubes 3a, 3a, ... of the absorber 30 via the solution circulation pump P provided in the solution circulation path 12. ..Absorptive solution flows through the inner tube wall, and refrigerant vapor from the evaporator side flows through the refrigerant vapor passages 3b, 3b... In the heat transfer tubes 3a, 3a. However, the absorption solution is a direct air cooling method in which the absorption solution is cooled by the air cooling fins 9, 9... Cooled by the cooling air of the fan F around the heat transfer tubes 3a, 3a. Since it is important to expand the gas-liquid interface to simultaneously cool the Constraints is large.

例えば、吸収溶液分配トレイ11を含めた上下吸収器ヘッダー部分でのスペース、蒸気圧損考慮のための大口径伝熱管の使用、冷媒蒸気の流速制限に起因して蒸発器との連絡管が太くなる等である。   For example, the space in the upper and lower absorber headers including the absorbing solution distribution tray 11, the use of a large-diameter heat transfer tube for considering vapor pressure loss, and the connection tube with the evaporator become thick due to the limitation on the flow rate of the refrigerant vapor Etc.

また、コスト的にも、溶接による接続箇所があるため、小型機では割高となる。   Moreover, since there exists the connection location by welding also in terms of cost, it becomes expensive in a small machine.

これに対して、例えば図5に示すように、溶液ポンプPにより溶液循環路13を介して筒状の吸収器30内に流入する吸収溶液を伝熱管15a,15a・・・、伝熱フィン17,17・・・、上下ヘッダ16b,16a、ファンF等よりなる空冷式の冷却器15にて過冷却することによって、吸収器30内では単に冷媒蒸気のみを吸収させ、吸収熱は同過冷却された吸収溶液の顕熱で取り去るだけの溶液分離冷却(間接空冷)方式があり、同方式では、冷却手段が不要となるだけ吸収器30部分が小型化されるので、小型の空冷吸収器では有利である。   On the other hand, for example, as shown in FIG. 5, the absorption solution flowing into the cylindrical absorber 30 through the solution circulation path 13 by the solution pump P is transferred to the heat transfer tubes 15 a, 15 a. , 17..., And by supercooling by the air-cooled cooler 15 including the upper and lower headers 16b and 16a, the fan F, etc., only the refrigerant vapor is absorbed in the absorber 30, and the absorbed heat is supercooled. There is a solution separation cooling (indirect air cooling) system that only removes the absorbed solution by sensible heat, and in this system, the absorber 30 part is miniaturized so that no cooling means is required, so in a small air cooling absorber It is advantageous.

そこで、そのような特徴を活用し、同構成において、さらに吸収液に対して冷媒蒸気を吸収させる方法として、図5中の符号14に示すような吸収溶液噴霧方式による冷媒蒸気の吸収方法を採用した空冷吸収式冷凍装置の吸収器もある(例えば特許文献1参照)。   Therefore, utilizing such characteristics, in the same configuration, as a method of further absorbing the refrigerant vapor with respect to the absorbing liquid, a method of absorbing the refrigerant vapor by the absorbing solution spray method as shown by reference numeral 14 in FIG. 5 is adopted. There is also an absorber of an air-cooled absorption refrigeration apparatus (see, for example, Patent Document 1).

特開平7−98163号公報(明細書1−8頁、図1−12)JP-A-7-98163 (Specifications page 1-8, FIG. 1-12)

しかし、同噴霧方式では吸収液噴霧ノズル14の目詰まりや、溶液ポンプの吐出ヘッド増大による消費電力の増加等の問題がある。   However, this spray method has problems such as clogging of the absorbing liquid spray nozzle 14 and an increase in power consumption due to an increase in the discharge head of the solution pump.

そこで、本願発明者は、このような問題を解決するために、例えば図6に示すように、吸収器Aの冷却方式を、上記吸収器Aに流入する吸収溶液をファンF2を備えた空冷冷却器Hcにて過冷却した溶液の顕熱で取り去るだけの間接空冷方式とする一方、吸収器Aの吸収部8に液膜流下式のプレート構造を採用するとともに、その上部にプレートに吸収溶液を均等に分配するための吸収溶液分配トレイを設け、当該プレートの両面に上記過冷却後の吸収溶液を液膜状態で流すことによって、冷媒蒸気の吸収を促進させることにより(図示省略)、高効率かつ小型、低コスト化が可能な吸収式冷凍装置を既に提案している(例えば、一例として特願2006−84428号の明細書および図面を参照)。 Therefore, in order to solve such a problem, the inventor of the present application, for example, as shown in FIG. 6, uses a cooling method for the absorber A, and an air-cooling system including a fan F 2 for the absorbing solution flowing into the absorber A. While the indirect air cooling system in which only the sensible heat of the solution supercooled by the cooler Hc is removed, a liquid film flow-down plate structure is adopted for the absorber 8 of the absorber A, and the absorbing solution is placed on the plate above the absorber. By absorbing the refrigerant vapor (not shown) by providing an absorption solution distribution tray for evenly distributing the liquid, and flowing the supercooled absorption solution in a liquid film state on both surfaces of the plate (not shown). An absorption refrigeration apparatus capable of reducing the cost efficiently and in size has already been proposed (for example, see the specification and drawings of Japanese Patent Application No. 2006-84428 as an example).

なお、この図6の吸収式冷凍装置の冷凍サイクルは、冷媒(例えば水)を吸収する能力に優れた吸収剤(例えばLiBr)の水溶液(以下、単に希溶液という)の冷媒吸収能力が増強するように該溶液を加熱媒体(例えば排温水)で加熱して濃縮するための発生器Gと、該発生器Gにおいて溶液から分離した蒸気(冷媒)を導入してこれを冷却することによって液化させる凝縮器Cと、該凝縮器Cによって液化された冷媒を導入して低圧化で蒸発(気化)させる蒸発器Eと、該蒸発器Eで発生した蒸気(冷媒)を吸収し、低圧を維持するために上記発生器Gで濃縮された濃溶液を導入する吸収器Aと、該吸収器Aで蒸気(冷媒)を吸収したことによって希釈された溶液(希溶液)を濃縮するために再び発生器Gへ送りこむための溶液ポンプPと、該溶液ポンプPから吐出される希溶液の一部(大部分)を導入してこれを過冷却する空冷冷却器(空冷熱交換器)Hcとを備えて構成されている。   The refrigeration cycle of the absorption refrigeration apparatus of FIG. 6 enhances the refrigerant absorption capacity of an aqueous solution (hereinafter simply referred to as a dilute solution) of an absorbent (for example, LiBr) that has an excellent ability to absorb a refrigerant (for example, water). The generator G for heating and concentrating the solution with a heating medium (for example, exhausted hot water) and the vapor (refrigerant) separated from the solution in the generator G are introduced and cooled to be liquefied. The condenser C, the evaporator E that introduces the refrigerant liquefied by the condenser C and evaporates (vaporizes) at a low pressure, absorbs the vapor (refrigerant) generated in the evaporator E, and maintains the low pressure. In order to concentrate the absorber (dilute solution) diluted by absorbing the vapor (refrigerant) in the absorber A for introducing the concentrated solution concentrated in the generator G for the purpose, Solution pump P for feeding to G It is constituted by a part (most part) air cooler for supercooling this by introducing (air-cooled heat exchanger) Hc dilute solution discharged from the solution pump P.

