JP2010249357A - Refrigerating device - Google Patents

Refrigerating device Download PDF

Info

Publication number
JP2010249357A
JP2010249357A JP2009097165A JP2009097165A JP2010249357A JP 2010249357 A JP2010249357 A JP 2010249357A JP 2009097165 A JP2009097165 A JP 2009097165A JP 2009097165 A JP2009097165 A JP 2009097165A JP 2010249357 A JP2010249357 A JP 2010249357A
Authority
JP
Japan
Prior art keywords
refrigerant
heat
solution
absorption
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009097165A
Other languages
Japanese (ja)
Other versions
JP5402187B2 (en
Inventor
Mitsushi Kawai
満嗣 河合
Keisuke Tanimoto
啓介 谷本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2009097165A priority Critical patent/JP5402187B2/en
Publication of JP2010249357A publication Critical patent/JP2010249357A/en
Application granted granted Critical
Publication of JP5402187B2 publication Critical patent/JP5402187B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To simplify the configuration of a generator of an absorption refrigerator and to improve the refrigeration performance of a vapor compression refrigerator in a refrigerating device wherein the vapor compression refrigerator and the absorption refrigerator are combined and the absorption refrigerator is driven by the exhaust heat of the vapor compression refrigerator. <P>SOLUTION: The refrigerating device includes a vapor compression refrigerator and an absorption refrigerator driven by the exhaust heat of the vapor compression refrigerator. A heat exchanger for collecting refrigerant heat is provided which collects the heat of refrigerant after compression of the vapor compression refrigerator by means of a dilute absorbed solution of the absorption refrigerator. The heat exchanger causes the dilute absorbed solution to flow into a generator of the absorption refrigerator after the solution has collected the heat of the compressed refrigerant, and refrigerant vapor is separated whereby the generator of the absorption refrigerator is used as a gas-liquid separator serving only to separate the refrigerant vapor from the dilute absorbed solution flowing in, and the compressed refrigerant of the vapor compression refrigerator is cooled or supercooled to improve the refrigeration performance of the vapor compression refrigerator. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この出願の発明は、蒸気圧縮式冷凍機と該蒸気圧縮式冷凍機の排熱で駆動される吸収式冷凍機とを備え、それらを所望に組み合わせて作動可能とした冷凍装置に関するものである。   The invention of this application relates to a refrigeration apparatus that includes a vapor compression refrigerator and an absorption refrigerator that is driven by exhaust heat of the vapor compression refrigerator, and that can be operated by combining them as desired.

一般に蒸気圧縮式冷凍機は、圧縮機、凝縮器、膨張弁、蒸発器をヒートポンプ作動可能に冷媒配管で接続して冷凍回路を構成しており、同冷凍回路中を流れる冷媒の方向を逆にすることにより、冷房や暖房を行えるようにしている(例えば特許文献1を参照)。   In general, a vapor compression refrigerator has a refrigeration circuit in which a compressor, a condenser, an expansion valve, and an evaporator are connected by refrigerant piping so that a heat pump can be operated, and the direction of the refrigerant flowing in the refrigeration circuit is reversed. By doing so, cooling and heating can be performed (for example, refer to Patent Document 1).

このような蒸気圧縮式冷凍機における冷凍性能を改善する一つの方法として、例えば熱駆動型冷凍機である吸収式冷凍機を組み合わせることが従来から知られており、ガスエンジンその他の排熱で吸収式冷凍機を駆動し、そこで得られる冷熱を蒸気圧縮式の冷凍機に取り込み、蒸気圧縮式冷凍機の冷凍性能を増大させることについて、従来から種々の方法が提案されている(例えば特許文献2を参照)。   As one method for improving the refrigeration performance in such a vapor compression refrigeration machine, for example, combining an absorption chiller, which is a heat-driven chiller, has been conventionally known and absorbed by exhaust heat from a gas engine or the like. Conventionally, various methods have been proposed for driving a refrigerator and taking in the cold heat obtained there into a vapor compression refrigerator to increase the refrigeration performance of the vapor compression refrigerator (for example, Patent Document 2). See).

一方、これとは逆に上記蒸気圧縮式冷凍機側の排熱を利用して、吸収式冷凍機を駆動することについては、蒸気圧縮式冷凍機自体の排熱量が少なく、また排熱温度も低いため、そのままでは一般に吸収式冷凍機を駆動させることが困難であり、仮に駆動することが出来たとしても、その得られる冷凍性能向上効果が小さいこと、またコスト的にも課題があるなどの理由から、これまでは余り検討される事がなかった。   On the other hand, when the absorption chiller is driven by using the exhaust heat on the vapor compression refrigerator side, the exhaust heat amount of the vapor compression refrigerator itself is small and the exhaust heat temperature is also low. Since it is low, it is generally difficult to drive an absorption refrigerator as it is, and even if it can be driven, the effect of improving the obtained refrigeration performance is small, and there are problems in terms of cost, etc. For reasons that have not been considered so far.

しかし、最近のエネルギーコストの上昇に対する対策や、CO2冷媒等の自然冷媒を利用する空気調和機を開発するに際して蒸気圧縮式冷凍機の性能改善が必要である等の事情から、上記蒸気圧縮式冷凍機自身の排熱を単なる給湯や暖房のためではなく、冷熱自体に変換して更に有効に利用する利用方法が求められつつある。 However, because of the measures against the recent increase in energy costs and the need to improve the performance of the vapor compression refrigerator when developing an air conditioner using a natural refrigerant such as a CO 2 refrigerant, the vapor compression type There is a demand for a method of using the exhaust heat of the refrigerator itself not only for hot water supply or heating, but more effectively by converting it to cold heat itself.

このような事情に基いて提案されたものとして、例えば発生器、凝縮器、蒸発器、吸収器を備える吸収式冷凍サイクルと、圧縮機、熱源側熱交換器、減圧装置、利用側熱交換器を備える蒸気圧縮式冷凍サイクルとを備え、吸収式冷凍サイクルの発生器を含む各機器を循環する冷媒に蒸気圧縮式冷凍サイクルの熱源側熱交換器の排熱を熱回収させるとともに、吸収式冷凍サイクルの蒸発器によって蒸気圧縮式冷凍サイクルの熱源側熱交換器の出口側冷媒を冷却させることにより、系全体としての放出熱量を削減するとともに、消費電力の削減、並びに成績係数の向上を図るようにした冷凍装置がある(例えば特許文献3を参照)。   As proposed based on such circumstances, for example, an absorption refrigeration cycle including a generator, a condenser, an evaporator, an absorber, a compressor, a heat source side heat exchanger, a pressure reducing device, a use side heat exchanger And a refrigerant that circulates through each device including the generator of the absorption refrigeration cycle, and recovers the exhaust heat of the heat source side heat exchanger of the vapor compression refrigeration cycle and absorbs the refrigeration By cooling the refrigerant on the outlet side of the heat source side heat exchanger of the vapor compression refrigeration cycle by the cycle evaporator, the amount of heat released as a whole system can be reduced, the power consumption can be reduced, and the coefficient of performance can be improved. There is a refrigeration apparatus (see, for example, Patent Document 3).

このような構成によれば、蒸気圧縮式冷凍機自身の排熱を単なる給湯や暖房ではなく、必要な冷熱に変換して吸収式冷凍機の駆動源として有効に利用することが可能となる。   According to such a configuration, the exhaust heat of the vapor compression refrigeration machine itself can be effectively used as a drive source of the absorption refrigeration machine by converting it into necessary cold heat instead of mere hot water supply or heating.

特開2002−228229号公報JP 2002-228229 A 特開2004−28374号公報JP 2004-28374 A 特開2006−17350号公報JP 2006-17350 A

ところで、以上のような蒸気圧縮式冷凍機と吸収式冷凍機を組み合わせた冷凍装置の冷凍能力を向上させるためには、すでに述べたように蒸気圧縮式冷凍機および吸収式冷凍機相互の排熱を如何に有効に活用するかが課題となる。   By the way, in order to improve the refrigerating capacity of the refrigerating apparatus combining the vapor compression refrigerator and the absorption refrigerator as described above, the heat exhausted between the vapor compression refrigerator and the absorption refrigerator as described above. The issue is how to effectively use the system.

また、同時に相互の装置の構成を簡素化して、低コスト化を図ることも重要であり、特に蒸気圧縮式冷凍機側圧縮冷媒の熱を放熱する放熱用熱交換器を不要とすることが望まれる。   At the same time, it is important to simplify the configuration of each other and reduce the cost. In particular, it is desirable to eliminate the need for a heat-dissipating heat exchanger that dissipates the heat of the refrigerant compressed in the vapor compression refrigerator. It is.

また、排熱利用型の吸収式冷凍機においては、コストの面から単効用冷凍サイクルで使用されるケースが多いが、排熱により冷媒蒸気を発生させる発生器を如何に低コスト化するかが課題となる。   In addition, waste heat utilization type absorption refrigerators are often used in single-effect refrigeration cycles from the viewpoint of cost, but how to reduce the cost of a generator that generates refrigerant vapor by exhaust heat. It becomes a problem.

すなわち、排熱利用型の吸収式冷凍機は、より安価な機器でないと回収熱量との関係で成立が困難であり、発生器の大幅な低コスト化が強く求められている。   That is, it is difficult to establish an exhaust-type absorption refrigerator that uses exhaust heat unless it is a cheaper device, and there is a strong demand for a significant reduction in the cost of the generator.

しかし、上記特許文献3の冷凍装置の場合、蒸気圧縮式冷凍機からの圧縮冷媒を吸収式冷凍サイクル側発生器中の冷媒蒸気発生用第1の熱源側熱交換器に加え、外部空気を取り入れる冷却ファンを備えた圧縮冷媒熱放熱用の第3の熱源側熱交換器を介して蒸発器を構成している第2の熱源側熱交換器に供給して過冷却するようにしており、発生器の簡素化が不可能で、かつ圧縮冷媒熱放熱用の第3の熱源側熱交換器が必要であることから、システム全体が複雑で高コストなものになる欠点があり、上述のような要求に応じ切れていない。   However, in the case of the refrigeration apparatus of Patent Document 3, the compressed refrigerant from the vapor compression refrigerator is added to the first heat source side heat exchanger for generating refrigerant vapor in the absorption refrigeration cycle side generator, and external air is taken in. It is supplied to the second heat source side heat exchanger constituting the evaporator via the third heat source side heat exchanger for heat dissipation of the compressed refrigerant with the cooling fan, and is supercooled. The system cannot be simplified, and the third heat source side heat exchanger for heat dissipation of the compressed refrigerant is necessary. Therefore, there is a disadvantage that the entire system is complicated and expensive. Not cut upon request.

本願発明は、このような課題を解決するためになされたもので、冷房運転時には、圧縮式冷凍機の圧縮後の冷媒の熱を予じめ吸収式冷凍機の吸収希溶液で熱回収し、その上で昇温された吸収希溶液のみを吸収式冷凍機の発生器内に流入フラッシュさせて冷媒蒸気を分離することにより、外部熱源を不用として吸収式冷凍機の発生器の構成の簡素化を図る一方、同時に蒸気圧縮式冷凍機の冷媒を冷却することによって利用側熱交換器に供給される膨張前の圧縮冷媒の冷却又は過冷却性能をアップして、蒸気圧縮式冷凍機の放熱用熱交換器を不要にした冷凍装置を提供することを目的とするものである。   The present invention was made to solve such a problem, and during cooling operation, heat of the refrigerant after compression of the compression refrigerator is preliminarily recovered and heat is recovered with an absorption dilute solution of the absorption refrigerator, In addition, only the diluted absorption solution that has been heated is allowed to flow into the generator of the absorption chiller to separate the refrigerant vapor, thereby simplifying the configuration of the absorption chiller generator without using an external heat source. At the same time, by cooling the refrigerant of the vapor compression refrigeration machine, the cooling or supercooling performance of the compressed refrigerant before expansion supplied to the use side heat exchanger is improved, and the heat radiation of the vapor compression refrigeration machine is improved. An object of the present invention is to provide a refrigeration apparatus that does not require a heat exchanger.