そして、符号Heは吸収器Aから出た希溶液の一部(発生器Gへ供給される希溶液)と発生器Gから出た濃溶液とを熱交換する溶液熱交換器、F1は凝縮器Cを空気冷却する冷却ファンである。 The symbol He represents a solution heat exchanger that exchanges heat between a part of the diluted solution that has exited from the absorber A (the diluted solution supplied to the generator G) and the concentrated solution that has exited from the generator G, and F 1 represents condensation. It is a cooling fan that air-cools the vessel C.

このような溶液分離冷却方式を採用した吸収式冷凍装置では、空冷その他の溶液冷却器で溶液を過冷却し、溶液の顕熱で吸収熱を取り去る方式のため、発生器への溶液供給量を増加させても、従来の空冷吸収器と比較して性能の低下がほとんど生じない。   In an absorption refrigeration system employing such a solution separation cooling system, the solution is supercooled by air cooling or other solution coolers, and the absorption heat is removed by sensible heat of the solution, so the amount of solution supplied to the generator is reduced. Even if it is increased, the performance is hardly degraded as compared with the conventional air-cooled absorber.

しかしながら、小型の発電機やGHP等の温水排熱で駆動される排熱駆動型の空冷吸収式においては、コストの面から、一般に単効用冷凍サイクルで使用されるが、排温水により冷媒蒸気を発生させる発生器を如何に低コスト化するかが、大きな課題となる。   However, the exhaust heat driven air-cooled absorption type driven by hot water exhaust heat such as a small generator or GHP is generally used in a single-effect refrigeration cycle from the viewpoint of cost. A major issue is how to reduce the cost of the generator to be generated.

特に、排温水の利用は、より安価な機器でないと回収熱量との関係で成立が困難であり、発生器の大幅な低コスト化が排熱駆動型の吸収式冷凍装置には求められている。   In particular, the use of waste heat water is difficult to establish in relation to the amount of recovered heat unless it is a cheaper device, and a significant reduction in the cost of the generator is required for the exhaust heat driven absorption refrigeration system. .

本願発明は、このような課題に対応してなされたもので、発生器の熱交換器とは別に、当該発生器への供給溶液を、同発生器側で余った排温水で加熱する第2の熱交換器を設けることにより、発生器の熱負荷を低減して、発生器の熱効率を向上させ、さらに発生器を小型化することができるようにした排熱駆動型の吸収式冷凍装置を提供することを目的とするものである。   The present invention has been made in response to such problems, and separately from the heat exchanger of the generator, a second solution is used to heat the supply solution to the generator with surplus warm water on the generator side. An exhaust heat drive type absorption refrigeration apparatus that reduces the heat load of the generator, improves the thermal efficiency of the generator, and further reduces the size of the generator by providing a heat exchanger It is intended to provide.

本願発明は、同目的を達成するために、次のような課題解決手段を備えて構成されている。   In order to achieve the same object, the present invention is configured with the following problem solving means.

(1) 第1の課題解決手段
この発明の第1の課題解決手段は、吸収器で発生する吸収熱を当該吸収器に流入する吸収溶液を過冷却することにより溶液の顕熱で取り去る過冷却手段を備えるとともに、上記吸収器から供給される吸収希溶液を所定の排温水で加熱することにより冷媒蒸気および吸収濃溶液を生成する発生器を備えてなる溶液分離冷却方式を採用した排熱駆動型吸収式冷凍装置であって、上記吸収器から供給される吸収希溶液を所定の排温水で加熱することにより冷媒蒸気および吸収濃溶液を生成する発生器側第1の熱交換器とは別に、上記吸収器からの吸収希溶液を上記排温水の内の余剰排温水により予じめ加熱することによって熱負荷を低減する第2の熱交換器を上記発生器の吸収希溶液入口側に設けて構成されている。
(1) First problem-solving means The first problem-solving means of the present invention is a supercooling in which absorption heat generated in an absorber is removed by sensible heat of the solution by supercooling the absorbing solution flowing into the absorber. Exhaust heat drive that employs a solution separation and cooling system that includes a generator that generates refrigerant vapor and an absorbed concentrated solution by heating the diluted diluted solution supplied from the absorber with a predetermined discharged warm water. This is a type absorption refrigeration apparatus, separately from the first heat exchanger on the generator side that generates refrigerant vapor and an absorption concentrated solution by heating the diluted absorption solution supplied from the absorber with a predetermined exhaust hot water. A second heat exchanger for reducing the heat load by preliminarily heating the diluted diluted solution from the absorber with the excess discharged warm water in the discharged warm water is provided on the inlet side of the diluted diluted solution inlet of the generator Configured.

このように、吸収器から供給される吸収希溶液を所定の排温水で加熱することにより冷媒蒸気および吸収濃溶液を生成する発生器側第1の熱交換器とは別に、同吸収器から発生器への吸収希溶液を、上記発生器側排温水の内の余剰排温水を利用して予じめ加熱する第2の熱交換器を上記発生器の吸収希溶液入口側に設けると、さらに発生器側第1の熱交換器の熱負荷が低減されて、発生器側第1の熱交換器の熱効率が一層上昇し、さらに発生器自体を小型化することが可能となる。   In this way, the absorption dilute solution supplied from the absorber is heated by a predetermined exhaust hot water, and is generated from the absorber separately from the generator-side first heat exchanger that generates refrigerant vapor and an absorption concentrated solution. When the second heat exchanger for preheating the diluted diluted solution to the generator using the excess discharged warm water in the generator side discharged warm water is provided on the absorbed diluted solution inlet side of the generator, The heat load of the generator-side first heat exchanger is reduced, the thermal efficiency of the generator-side first heat exchanger is further increased, and the generator itself can be further downsized.

(2) 第2の課題解決手段
この発明の第2の課題解決手段は、上記第1の課題解決手段の構成において、発生器側第1の熱交換器の熱負荷を低減するための第2の熱交換器に対する排温水の供給は、発生器側第1の熱交換器と独立して並列に供給されるように構成されている。
(2) Second Problem Solving Means A second problem solving means of the present invention is a second problem reducing means for reducing the heat load of the generator-side first heat exchanger in the configuration of the first problem solving means. The supply of the warm water to the heat exchanger is configured to be supplied in parallel independently of the generator-side first heat exchanger.

上記第2の熱交換器に対する排温水の供給は、発生器側第1の熱交換器と独立して、並列に供給する並列供給方式と、第1の熱交換器と第2の熱交換器を直列に接続し、第1の熱交換器を介して第2の熱交換器へ、また第2の熱交換器を介して発生器側第1の熱交換器に、それぞれ相互に直列に供給する直列供給方式との2つの供給スタイルが考えられるが、この手段のように発生器側第1の熱交換器と相互に独立して並列に供給する並列供給方式とした方が、各々の熱交換部での吸収希溶液との温度差を大きく取ることができるので、効率的に有利である。   The supply of waste hot water to the second heat exchanger is performed in parallel with a parallel supply system that supplies the first heat exchanger in parallel independently of the first heat exchanger on the generator side, and the first heat exchanger and the second heat exchanger. Are connected in series and supplied to the second heat exchanger via the first heat exchanger and to the generator-side first heat exchanger via the second heat exchanger, respectively. There are two supply styles, such as the series supply method, but the parallel supply method in which the generator side first heat exchanger is supplied in parallel independently of each other like this means Since a large temperature difference from the absorbing dilute solution at the exchange part can be taken, it is advantageous in terms of efficiency.

その結果、その分だけ各々の熱交換部を小さくすることができる。   As a result, each heat exchange section can be made smaller by that amount.

(3) 第3の課題解決手段
この発明の第3の課題解決手段は、上記第1の課題解決手段の構成において、発生器側第1の熱交換器の熱負荷を低減するための第2の熱交換器に対する排温水の供給は、発生器側第1の熱交換器を介して第2の熱交換器に直列に供給されるように構成されている。
(3) Third Problem Solving Means According to a third problem solving means of the present invention, in the configuration of the first problem solving means, the second problem is to reduce the heat load of the generator-side first heat exchanger. The supply of waste hot water to the heat exchanger is configured to be supplied in series to the second heat exchanger via the generator-side first heat exchanger.

上記発生器の熱負荷を低減するための第2の熱交換器に対する排温水の供給は、発生器側第1の熱交換器と独立して、並列に供給する並列供給方式と、発生器側第1の熱交換器を介して第2の熱交換器に、またその逆に直列に供給する直列供給方式との2つの供給スタイルが考えられるが、この課題解決手段段のように発生器側第1の熱交換器を介して第2の熱交換器に直列に供給する直列供給方式とした場合には、その分第2の熱交換器での排温水温度は低くなるが、他方排温水の絶対量が少ない場合にも有効に対応することができるようになる。   The supply of waste water to the second heat exchanger for reducing the heat load of the generator is performed in parallel with a parallel supply system that supplies the parallel heat independently from the generator-side first heat exchanger; There are two supply styles: a serial supply system that supplies the second heat exchanger in series via the first heat exchanger and vice versa. In the case of the serial supply system that supplies the second heat exchanger in series via the first heat exchanger, the temperature of the exhaust water in the second heat exchanger is lowered correspondingly, but the temperature of the other exhaust water Even when the absolute amount of is small, it is possible to cope with it effectively.

(4) 第4の課題解決手段
この発明の第4の課題解決手段は、上記第1の課題解決手段の構成において、発生器側第1の熱交換器に対する排温水の供給は、同発生器側第1の熱交換器の熱負荷を低減するための第2の熱交換器を介して直列に供給されるように構成されている。
(4) Fourth Problem Solving Means According to a fourth problem solving means of the present invention, in the configuration of the first problem solving means, the supply of waste water to the generator-side first heat exchanger is the same as the generator. It is comprised so that it may supply in series via the 2nd heat exchanger for reducing the heat load of the side 1st heat exchanger.

上記発生器側第1の熱交換器および発生器の熱負荷を低減するための第2の熱交換器に対する排温水の供給は、上記第3の課題解決手段のように、発生器側第1の熱交換器から相対的に熱交換容量の小さい熱負荷低減用の第2の熱交換器に直列に供給する場合のほか、その逆に熱負荷低減用の第2の熱交換器を介して発生器側第1の熱交換器に直列に供給する直列供給方式も考えられる。   The supply of waste hot water to the first heat exchanger on the generator side and the second heat exchanger for reducing the heat load on the generator is the same as that on the generator side as in the third problem solving means. In addition to the case where the heat exchanger is supplied in series to the second heat exchanger for reducing the heat load having a relatively small heat exchange capacity, conversely, via the second heat exchanger for reducing the heat load. A serial supply system that supplies the generator-side first heat exchanger in series is also conceivable.

そのようにした場合には、第1の熱交換器での排温水温度は若干低くなるが、やはり排温水の絶対量が少ない場合に有効に対応することができる。   In such a case, the temperature of the discharged hot water in the first heat exchanger is slightly lowered, but it can be effectively dealt with when the absolute amount of the discharged hot water is small.

(5) 第5の課題解決手段
この発明の第5の課題解決手段は、上記第1,第2,第3又は第4の課題解決手段の構成において、発生器からの吸収濃溶液と吸収器からの吸収希溶液とを熱交換させる溶液熱交換器を備え、同溶液熱交換器と第2の熱交換器との2つの熱交換器を、それぞれ濃溶液と希溶液、排温水と希溶液が相互に対向流状態で流れるように仕切板を介して一体化することにより、3流体熱交換器として構成されている。
(5) Fifth Problem Solving Means A fifth problem solving means of the present invention is the absorption concentrated solution and the absorber from the generator in the configuration of the first, second, third or fourth problem solving means. A solution heat exchanger for exchanging heat with the absorption dilute solution from the heat exchanger, and the two heat exchangers of the solution heat exchanger and the second heat exchanger are respectively concentrated solution and dilute solution, waste hot water and dilute solution Are integrated as a three-fluid heat exchanger through a partition plate so as to flow in a counterflow state.

このようにすると、より全体の構造が簡素化され、より小型化、より低コスト化が図られる。   In this way, the overall structure is further simplified, and further miniaturization and cost reduction can be achieved.