本願発明は、上記の目的を達成するために、次のような有効な課題解決手段を備えて構成されている。   In order to achieve the above object, the present invention comprises the following effective problem solving means.

(1) 請求項1の発明の課題解決手段
この発明の課題解決手段は、蒸気圧縮式冷凍機と該蒸気圧縮式冷凍機の排熱で駆動される吸収式冷凍機とを備えてなる冷凍装置であって、上記蒸気圧縮式冷凍機の圧縮後の冷媒の熱を上記吸収式冷凍機の吸収希溶液で回収する冷媒熱回収用熱交換器を設け、同冷媒熱回収用熱交換器により上記圧縮冷媒の熱を回収した吸収希溶液を貫流状態で上記吸収式冷凍機の発生器内に流入させ、冷媒蒸気を分離することによって、上記吸収式冷凍機の発生器を、流入した吸収希溶液から冷媒蒸気を分離するだけの気液分離器とする一方、上記蒸気圧縮式冷凍機の圧縮冷媒を吸収式冷凍機の蒸発器によって、冷却又は過冷却することによって上記蒸気圧縮式冷凍機の冷凍性能を向上させたことを特徴としている。
(1) The problem solving means of the invention of claim 1 The problem solving means of the present invention is a refrigeration apparatus comprising a vapor compression refrigerator and an absorption refrigerator driven by exhaust heat of the vapor compression refrigerator. A refrigerant heat recovery heat exchanger for recovering the heat of the refrigerant after compression of the vapor compression refrigerator by the absorption diluted solution of the absorption refrigerator, and the heat exchanger for refrigerant heat recovery The absorption dilute solution that has recovered the heat of the compressed refrigerant flows into the generator of the absorption refrigeration machine in a flow-through state, and separates the refrigerant vapor, thereby causing the absorption dilute solution to flow into the generator. On the other hand, the refrigerant of the vapor compression chiller is separated from the vapor compression chiller by cooling or supercooling the compressed refrigerant of the vapor compression refrigeration by the evaporator of the absorption chiller. It is characterized by improved performance.

このような構成によると、まず外部熱源がない場合にも吸収式冷凍機の駆動用熱源を確保することができ、また冷房運転時の蒸気圧縮式冷凍機における冷媒を凝縮、もしくは放熱する際の熱量を吸収式冷凍機の加熱源に全て利用することが可能となる。   According to such a configuration, it is possible to secure a heat source for driving the absorption refrigerator even when there is no external heat source, and to condense or dissipate the refrigerant in the vapor compression refrigerator during the cooling operation. The amount of heat can be used as a heating source for the absorption refrigerator.

そして、従来の発生器では、供給される吸収溶液を加熱し、溶液と冷媒蒸気を分離する必要があり、また吸収式冷凍機の運転サイクルより発生器の溶液温度が決定されるため、発生器内での蒸気圧縮式冷凍機の冷媒との交換熱量が限定されるが、上記の発生器と分離された冷媒熱回収用熱交換器で熱回収後に溶液を発生器に流入すれば、吸収溶液がフラッシングされるだけであり、同冷媒蒸気発生部を単に冷媒蒸気を分離しさえすれば足りる貫流型の気液分離器で構成することができ、従来のような外部熱源を流す熱源側熱交換器が不要となる。したがって、その構成が極めて簡単になり、低コスト化される。   And in the conventional generator, it is necessary to heat the supplied absorbing solution to separate the solution and the refrigerant vapor, and the generator solution temperature is determined by the operation cycle of the absorption refrigerator, so the generator The amount of heat exchanged with the refrigerant in the vapor compression refrigerator is limited, but if the solution flows into the generator after recovering heat in the refrigerant heat recovery heat exchanger separated from the generator, the absorbing solution The refrigerant vapor generator can be configured with a once-through gas-liquid separator that only needs to separate the refrigerant vapor, and heat source side heat exchange that flows an external heat source as in the past A vessel is not required. Therefore, the configuration becomes extremely simple and the cost is reduced.

また、同時に、蒸気圧縮式冷凍機の圧縮冷媒の熱は同吸収式冷凍機側の吸収希溶液によって熱回収されて効率良く冷却されるから、以後の過冷却度も向上し、蒸気圧縮式冷凍機自体の冷凍性能が向上するとともに、従来のような圧縮冷媒熱放熱用の熱交換器が不要になり、装置構成がシンプルで低コストなものになる。   At the same time, the heat of the compressed refrigerant of the vapor compression refrigerator is recovered by the absorbed dilute solution on the absorption refrigerator side and efficiently cooled, so that the degree of subsequent supercooling is improved and the vapor compression refrigerator The refrigeration performance of the machine itself is improved and a conventional heat exchanger for heat dissipation of compressed refrigerant is not required, so that the apparatus configuration is simple and low-cost.

さらに、この場合、上記蒸気圧縮式冷凍機の膨張前の冷媒の過冷却を上記吸収式冷凍機の蒸発器によって過冷却するようにすると、従来のように吸収式冷凍機の蒸発器に冷却水を循環させて過冷却する場合に比較して、該蒸発器における冷媒の蒸発温度を高くすることができる。   Further, in this case, if the refrigerant is precooled before expansion by the evaporator of the absorption refrigeration machine, the cooling water is added to the evaporator of the absorption refrigeration machine. As compared with the case where the refrigerant is circulated and supercooled, the evaporation temperature of the refrigerant in the evaporator can be increased.

その結果、吸収式冷凍機を可及的に小型化することができ、また冷熱を有効に利用することができるようになる。   As a result, the absorption refrigerator can be miniaturized as much as possible, and cold energy can be used effectively.

(2) 請求項2の発明の課題解決手段
この発明の課題解決手段は、上記請求項1の発明の課題解決手段の構成において、吸収器に流入させる吸収液を過冷却する吸収液過冷却器と、吸収器から発生器に供給される吸収希溶液と発生器からの吸収濃溶液とを熱交換する溶液熱交換器とを設け、吸収器出口側の吸収希溶液を、それら吸収液過冷却器、溶液熱交換器、冷媒熱回収用熱交換器の各々に分流させる一方、上記吸収器では、吸収液過冷却器を介して過冷却した上で流入させた吸収液の顕熱で吸収液に冷媒蒸気を吸収させるようにしたことを特徴としている。
(2) The problem-solving means of the invention of claim 2 The problem-solving means of the invention is the absorption-solution supercooler for supercooling the absorption liquid flowing into the absorber in the configuration of the problem-solving means of the invention of claim 1 And a solution heat exchanger for exchanging heat between the absorption diluted solution supplied from the absorber to the generator and the absorption concentrated solution from the generator, and the absorption diluted solution on the outlet side of the absorber is supercooled with the absorption solution. The absorber, the solution heat exchanger, and the refrigerant heat recovery heat exchanger. In the absorber, the absorption liquid is absorbed by the sensible heat of the absorption liquid after being supercooled via the absorption liquid supercooler. It is characterized in that the refrigerant vapor is absorbed.

このように、上述した冷媒熱回収用熱交換器、および発生器から吸収器に供給される吸収濃溶液の熱を吸収器から発生器に供給される吸収希溶液側に回収する溶液熱交換器に加えて、吸収器に流入させる吸収液を過冷却する吸収液過冷却器を設け、該吸収液過冷却器により吸収液を過冷却した上で吸収器に供給するようにし、吸収器では流入した吸収液の顕熱で蒸発器からの冷媒蒸気を吸収させる溶液分離冷却方式を採用した吸収式冷凍装置は、溶液自体の顕熱で吸収熱を取り去る方式のため、発生器への希溶液供給量を増加させても、従来の直接冷却方式の空冷又は水冷吸収器と比較して性能の低下がほとんど生じない。   Thus, the heat exchanger for refrigerant heat recovery described above, and the solution heat exchanger that recovers the heat of the concentrated concentrated solution supplied from the generator to the absorber to the absorption dilute solution side supplied from the absorber to the generator In addition to the above, an absorption liquid supercooler for supercooling the absorption liquid flowing into the absorber is provided, and the absorption liquid is supercooled by the absorption liquid subcooler and then supplied to the absorber. The absorption refrigeration system adopting the solution separation cooling system that absorbs the refrigerant vapor from the evaporator with the sensible heat of the absorbed liquid removes the absorbed heat with the sensible heat of the solution itself, so supply the dilute solution to the generator Even if the amount is increased, the performance hardly deteriorates as compared with the conventional direct cooling type air-cooled or water-cooled absorber.

したがって、発生器への希溶液供給量を増大させ、交換熱量を増加させて冷媒蒸気発生量を増大させたり、または冷媒熱回収熱交換器を小型することができる。   Therefore, it is possible to increase the supply amount of the dilute solution to the generator, increase the amount of exchange heat, increase the amount of refrigerant vapor generated, or reduce the size of the refrigerant heat recovery heat exchanger.

一方、そのように吸収器では流入した吸収液の顕熱で蒸発器からの冷媒蒸気を吸収するように構成する一方、吸収器出口側の吸収希溶液を溶液熱交換器、冷媒熱回収用熱交換器の各々に分流して流入させるようにすると、それらの各々で広い温度範囲に亘って有効かつ適切に吸収式冷凍機側希溶液への熱の回収(吸収濃溶液からの熱の回収および蒸気圧縮式冷凍機側圧縮冷媒からの熱の回収)が行われ、トータルとして効率の良い熱回収作用が実現される。   On the other hand, the absorber is configured to absorb the refrigerant vapor from the evaporator with the sensible heat of the absorbed liquid that has flowed in, while the absorption diluted solution on the outlet side of the absorber is used as a solution heat exchanger, heat for refrigerant heat recovery If each of the exchangers is diverted to flow, each of them effectively and appropriately recovers heat to the absorption refrigerator side dilute solution over a wide temperature range (recovery of heat from the absorption concentrated solution and (Recovery of heat from the vapor compression refrigerator side compressed refrigerant) is performed, and a heat recovery action with high efficiency is realized as a whole.

(3) 請求項3の発明の課題解決手段
この発明の課題解決手段は、上記請求項2の発明の課題解決手段の構成において、溶液熱交換器を通して発生器からの吸収濃溶液と熱交換された吸収希溶液を冷媒熱回収用熱交換器の途中に流入させるようにしたことを特徴としている。
(3) Problem solving means of the invention of claim 3 The problem solving means of the present invention is the structure of the problem solving means of the invention of claim 2 described above, wherein heat is exchanged with the absorbed concentrated solution from the generator through the solution heat exchanger. It is characterized in that the absorbed dilute solution is caused to flow into the refrigerant heat recovery heat exchanger.

このような構成によると、溶液熱交換器を通すことなく冷媒熱回収用熱交換器に供給され、その全体を流れる低温の吸収希溶液で有効に熱回収を図ることができる一方、溶液熱交換器で発生器からの吸収濃溶液と熱交換されて温度が上昇した吸収希溶液が、さらに冷媒熱回収用熱交換器の途中から圧縮冷媒上流方向に流されて、有効に圧縮冷媒の熱により加熱昇温されて発生器に供給されるようになり、より熱回収効果が向上して、発生器での気液分離効果が向上する。   According to such a configuration, the heat can be effectively recovered with the low-temperature absorption dilute solution that is supplied to the refrigerant heat recovery heat exchanger without passing through the solution heat exchanger, and flows through the heat exchanger. The absorption dilute solution whose temperature has been increased by heat exchange with the absorption concentrated solution from the generator in the generator is further flowed upstream from the middle of the refrigerant heat recovery heat exchanger in the upstream direction of the compressed refrigerant, and is effectively absorbed by the heat of the compressed refrigerant. The temperature is raised and the temperature is supplied to the generator, the heat recovery effect is further improved, and the gas-liquid separation effect in the generator is improved.