以上の結果、本願発明によると、溶液分離冷却方式を採用した排熱駆動型の吸収式冷凍装置において、より有効に発生器の小型化、希溶液との熱交換効率の向上、余剰排温水熱の有効利用等を可能とすることができるようになる。   As a result of the above, according to the present invention, in the exhaust heat driven absorption refrigeration apparatus adopting the solution separation cooling method, the generator can be more effectively downsized, the efficiency of heat exchange with the dilute solution can be improved, and the excess exhaust hot water heat Can be used effectively.

(最良の実施の形態1)
図1は、本願発明の最良の実施の形態1に係る溶液分離冷却方式を採用した排熱駆動型吸収式冷凍装置の構成を示している。
(Best Embodiment 1)
FIG. 1 shows the configuration of an exhaust heat drive type absorption refrigeration apparatus adopting the solution separation cooling system according to the best embodiment 1 of the present invention.

この吸収式冷凍装置の冷凍サイクルは、冷媒(例えば水)を吸収する能力に優れた吸収剤(例えばLiBr)の水溶液(以下、単に希溶液という)の冷媒吸収能力が増強するように該溶液を加熱媒体(例えば排温水)で加熱して濃縮するための発生器Gと、該発生器Gにおいて溶液から分離した蒸気(冷媒)を導入してこれを冷却することによって液化させる凝縮器Cと、該凝縮器Cによって液化された冷媒を導入して低圧化で蒸発(気化)させる蒸発器Eと、該蒸発器Eで発生した蒸気(冷媒)を吸収するために上記発生器Gで濃縮された濃溶液を導入する吸収器Aと、該吸収器Aで蒸気(冷媒)を吸収したことによって希釈された溶液(希溶液)を濃縮するために再び発生器Gへ送りこむための溶液ポンプPと、該溶液ポンプPから吐出される希溶液の一部(大部分)を導入してこれを過冷却する空冷冷却器(空冷熱交換器)Hcとを備えて構成されている。   The refrigeration cycle of this absorption refrigeration apparatus is designed to increase the refrigerant absorption capacity of an aqueous solution (hereinafter simply referred to as a dilute solution) of an absorbent (for example, LiBr) having an excellent ability to absorb a refrigerant (for example, water). A generator G for heating and concentrating with a heating medium (for example, waste water), a condenser C for introducing the vapor (refrigerant) separated from the solution in the generator G and cooling it to liquefy, An evaporator E that introduces the refrigerant liquefied by the condenser C and evaporates (vaporizes) at low pressure, and is concentrated by the generator G to absorb the vapor (refrigerant) generated in the evaporator E. An absorber A for introducing a concentrated solution, and a solution pump P for re-feeding the solution (dilute solution) diluted by absorbing vapor (refrigerant) in the absorber A to the generator G to concentrate it; Discharge from the solution pump P Some of the rare solutions is constituted by a (mostly) by introducing the air cooler for supercooling it (air-cooled heat exchanger) Hc.

なお、符号Heは吸収器Aから出た希溶液の一部(発生器Gへ供給される希溶液)と発生器Gから出た濃溶液とを熱交換する溶液熱交換器、F1は凝縮器Cを空気冷却する冷却ファン、F2は空冷冷却器Hcを空気冷却する冷却ファンである。 The symbol He denotes a solution heat exchanger that exchanges heat between a part of the dilute solution that has exited from the absorber A (the dilute solution supplied to the generator G) and the concentrated solution that exits from the generator G, and F 1 represents condensation. F 2 is a cooling fan that air-cools the air-cooling cooler Hc.

この実施の形態の場合、上記のように、吸収器Aに入るLiBr吸収溶液を冷却ファンF2を備えた空冷冷却器Hcにて過冷却し、蒸発器Eと並設された吸収器A内で、蒸発器Eで蒸発させた冷媒蒸気を吸収させるだけで、吸収時に発生する吸収熱を当該過冷却された吸収溶液の顕熱で間接的に冷却する溶液分離冷却(間接空冷)方式が採用されている。 In the case of this embodiment, as described above, the LiBr absorption solution entering the absorber A is supercooled by the air-cooled cooler Hc provided with the cooling fan F 2 , and the inside of the absorber A arranged in parallel with the evaporator E Then, the solution separation cooling (indirect air cooling) method is adopted in which the absorption heat generated during absorption is indirectly cooled by the sensible heat of the supercooled absorption solution simply by absorbing the refrigerant vapor evaporated in the evaporator E. Has been.

そして、詳細な構造は示さないが、蒸発器E、吸収器Aの各々上部には、例えば冷媒、吸収溶液を均等に分配するための冷媒分配トレイ、吸収溶液分配トレイを各々設け、蒸発器Eの熱交換器7は例えば内部に冷水等を流す被冷却体通路を形成したプレート型の熱交換器とし、表面に冷媒を液膜で流下させて蒸発させることで内部の被冷却流体(冷水等)を冷却するようになっている一方、吸収器Aの熱交部8は例えばコルゲート構造に折り曲げて並設した伝熱プレートの両面を溶液が液膜状態で垂直に流下することで、冷媒蒸気の吸収をより効果的に促進させるようになっている。   Although a detailed structure is not shown, for example, a refrigerant distribution tray and an absorption solution distribution tray for evenly distributing the refrigerant and the absorption solution are provided on the upper portions of the evaporator E and the absorber A, respectively. The heat exchanger 7 is, for example, a plate-type heat exchanger in which a cooled body passage through which cold water or the like flows is formed. The refrigerant is allowed to flow through a liquid film on the surface and evaporated to evaporate the internal fluid to be cooled (cold water or the like). On the other hand, the heat exchange section 8 of the absorber A is, for example, a refrigerant vapor by allowing the solution to flow vertically down in a liquid film state on both surfaces of a heat transfer plate that is bent and arranged in a corrugated structure. It is designed to promote the absorption of water more effectively.

なお、この場合、さらに上記吸収器Aとして、上記蒸発器Eとも一体化し易いプレートによる液膜流下方式の吸収器構造を採用することにより、蒸発器Eとを組み合わせて一体にロウ付け可能な構造とし、それらを収納する容器をも一体化するようにすると、よりコンパクトかつ安価な空冷吸収器を提供することができる。   In this case, as the absorber A, a structure capable of being integrally brazed in combination with the evaporator E by adopting a liquid film flow-down type absorber structure with a plate that can be easily integrated with the evaporator E. If the containers for storing them are also integrated, a more compact and inexpensive air-cooled absorber can be provided.

このような溶液分離冷却方式を採用した吸収式冷凍装置では、上記空冷冷却器Hcで溶液を過冷却し、溶液の顕熱で吸収熱を取り去る方式のため、上記発生器Gへの溶液供給量を増加させても、従来の空冷吸収器と比較して性能の低下がほとんど生じない。   In the absorption refrigeration apparatus adopting such a solution separation cooling system, the solution is supplied to the generator G because the solution is supercooled by the air cooling cooler Hc and the absorption heat is removed by sensible heat of the solution. Even if it increases, compared with the conventional air-cooled absorber, a performance fall hardly arises.

しかし、小型の発電機やGHP等の温水排熱で駆動される排熱駆動型の空冷吸収式においては、コストの面から、一般に単効用冷凍サイクルで使用されるが、排温水により冷媒蒸気を発生させる上記発生器Gを如何に低コスト化するかが、大きな課題となる。   However, the exhaust heat driven air cooling absorption type driven by hot water exhaust heat such as a small generator or GHP is generally used in a single-effect refrigeration cycle from the viewpoint of cost. How to reduce the cost of the generator G to be generated is a big problem.

特に、排温水の利用は、より安価な機器でないと回収熱量との関係で成立が困難であり、発生器Gの大幅な低コスト化が求められる。   In particular, the use of waste hot water is difficult to establish unless it is a cheaper device, and the cost of the generator G is greatly reduced.

そこで、この実施の形態では、上記発生器Gにおける第1の排温水熱交換器1とは別に、当該発生器Gへの供給希溶液を、同発生器G側で余った余剰排温水で加熱することにより、その熱負荷を低減する第2の排温水熱交換器4を設けることにより、十分に発生器G側第1の排温水熱交換器1の熱負荷を低減して、発生器Gの熱効率を向上させ、さらに発生器G自体を小型化することができるようにしている。   Therefore, in this embodiment, separately from the first waste warm water heat exchanger 1 in the generator G, the supply dilute solution to the generator G is heated with surplus waste warm water on the generator G side. By providing the second exhaust hot water heat exchanger 4 that reduces the thermal load, the generator G side first exhaust hot water heat exchanger 1 can be sufficiently reduced to reduce the thermal load of the generator G In addition, the generator G itself can be reduced in size.

この第2の排温水熱交換器4は、上記発生器Gの希溶液入口側、例えば上記溶液熱交換器Heと発生器Gとの間にあって発生器Gに入る吸収希溶液を加熱するのに最も効率が良く、しかも装置コンパクト化の支障にならない部分に設置されている。   The second waste water heat exchanger 4 is used to heat the diluted solution inlet side of the generator G, for example, the absorbing diluted solution entering the generator G between the solution heat exchanger He and the generator G. It is installed in a part that is most efficient and does not hinder device compaction.

このように、吸収器Aから供給される吸収希溶液を所定の排温水で加熱することにより冷媒蒸気および吸収濃溶液を生成する発生器G側第1の排温水熱交換器1とは別に、同吸収器Aから発生器Gへの吸収希溶液を、上記発生器G側の第1の排温水熱交換器1に供給される排温水の内の余剰排温水を利用して予じめ加熱する第2の排温水熱交換器4を発生器Gの吸収希溶液入口側に設けると、さらに発生器Gの熱負荷が低減されて、発生器G側第1の排温水熱交換器1の熱効率が一層上昇し、さらに発生器G自体を一層小型化することが可能となる。   In this way, separately from the generator G side first waste water heat exchanger 1 that generates the refrigerant vapor and the absorption concentrated solution by heating the absorption diluted solution supplied from the absorber A with a predetermined waste water, The diluted absorption solution from the absorber A to the generator G is preliminarily heated using the excess waste water in the waste water supplied to the first waste water heat exchanger 1 on the generator G side. If the second waste heat water heat exchanger 4 is provided on the absorption dilute solution inlet side of the generator G, the heat load of the generator G is further reduced, and the generator G side first waste water heat exchanger 1 The thermal efficiency is further increased, and the generator G itself can be further reduced in size.

しかも、本実施の形態の場合、この第2の排温水熱交換器4に対する排温水の供給は、上記発生器G側第1の排温水熱交換器1と独立して並列に(別々に)供給するように構成されている。   Moreover, in the case of the present embodiment, the supply of the exhaust warm water to the second exhaust warm water heat exchanger 4 is performed in parallel (separately) independently of the generator G side first exhaust warm water heat exchanger 1. It is configured to supply.

このように発生器G側第1の排温水熱交換器1と独立して並列に供給する並列供給方式にすると、各々の熱交換部での吸収希溶液との温度差を十分に大きく取ることができる。   In this way, when the parallel supply system is used in which the generator G side first exhaust hot water heat exchanger 1 is supplied in parallel independently of each other, the temperature difference from the absorbing dilute solution in each heat exchange section is sufficiently large. Can do.

その結果、その分だけ各々の熱交換部を小さくすることができる。   As a result, each heat exchange section can be made smaller by that amount.

(最良の実施の形態2)
次に図2は、本願発明の最良の実施の形態2に係る溶液分離冷却方式を採用した排熱駆動型吸収式冷凍装置の構成を示している。
(Best Mode 2)
Next, FIG. 2 shows a configuration of an exhaust heat drive type absorption refrigeration apparatus adopting a solution separation cooling system according to the second preferred embodiment of the present invention.

この実施の形態の場合にも、上記最良の実施の形態1のように、吸収器Aに入るLiBr吸収溶液を冷却ファンF2を備えた空冷冷却器Hcにて過冷却し、蒸発器Eと並設された吸収器A内で、蒸発器Eで蒸発させた冷媒蒸気を吸収させるだけで、吸収時に発生する吸収熱を当該過冷却された吸収溶液の顕熱で間接的に冷却する溶液分離冷却(間接空冷)方式が採用されている。 Also in this embodiment, the LiBr absorbing solution entering the absorber A is supercooled by the air-cooled cooler Hc provided with the cooling fan F 2 as in the best embodiment 1, and the evaporator E Solution absorption in which absorption heat generated at the time of absorption is indirectly cooled by sensible heat of the supercooled absorption solution only by absorbing the refrigerant vapor evaporated in the evaporator E in the absorber A arranged in parallel. A cooling (indirect air cooling) method is adopted.