(4) 請求項4の発明の課題解決手段
この発明の課題解決手段は、上記請求項2の発明の課題解決手段の構成において、溶液熱交換器を介して発生器からの吸収濃溶液と熱交換された吸収希溶液を発生器と冷媒熱回収用熱交換器の途中とに各々流入させるようにしたことを特徴としている。
(4) The problem-solving means of the invention of claim 4 The problem-solving means of the invention is the structure of the problem-solving means of the invention of claim 2 described above, wherein the absorption concentrated solution and heat from the generator are passed through the solution heat exchanger. It is characterized in that the exchanged diluted absorption solution is allowed to flow into the generator and the refrigerant heat recovery heat exchanger.

このような構成によると、溶液熱交換器で発生器からの吸収濃溶液と熱交換されて温度が上昇した吸収希溶液の一部がそのまま発生器に、その他の吸収希溶液が冷媒熱回収用熱交換器の全体および途中からの両方で圧縮冷媒により加熱昇温されて発生器に供給されるようになり、それぞれの段階で各々有効に熱回収が行われるようになり、トータルとして熱回収率が向上する。   According to such a configuration, a part of the diluted diluted solution whose temperature has been increased by heat exchange with the absorbed concentrated solution from the generator in the solution heat exchanger remains as it is in the generator, and the other diluted diluted solution is used for refrigerant heat recovery. Heat is heated by the compressed refrigerant both in the whole heat exchanger and in the middle, and is supplied to the generator. Heat recovery is effectively performed at each stage, and the heat recovery rate as a total. Will improve.

(5) 請求項5の発明の課題解決手段
この発明の課題解決手段は、上記請求項2の発明の課題解決手段の構成において、冷媒熱回収用熱交換器を圧縮冷媒の上流側から下流側方向にかけて複数段に分割し、吸収器から溶液熱交換器を介して発生器に到る吸収希溶液の内、溶液熱交換器に入る前の吸収希溶液を上記圧縮冷媒下流側の段の冷媒熱回収用熱交換器に、また溶液熱交換器を出た吸収希溶液を上記圧縮冷媒上流側の冷媒熱回収用熱交換器に流入させるようにしたことを特徴としている。
(5) The problem solving means of the invention of claim 5 The problem solving means of the present invention is the structure of the problem solving means of the invention of claim 2, wherein the refrigerant heat recovery heat exchanger is arranged from the upstream side to the downstream side of the compressed refrigerant. Of the absorption dilute solution from the absorber through the solution heat exchanger to the generator, and the absorption dilute solution before entering the solution heat exchanger is divided into the refrigerant on the downstream side of the compressed refrigerant. A feature of the present invention is that the absorption diluted solution that has exited the solution heat exchanger is allowed to flow into the heat recovery heat exchanger and the refrigerant heat recovery heat exchanger upstream of the compressed refrigerant.

このような構成によると、溶液熱交換器を通っていない最も温度が低い吸収希溶液が圧縮冷媒下流側で、また溶液熱交換器を通して相対的に温度が高くなった吸収希溶液が圧縮冷媒上流側で、それぞれ圧縮冷媒の熱を回収することになり、それぞれ熱交換に有効な温度差を確保して効率良く熱回収することができる。   According to such a configuration, the absorbing dilute solution having the lowest temperature that does not pass through the solution heat exchanger is on the downstream side of the compressed refrigerant, and the absorbing dilute solution having a relatively high temperature through the solution heat exchanger is disposed on the compressed refrigerant upstream. On the other hand, the heat of the compressed refrigerant is recovered, and a temperature difference effective for heat exchange can be ensured for efficient heat recovery.

(6) 請求項6の発明の課題解決手段
この発明の課題解決手段は、上記請求項2の発明の課題解決手段の構成において、冷媒熱回収用熱交換器を圧縮冷媒の上流側から下流側方向にかけて複数段に分割し、吸収器から溶液熱交換器を介して発生器に到る希溶液の内、溶液熱交換器に入る前の吸収希溶液を上記圧縮冷媒下流側の段の冷媒熱回収用熱交換器に、また溶液熱交換器を出た吸収希溶液を発生器と上記圧縮冷媒上流側の冷媒熱回収用熱交換器に各々流入させるようにしたことを特徴としている。
(6) Problem solving means of the invention of claim 6 The problem solving means of the present invention is the structure of the problem solving means of the invention of claim 2, wherein the refrigerant heat recovery heat exchanger is arranged from the upstream side to the downstream side of the compressed refrigerant. Of the dilute solution from the absorber to the generator through the solution heat exchanger, and the absorbed dilute solution before entering the solution heat exchanger is divided into the refrigerant heat in the downstream side of the compressed refrigerant. The absorption dilute solution exiting from the solution heat exchanger is allowed to flow into the recovery heat exchanger and into the generator and the refrigerant heat recovery heat exchanger on the upstream side of the compressed refrigerant.

このような構成によると、溶液熱交換器を通っていない最も温度が低い吸収希溶液が圧縮冷媒下流側で、また溶液熱交換器を通して相対的に温度が高くなった吸収希溶液が発生器と圧縮冷媒上流側の冷媒熱回収用熱交換器に供給され、それぞれ有効な温度差を確保して効率良く熱回収することができる。   According to such a configuration, the absorption dilute solution having the lowest temperature that does not pass through the solution heat exchanger is the downstream side of the compressed refrigerant, and the absorption dilute solution having a relatively high temperature through the solution heat exchanger is The refrigerant is supplied to the refrigerant heat recovery heat exchanger on the upstream side of the compressed refrigerant, and an effective temperature difference can be ensured for efficient heat recovery.

(7) 請求項7の発明の課題解決手段
この発明の課題解決手段は、上記請求項1,2,3,4,5又は6の発明の課題解決手段の構成において、蒸発器は、冷媒液が蒸発器の伝熱面を一過性で流れるようになっており、同伝熱面を流下した未蒸発の冷媒液は、吸収器側に移動して吸収器を流下した吸収溶液に吸収されるようになっていることを特徴としている。
(7) Problem solving means of the invention of claim 7 The problem solving means of the invention is the structure of the problem solving means of the invention of claim 1, 2, 3, 4, 5 or 6, wherein the evaporator is a refrigerant liquid. Flows temporarily on the heat transfer surface of the evaporator, and the unevaporated refrigerant liquid flowing down the heat transfer surface moves to the absorber side and is absorbed by the absorption solution flowing down the absorber. It is characterized by becoming.

このような構成によると、蒸発器の伝熱面で蒸発し切れずに底部まで流れ落ちた未蒸発の冷媒液は吸収器の底部へ移動し、同吸収器底部で再び吸収溶液に吸収される。そのため、吸収効率が向上する。   According to such a configuration, the non-evaporated refrigerant liquid that has not evaporated on the heat transfer surface of the evaporator and has flowed down to the bottom moves to the bottom of the absorber, and is again absorbed by the absorbing solution at the bottom of the absorber. Therefore, the absorption efficiency is improved.

(8) 請求項8の発明の課題解決手段
この発明の課題解決手段は、上記請求項1,2,3,4,5,6又は7の発明の課題解決手段の構成において、複数台の蒸気圧縮式冷凍機と、それら各蒸気圧縮式冷凍機に対応した冷媒熱回収用熱交換器とを備え、各蒸気圧縮式冷凍機の圧縮冷媒の熱を回収して対応する吸収式冷凍機駆動用の熱源として利用するようにしたことを特徴としている。
(8) Problem solving means of the invention of claim 8 The problem solving means of the present invention is the structure of the problem solving means of the invention of claim 1, 2, 3, 4, 5, 6 or 7, wherein a plurality of steams are provided. It is equipped with a compression refrigeration machine and a heat exchanger for refrigerant heat recovery corresponding to each of these vapor compression refrigeration machines, for recovering the heat of the compressed refrigerant of each vapor compression refrigeration machine and for corresponding absorption chiller drive It is characterized by being used as a heat source.

このような構成によると、上述の各発明の構成による作用効果が得られることはもちろん、蒸気圧縮式冷凍機側圧縮冷媒の排熱量が大きくなるので(設置台数分だけ)、吸収式冷凍機側の駆動能力(冷媒蒸気発生量)も大きくすることができる。   According to such a configuration, the effects of the configurations of the above-described inventions can be obtained, and the exhaust heat amount of the compressed refrigerant on the vapor compression refrigerator side is increased (by the number of installed units), so that the absorption refrigerator side The driving ability (the amount of generated refrigerant vapor) can also be increased.

以上の結果、本願発明によると、蒸気圧縮式冷凍機および吸収式冷凍機相互の排熱を有効に活用して蒸気圧縮式冷凍機の性能を向上させることができることはもちろん、従来のような蒸気圧縮式冷凍機側の圧縮冷媒の冷媒熱放熱用熱交換器が不要になるとともに、吸収式冷凍機側発生器も単に気液分離器によるシンプルかつ低コストな構成のもので足りるようになる。   As a result of the above, according to the present invention, it is possible to improve the performance of the vapor compression refrigerator by effectively utilizing the exhaust heat between the vapor compression refrigerator and the absorption refrigerator. A heat exchanger for radiating the refrigerant heat of the compressed refrigerant on the compression refrigerator side becomes unnecessary, and the absorption refrigerator generator on the absorption refrigerator side only needs to have a simple and low-cost configuration with a gas-liquid separator.

本願発明の実施の形態1に係る冷凍装置の構成を示す冷凍回路図である。It is a freezing circuit diagram which shows the structure of the freezing apparatus which concerns on Embodiment 1 of this invention. 本願発明の実施の形態2に係る冷凍装置の構成を示す冷凍回路図である。It is a freezing circuit diagram which shows the structure of the freezing apparatus which concerns on Embodiment 2 of this invention. 本願発明の実施の形態3に係る冷凍装置の構成を示す冷凍回路図である。It is a freezing circuit diagram which shows the structure of the freezing apparatus which concerns on Embodiment 3 of this invention. 本願発明の実施の形態4に係る冷凍装置の構成を示す冷凍回路図である。It is a freezing circuit diagram which shows the structure of the freezing apparatus which concerns on Embodiment 4 of this invention.

以下、本願発明の幾つかの実施の形態について、詳細に説明する。   Hereinafter, several embodiments of the present invention will be described in detail.

(実施の形態1)
先ず図1は、蒸気圧縮式冷凍機と外部熱源を備えた吸収式冷凍機とを組み合わせ、吸収式冷凍機の蒸発器で蒸気圧縮式冷凍機の圧縮冷媒を冷却又は過冷却するようにしてなる冷凍装置において、吸収式冷凍機の外部に蒸気圧縮式冷凍機の冷房運転時における圧縮冷媒の熱を、予じめ吸収式冷凍機の吸収器から発生器(気液分離器)に供給される吸収希溶液によって回収し、同吸収希溶液のみを液単独、もしくは2層流の貫流方式で吸収式冷凍機の発生器内に流入させる冷媒熱回収用熱交換器を設け、吸収式冷凍機の発生器では、外部熱源によることなく、同冷媒熱回収用熱交換器で回収した蒸気圧縮式冷凍機の冷媒の熱によって効率良く気液分離を行わせる一方、蒸気圧縮式冷凍機側圧縮冷媒の効果的な放熱を図るようにした本願発明の実施の形態1に係る冷凍装置の構成を示している。
(Embodiment 1)
First, FIG. 1 is a combination of a vapor compression refrigerator and an absorption refrigerator equipped with an external heat source so that the refrigerant of the vapor compression refrigerator is cooled or supercooled by the evaporator of the absorption refrigerator. In the refrigeration system, the heat of the compressed refrigerant during the cooling operation of the vapor compression chiller is supplied to the generator (gas-liquid separator) from the absorber of the absorption chiller in advance. A heat exchanger for recovering refrigerant heat is provided to collect the absorption diluted solution, and only the diluted absorption solution is allowed to flow into the generator of the absorption refrigeration machine by liquid alone or in a two-layer flow-through system. The generator efficiently performs gas-liquid separation by the heat of the refrigerant of the vapor compression refrigeration machine recovered by the refrigerant heat recovery heat exchanger without using an external heat source. Implementation of the present invention for effective heat dissipation It shows a configuration of a refrigerating apparatus according to a 1.