そして、同じく上記吸収器Aから供給される吸収希溶液を所定の排温水で加熱することにより冷媒蒸気および吸収濃溶液を生成する第1の排温水熱交換器1を備えた発生器Gへの上記吸収器Aからの吸収希溶液を、上記排温水の内の余剰排温水により予じめ加熱する第2の排温水熱交換器4を上記発生器Gの吸収希溶液入口側に設けて構成されている。   And the generator G provided with the 1st waste water heat exchanger 1 which produces | generates a refrigerant | coolant vapor | steam and an absorption concentrated solution similarly by heating the absorption diluted solution supplied from the said absorber A with predetermined | prescribed waste water. The second exhaust warm water heat exchanger 4 for heating the diluted diluted solution from the absorber A in advance with the excess discharged warm water in the discharged warm water is provided on the absorbent diluted solution inlet side of the generator G. Has been.

このように、吸収器Aから供給される吸収希溶液を所定の排温水で加熱することにより冷媒蒸気および吸収濃溶液を生成する発生器G側第1の排温水熱交換器1とは別に、同吸収器Aから発生器Gへの吸収希溶液を、上記発生器G側排温水の内の余剰排温水を利用して予じめ加熱する第2の排温水熱交換器4を発生器Gの吸収希溶液入口側に設けると、さらに発生器G側第1の排温水熱交換器1の熱負荷が低減されて、発生器Gの熱効率が一層上昇し、さらに発生器G自体を一層小型化することが可能となる。   In this way, separately from the generator G side first waste water heat exchanger 1 that generates the refrigerant vapor and the absorption concentrated solution by heating the absorption diluted solution supplied from the absorber A with a predetermined waste water, A second waste water heat exchanger 4 for heating the diluted diluted solution from the absorber A to the generator G in advance using the excess waste water in the generator G side waste water is provided as the generator G. Is provided at the inlet side of the absorbing dilute solution, further reducing the heat load of the first waste water heat exchanger 1 on the generator G side, further increasing the thermal efficiency of the generator G, and further reducing the size of the generator G itself. Can be realized.

但し、同構成における、第2の排温水熱交換器4に対する排温水は、発生器G側第1の排温水熱交換器1を介して発生器G側第2の排温水熱交換器4に直列に供給されるように構成されている。   However, in the same configuration, the waste water for the second waste water heat exchanger 4 is transferred to the generator G side second waste water heat exchanger 4 via the generator G side first waste water heat exchanger 1. It is configured to be supplied in series.

上記第2の排温水熱交換器4に対する排温水の供給は、上述のように発生器G側第1の排温水熱交換器1と独立して、並列に供給する並列供給方式も考えられるが、本実施の形態のように発生器G側第1の排温水熱交換器1を介して第2の排温水熱交換器4に直列に供給する直列供給方式も考えられる。   The supply of the waste water to the second waste water heat exchanger 4 may be a parallel supply system in which the waste water is supplied in parallel independently of the generator G side first waste water heat exchanger 1 as described above. A serial supply system that supplies the second exhaust hot water heat exchanger 4 in series via the generator G side first exhaust hot water heat exchanger 1 as in the present embodiment is also conceivable.

このように、発生器G側第1の排温水熱交換器1を介して第2の排温水熱交換器4に直列に排温水を供給する直列供給方式とした場合には、第2の排温水熱交換器4側での排温水温度は若干低くなるが、他方排温水の絶対量が少ない場合にも有効に対応することができる点では有利となる。   As described above, in the case of the serial supply system in which the waste water is supplied in series to the second waste water heat exchanger 4 via the first waste water heat exchanger 1 on the generator G side, Although the temperature of the discharged hot water on the hot water heat exchanger 4 side is slightly lower, it is advantageous in that it can effectively cope with the case where the absolute amount of the discharged hot water is small.

(変形例)
なお、このような直列供給方式を採用する場合、上記の方法のほかに、例えば上記発生器G側第2の排温水熱交換器4を介して発生器G側第1の排温水熱交換器1側に直列に供給する直列供給方式も考えられる。
(Modification)
In addition, when adopting such a series supply system, in addition to the above method, for example, the generator G side first waste water heat exchanger via the generator G side second waste water heat exchanger 4 is used. A serial supply system that supplies the 1 side in series is also conceivable.

このように、第2の排温水熱交換器4を介して発生器G側第1の排温水熱交換器1に直列に排温水を供給する直列供給方式とした場合には、第2の排温水熱交換器4側での排温水温度は高くなり、また排温水の絶対量が少ない場合にも有効に対応することができる。   As described above, in the case of the serial supply system in which the waste water is supplied in series to the first waste water heat exchanger 1 on the generator G side via the second waste water heat exchanger 4, the second waste water is used. The waste water temperature at the hot water heat exchanger 4 side becomes high, and it is possible to effectively cope with the case where the absolute amount of the waste water is small.

(最良の実施の形態3)
さらに図3は、本願発明の最良の実施の形態3に係る溶液分離冷却方式を採用した排熱駆動型吸収式冷凍装置の構成を示している。
(Best Mode 3)
Further, FIG. 3 shows a configuration of an exhaust heat drive type absorption refrigeration apparatus adopting a solution separation cooling system according to the third preferred embodiment of the present invention.

この実施の形態の場合にも、上記の最良の実施の形態1,2のように、吸収器Aに入るLiBr吸収溶液を冷却ファンF2を備えた空冷冷却器Hcにて過冷却し、蒸発器Eと並設された吸収器A内で、蒸発器Eで蒸発させた冷媒蒸気を吸収させるだけで、吸収時に発生する吸収熱を当該過冷却された吸収溶液の顕熱で間接的に冷却する溶液分離冷却(間接空冷)方式を採用し、上記吸収器Aから供給される吸収希溶液を所定の排温水で加熱することにより冷媒蒸気および吸収濃溶液を生成する第1の排温水熱交換器1とともに、発生器Gへの上記吸収器Aからの吸収希溶液を、上記排温水の内の余剰排温水により予じめ加熱する第2の排温水熱交換器4を上記発生器Gの吸収希溶液入口側に設けて構成されている。 Also in this embodiment, the LiBr absorption solution entering the absorber A is supercooled by the air-cooled cooler Hc equipped with the cooling fan F 2 and evaporated as in the first and second embodiments. By absorbing the refrigerant vapor evaporated by the evaporator E in the absorber A arranged in parallel with the container E, the absorption heat generated at the time of absorption is indirectly cooled by the sensible heat of the supercooled absorption solution. 1st waste heat water heat exchange which employs a solution separation cooling (indirect air cooling) system to generate refrigerant vapor and an absorption concentrated solution by heating the absorption diluted solution supplied from the absorber A with a predetermined waste warm water Along with the generator 1, a second waste water heat exchanger 4 for preliminarily heating the diluted diluted solution from the absorber A to the generator G with surplus waste water in the waste water is used for the generator G. It is provided on the absorption dilute solution inlet side.