この実施の形態における一例として蒸気圧縮式冷凍機Xは、冷媒として自然冷媒である二酸化炭素(CO2)が採用されており、同冷媒を圧縮する圧縮機1、膨張弁2,2、利用側熱交換器(室内機)3,3、アキュムレータ4等を、図示のようにヒートポンプ作動可能に冷媒配管5a,5b(圧縮機吐出側5a/吸入側5b)で接続して冷凍回路を構成しており、例えば4路切換弁等(図示省略)を設け、必要に応じて同冷凍回路中を流れる冷媒の方向を逆にすることにより、冷房や暖房を行えるようにしている。すなわち、上記利用側熱交換器3,3は冷房運転時には上記二酸化炭素冷媒を吸熱させて室内の冷房を行う作用を果す一方、暖房運転時には上記二酸化炭素冷媒の熱を放熱して室内の暖房を行う作用を果たすようになっている。 As an example in this embodiment, the vapor compression refrigerator X employs carbon dioxide (CO 2 ), which is a natural refrigerant, as a refrigerant. The compressor 1, the expansion valves 2 and 2, and the use side compress the refrigerant. The refrigeration circuit is configured by connecting the heat exchangers (indoor units) 3 and 3 and the accumulator 4 with refrigerant pipes 5a and 5b (compressor discharge side 5a / suction side 5b) so that the heat pump can operate as shown in the figure. For example, a four-way switching valve or the like (not shown) is provided, and cooling and heating can be performed by reversing the direction of the refrigerant flowing in the refrigeration circuit as necessary. That is, the use side heat exchangers 3 and 3 function to absorb the heat of the carbon dioxide refrigerant and cool the room during the cooling operation, while radiating the heat of the carbon dioxide refrigerant and heating the room during the heating operation. It is designed to fulfill the actions to be performed.

但し、この実施の形態では、特に暖房運転時の場合を問題としないので、図では冷房運転時の場合を前提として示している(したがって、上記4路切換弁の図示も省略している)。   However, in this embodiment, since the case of heating operation is not particularly problematic, the figure shows the case of cooling operation (therefore, the illustration of the four-way switching valve is also omitted).

一方、吸収式冷凍機Yは、例えば臭化リチウム(LiBr)を吸収、水(H2O)を冷媒とし、吸収液(LiBr)への冷媒の吸収(H2O)および放出作用を利用して必要な冷凍能力を発揮するようになっている。そして、この実施の形態の場合、外部熱源による加熱用熱交換器(温水コイル等)を備えることなく、吸収器13で冷媒を吸収して吸収液の濃度が低下した吸収希溶液中から冷媒蒸気を分離して吸収液の濃度が高い吸収濃溶液を得る発生器11と、冷却ファン12aを備え、上記発生器11において吸収希溶液から分離した冷媒蒸気を導入し、外部空気により冷却することによって凝縮液化させる空冷凝縮器12と、1つの密閉容器19内に相互に隣接して配置されていて、上記空冷凝縮器12によって液化された冷媒液を導入して低圧下で蒸発(気化)させる蒸発器14および上記蒸発器14で発生した冷媒蒸気を吸収させるための吸収器13と、溶液ポンプ17から吐出される吸収希溶液の一部(濃溶液と希溶液の混合液の大部分)を導入してこれを過冷却する冷却ファン15aを持つ空冷冷却器15と、上記発生器器11からの高温の吸収濃溶液と上記吸収器13からの低温の吸収希溶液とを相互に熱交換させて吸収希溶液の温度を上げる溶液熱交換器16と、上記吸収器13で冷媒蒸気を吸収して吸収剤の濃度が低下した吸収希溶液を濃縮するために再び上記発生器11に供給するとともに、これらの各々を冷媒配管21および溶液配管23〜27によってヒートポンプ作動可能に接続して構成されている。 On the other hand, the absorption refrigerator Y uses, for example, lithium bromide (LiBr) as an absorption liquid and water (H 2 O) as a refrigerant, and utilizes the absorption (H 2 O) and release action of the refrigerant into the absorption liquid (LiBr). The necessary refrigeration capacity is demonstrated. And in the case of this embodiment, without providing a heat exchanger for heating (hot water coil or the like) by an external heat source, the refrigerant vapor is absorbed from the absorbing dilute solution in which the refrigerant is absorbed by the absorber 13 and the concentration of the absorbing liquid is reduced. And a cooling fan 12a that introduces a refrigerant vapor separated from the absorbing dilute solution and cools it with external air. An air-cooled condenser 12 to be condensed and liquefied, and an evaporation which is disposed adjacent to each other in one sealed container 19 and introduces the refrigerant liquid liquefied by the air-cooled condenser 12 and evaporates (vaporizes) under a low pressure. 14 and the absorber 13 for absorbing the refrigerant vapor generated in the evaporator 14 and a part of the absorbed dilute solution discharged from the solution pump 17 (most of the mixture of the concentrated solution and dilute solution) are introduced. Then, the air-cooled cooler 15 having the cooling fan 15a for supercooling this, the high-temperature absorption concentrated solution from the generator 11 and the low-temperature absorption dilute solution from the absorber 13 are mutually heat-exchanged. A solution heat exchanger 16 that raises the temperature of the absorbing dilute solution, and again supplies the generator 11 with the absorber 13 in order to concentrate the absorbing dilute solution that has absorbed the refrigerant vapor and reduced the concentration of the absorbent, and Each of these is connected by a refrigerant pipe 21 and solution pipes 23 to 27 so that a heat pump can be operated.

すなわち、この実施の形態の場合、上記のように吸収器13に入る吸収溶液を冷却ファン15aを備えた空冷冷却器15によって十分に過冷却(溶液配管25を介して循環)し、同過冷却された吸収溶液に蒸発器14と並設された吸収器13内で、蒸発器14で蒸発させた冷媒蒸気を吸収させるようになっており、吸収時に発生する吸収熱は当該空冷冷却器15により過冷却された吸収溶液の顕熱で取り去り、吸収溶液は空冷冷却器15で間接的に冷却される溶液分離冷却(間接空冷)方式が採用されている。   That is, in the case of this embodiment, the absorption solution entering the absorber 13 is sufficiently subcooled (circulated through the solution pipe 25) by the air cooling cooler 15 provided with the cooling fan 15a as described above. In the absorber 13 arranged in parallel with the evaporator 14, the absorbed vapor is absorbed by the refrigerant vapor evaporated by the evaporator 14. Absorption heat generated during absorption is absorbed by the air-cooled cooler 15. A solution separation cooling (indirect air cooling) system in which the supercooled absorbing solution is removed by sensible heat and the absorbing solution is indirectly cooled by an air cooling cooler 15 is employed.

このように、吸収器13に流入させる吸収溶液を過冷却する空冷冷却器15を設け、吸収器13では流入した吸収溶液の顕熱で蒸発器14からの冷媒蒸気を吸収する溶液分離冷却方式を採用した吸収式冷凍機の場合、空冷その他の溶液冷却器(図は空冷)で溶液を過冷却し、溶液の顕熱で吸収熱を取り去る方式のため、発生器11への希溶液供給量を増加させても、性能の低下がほとんど生じない。   As described above, the air cooling cooler 15 for supercooling the absorbing solution flowing into the absorber 13 is provided, and the absorber 13 employs a solution separation cooling method for absorbing refrigerant vapor from the evaporator 14 by sensible heat of the flowing absorbing solution. In the case of the absorption refrigerator employed, the solution is supercooled by air cooling or other solution cooler (air cooling in the figure), and the absorption heat is removed by sensible heat of the solution. Even if it is increased, there is almost no decrease in performance.

したがって、発生器11への吸収希溶液供給量を増大させることができる。   Therefore, it is possible to increase the supply amount of the absorbing diluted solution to the generator 11.

また吸収器13部分において直接流入溶液を冷却して冷媒蒸気を吸収させる直接冷却方式に比較して、吸収器13のコンパクト化を図ることができる。   Further, the absorber 13 can be made more compact than the direct cooling method in which the inflow solution is directly cooled in the absorber 13 portion to absorb the refrigerant vapor.

なお、図1では詳細な構造は示していないが、上記蒸発器14、吸収器13の各々上部には、例えば冷媒、吸収溶液をそれぞれ均等に分配するための冷媒分配トレイ、吸収溶液分配トレイを各々設けている。また上記蒸発器14の熱交換器7は例えば蒸気圧縮式冷凍機X側冷凍回路の圧縮機吐出側冷媒配管5aの一部をなすように構成されており、その内部は圧縮機1から吐出された圧縮冷媒(CO2冷媒)を流す被冷却体通路となっている。 Although a detailed structure is not shown in FIG. 1, for example, a refrigerant distribution tray and an absorption solution distribution tray for evenly distributing the refrigerant and the absorption solution are provided above the evaporator 14 and the absorber 13, respectively. Each is provided. Further, the heat exchanger 7 of the evaporator 14 is configured to form a part of the compressor discharge side refrigerant pipe 5a of the vapor compression refrigerator X side refrigeration circuit, for example, and the inside thereof is discharged from the compressor 1. It becomes a to-be-cooled body passage through which the compressed refrigerant (CO 2 refrigerant) flows.

そして、同熱交換器7の表面に冷媒を例えば液膜状態で流下させて蒸発させることにより内部の圧縮冷媒を効率良く冷却するようになっている。また上記吸収器13の熱交換器18は、例えばコルゲート構造に折り曲げて並設したプレートの両面を溶液が液膜状態で垂直に流下することで、冷媒蒸気の吸収をより効果的に促進させるような構造になっている。   Then, the internal compressed refrigerant is efficiently cooled by allowing the refrigerant to flow down, for example, in a liquid film state on the surface of the heat exchanger 7 and evaporating it. Further, the heat exchanger 18 of the absorber 13 can more effectively promote the absorption of the refrigerant vapor by allowing the solution to flow vertically in a liquid film state on both sides of a plate that is bent and arranged in a corrugated structure, for example. It has a simple structure.

また上記蒸発器14は、例えば冷媒液が一過性で上記熱交換器7の伝熱面を流れ落ちるようになっており、底部まで流れ落ちた未蒸発の冷媒液は上記吸収器13底部の液留り部19aへ移動し、同液留り部19a部分で再び吸収溶液に吸収されるようになっている。そのため、吸収効率が向上する。   Further, the evaporator 14 is configured such that, for example, the refrigerant liquid is transient and flows down the heat transfer surface of the heat exchanger 7, and the unevaporated refrigerant liquid that has flowed down to the bottom of the evaporator 14 is liquid at the bottom of the absorber 13. It moves to the nozzle part 19a and is absorbed by the absorbing solution again at the liquid retaining part 19a. Therefore, the absorption efficiency is improved.

また、符号10は、一例として、その内側熱交換部6が、上記蒸発器14の過冷却用熱交換器7と同じように、上記蒸気圧縮式冷凍機Xの圧縮機吐出側冷媒配管5aの一部を形成しているとともに、同熱交換部6の外周に希溶液通路8が設けられた2重管構造の熱交換器に構成され、上記蒸気圧縮式冷凍機Xの圧縮機1で圧縮された圧縮冷媒の熱を上記吸収式冷凍機Yの吸収器13から発生器11に供給される吸収希溶液により熱回収するための冷媒熱回収用熱交換器であり、同冷媒熱回収用熱交換器10の希溶液通路8内に、上記吸収器13で冷媒蒸気を吸収して濃度および温度が低下した吸収希溶液の一部、例えば溶液熱交換器16を通る前の吸収器13出口配管24側からの吸収希溶液を溶液配管26,26B(分岐管)を介して導入して、圧縮冷媒の下流側から上流側方向の全体に流し、上記圧縮機1から吐出された圧縮冷媒の熱を有効に回収させた上で、溶液配管27を介して上記吸収式冷凍機Yの発生器11内に液単体、もしくは2層流で流入し、発生器11内で溶液のフラッシングを生じさせることによって効率良く冷媒蒸気を発生させて気液分離を行わせる一方、さらに蒸気圧縮式冷凍機X側の圧縮冷媒を効率良く冷却することによって、以降の蒸発器14の過冷却熱交換器7部分での冷却又は過冷却性能をアップさせるとともに、従来の蒸気圧縮式冷凍機側の放熱用熱交換器(特許文献3の第3の熱源用熱交換器35に相当)を不要にしている。この冷媒熱回収用熱交換器10は、発生器器11とは別体に構成されている。   Moreover, the code | symbol 10 is an example of the inside heat exchanging part 6 of the compressor discharge side refrigerant | coolant piping 5a of the said vapor | steam compression refrigeration machine X similarly to the heat exchanger 7 for the supercooling of the said evaporator 14. A heat exchanger having a double pipe structure in which a part of the heat exchanger 6 is formed and a dilute solution passage 8 is provided on the outer periphery of the heat exchanger 6 is compressed by the compressor 1 of the vapor compression refrigerator X. A heat exchanger for heat recovery of the refrigerant for recovering heat from the absorbed dilute solution supplied from the absorber 13 of the absorption refrigeration machine Y to the generator 11. In the dilute solution passage 8 of the exchanger 10, a part of the absorbed dilute solution whose concentration and temperature are reduced by absorbing the refrigerant vapor by the absorber 13, for example, the absorber 13 outlet pipe before passing through the solution heat exchanger 16 Absorption dilute solution from 24 side is introduced through solution pipes 26 and 26B (branch pipes) Then, after flowing the compressed refrigerant from the downstream side to the entire upstream direction and effectively recovering the heat of the compressed refrigerant discharged from the compressor 1, While flowing into the generator 11 as a single liquid or in a two-layer flow, and causing flashing of the solution in the generator 11, refrigerant vapor is efficiently generated to perform gas-liquid separation, while further vapor compression refrigeration By efficiently cooling the compressed refrigerant on the machine X side, the cooling or supercooling performance in the subsequent supercooling heat exchanger 7 portion of the evaporator 14 is improved, and for the heat radiation on the conventional vapor compression refrigerator side A heat exchanger (corresponding to the third heat source heat exchanger 35 of Patent Document 3) is unnecessary. The refrigerant heat recovery heat exchanger 10 is configured separately from the generator 11.

一方、この実施の形態の場合、上記溶液熱交換器16を通して熱交換され、昇温された吸収希溶液は、そのまま下流側溶液配管26Aを介して発生器11に流入される。   On the other hand, in the case of this embodiment, the absorption diluted solution that has been heat-exchanged through the solution heat exchanger 16 and whose temperature has been raised flows directly into the generator 11 through the downstream-side solution pipe 26A.

そして、それによって、上記吸収器13の出口から発生器11側に供給される希溶液は低温から高温まで効果的に熱回収される。   As a result, the dilute solution supplied from the outlet of the absorber 13 to the generator 11 side is effectively heat-recovered from a low temperature to a high temperature.

すでに述べたように、蒸気圧縮式冷凍機Xと吸収式冷凍機Yを組み合わせた冷凍装置の冷凍能力を向上させるためには、蒸気圧縮式冷凍機Yおよび吸収式冷凍機X相互の排熱を如何に有効に活用するかが課題となる。   As described above, in order to improve the refrigerating capacity of the refrigerating apparatus that combines the vapor compression refrigerator X and the absorption refrigerator Y, the exhaust heat between the vapor compression refrigerator Y and the absorption refrigerator X is reduced. The issue is how to use it effectively.

また、同時に相互の装置の構成を簡素化して、低コスト化を図ることも重要であり、蒸気圧縮式冷凍機X側圧縮冷媒の熱を放熱する従来の放熱用熱交換器を不要にすることが望まれる。   At the same time, it is important to simplify the configuration of each other and reduce costs, and eliminate the need for a conventional heat-dissipating heat exchanger that dissipates the heat of the vapor compression refrigerator X side compressed refrigerant. Is desired.

また、一般に排熱で駆動される排熱利用型の吸収式冷凍機Xにおいては、コストの面から単効用冷凍サイクルで使用されるが、排熱により冷媒蒸気を発生させる発生器を如何に低コスト化するかが問題となる。   Further, in the exhaust heat utilization type absorption refrigerator X that is generally driven by exhaust heat, it is used in a single-effect refrigeration cycle from the viewpoint of cost. The problem is whether to cost.

すなわち、排熱利用型吸収式冷凍機は、より安価な機器でないと回収熱量との関係で成立が困難であり、発生器の大幅な低コスト化が排熱駆動型の吸収式冷凍装置には求められている。   In other words, it is difficult to establish an exhaust heat utilization type absorption chiller in terms of the amount of recovered heat unless it is a cheaper device, and a significant reduction in the cost of the generator is an exhaust heat driven absorption refrigeration system. It has been demanded.

これに対し、以上のような構成の場合、冷媒蒸気発生手段である発生器11の外部に位置して、発生器11とは全く別体に構成された上記冷媒熱回収用熱交換器10部分で、吸収器13の出口から発生器11側に供給される低温の吸収希溶液により、蒸気圧縮式冷凍機X側の圧縮機1から吐出された高温の圧縮冷媒が効率良く冷却された後に、吸収式冷凍機Yの蒸発器に供給されて冷却又は過冷却されるとともに、それによって同吸収希溶液が高温状態に加熱された後に、上記冷媒熱回収用熱交換器10の出口側溶液配管27を介して発生器11内に供給され、効果的にフラッシングして、冷媒蒸気と吸収濃溶液とに気液分離される。   On the other hand, in the case of the configuration as described above, the refrigerant heat recovery heat exchanger 10 portion which is located outside the generator 11 which is the refrigerant vapor generating means and is completely separate from the generator 11. Thus, after the high-temperature compressed refrigerant discharged from the compressor 1 on the vapor compression refrigerator X side is efficiently cooled by the low-temperature absorbing dilute solution supplied from the outlet of the absorber 13 to the generator 11 side, After being supplied to the evaporator of the absorption refrigeration machine Y and cooled or supercooled and thereby the absorption diluted solution is heated to a high temperature state, the outlet side solution pipe 27 of the heat exchanger 10 for recovering refrigerant heat is used. The gas is supplied into the generator 11 through an effective flushing and gas-liquid separation into a refrigerant vapor and an absorption concentrated solution.

したがって、同構成によると、冷房運転時における蒸気圧縮式冷凍機X側圧縮冷媒の熱(放熱もしくは凝縮する際の熱量の全て)を吸収式冷凍機Y側の駆動熱源として有効に活用することができるようになり、その分吸収式冷凍機の冷凍能力を増大させることができる。   Therefore, according to the same configuration, the heat of the vapor compression refrigeration machine X side compressed refrigerant during cooling operation (all the amount of heat when radiating or condensing) can be effectively used as a drive heat source on the absorption refrigeration machine Y side. As a result, the refrigerating capacity of the absorption refrigerator can be increased accordingly.

また、外部排熱源がない場合にも、安定した吸収冷凍作用を確保することができる。   Further, even when there is no external exhaust heat source, a stable absorption refrigeration action can be ensured.

特に上記蒸気圧縮式冷凍機X側の圧縮冷媒は、上記のように吸収希溶液側に熱が奪われることにより冷却されて温度が低下した後に、さらに吸収式冷凍機Y側の蒸発器14に供給されて過冷却される。したがって、上記冷媒熱回収用熱交換器10がない場合に比べて、より有効に圧縮冷媒が過冷却され、利用側熱交換器3に供給される液冷媒の温度を有効に低下させることができる。その結果、利用側熱交換器の冷房性能が十分に向上する。   In particular, the compressed refrigerant on the vapor compression refrigeration machine X side is cooled by the heat deprived to the absorption dilute solution side as described above and the temperature is lowered, and then the refrigerant is further transferred to the evaporator 14 on the absorption refrigeration machine Y side. Supplied and supercooled. Therefore, compared with the case where there is no heat exchanger 10 for recovering refrigerant heat, the compressed refrigerant is more effectively subcooled, and the temperature of the liquid refrigerant supplied to the use side heat exchanger 3 can be effectively reduced. . As a result, the cooling performance of the use side heat exchanger is sufficiently improved.

それらの結果、従来のような蒸気圧縮式冷凍機X側の圧縮冷媒の冷媒熱放熱用熱交換器が不要になるとともに、吸収式冷凍機Y側発生器も不用で、単に発生器11も希液分離するだけで良く、シンプルかつ低コストな構成のもので足りるようになる。   As a result, the conventional heat exchanger for heat dissipation of the compressed refrigerant on the vapor compression refrigeration machine X side becomes unnecessary, the absorption refrigeration machine Y side generator is unnecessary, and the generator 11 is also rare. It is only necessary to separate the liquid, and a simple and low-cost configuration is sufficient.

さらに、上記のように、上記蒸気圧縮式冷凍機Xの膨張前の冷媒を上記吸収式冷凍機Yの蒸発器14によって過冷却するようにすると、従来のように吸収式冷凍機Yの蒸発器14に冷却水を循環させて過冷却する場合に比較して、該蒸発器14における冷媒の蒸発温度を高くすることができる。   Further, when the refrigerant before expansion of the vapor compression refrigerator X is supercooled by the evaporator 14 of the absorption refrigerator Y as described above, the evaporator of the absorption refrigerator Y as in the prior art. Compared with the case where the cooling water is circulated through the condenser 14 and supercooled, the evaporation temperature of the refrigerant in the evaporator 14 can be increased.

その結果、吸収式冷凍機Yを可及的に小型化することができ、また冷熱を有効に利用することができるようになる。   As a result, the absorption refrigerator Y can be reduced in size as much as possible, and cold energy can be used effectively.

(実施の形態2)
次に図2は、本願発明の実施の形態2に係る冷凍装置の構成を示している。
(Embodiment 2)
Next, FIG. 2 shows a configuration of a refrigeration apparatus according to Embodiment 2 of the present invention.

この実施の形態の場合にも、上記実施の形態1のものと同様に、蒸気圧縮式冷凍機と該蒸気圧縮式冷凍機の排熱で駆動される吸収式冷凍機とを外部設置型の冷媒熱回収用熱交換器を介して組み合わせ、冷房運転時、圧縮式冷凍機側の圧縮後の冷媒と吸収式冷凍機側吸収器からの吸収希溶液とを熱交換させ、圧縮冷媒の熱により吸収式冷凍機の吸収希溶液の温度を高くした上で吸収式冷凍機の発生器に流入させて吸収式冷凍機を駆動するようにすることにより、吸収式冷凍機の発生器部分を単に吸収希溶液から冷媒蒸気を分離することで足りる気液分離器により構成する一方、それにより併せて蒸気圧縮式冷凍機の圧縮冷媒を冷却することによって蒸気圧縮式冷凍機側圧縮冷媒の冷却性能を向上させ、蒸気圧縮式冷凍機側圧縮冷媒の放熱用熱交換器を不要にしている。   Also in the case of this embodiment, as in the first embodiment, a vapor compression refrigerator and an absorption refrigerator driven by the exhaust heat of the vapor compression refrigerator are externally installed type refrigerants. Combined via a heat recovery heat exchanger, during cooling operation, heat is exchanged between the compressed refrigerant on the compression refrigeration machine side and the diluted diluted solution from the absorption chiller side absorber, and is absorbed by the heat of the compressed refrigerant By increasing the temperature of the absorption diluting solution of the refrigerator and then flowing it into the generator of the absorption refrigerator to drive the absorption refrigerator, the generator part of the absorption refrigerator is simply absorbed and diluted. While it consists of a gas-liquid separator that only needs to separate the refrigerant vapor from the solution, it also improves the cooling performance of the vapor compression refrigerator side compressed refrigerant by cooling the compressed refrigerant of the vapor compression refrigerator , Heat exchange for heat dissipation of compressed refrigerant on the vapor compression refrigerator side And eliminates the need for vessel.

そして、その場合において、この実施の形態2では、例えば図2に詳細に示すように、上述の実施の形態1における冷媒熱回収用熱交換器10の外周側吸収希溶液通路8部分を、圧縮冷媒の流れる方向に沿って上流側8A部分と下流側8B部分との2つの部分に分け、同2つの吸収希溶液通路8A,8B部分を相対的に径が小さい所定の径の連通路29で相互に連通させることによって、上流側熱交換器10Aと下流側熱交換器10Bとの2つの熱交換器とし、吸収器13の出口配管24側から溶液配管26,26B(分岐管)を介して発生器11側に供給される溶液熱交換器16を通す前の吸収希溶液の一部を下流側熱交換器10Bの吸収希溶液通路8Bの下流端に供給して、同下流側吸収希溶液通路8Bの下流端側から上流側吸収希溶液通路8Aの上流端方向に高温の蒸気圧縮式冷凍機側圧縮冷媒(CO2冷媒)の流れと対向するように流し、また溶液熱交換器16を通して吸収希溶液と熱交換した吸収希溶液の全て(残りの吸収希溶液)を溶液配管26Aを介して上流側熱交換器10Aの吸収希溶液通路8Aの下流端側に(冷媒熱回収用熱交換器10全体の途中に)供給して、同上流側吸収希溶液通路8Aの下流端側から上流端方向に高温の蒸気圧縮式冷凍機側圧縮冷媒(CO2冷媒)の流れと対向するように流す。 In this case, in this second embodiment, as shown in detail in FIG. 2, for example, the outer peripheral absorption diluted solution passage 8 portion of the refrigerant heat recovery heat exchanger 10 in the first embodiment is compressed. The upstream 8A portion and the downstream 8B portion are divided into two portions along the refrigerant flow direction, and the two absorbing dilute solution passages 8A and 8B are separated by a communication passage 29 having a relatively small diameter. By communicating with each other, two heat exchangers, an upstream heat exchanger 10A and a downstream heat exchanger 10B, are formed, and from the outlet pipe 24 side of the absorber 13 through solution pipes 26 and 26B (branch pipes). A part of the absorption diluted solution before passing through the solution heat exchanger 16 supplied to the generator 11 side is supplied to the downstream end of the absorption diluted solution passage 8B of the downstream heat exchanger 10B, and the downstream absorption diluted solution is supplied. Absorbing diluted solution from the downstream end side of the passage 8B to the upstream side Flowed into the upstream end direction of the road 8A so as to face the flow of the hot vapor compression type refrigerator side compressed refrigerant (CO 2 refrigerant), and all of the absorbent dilute solution exchanging heat absorption dilute solution through the solution heat exchanger 16 (Remaining absorption dilute solution) is supplied to the downstream end side of the absorption dilute solution passage 8A of the upstream heat exchanger 10A (in the middle of the whole refrigerant heat recovery heat exchanger 10) via the solution pipe 26A. The upstream absorbing dilute solution passage 8A is flowed from the downstream end side to the upstream end direction so as to face the flow of the high-temperature vapor compression refrigerator side compressed refrigerant (CO 2 refrigerant).

このように、冷媒熱回収用熱交換器10(具体的には、その吸収希溶液が流れる希溶液通路8部分)を上流側部分10A(8A)と下流側部分10B(8B)に分割し、それらの間を通路径が縮小した連通路29で連通させるとともに、それら各々の下流端部分に溶液熱交換器16前後の各吸収希溶液を流入させ、それぞれ有効な温度差を取りながら段階的に時間をかけて吸収希溶液を流すようにすると、下流側熱交換器10B(8B)、上流側熱交換器10A(8A)それぞれの通路部分で熱回収に有効な温度勾配を確保することができるとともに、それぞれの通路内での吸収希溶液の滞留時間が長くなり、対応する下流側熱交換部6B,上流側熱交換部6Aとの熱交換時間も長くなる。   Thus, the refrigerant heat recovery heat exchanger 10 (specifically, the diluted solution passage 8 portion through which the absorbed diluted solution flows) is divided into the upstream portion 10A (8A) and the downstream portion 10B (8B), While communicating with each other through a communication passage 29 having a reduced passage diameter, the respective absorption dilute solutions before and after the solution heat exchanger 16 are caused to flow into the downstream end portions of the respective passages while taking effective temperature differences step by step. When the absorbing dilute solution is allowed to flow over time, a temperature gradient effective for heat recovery can be secured in each of the passage portions of the downstream heat exchanger 10B (8B) and the upstream heat exchanger 10A (8A). At the same time, the residence time of the absorbed dilute solution in each passage becomes longer, and the heat exchange time with the corresponding downstream heat exchange section 6B and upstream heat exchange section 6A also becomes longer.

そして、それによって溶液熱交換器16を通す前の低温の吸収希溶液を高温の圧縮冷媒(CO2冷媒)と効率良く熱交換させ、より有効に圧縮冷媒の熱を回収して十分に昇温させた後に、吸収希溶液を溶液配管27を介して発生器11内に供給し、発生器11内で効率良くフラッシングさせて気液分離させる一方、蒸気圧縮式冷凍機X側圧縮冷媒の温度を有効に低下させた上で蒸発器14に供給し、より効果的に過冷却するようにしたことを特徴とするものである。 Then, the low-temperature absorption dilute solution before passing through the solution heat exchanger 16 is efficiently heat-exchanged with the high-temperature compressed refrigerant (CO 2 refrigerant), and the heat of the compressed refrigerant is recovered more effectively to sufficiently raise the temperature. After the absorption dilute solution is supplied into the generator 11 via the solution pipe 27, the generator 11 is flushed efficiently for gas-liquid separation, while the temperature of the vapor compression refrigeration machine X side compressed refrigerant is increased. It is characterized by being effectively lowered and then supplied to the evaporator 14 for more effective supercooling.

このように、冷媒熱回収用熱交換器10を圧縮冷媒の流れる上流側から下流側方向にかけて複数段に分割し、吸収器13の出口側から溶液配管24,26、溶液熱交換器16を介して発生器11側に供給される全吸収希溶液の内、溶液熱交換器16に入る前の吸収希溶液を上記圧縮冷媒下流側の段の冷媒熱回収用熱交換器10Bに、また溶液熱交換器16を通して発生器11からの吸収濃溶液の熱を回収した残りの吸収希溶液の全てを上記圧縮冷媒上流側の冷媒熱回収用熱交換器10Aにそれぞれ流入させるようにした場合、溶液熱交換器16を通っていない最も温度が低い吸収希溶液が圧縮冷媒下流側から上流側までの冷媒熱回収用熱交換器10B,10Aの全体で、また溶液熱交換器16を通して熱回収され、相対的に温度が高くなった残りの吸収希溶液の全てが、より高温の圧縮冷媒上流側の冷媒熱回収用熱交換器10Aで、それぞれ熱回収に有効な温度差を保って効果的に圧縮冷媒の熱を回収することができるので、吸収濃溶液および圧縮冷媒からの熱の回収度合が向上して、一層吸収希溶液の温度が高くなり、より有効な冷媒蒸気の分離効果、吸収溶液の濃縮効果、圧縮冷媒の冷却効果を得ることができる。   As described above, the refrigerant heat recovery heat exchanger 10 is divided into a plurality of stages from the upstream side to the downstream side where the compressed refrigerant flows, and from the outlet side of the absorber 13 via the solution pipes 24 and 26 and the solution heat exchanger 16. Among the total absorbed diluted solution supplied to the generator 11 side, the absorbed diluted solution before entering the solution heat exchanger 16 is transferred to the refrigerant heat recovery heat exchanger 10B on the downstream side of the compressed refrigerant, and the solution heat When all of the remaining absorbed diluted solution from which the heat of the absorbed concentrated solution from the generator 11 has been recovered through the exchanger 16 is caused to flow into the refrigerant heat recovery heat exchanger 10A on the upstream side of the compressed refrigerant, the solution heat The absorption dilute solution having the lowest temperature that does not pass through the exchanger 16 is heat-recovered throughout the refrigerant heat recovery heat exchangers 10B and 10A from the downstream side to the upstream side of the compressed refrigerant and through the solution heat exchanger 16, and Temperature increased All of the diluted solution can effectively recover the heat of the compressed refrigerant while maintaining the temperature difference effective for heat recovery in the refrigerant heat recovery heat exchanger 10A on the upstream side of the higher-temperature compressed refrigerant. As a result, the degree of heat recovery from the absorbing concentrated solution and the compressed refrigerant is improved, and the temperature of the absorbing dilute solution is further increased, and more effective refrigerant vapor separation effect, absorbing solution concentration effect, and compressed refrigerant cooling effect are achieved. Can be obtained.

また、実施の形態1の場合と同様に、従来のような蒸気圧縮式冷凍機の放熱用の熱交換器の削減が可能となり、吸収式冷凍機による冷熱変換が有効に利用可能となるので、蒸気圧縮式冷凍機の性能も大幅に改善される。   Further, as in the case of the first embodiment, it is possible to reduce the heat exchanger for heat dissipation of the conventional vapor compression refrigerator, and the heat conversion by the absorption refrigerator can be effectively used. The performance of the vapor compression refrigerator is also greatly improved.

その他の部分の構成は、上述した実施の形態1のものと同様であり、同様の作用効果を奏する。   The structure of other parts is the same as that of the first embodiment described above, and has the same effects.

(変形例)
なお、以上の構成に対して、上記冷媒熱回収用熱交換器10は、上記実施の形態1のものと同様の単体構造とし、その希溶液通路8の下流端部と中間部(途中)に、それぞれ上述の溶液配管26B,26Aの下流側を接続することによって、上記と略同様の作用を得るようにしても良い。
(Modification)
In addition, with respect to the above configuration, the refrigerant heat recovery heat exchanger 10 has a single unit structure similar to that of the first embodiment, and is provided at the downstream end portion and the intermediate portion (midway) of the dilute solution passage 8. By connecting the downstream sides of the solution pipes 26B and 26A, respectively, the same operation as described above may be obtained.

(実施の形態3)
次に図3は、本願発明の実施の形態3に係る冷凍装置の構成を示している。
(Embodiment 3)
Next, FIG. 3 shows a configuration of a refrigeration apparatus according to Embodiment 3 of the present invention.

この実施の形態の場合にも、上記実施の形態1のものと同様に、蒸気圧縮式冷凍機と該蒸気圧縮式冷凍機の排熱で駆動される吸収式冷凍機とを外部設置型の冷媒熱回収用熱交換器を介して組み合わせ、冷房運転時、圧縮式冷凍機側の圧縮後の冷媒と吸収式冷凍機側吸収器からの吸収希溶液とを熱交換させ、圧縮冷媒の熱により吸収式冷凍機の吸収希溶液の温度を高くした上で吸収式冷凍機の発生器に流入させて吸収式冷凍機を駆動するようにすることにより、吸収式冷凍機の発生器を単に吸収希溶液から冷媒蒸気を分離すれば足りる気液分離器により構成する一方、それにより併せて蒸気圧縮式冷凍機の圧縮冷媒を冷却することによって蒸気圧縮式冷凍機側圧縮冷媒の冷却性能を向上させ、蒸気圧縮式冷凍機側圧縮冷媒の放熱用熱交換器を不要にしている。   Also in the case of this embodiment, as in the first embodiment, a vapor compression refrigerator and an absorption refrigerator driven by the exhaust heat of the vapor compression refrigerator are externally installed type refrigerants. Combined via a heat recovery heat exchanger, during cooling operation, heat is exchanged between the compressed refrigerant on the compression refrigeration machine side and the diluted diluted solution from the absorption chiller side absorber, and is absorbed by the heat of the compressed refrigerant The absorption chiller generator is simply absorbed into the absorption chiller generator by driving the absorption chiller by increasing the temperature of the absorption chiller solution of the refrigerator and then flowing it into the generator of the absorption chiller. While it is configured with a gas-liquid separator that only needs to separate the refrigerant vapor from the refrigerant, it also improves the cooling performance of the vapor compression refrigerator side compressed refrigerant by cooling the compressed refrigerant of the vapor compression refrigerator, Do not install a heat exchanger for heat dissipation of the compressed refrigerant on the compression refrigerator side. It has to.