したがって、上記最良の実施の形態1,2の場合と同様に、発生器G側第1の排温水熱交換器1の熱負荷が低減されて、発生器Gの熱効率が一層上昇し、さらに発生器G自体を可及的に小型化することが可能となる。   Therefore, as in the case of the above-described best embodiments 1 and 2, the heat load of the first waste water heat exchanger 1 on the generator G side is reduced, the thermal efficiency of the generator G is further increased, and further generated The container G itself can be made as small as possible.

そして、本実施の形態では、その場合において、さらに上記第2の排温水熱交換器4および溶液熱交換器Heの2つの熱交換器を、それぞれ濃溶液と希溶液、排温水と希溶液とが図示のように相互に対向流状態で流れるように、希溶液流路51a,51,50a,52,52a、溶液熱交換器2、第2の排温水熱交換器4を各々容器5内に仕切板50を介して、図示のように一体化することにより、3流体熱交換器として構成されている。   In this embodiment, in that case, the two heat exchangers of the second waste heat water heat exchanger 4 and the solution heat exchanger He are further divided into a concentrated solution and a dilute solution, and a waste hot water and a dilute solution, respectively. As shown in the figure, the dilute solution flow paths 51a, 51, 50a, 52, 52a, the solution heat exchanger 2, and the second waste water heat exchanger 4 are respectively placed in the containers 5 so that they flow in a counterflow state. A three-fluid heat exchanger is configured by integrating the partition plate 50 as shown in the figure.

このようにすると、より全体の構造が簡素化され、より小型化、より低コスト化が図られる。   In this way, the overall structure is further simplified, and further miniaturization and cost reduction can be achieved.

本願発明の最良の実施の形態1に係る排熱駆動型吸収式冷凍装置の構成を示す冷凍回路図である。1 is a refrigeration circuit diagram showing a configuration of an exhaust heat drive type absorption refrigeration apparatus according to Embodiment 1 of the present invention. 本願発明の最良の実施の形態2に係る排熱駆動型吸収式冷凍装置の構成を示す冷凍回路図である。It is a freezing circuit diagram which shows the structure of the exhaust-heat drive type absorption refrigerating device which concerns on best Embodiment 2 of this invention. 本願発明の最良の実施の形態3に係る排熱駆動型吸収式冷凍装置の要部の構成を示す断面図である。It is sectional drawing which shows the structure of the principal part of the exhaust-heat drive type absorption refrigeration apparatus which concerns on best Embodiment 3 of this invention. 従来の直接空冷方式の吸収器の構成を示す図である。It is a figure which shows the structure of the absorber of the conventional direct air cooling system. 従来の間接空冷方式の吸収式冷凍装置の吸収器部分の構成を示す図である。It is a figure which shows the structure of the absorber part of the conventional absorption cooling system of an indirect air cooling system. 従来の間接空冷方式の排熱駆動型吸収式冷凍装置の構成を示す冷凍回路図である。It is a refrigeration circuit diagram showing a configuration of a conventional indirect air cooling type exhaust heat drive type absorption refrigeration apparatus.

符号の説明Explanation of symbols

1は第1の排温水熱交換器、2は溶液熱交換器Heの熱交換器部、4は第2の排温水熱交換器、50は仕切板、Aは吸収器、Eは蒸発器、Hcは空冷冷却器、Heは溶液熱交換器である。   1 is a 1st waste heat water heat exchanger, 2 is a heat exchanger part of the solution heat exchanger He, 4 is a 2nd waste heat water heat exchanger, 50 is a partition plate, A is an absorber, E is an evaporator, Hc is an air-cooled cooler, and He is a solution heat exchanger.

Claims (5)

吸収器で発生する吸収熱を当該吸収器に流入する吸収溶液を過冷却することにより溶液の顕熱で取り去る過冷却手段を備えるとともに、上記吸収器から供給される吸収希溶液を所定の排温水で加熱することにより冷媒蒸気および吸収濃溶液を生成する発生器を備えてなる溶液分離冷却方式を採用した排熱駆動型吸収式冷凍装置であって、上記吸収器から供給される吸収希溶液を所定の排温水で加熱することにより冷媒蒸気および吸収濃溶液を生成する発生器側第1の熱交換器とは別に、上記吸収器からの吸収希溶液を上記排温水の内の余剰排温水により予じめ加熱することによって発生器の熱負荷を低減する第2の熱交換器を上記発生器の吸収希溶液入口側に設けたことを特徴とする排熱駆動型吸収式冷凍装置。   Supercooling means for removing the absorption heat generated in the absorber with the sensible heat of the solution by supercooling the absorption solution flowing into the absorber and supplying the diluted diluted solution supplied from the absorber to a predetermined waste warm water An exhaust heat drive type absorption refrigeration apparatus adopting a solution separation cooling system comprising a generator that generates refrigerant vapor and an absorption concentrated solution by heating with an absorption dilute solution supplied from the absorber. Separately from the generator-side first heat exchanger that generates refrigerant vapor and an absorption concentrated solution by heating with predetermined waste water, the absorbent dilute solution from the absorber is removed by excess waste water in the waste water. An exhaust heat drive type absorption refrigeration apparatus, characterized in that a second heat exchanger for reducing the heat load of the generator by heating in advance is provided on the inlet side of the absorbing dilute solution of the generator. 発生器側第1の熱交換器の熱負荷を低減するための第2の熱交換器に対する排温水の供給は、発生器側第1の熱交換器と独立して並列に供給されるようになっていることを特徴とする請求項1記載の排熱駆動型吸収式冷凍装置。   The supply of the waste water to the second heat exchanger for reducing the heat load of the generator-side first heat exchanger is supplied in parallel independently of the generator-side first heat exchanger. The exhaust heat drive type absorption refrigeration apparatus according to claim 1, wherein 発生器側第1の熱交換器の熱負荷を低減するための第2の熱交換器に対する排温水の供給は、発生器側第1の熱交換器を介して第2の熱交換器に直列に供給されるようになっていることを特徴とする請求項1記載の排熱駆動型吸収式冷凍装置。   The supply of waste water to the second heat exchanger for reducing the heat load of the generator-side first heat exchanger is connected in series to the second heat exchanger via the generator-side first heat exchanger. The exhaust heat drive type absorption refrigeration apparatus according to claim 1, wherein the exhaust heat drive type absorption refrigeration apparatus is provided. 発生器側第1の熱交換器に対する排温水の供給は、同発生器側第1の熱交換器の熱負荷を低減するための第2の熱交換器を介して直列に供給されるように構成されていることを特徴とする請求項1記載の排熱駆動型吸収式冷凍装置。   The supply of the waste water to the generator-side first heat exchanger is supplied in series via the second heat exchanger for reducing the heat load of the generator-side first heat exchanger. The exhaust heat drive type absorption refrigeration apparatus according to claim 1, wherein the exhaust heat drive type absorption refrigeration apparatus is configured. 発生器からの吸収濃溶液と吸収器からの吸収希溶液とを熱交換させる溶液熱交換器を備え、同溶液熱交換器と第2の熱交換器との2つの熱交換器を、それぞれ濃溶液と希溶液、排温水と希溶液が相互に対向流状態で流れるように仕切板を介して一体化することにより、3流体熱交換器としたことを特徴とする請求項1,2,3又は4記載の排熱駆動型吸収式冷凍装置。   A solution heat exchanger for exchanging heat between the absorption concentrated solution from the generator and the absorption diluted solution from the absorber; and the two heat exchangers of the solution heat exchanger and the second heat exchanger are respectively concentrated. A three-fluid heat exchanger is formed by integrating a solution and dilute solution, waste hot water and dilute solution through a partition plate so that they flow in a counterflow state to each other. Or the waste heat drive type absorption refrigerating machine of 4.
JP2007161488A 2007-06-19 2007-06-19 Waste heat driven absorption refrigeration system Expired - Fee Related JP5217264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007161488A JP5217264B2 (en) 2007-06-19 2007-06-19 Waste heat driven absorption refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007161488A JP5217264B2 (en) 2007-06-19 2007-06-19 Waste heat driven absorption refrigeration system