そして、その場合において、上記実施の形態2の場合と同様に、上記冷媒熱回収用熱交換器10部分を、例えば図3に示すように、蒸気圧縮式冷凍機Xの圧縮機1吐出側冷媒配管5a途中の熱交換部6を上流側6Aと下流側6Bとの2つの部分に分けるとともに、それらの各々の外周側吸収希溶液通路8部分も上流側、下流側の2つの部分8A,8Bに分け、同吸収希溶液通路8A,8B部分を所定の太さの連通パイプ29で相互に連通させて、下流側通路8B下流端側から上流側通路8A方向に溶液熱交換器16を通す前の吸収希溶液を溶液配管(分岐管)26Bを介して、また上流側通路8Aの下流端から上流側通路8Aの上流端方向に溶液熱交換器16を通した吸収希溶液の内の溶液配管26Aを介して直接発生器11に供給されるものを除いた吸収希溶液を溶液配管(分岐管)26Cを介して、それぞれ供給し、それぞれ圧縮冷媒の流れと対向させて流すように構成している。   In that case, as in the case of the second embodiment, the refrigerant heat recovery heat exchanger 10 portion is replaced with the refrigerant on the discharge side of the compressor 1 of the vapor compression refrigerator X as shown in FIG. The heat exchanging part 6 in the middle of the pipe 5a is divided into two parts, an upstream side 6A and a downstream side 6B, and each of the outer peripheral absorption dilute solution passage 8 parts is also divided into two parts 8A and 8B on the upstream side and downstream side. And before the solution heat exchanger 16 is passed from the downstream end of the downstream passage 8B toward the upstream passage 8A from the downstream end of the downstream passage 8B. The solution pipe in the absorbed dilute solution passes through the solution heat exchanger 16 through the solution pipe (branch pipe) 26B and from the downstream end of the upstream passage 8A toward the upstream end of the upstream passage 8A. Directly supplied to the generator 11 via 26A. Via absorption dilute solution solution pipe (branch pipe) 26C excluding supplies respectively, and configured to flow is opposed to the flow of each compressed refrigerant.

このように、冷媒熱回収用熱交換器10を圧縮冷媒の流れる上流側から下流側方向にかけて複数段に分割し、吸収器13の出口配管24側から溶液配管26、溶液熱交換器16を介して発生器11側に供給される吸収希溶液の内、溶液熱交換器16に入る前の吸収希溶液を溶液配管(分岐管)26Bを介して上記圧縮冷媒下流側の段の冷媒熱回収用熱交換器10Bに、また溶液熱交換器16を通して発生器11からの吸収濃溶液の熱を回収した吸収希溶液の一部を溶液配管(分岐管)26Cを介して上記圧縮冷媒上流側の冷媒熱回収用熱交換器10Aにそれぞれ流入させるようにした場合、実施の形態2の場合と同様に、溶液熱交換器16を通っていない最も温度が低い吸収希溶液が圧縮冷媒下流側から上流側までの冷媒熱回収用熱交換器10B,10Aの全体で、また溶液熱交換器16を通して熱回収され、相対的に温度が高くなった残りの吸収希溶液の一部が、より高温の圧縮冷媒上流側の冷媒熱回収用熱交換器10Aで、それぞれ熱回収に有効な温度差を保って効果的に圧縮冷媒の熱を回収することができるので、吸収濃溶液および圧縮冷媒からの熱の回収度合が向上して、一層吸収希溶液の温度が高くなり、より有効な冷媒蒸気の分離効果、吸収溶液の濃縮効果、圧縮冷媒の冷却効果を得ることができる。   In this way, the refrigerant heat recovery heat exchanger 10 is divided into a plurality of stages from the upstream side to the downstream side where the compressed refrigerant flows, and from the outlet pipe 24 side of the absorber 13 via the solution pipe 26 and the solution heat exchanger 16. Of the absorbed dilute solution supplied to the generator 11 side, the absorbed dilute solution before entering the solution heat exchanger 16 is used for refrigerant heat recovery at the downstream side of the compressed refrigerant through the solution pipe (branch pipe) 26B. A part of the absorbed dilute solution obtained by recovering the heat of the absorbed concentrated solution from the generator 11 through the solution heat exchanger 16 through the heat exchanger 10B is passed through a solution pipe (branch pipe) 26C to the refrigerant on the upstream side of the compressed refrigerant. When each of the heat recovery heat exchangers 10A is allowed to flow, the absorption dilute solution having the lowest temperature that does not pass through the solution heat exchanger 16 is upstream from the downstream side of the compressed refrigerant, as in the second embodiment. Heat exchanger for recovering refrigerant heat up to 1 B, 10A as a whole, and heat recovery through the solution heat exchanger 16, and a part of the remaining absorbed dilute solution having a relatively high temperature is used for heat exchange for refrigerant heat recovery upstream of the higher-temperature compressed refrigerant. Since the heat of the compressed refrigerant can be effectively recovered while maintaining the temperature difference effective for heat recovery in each of the vessels 10A, the degree of heat recovery from the concentrated concentrated solution and the compressed refrigerant is improved, and the absorption rare The temperature of the solution is increased, and more effective refrigerant vapor separation effect, absorption solution concentration effect, and compressed refrigerant cooling effect can be obtained.

また、実施の形態1の場合と同様に、従来のような蒸気圧縮式冷凍機の放熱用の熱交換器の削減が可能となり、吸収式冷凍機による冷熱変換が有効に利用可能となる。   Further, as in the case of the first embodiment, it is possible to reduce the heat exchanger for heat dissipation of the conventional vapor compression refrigerator, and it is possible to effectively use the cold heat conversion by the absorption refrigerator.

もちろん、この構成の場合、吸収器13の出口配管24側から溶液配管26を介して発生器11側に供給される吸収希溶液の全てを圧縮冷媒の熱で昇温させるわけではないが、溶液熱交換器16を介してそのまま発生器11に供給される吸収希溶液は、一旦吸収濃溶液と熱交換されて十分に昇温されているので、発生器11内に入ると、ほぼ実施の形態2のものと同等に吸収液の濃縮に寄与する効果を得ることができる。   Of course, in this configuration, not all of the absorbed dilute solution supplied from the outlet pipe 24 side of the absorber 13 to the generator 11 side via the solution pipe 26 is heated by the heat of the compressed refrigerant. Since the absorption dilute solution supplied to the generator 11 as it is through the heat exchanger 16 is heat-exchanged once with the absorption concentrated solution and sufficiently heated, when entering the generator 11, it is almost the embodiment. The effect which contributes to concentration of an absorption liquid can be acquired like 2 things.

その他の部分の構成は、上述した実施の形態1,2のものと全く同様であり、同様の作用効果を奏する。   The configuration of the other parts is exactly the same as that of the first and second embodiments, and provides the same operational effects.

(実施の形態4)
次に図4は、本願発明の実施の形態4に係る冷凍装置の構成を示している。
(Embodiment 4)
Next, FIG. 4 shows a configuration of a refrigeration apparatus according to Embodiment 4 of the present invention.

この実施の形態の場合にも、上記実施の形態1,2,3のものと同様に、蒸気圧縮式冷凍機と該蒸気圧縮式冷凍機の排熱で駆動される吸収式冷凍機とを冷媒熱回収用熱交換器を介して組み合わせ、冷房運転時、圧縮式冷凍機側の圧縮後の冷媒と吸収式冷凍機側吸収器からの吸収希溶液とを熱交換させ、圧縮冷媒の熱により吸収式冷凍機の吸収希溶液の温度を高くした上で吸収式冷凍機の冷媒蒸気発生部に流入させて吸収式冷凍機を駆動するようにすることにより、吸収式冷凍機の冷媒蒸気発生器を吸収希溶液から冷媒蒸気を分離することができる気液分離器で足りるようにする一方、それにより併せて蒸気圧縮式冷凍機の圧縮冷媒を冷却することによって蒸気圧縮式冷凍機側の冷凍性能を向上させ、蒸気圧縮式冷凍機側圧縮冷媒の放熱用熱交換器を不要にしている。   Also in the case of this embodiment, as in the first, second, and third embodiments, the vapor compression refrigerator and the absorption refrigerator driven by the exhaust heat of the vapor compression refrigerator are used as refrigerant. Combined via a heat recovery heat exchanger, during cooling operation, heat is exchanged between the compressed refrigerant on the compression refrigeration machine side and the diluted diluted solution from the absorption chiller side absorber, and is absorbed by the heat of the compressed refrigerant The refrigerant vapor generator of the absorption refrigeration machine is driven by driving the absorption chiller by increasing the temperature of the absorption diluted solution of the refrigeration refrigerator and then flowing it into the refrigerant vapor generation part of the absorption chiller. While a gas-liquid separator capable of separating the refrigerant vapor from the absorbed dilute solution is sufficient, the refrigeration performance on the side of the vapor compression refrigerator is thereby reduced by cooling the compressed refrigerant of the vapor compression refrigerator. Improved heat exchange for heat dissipation of the compressed refrigerant on the vapor compression refrigerator side And eliminates the need for vessel.

そして、その場合において、この実施の形態4では、上記蒸気圧縮式冷凍機Xを複数台X1,X2分設け、それらの各々に上記同様の冷媒熱回収用熱交換器10,10・・を設けた上で、各実施の形態同様の一台の吸収式冷凍機Yに共通に組み合わせて構成したことを特徴とするものである(但し、図4の構成では、一例として上述の実施の形態1に適用した場合で例示)。 In this case, in the fourth embodiment, a plurality of the vapor compression refrigeration machines X are provided for X 1 and X 2 , and the same refrigerant heat recovery heat exchangers 10, 10. In addition, it is characterized in that it is configured in combination with one absorption refrigerator Y similar to each embodiment (however, in the configuration of FIG. Example when applied to Form 1).

このような構成によると、上述の実施の形態1〜3の各々の構成による作用効果が得られることはもちろん、蒸気圧縮式冷凍機X側圧縮冷媒の排熱量が大きく増大するので、それに応じて吸収式冷凍機Y側の駆動能力も大きく増大させることができ、より性能が向上する。   According to such a configuration, the effects of the configurations of the above-described first to third embodiments can be obtained, and the amount of exhaust heat of the vapor compression refrigeration machine X-side compressed refrigerant greatly increases. The driving capacity on the absorption refrigerator Y side can be greatly increased, and the performance is further improved.

1は圧縮機、2は膨張弁、3は利用側熱交換器、4はアキュムレータ、5a,5bは蒸気圧縮式冷凍機側冷凍回路の冷媒配管、6(6A,6B)は熱交換部、7は蒸発器の熱交換部、8(8A,8B)は冷媒熱回収用熱交換器の希溶液通路、10(10A,10B)は冷媒熱回収用熱交換器、11は発生器、12は空冷凝縮器、13は吸収器、14は蒸発器、15は空冷冷却器、17は溶液ポンプ、18は吸収器のプレート、X(X1,X2)は蒸気圧縮式冷凍機、Yは吸収式冷凍機である。 1 is a compressor, 2 is an expansion valve, 3 is a use side heat exchanger, 4 is an accumulator, 5a and 5b are refrigerant pipes of a vapor compression refrigerator side refrigeration circuit, 6 (6A, 6B) is a heat exchange section, 7 Is the heat exchanger of the evaporator, 8 (8A, 8B) is the dilute solution passage of the heat exchanger for refrigerant heat recovery, 10 (10A, 10B) is the heat exchanger for refrigerant heat recovery, 11 is the generator, 12 is air-cooled Condenser, 13 absorber, 14 evaporator, 15 air-cooled cooler, 17 solution pump, 18 absorber plate, X (X 1 , X 2 ) is a vapor compression refrigerator, Y is an absorption type It is a refrigerator.

Claims (8)

蒸気圧縮式冷凍機と該蒸気圧縮式冷凍機の排熱で駆動される吸収式冷凍機とを備えてなる冷凍装置であって、上記蒸気圧縮式冷凍機の圧縮後の冷媒の熱を上記吸収式冷凍機の吸収希溶液で回収する冷媒熱回収用熱交換器を設け、同冷媒熱回収用熱交換器により上記圧縮冷媒の熱を回収した吸収希溶液を上記吸収式冷凍機の発生器内に流入させ、冷媒蒸気を分離することによって、上記吸収式冷凍機の発生器を、流入した吸収希溶液から冷媒蒸気を分離するだけの気液分離器とする一方、上記蒸気圧縮式冷凍機の圧縮冷媒を冷却又は過冷却することによって上記蒸気圧縮式冷凍機の冷凍性能を向上させたことを特徴とする冷凍装置。   A refrigeration apparatus comprising a vapor compression refrigerator and an absorption refrigerator driven by exhaust heat of the vapor compression refrigerator, wherein the absorption of heat of the refrigerant after compression of the vapor compression refrigerator A refrigerant heat recovery heat exchanger that recovers with an absorption dilute solution of the refrigerator type refrigerator is provided, and the absorption dilute solution that has recovered the heat of the compressed refrigerant by the refrigerant heat recovery heat exchanger is contained in the generator of the absorption refrigerator. The absorption refrigeration generator generator is a gas-liquid separator that only separates the refrigerant vapor from the absorbed diluted solution, while separating the refrigerant vapor. A refrigeration apparatus characterized by improving the refrigeration performance of the vapor compression refrigerator by cooling or supercooling the compressed refrigerant. 吸収器に流入させる吸収液を過冷却する吸収液過冷却器と、吸収器から発生器に供給される吸収希溶液と発生器からの吸収濃溶液とを熱交換する溶液熱交換器とを設け、吸収器出口側の吸収希溶液を、それら吸収液過冷却器、溶液熱交換器、冷媒熱回収用熱交換器の各々に分流させる一方、上記吸収器では、吸収液過冷却器を介して過冷却した上で流入させた吸収液の顕熱で吸収液に冷媒蒸気を吸収させるようにしたことを特徴とする請求項1記載の冷凍装置。   An absorption liquid supercooler that supercools the absorption liquid flowing into the absorber and a solution heat exchanger that exchanges heat between the absorption diluted solution supplied from the absorber to the generator and the absorption concentrated solution from the generator are provided. The absorption dilute solution at the outlet side of the absorber is divided into each of the absorption liquid supercooler, the solution heat exchanger, and the refrigerant heat recovery heat exchanger. 2. The refrigeration apparatus according to claim 1, wherein the refrigerant vapor is absorbed by the absorption liquid by the sensible heat of the absorption liquid that has flowed in after being supercooled. 溶液熱交換器を介して発生器からの吸収濃溶液と熱交換された吸収希溶液を冷媒熱回収用熱交換器に流入させるようにしたことを特徴とする請求項2記載の冷凍装置。   3. The refrigeration apparatus according to claim 2, wherein the absorption diluted solution from the generator and the absorption diluted solution exchanged through the solution heat exchanger are caused to flow into the refrigerant heat recovery heat exchanger. 溶液熱交換器を介して発生器からの吸収濃溶液と熱交換された吸収希溶液を発生器と冷媒熱回収用熱交換器の各々に流入させるようにしたことを特徴とする請求項2記載の冷凍装置。   3. The absorption dilute solution heat-exchanged with the absorption concentrated solution from the generator through the solution heat exchanger is caused to flow into each of the generator and the refrigerant heat recovery heat exchanger. Refrigeration equipment. 冷媒熱回収用熱交換器を圧縮冷媒の上流側から下流側方向にかけて複数段に分割し、吸収器から溶液熱交換器を介して発生器に到る吸収希溶液の内、溶液熱交換器に入る前の吸収希溶液を上記圧縮冷媒下流側の段の冷媒熱回収用熱交換器に、また溶液熱交換器を出た吸収希溶液を上記圧縮冷媒上流側の冷媒熱回収用熱交換器に、それぞれ流入させるようにしたことを特徴とする請求項2記載の冷凍装置。   The refrigerant heat recovery heat exchanger is divided into a plurality of stages from the upstream side to the downstream side of the compressed refrigerant, and the solution is exchanged from the absorber to the generator through the solution heat exchanger to the solution heat exchanger. The absorbed dilute solution before entering the refrigerant heat recovery heat exchanger at the downstream side of the compressed refrigerant, and the absorbed dilute solution exiting the solution heat exchanger into the refrigerant heat recovery heat exchanger at the upstream side of the compressed refrigerant. The refrigeration apparatus according to claim 2, wherein each of the refrigeration apparatuses is allowed to flow. 冷媒熱回収用熱交換器を圧縮冷媒の上流側から下流側方向にかけて複数段に分割し、吸収器から溶液熱交換器を介して発生器に到る吸収希溶液の内、溶液熱交換器に入る前の吸収希溶液を上記圧縮冷媒下流側の段の冷媒熱回収用熱交換器に、また溶液熱交換器を出た吸収希溶液を発生器と上記圧縮冷媒上流側の冷媒熱回収用熱交換器に各々流入させるようにしたことを特徴とする請求項2記載の冷凍装置。   The refrigerant heat recovery heat exchanger is divided into a plurality of stages from the upstream side to the downstream side of the compressed refrigerant, and the solution is exchanged from the absorber to the generator through the solution heat exchanger to the solution heat exchanger. The absorbed diluted solution before entering the refrigerant heat recovery heat exchanger in the downstream stage of the compressed refrigerant, and the absorbed diluted solution exiting the solution heat exchanger is used as the heat for recovering the refrigerant heat upstream of the generator and the compressed refrigerant upstream. 3. The refrigeration apparatus according to claim 2, wherein each of the refrigeration apparatuses flows into the exchanger. 蒸発器は、冷媒液が蒸発器の伝熱面を一過性で流れるようになっており、同伝熱面を流下した未蒸発の冷媒液は、吸収器側に移動して吸収器を流下した吸収溶液に吸収されるようになっていることを特徴とする請求項1,2,3,4,5又は6記載の冷凍装置。   In the evaporator, the refrigerant liquid flows temporarily on the heat transfer surface of the evaporator, and the unevaporated refrigerant liquid flowing down the heat transfer surface moves to the absorber side and flows down the absorber. The refrigeration apparatus according to claim 1, wherein the refrigeration apparatus is adapted to be absorbed by the absorbed solution. 複数台の蒸気圧縮式冷凍機と、それら各蒸気圧縮式冷凍機に対応した冷媒熱回収用熱交換器とを備え、各蒸気圧縮式冷凍機の圧縮冷媒の熱を回収して対応する吸収式冷凍機駆動用の熱源として利用するようにしたことを特徴とする請求項1,2,3,4,5,6又は7記載の冷凍装置。   A plurality of vapor compression refrigeration units and a heat exchanger for recovering refrigerant heat corresponding to each of these vapor compression refrigeration units, recovering the heat of the compressed refrigerant of each vapor compression refrigeration unit and corresponding absorption type 8. The refrigeration apparatus according to claim 1, wherein the refrigeration apparatus is used as a heat source for driving a refrigerator.
JP2009097165A 2009-04-13 2009-04-13 Refrigeration equipment Expired - Fee Related JP5402187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009097165A JP5402187B2 (en) 2009-04-13 2009-04-13 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009097165A JP5402187B2 (en) 2009-04-13 2009-04-13 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2010249357A true JP2010249357A (en) 2010-11-04
JP5402187B2 JP5402187B2 (en) 2014-01-29

Family

ID=43311898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009097165A Expired - Fee Related JP5402187B2 (en) 2009-04-13 2009-04-13 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP5402187B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106091474A (en) * 2016-06-17 2016-11-09 珠海格力电器股份有限公司 Ammonia water absorption-compression type refrigeration/heat pump system and heat exchange method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1183234A (en) * 1997-09-03 1999-03-26 Yamaha Motor Co Ltd Combined heat transfer equipment
JP2001082823A (en) * 1999-09-14 2001-03-30 Art Plan:Kk Absorption type cooling and heating device
JP2003207223A (en) * 2002-01-16 2003-07-25 Ebara Corp Exhaust heat recovery-type refrigerating device
JP2004190885A (en) * 2002-12-09 2004-07-08 Ebara Corp Absorption compression refrigerating machine and refrigerating system
JP2004324977A (en) * 2003-04-24 2004-11-18 Sanyo Electric Co Ltd Absorption type refrigerating machine
JP2007263515A (en) * 2006-03-29 2007-10-11 Daikin Ind Ltd Evaporation/absorption unit for absorption refrigerating machine
JP2009002539A (en) * 2007-06-19 2009-01-08 Daikin Ind Ltd Exhaust-heat driving type absorption refrigerating device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1183234A (en) * 1997-09-03 1999-03-26 Yamaha Motor Co Ltd Combined heat transfer equipment
JP2001082823A (en) * 1999-09-14 2001-03-30 Art Plan:Kk Absorption type cooling and heating device
JP2003207223A (en) * 2002-01-16 2003-07-25 Ebara Corp Exhaust heat recovery-type refrigerating device
JP2004190885A (en) * 2002-12-09 2004-07-08 Ebara Corp Absorption compression refrigerating machine and refrigerating system
JP2004324977A (en) * 2003-04-24 2004-11-18 Sanyo Electric Co Ltd Absorption type refrigerating machine
JP2007263515A (en) * 2006-03-29 2007-10-11 Daikin Ind Ltd Evaporation/absorption unit for absorption refrigerating machine
JP2009002539A (en) * 2007-06-19 2009-01-08 Daikin Ind Ltd Exhaust-heat driving type absorption refrigerating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106091474A (en) * 2016-06-17 2016-11-09 珠海格力电器股份有限公司 Ammonia water absorption-compression type refrigeration/heat pump system and heat exchange method
CN106091474B (en) * 2016-06-17 2018-09-18 珠海格力电器股份有限公司 Ammonia water absorption-compression type refrigeration/heat pump system and heat exchange method

Also Published As

Publication number Publication date
JP5402187B2 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
JP2011133123A (en) Refrigerating cycle device
JP5375283B2 (en) Refrigeration equipment
JP5730028B2 (en) Heat source system
JP5402186B2 (en) Refrigeration equipment
JP5240040B2 (en) Refrigeration equipment
JP2006017350A (en) Refrigeration device
JP5261111B2 (en) Absorption refrigerator
JP5402187B2 (en) Refrigeration equipment
JPH0953864A (en) Engine type cooling device
WO2016199671A1 (en) Refrigeration system
JP5434207B2 (en) Refrigeration equipment
JP2009236440A (en) Gas heat pump type air conditioning device or refrigerating device
JP5310224B2 (en) Refrigeration equipment
JP5375284B2 (en) Refrigeration equipment
JP5229076B2 (en) Refrigeration equipment
JP2008020094A (en) Absorption type heat pump device
JP3859566B2 (en) Hybrid air conditioner
KR100827569B1 (en) Absorption refrigerating apparatus with heat pump
JP3821286B2 (en) Refrigeration system combining absorption type and compression type and its operating method
JP3892689B2 (en) Combined cooling device and cooling operation method thereof
JP3918980B2 (en) Refrigeration equipment
JP5434206B2 (en) Refrigeration equipment
JP4164929B2 (en) Absorption refrigeration apparatus and refrigeration system including the absorption refrigeration apparatus
JP2004198087A (en) Absorption refrigerating device, and absorption refrigerating system
JP4282818B2 (en) Combined cooling system and combined cooling method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111207

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130422

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131014

LAPS Cancellation because of no payment of annual fees