Publications (2)

Publication Number Publication Date
JP2009002539A true JP2009002539A (en) 2009-01-08
JP5217264B2 JP5217264B2 (en) 2013-06-19

Family

ID=40319117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007161488A Expired - Fee Related JP5217264B2 (en) 2007-06-19 2007-06-19 Waste heat driven absorption refrigeration system

Country Status (1)

Country Link
JP (1) JP5217264B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010249356A (en) * 2009-04-13 2010-11-04 Daikin Ind Ltd Refrigerating device
JP2010249357A (en) * 2009-04-13 2010-11-04 Daikin Ind Ltd Refrigerating device
JP2010255862A (en) * 2009-04-21 2010-11-11 Daikin Ind Ltd Refrigerating device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54124359A (en) * 1978-03-20 1979-09-27 Kawasaki Heavy Ind Ltd Air-cooled absorption refrigerator to remove absorbed heat using absorption liquid for thermal medium
JPH09236350A (en) * 1996-02-29 1997-09-09 Hitachi Ltd Absorption refrigerating machine
JPH10205907A (en) * 1997-01-22 1998-08-04 Hitachi Ltd Waste heat inputted type absorption cooling and heating machine and operating method thereof
JP2000283662A (en) * 1999-03-31 2000-10-13 Tokyo Gas Co Ltd Falling liquid film type heat exchanger
JP2004019085A (en) * 2002-06-12 2004-01-22 Toshio Imanaka Bathing hat
JP2004190885A (en) * 2002-12-09 2004-07-08 Ebara Corp Absorption compression refrigerating machine and refrigerating system
JP2004257704A (en) * 2003-02-27 2004-09-16 Sanyo Electric Co Ltd Absorption heat pump device
JP2005098596A (en) * 2003-09-25 2005-04-14 Mitsubishi Heavy Ind Ltd Absorption refrigerator

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54124359A (en) * 1978-03-20 1979-09-27 Kawasaki Heavy Ind Ltd Air-cooled absorption refrigerator to remove absorbed heat using absorption liquid for thermal medium
JPH09236350A (en) * 1996-02-29 1997-09-09 Hitachi Ltd Absorption refrigerating machine
JPH10205907A (en) * 1997-01-22 1998-08-04 Hitachi Ltd Waste heat inputted type absorption cooling and heating machine and operating method thereof
JP2000283662A (en) * 1999-03-31 2000-10-13 Tokyo Gas Co Ltd Falling liquid film type heat exchanger
JP2004019085A (en) * 2002-06-12 2004-01-22 Toshio Imanaka Bathing hat
JP2004190885A (en) * 2002-12-09 2004-07-08 Ebara Corp Absorption compression refrigerating machine and refrigerating system
JP2004257704A (en) * 2003-02-27 2004-09-16 Sanyo Electric Co Ltd Absorption heat pump device
JP2005098596A (en) * 2003-09-25 2005-04-14 Mitsubishi Heavy Ind Ltd Absorption refrigerator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010249356A (en) * 2009-04-13 2010-11-04 Daikin Ind Ltd Refrigerating device
JP2010249357A (en) * 2009-04-13 2010-11-04 Daikin Ind Ltd Refrigerating device
JP2010255862A (en) * 2009-04-21 2010-11-11 Daikin Ind Ltd Refrigerating device

Also Published As

Publication number Publication date
JP5217264B2 (en) 2013-06-19

Similar Documents

Publication Publication Date Title
JP2007271197A (en) Absorption type refrigerating device
KR20120025664A (en) Absorption chiller unit for ship and absorption chiliing method
JP2007278572A (en) Absorption type refrigerating device
JP5217264B2 (en) Waste heat driven absorption refrigeration system
JP2009058181A (en) Absorption type refrigerating apparatus
JP4826314B2 (en) Evaporation / absorption unit for absorption refrigerator
JP5402186B2 (en) Refrigeration equipment
JP2007248024A (en) Absorption-type refrigerating device
JP5338270B2 (en) Absorption refrigeration system
JP4821397B2 (en) Air-cooled absorption refrigeration equipment absorber
KR20080094985A (en) Hot-water using absorption chiller
JP4572860B2 (en) Absorption refrigeration system
JP2009052811A (en) Exhaust heat drive-type absorption refrigerating device
JP5338272B2 (en) Absorption refrigeration system
JP3857955B2 (en) Absorption refrigerator
JP2007278570A (en) Air-cooled absorption type refrigerating device
JP4282225B2 (en) Absorption refrigerator
JP4903743B2 (en) Absorption refrigerator
JP4720558B2 (en) Absorption refrigerator generator
JP5233716B2 (en) Absorption refrigeration system
JP2004198087A (en) Absorption refrigerating device, and absorption refrigerating system
JP6779760B2 (en) Absorption chiller
JP2008232573A (en) Absorption refrigerating machine
JP2005300126A (en) Absorption type refrigerating machine
JP4322997B2 (en) Absorption refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111201

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees