JP5375283B2 - Refrigeration equipment - Google Patents

Refrigeration equipment Download PDF

Info

Publication number
JP5375283B2
JP5375283B2 JP2009092902A JP2009092902A JP5375283B2 JP 5375283 B2 JP5375283 B2 JP 5375283B2 JP 2009092902 A JP2009092902 A JP 2009092902A JP 2009092902 A JP2009092902 A JP 2009092902A JP 5375283 B2 JP5375283 B2 JP 5375283B2
Authority
JP
Japan
Prior art keywords
refrigerant
solution
generator
vapor compression
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009092902A
Other languages
Japanese (ja)
Other versions
JP2010243079A (en
Inventor
満嗣 河合
啓介 谷本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2009092902A priority Critical patent/JP5375283B2/en
Publication of JP2010243079A publication Critical patent/JP2010243079A/en
Application granted granted Critical
Publication of JP5375283B2 publication Critical patent/JP5375283B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • Y02B30/625Absorption based systems combined with heat or power generation [CHP], e.g. trigeneration

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To drastically improve the performance of a vapor compression type refrigerating machine by the effective use of waste heat of the vapor compression type refrigerating machine and cold heat conversion by an absorption type refrigerating machine. <P>SOLUTION: This refrigerating device formed of a combination of the vapor compression type refrigerating machine and the absorption type refrigerating machine adopts a refrigerant cooling system cooling or supercooling the refrigerant of the vapor compression type refrigerating machine X during cooling operation by the evaporator E of the absorption type refrigerating machine Y. In order to use an amount of heat, that occurs when the heat of the refrigerant of the vapor compression type refrigerating machine X during cooling operation is radiated, as the heating source of the absorption type refrigerating machine Y, the refrigerant after compression in the vapor compression type refrigerating machine X is caused to flow in the heater g of the generator G of the absorption type refrigerating machine Y, and the refrigerant of the vapor compression type refrigerating machine X after heat exchange with an absorbent solution in the generator G of the absorption type refrigerating machine Y is caused to flow in the heat exchanger e of the evaporator E of the absorption type refrigerating machine Y. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本願発明は、冷凍装置に関し、さらに詳しくは蒸気圧縮式冷凍サイクルと吸収式冷凍サイクルとを組み合わせた冷凍装置に関するものである。   The present invention relates to a refrigeration apparatus, and more particularly to a refrigeration apparatus that combines a vapor compression refrigeration cycle and an absorption refrigeration cycle.

蒸気圧縮式冷凍機における性能を改善する一つの方法として、吸収式冷凍機を組み合わせることがあるが、ガスエンジンや他の排熱で吸収式冷凍機を駆動し、得られる冷熱を蒸気圧縮式冷凍機に取り込み、蒸気圧縮式冷凍機の性能を増加させることについては、従来から既に種々の方法が提案されてきている(例えば、特許文献1,2参照)。   One way to improve the performance of a vapor compression refrigerator is to combine an absorption refrigerator, but the absorption refrigerator is driven by a gas engine or other exhaust heat and the resulting cold is used as a vapor compression refrigerator. Various methods have already been proposed to increase the performance of a vapor compression refrigerator by taking it into the machine (see, for example, Patent Documents 1 and 2).

特開2004−28374号公報JP 2004-28374 A 特開2006−17350号公報JP 2006-17350 A

しかしながら、蒸気圧縮式冷凍機の排熱を利用し、吸収式冷凍機を駆動することについては、蒸気圧縮式冷凍機の排熱量が少なく、また排熱温度も低いため、吸収式冷凍機を駆動させることが困難であり、たとえ駆動ができても、その得られる効果は非常に少ないことから、コスト的にも大きな課題があり、検討されることもほとんどなかった。   However, driving the absorption chiller using the exhaust heat of the vapor compression refrigeration machine drives the absorption chiller because the exhaust heat amount of the vapor compression refrigeration machine is small and the exhaust heat temperature is low. Even if it can be driven, there are very few effects, so there are significant problems in terms of cost and there has been almost no study.

ところが、エネルギーコストの上昇や、自然冷媒を利用する空気調和機を開発するに際して、蒸気圧縮式冷凍機の性能改善が必要となり、蒸気圧縮式冷凍機自身の排熱を給湯や暖房ではなく、冷熱に変換して更に有効利用することが求められつつある。   However, when the energy cost rises and the development of air conditioners that use natural refrigerants, it is necessary to improve the performance of the vapor compression refrigeration machine. There is a growing demand for more effective use after conversion.

本願発明は、上記の点に鑑みてなされたもので、蒸気圧縮式冷凍機の排熱を有効に利用するとともに、吸収式冷凍機による冷熱変換で、蒸気圧縮式冷凍機の性能を大幅に改善することを目的としている。   The present invention has been made in view of the above points, and effectively uses the exhaust heat of the vapor compression refrigerator and significantly improves the performance of the vapor compression refrigerator by cooling with an absorption refrigerator. The purpose is to do.

本願発明では、上記課題を解決するための第1の手段として、蒸気圧縮式冷凍機Xと吸収式冷凍機Yとを組み合わせた冷凍装置において、冷房運転時における前記蒸気圧縮式冷凍機Xの冷媒を前記吸収式冷凍機Yの蒸発器Eで冷却、または過冷却する冷媒冷却方式を採用し、冷房運転時における前記蒸気圧縮式冷凍機Xの冷媒を放熱する際の熱量を前記吸収式冷凍機Yの加熱源として利用すべく、前記蒸気圧縮式冷凍機Xにおける圧縮後の冷媒を前記吸収式冷凍機Yの発生器Gの加熱器gに流入させるが、部分負荷など前記蒸気圧縮式冷凍機Xにおける圧縮機1の冷媒温度が低い場合には、前記蒸気圧縮式冷凍機Xの冷媒が前記吸収式冷凍機Yの発生器Gをバイパスするバイパス回路13を設け且つ該バイパス回路13に開閉弁14を付設するとともに、前記蒸気圧縮式冷凍機Xにおける前記バイパス回路13の入口冷媒温度が前記吸収式冷凍機Yにおける発生器Gの溶液温度を越えると、前記開閉弁14が閉作動するように構成し、前記吸収式冷凍機Yにおける発生器Gにおいて吸収溶液と前記蒸気圧縮式冷凍機Xの冷媒とが熱交換を行い、熱交換した後の蒸気圧縮式冷凍機Xの冷媒が、前記蒸気圧縮式冷凍機Xの熱源側熱交換器3に流入し、前記バイパス回路13の入口冷媒温度が前記吸収式冷凍機Yの発生器Gの冷媒温度以下であれば、前記バイパス回路13の開閉弁14が開作動し、該バイパス回路13によって前記圧縮式冷凍機Xの冷媒を、前記蒸気圧縮式冷凍機Xにおける熱源側熱交換器3に流入させる構成とし、前記蒸気圧縮式冷凍機Xに、暖房運転時に冷房運転時とは逆方向に冷媒を流通させるように冷媒流通方向を切り替える四路切換弁2を付設し、暖房運転時には、前記熱源側熱交換器3を機能させるように構成する一方、前記バイパス回路13の開閉弁14を前記蒸気圧縮式冷凍機Xの熱源側熱交換器3の冷媒出口温度が低くなり過ぎた場合に閉作動させ、前記蒸気圧縮式冷凍機Xの冷媒が前記発生器G内の加熱器gにて、前記吸収式冷凍機Yの溶液ポンプPlと前記空冷熱交換器8および該空冷熱交換器8に併設された冷却ファン10とを運転することで、前記発生器G内の溶液より吸熱し、溶液は前記空冷熱交換器8にて外気より吸熱するように構成するとともに、前記吸収器Aの出口から溶液ポンプPlを経て前記発生器Gに送られる希溶液と前記発生器Gからの濃溶液とを熱交換させる溶液熱交換器Haを付設し、該溶液熱交換器Haに至る配管16の途中に開閉弁17を介設するとともに、吸収溶液を過冷却させる前記空冷熱交換器8の出口から前記吸収器Aに至る溶液配管18と前記溶液熱交換器Haから前記発生器Gに至る希溶液配管19とを開閉弁20を介設した溶液配管21で接続し、冷房運転時には、前記溶液熱交換器Haに至る配管16の開閉弁17を開作動させ且つ前記溶液配管21の開閉弁20を閉作動させ、前記発生器Gの加熱器gをバイパスするバイパス回路13の開閉弁14を前記バイパス回路13の入口冷媒温度が前記発生器Gの溶液温度を越えると閉作動させるが、暖房運転時には、前記溶液熱交換器Haに至る配管16の開閉弁17を閉作動させ、前記溶液配管21の開閉弁20を開作動させ、前記発生器Gの加熱器gをバイパスするバイパス回路13の開閉弁14を前記蒸気圧縮式冷凍機Xの熱源側熱交換器3の冷媒出口温度が低くなり過ぎた場合に閉作動させるように構成している。 In the present invention, as a first means for solving the above-described problem, in the refrigeration apparatus in which the vapor compression refrigerator X and the absorption refrigerator Y are combined, the refrigerant of the vapor compression refrigerator X during the cooling operation is used. The refrigerant cooling method is employed in which the refrigerant is cooled or supercooled by the evaporator E of the absorption refrigeration machine Y, and the amount of heat when the refrigerant of the vapor compression refrigeration machine X is radiated during cooling operation is determined by the absorption refrigeration machine. In order to use as a heating source for Y, the refrigerant compressed in the vapor compression refrigerator X is caused to flow into the heater g of the generator G of the absorption refrigerator Y. When the refrigerant temperature of the compressor 1 in X is low, a bypass circuit 13 is provided in which the refrigerant of the vapor compression refrigerator X bypasses the generator G of the absorption refrigerator Y, and the on-off valve is provided in the bypass circuit 13 14 is attached The on-off valve 14 is closed when the inlet refrigerant temperature of the bypass circuit 13 in the vapor compression refrigerator X exceeds the solution temperature of the generator G in the absorption refrigerator Y, and In the generator G of the absorption refrigerator Y, the absorption solution and the refrigerant of the vapor compression refrigerator X exchange heat, and the refrigerant of the vapor compression refrigerator X after the heat exchange is the vapor compression refrigerator. If the inlet refrigerant temperature of the bypass circuit 13 is equal to or lower than the refrigerant temperature of the generator G of the absorption chiller Y, the on-off valve 14 of the bypass circuit 13 is opened. The refrigerant of the compression refrigeration machine X is caused to flow into the heat source side heat exchanger 3 in the vapor compression refrigeration machine X by the bypass circuit 13, and the vapor compression refrigeration machine X is cooled during heating operation. When driving Is provided with a four-way switching valve 2 for switching the refrigerant flow direction so that the refrigerant flows in the reverse direction, and is configured to function the heat source side heat exchanger 3 during heating operation, while opening and closing the bypass circuit 13 The valve 14 is closed when the refrigerant outlet temperature of the heat source side heat exchanger 3 of the vapor compression refrigeration machine X becomes too low, and the refrigerant of the vapor compression refrigeration machine X is heated by a heater in the generator G. g, the solution pump Pl of the absorption refrigeration machine Y, the air-cooled heat exchanger 8 and the cooling fan 10 provided in the air-cooled heat exchanger 8 are operated so that the solution in the generator G It absorbs heat, and the solution is configured to absorb heat from the outside air in the air-cooled heat exchanger 8, and from the outlet of the absorber A and the diluted solution sent to the generator G via the solution pump Pl and the generator G For heat exchange with a concentrated solution of A heat exchanger Ha is attached, an on-off valve 17 is provided in the middle of the pipe 16 leading to the solution heat exchanger Ha, and the absorber A is connected to the absorber A from the outlet of the air-cooled heat exchanger 8 that supercools the absorbed solution. The solution pipe 18 and the dilute solution pipe 19 extending from the solution heat exchanger Ha to the generator G are connected by a solution pipe 21 with an open / close valve 20, and the solution heat exchanger Ha is reached during cooling operation. The on-off valve 17 of the bypass circuit 13 that opens the on-off valve 17 of the pipe 16 and closes the on-off valve 20 of the solution pipe 21 and bypasses the heater g of the generator G is used as the inlet refrigerant of the bypass circuit 13. When the temperature exceeds the solution temperature of the generator G, the operation is closed. During heating operation, the on-off valve 17 of the pipe 16 leading to the solution heat exchanger Ha is closed and the on-off valve 20 of the solution pipe 21 is opened. Operated and before The on-off valve 14 of the bypass circuit 13 that bypasses the heater g of the generator G is configured to be closed when the refrigerant outlet temperature of the heat source side heat exchanger 3 of the vapor compression refrigerator X becomes too low. ing.

上記のように構成したことにより、冷房運転時において、蒸気圧縮式冷凍機Xの冷媒を放熱する際の熱量を前記吸収式冷凍機Yの加熱源として利用できるところから、熱源側熱交換器3を小さくすることが可能となる。仮に、発生器Gをバイパスして蒸気圧縮式冷凍機Xの冷媒が直接熱源側熱交換器3に流入する場合でも蒸気圧縮式冷凍機Xの冷媒温度が低いことから熱源側熱交換器3を小さくしても問題がなく、低コスト化ができる。   With the above-described configuration, the heat source side heat exchanger 3 can be used since the amount of heat generated when the refrigerant of the vapor compression refrigerator X is radiated can be used as a heating source of the absorption refrigerator Y during the cooling operation. Can be reduced. Even if the refrigerant of the vapor compression refrigeration machine X directly flows into the heat source side heat exchanger 3 by bypassing the generator G, the heat source side heat exchanger 3 is changed because the refrigerant temperature of the vapor compression refrigeration machine X is low. Even if it is made smaller, there is no problem and the cost can be reduced.

また、本願発明では、上記のように構成したことにより、冷房運転時の部分負荷時など蒸気圧縮式冷凍機Xにおける圧縮機1の冷媒温度が低い場合は、前記蒸気圧縮式冷凍機Xの冷媒が吸収式冷凍機Yにおける発生器Gをバイパスするバイパス回路13の開閉弁14を開作動することによって、蒸気圧縮式冷凍機Xの冷媒が吸収式冷凍機Yの発生器Gをバイパスすることとなっているの、発生器Gに温度の低い蒸気圧縮式冷凍機Xの冷媒が流入して前記発生器Gの溶液温度を低下させるということもない。従って、蒸気圧縮式冷凍機Xの排熱を吸収式冷凍機Yの加熱源として有効に利用することができる。   Moreover, in this invention, when it is comprised as mentioned above, and the refrigerant | coolant temperature of the compressor 1 in the vapor | steam compression refrigeration machine X is low at the time of the partial load at the time of air_conditionaing | cooling operation, the refrigerant | coolant of the said vapor | steam compression refrigeration machine X Opens the on-off valve 14 of the bypass circuit 13 that bypasses the generator G in the absorption refrigeration machine Y, whereby the refrigerant of the vapor compression refrigeration machine X bypasses the generator G of the absorption refrigeration machine Y; Therefore, the refrigerant of the vapor compression refrigerator X having a low temperature does not flow into the generator G to lower the solution temperature of the generator G. Therefore, the exhaust heat of the vapor compression refrigerator X can be effectively used as a heating source for the absorption refrigerator Y.

さらに、本願発明では、上記のように構成したことにより、前記熱源側熱交換器3の冷媒出口温度が低くなり過ぎた場合、前記バイパス回路13の開閉弁14を閉作動し、前記吸収式冷凍機Yの溶液ポンプPlと前記空冷熱交換器8および該空冷熱交換器8に付設された冷却ファン10とを運転することで、蒸気圧縮式冷凍機Xの冷媒が吸収式冷凍機Yの溶液より吸熱し、吸収式冷凍機Yの溶液は空冷熱交換器8において外気より吸熱することとなり、蒸気圧縮式冷凍機Xと吸収式冷凍機Yとを組み合わせた冷凍装置において、暖房運転を円滑に行うことができる。Further, according to the present invention, by configuring as described above, when the refrigerant outlet temperature of the heat source side heat exchanger 3 becomes too low, the on-off valve 14 of the bypass circuit 13 is closed and the absorption refrigeration is performed. By operating the solution pump Pl of the machine Y, the air-cooling heat exchanger 8 and the cooling fan 10 attached to the air-cooling heat exchanger 8, the refrigerant of the vapor compression refrigerator X is the solution of the absorption refrigerator Y The absorption chiller Y absorbs more heat, and the air-cooled heat exchanger 8 absorbs heat from the outside air. In the refrigeration system that combines the vapor compression refrigeration machine X and the absorption refrigeration machine Y, the heating operation is smoothly performed. It can be carried out.

しかも、本願発明では、上記のように構成したことにより、前記吸収式冷凍機Yの溶液ポンプPlと前記空冷熱交換器8および冷却ファン10とを運転することで、蒸気圧縮式冷凍機Xにおける冷媒が吸収式冷凍機Yの発生器G内の溶液より吸熱し、吸収式冷凍機Yの溶液が空冷熱交換器8にて外気より吸熱することとなり、冷暖房運転(換言すれば、ヒートポンプ運転)が可能となる。And in this invention, by having comprised as mentioned above, by operating the solution pump Pl of the said absorption-type refrigerator Y, the said air-cooling heat exchanger 8, and the cooling fan 10, in vapor compression-type refrigerator X The refrigerant absorbs heat from the solution in the generator G of the absorption refrigeration machine Y, and the solution in the absorption refrigeration machine Y absorbs heat from the outside air in the air-cooling heat exchanger 8, so that air conditioning operation (in other words, heat pump operation) is performed. Is possible.

本願発明では、上記課題を解決するための第の手段として、蒸気圧縮式冷凍機Xと吸収式冷凍機Yとを組み合わせた冷凍装置において、冷房運転時における前記蒸気圧縮式冷凍機Xの冷媒を前記吸収式冷凍機Yの蒸発器Eで冷却、または過冷却する冷媒冷却方式を採用し、冷房運転時における前記蒸気圧縮式冷凍機Xの冷媒を放熱する際の熱量を前記吸収式冷凍機Yの加熱源として利用すべく、前記蒸気圧縮式冷凍機Xにおける圧縮後の冷媒を前記吸収式冷凍機Yの発生器Gの加熱器gに流入させるが、部分負荷など前記蒸気圧縮式冷凍機Xにおける圧縮機1の冷媒温度が低い場合には、前記蒸気圧縮式冷凍機Xの冷媒が前記吸収式冷凍機Yの発生器Gをバイパスするバイパス回路13を設け且つ該バイパス回路13に開閉弁14を付設するとともに、前記蒸気圧縮式冷凍機Xにおける前記バイパス回路13の入口冷媒温度が前記吸収式冷凍機Yにおける発生器Gの溶液温度を越えると、前記開閉弁14が閉作動するように構成し、前記吸収式冷凍機Yにおける発生器Gにおいて吸収溶液と前記蒸気圧縮式冷凍機Xの冷媒とが熱交換を行い、熱交換した後の蒸気圧縮式冷凍機Xの冷媒が、前記蒸気圧縮式冷凍機Xの熱源側熱交換器3に流入し、前記バイパス回路13の入口冷媒温度が前記吸収式冷凍機Yの発生器Gの冷媒温度以下であれば、前記バイパス回路13の開閉弁14が開作動し、該バイパス回路13によって前記圧縮式冷凍機Xの冷媒を、前記蒸気圧縮式冷凍機Xにおける熱源側熱交換器3に流入させる構成とし、前記蒸気圧縮式冷凍機Xに、暖房運転時に冷房運転時とは逆方向に冷媒を流通させるように冷媒流通方向を切り替える四路切換弁2を付設し、暖房運転時には、前記熱源側熱交換器3を機能させるように構成する一方、前記バイパス回路13の開閉弁14を前記蒸気圧縮式冷凍機Xの熱源側熱交換器3の冷媒出口温度が低くなり過ぎた場合に閉作動させ、前記蒸気圧縮式冷凍機Xの冷媒が前記発生器G内の加熱器gにて、前記吸収式冷凍機Yの溶液ポンプPlと前記空冷熱交換器8および該空冷熱交換器8に併設された冷却ファン10とを運転することで、前記発生器G内の溶液より吸熱し、溶液は前記空冷熱交換器8にて外気より吸熱するように構成するとともに、前記吸収器Aの出口から溶液ポンプPlを経て前記発生器Gに送られる希溶液と前記発生器Gからの濃溶液とを熱交換させる溶液熱交換器Haを付設し、該溶液熱交換器Haに至る配管16の途中に開閉弁17を介設するとともに、吸収溶液を過冷却させる前記空冷熱交換器8の出口から前記吸収器Aに至る溶液配管18と前記溶液熱交換器Haから前記発生器Gに至る希溶液配管19とを開閉弁20を介設した溶液配管21で接続し、更に吸収溶液を過冷却させる前記空冷熱交換器8の出口から前記吸収器Aに至る溶液配管18と前記蒸発器Eの入口側の冷媒配管22とを開閉弁23を介設してなるバイパス配管24で連結し、冷房運転時には、前記バイパス配管24の開閉弁23および前記溶液配管18と発生器Gに至る希溶液配管19とを接続する溶液配管21に介設した開閉弁20を閉作動させ且つ前記溶液熱交換器Haに至る配管16の開閉弁17を開作動させ、前記発生器Gの加熱器gをバイパスするバイパス回路13の開閉弁14を前記蒸気圧縮式冷凍機Xにおける前記バイパス回路13の入口冷媒温度が吸収式冷凍機Yの発生器Gの溶液温度を越えると閉作動させるが、暖房運転時には、前記バイパス配管24の開閉弁23および前記溶液配管18より発生器Gに至る希溶液配管19に介設した開閉弁20を開作動させ、前記溶液熱交換器Haに至る配管16の開閉弁17を閉作動させ、前記発生器Gの加熱器gをバイパスするバイパス回路13の開閉弁14を前記蒸気圧縮式冷凍機Xの熱源側熱交換器3の冷媒出口温度が低くなり過ぎた場合に閉作動させるようにしている。 In the present invention, as the second means for solving the above Symbol object, a refrigeration apparatus combining an absorption chiller Y and vapor compression refrigerating machine X, the vapor compression type refrigerator X during cooling operation A refrigerant cooling system is employed in which the refrigerant is cooled or supercooled by the evaporator E of the absorption refrigeration machine Y, and the amount of heat generated when the refrigerant of the vapor compression refrigeration machine X is radiated during cooling operation is determined by the absorption refrigeration. In order to use as a heating source of the machine Y, the refrigerant compressed in the vapor compression refrigeration machine X flows into the heater g of the generator G of the absorption refrigeration machine Y. When the refrigerant temperature of the compressor 1 in the machine X is low, a bypass circuit 13 is provided in which the refrigerant of the vapor compression refrigeration machine X bypasses the generator G of the absorption refrigeration machine Y, and the bypass circuit 13 is opened and closed. Attach valve 14 The on-off valve 14 is closed when the inlet refrigerant temperature of the bypass circuit 13 in the vapor compression refrigerator X exceeds the solution temperature of the generator G in the absorption refrigerator Y, and In the generator G of the absorption refrigerator Y, the absorption solution and the refrigerant of the vapor compression refrigerator X exchange heat, and the refrigerant of the vapor compression refrigerator X after the heat exchange is the vapor compression refrigerator. If the inlet refrigerant temperature of the bypass circuit 13 is equal to or lower than the refrigerant temperature of the generator G of the absorption chiller Y, the on-off valve 14 of the bypass circuit 13 is opened. The refrigerant of the compression refrigeration machine X is caused to flow into the heat source side heat exchanger 3 in the vapor compression refrigeration machine X by the bypass circuit 13, and the vapor compression refrigeration machine X is cooled during heating operation. When driving Is provided with a four-way switching valve 2 for switching the refrigerant flow direction so that the refrigerant flows in the reverse direction, and is configured to function the heat source side heat exchanger 3 during heating operation, while opening and closing the bypass circuit 13 The valve 14 is closed when the refrigerant outlet temperature of the heat source side heat exchanger 3 of the vapor compression refrigeration machine X becomes too low, and the refrigerant of the vapor compression refrigeration machine X is heated by a heater in the generator G. g, the solution pump Pl of the absorption refrigeration machine Y, the air-cooled heat exchanger 8 and the cooling fan 10 provided in the air-cooled heat exchanger 8 are operated so that the solution in the generator G It absorbs heat, and the solution is configured to absorb heat from the outside air in the air-cooled heat exchanger 8, and from the outlet of the absorber A and the diluted solution sent to the generator G via the solution pump Pl and the generator G For heat exchange with a concentrated solution of A heat exchanger Ha is attached, an on-off valve 17 is provided in the middle of the pipe 16 leading to the solution heat exchanger Ha, and the absorber A is connected to the absorber A from the outlet of the air-cooled heat exchanger 8 that supercools the absorbed solution. The air-cooled heat exchanger is connected to the solution pipe 18 extending from the solution heat exchanger Ha and the dilute solution pipe 19 extending from the solution heat exchanger Ha to the generator G through a solution pipe 21 provided with an on-off valve 20 to further supercool the absorption solution. The solution pipe 18 extending from the outlet 8 to the absorber A and the refrigerant pipe 22 on the inlet side of the evaporator E are connected by a bypass pipe 24 provided with an open / close valve 23, and the bypass pipe is used during cooling operation. The on-off valve 20 provided in the solution pipe 21 connecting the on-off valve 23 and the solution pipe 18 and the dilute solution pipe 19 leading to the generator G is closed and the pipe 16 leading to the solution heat exchanger Ha is closed. Open the on-off valve 17 The inlet refrigerant temperature of the bypass circuit 13 in the vapor compression refrigeration machine X is the solution temperature of the generator G of the absorption refrigeration machine Y through the on-off valve 14 of the bypass circuit 13 that bypasses the heater g of the generator G. If it exceeds, the valve is closed, but during heating operation, the on-off valve 23 of the bypass pipe 24 and the on-off valve 20 provided in the dilute solution pipe 19 extending from the solution pipe 18 to the generator G are opened to perform the solution heat exchange. The on-off valve 17 of the bypass circuit 13 which bypasses the heater g of the generator G is closed by operating the on-off valve 17 of the pipe 16 leading to the generator Ha, and the refrigerant of the heat source side heat exchanger 3 of the vapor compression refrigerator X If the outlet temperature is too low it is to be the closing operation.

上記のように構成したことにより、冷房運転時において、蒸気圧縮式冷凍機Xの冷媒を放熱する際の熱量を前記吸収式冷凍機Yの加熱源として利用できるところから、熱源側熱交換器3を小さくすることが可能となる。仮に、発生器Gをバイパスして蒸気圧縮式冷凍機Xの冷媒が直接熱源側熱交換器3に流入する場合でも蒸気圧縮式冷凍機Xの冷媒温度が低いことから熱源側熱交換器3を小さくしても問題がなく、低コスト化ができる。With the above-described configuration, the heat source side heat exchanger 3 can be used since the amount of heat generated when the refrigerant of the vapor compression refrigerator X is radiated can be used as a heating source of the absorption refrigerator Y during the cooling operation. Can be reduced. Even if the refrigerant of the vapor compression refrigeration machine X directly flows into the heat source side heat exchanger 3 by bypassing the generator G, the heat source side heat exchanger 3 is changed because the refrigerant temperature of the vapor compression refrigeration machine X is low. Even if it is made smaller, there is no problem and the cost can be reduced.

また、本願発明では、上記のように構成したことにより、冷房運転時の部分負荷時など蒸気圧縮式冷凍機Xにおける圧縮機1の冷媒温度が低い場合は、前記蒸気圧縮式冷凍機Xの冷媒が吸収式冷凍機Yにおける発生器Gをバイパスするバイパス回路13の開閉弁14を開作動することによって、蒸気圧縮式冷凍機Xの冷媒が吸収式冷凍機Yの発生器Gをバイパスすることとなっているの、発生器Gに温度の低い蒸気圧縮式冷凍機Xの冷媒が流入して前記発生器Gの溶液温度を低下させるということもない。従って、蒸気圧縮式冷凍機Xの排熱を吸収式冷凍機Yの加熱源として有効に利用することができる。Moreover, in this invention, when it is comprised as mentioned above, and the refrigerant | coolant temperature of the compressor 1 in the vapor | steam compression refrigeration machine X is low at the time of the partial load at the time of air_conditionaing | cooling operation, the refrigerant | coolant of the said vapor | steam compression refrigeration machine X Opens the on-off valve 14 of the bypass circuit 13 that bypasses the generator G in the absorption refrigeration machine Y, whereby the refrigerant of the vapor compression refrigeration machine X bypasses the generator G of the absorption refrigeration machine Y; Therefore, the refrigerant of the vapor compression refrigerator X having a low temperature does not flow into the generator G to lower the solution temperature of the generator G. Therefore, the exhaust heat of the vapor compression refrigerator X can be effectively used as a heating source for the absorption refrigerator Y.

さらに、本願発明では、上記のように構成したことにより、前記熱源側熱交換器3の冷媒出口温度が低くなり過ぎた場合、前記バイパス回路13の開閉弁14を閉作動し、前記吸収式冷凍機Yの溶液ポンプPlと前記空冷熱交換器8および該空冷熱交換器8に付設された冷却ファン10とを運転することで、蒸気圧縮式冷凍機Xの冷媒が吸収式冷凍機Yの溶液より吸熱し、吸収式冷凍機Yの溶液は空冷熱交換器8において外気より吸熱することとなり、蒸気圧縮式冷凍機Xと吸収式冷凍機Yとを組み合わせた冷凍装置において、暖房運転を円滑に行うことができる。Further, according to the present invention, by configuring as described above, when the refrigerant outlet temperature of the heat source side heat exchanger 3 becomes too low, the on-off valve 14 of the bypass circuit 13 is closed and the absorption refrigeration is performed. By operating the solution pump Pl of the machine Y, the air-cooling heat exchanger 8 and the cooling fan 10 attached to the air-cooling heat exchanger 8, the refrigerant of the vapor compression refrigerator X is the solution of the absorption refrigerator Y The absorption chiller Y absorbs more heat, and the air-cooled heat exchanger 8 absorbs heat from the outside air. In the refrigeration system that combines the vapor compression refrigeration machine X and the absorption refrigeration machine Y, the heating operation is smoothly performed. It can be carried out.

しかも、本願発明では、上記のように構成したことにより、前記吸収式冷凍機Yの溶液ポンプPlと前記空冷熱交換器8および冷却ファン10とを運転することで、蒸気圧縮式冷凍機Xにおける冷媒が吸収式冷凍機Yの発生器G内の溶液より吸熱し、吸収式冷凍機Yの溶液が空冷熱交換器8にて外気より吸熱することとなり、冷暖房運転(換言すれば、ヒートポンプ運転)が可能となる。 And in this invention, by having comprised as mentioned above, by operating the solution pump Pl of the said absorption-type refrigerator Y, the said air-cooling heat exchanger 8, and the cooling fan 10, in vapor compression-type refrigerator X The refrigerant absorbs heat from the solution in the generator G of the absorption refrigeration machine Y, and the solution in the absorption refrigeration machine Y absorbs heat from the outside air in the air-cooling heat exchanger 8, so that air conditioning operation (in other words, heat pump operation) is performed. Is possible.

本願発明では、上記課題を解決するための第の手段として、蒸気圧縮式冷凍機Xと吸収式冷凍機Yとを組み合わせた冷凍装置において、冷房運転時における前記蒸気圧縮式冷凍機Xの冷媒を前記吸収式冷凍機Yの蒸発器Eで冷却、または過冷却する冷媒冷却方式を採用し、冷房運転時における前記蒸気圧縮式冷凍機Xの冷媒を放熱する際の熱量を前記吸収式冷凍機Yの加熱源として利用すべく、前記蒸気圧縮式冷凍機Xにおける圧縮後の冷媒を前記吸収式冷凍機Yの発生器Gの加熱器gに流入させるが、部分負荷など前記蒸気圧縮式冷凍機Xにおける圧縮機1の冷媒温度が低い場合には、前記蒸気圧縮式冷凍機Xの冷媒が前記吸収式冷凍機Yの発生器Gをバイパスするバイパス回路13を設け且つ該バイパス回路13に開閉弁14を付設するとともに、前記蒸気圧縮式冷凍機Xにおける前記バイパス回路13の入口冷媒温度が前記吸収式冷凍機Yにおける発生器Gの溶液温度を越えると、前記開閉弁14が閉作動するように構成し、前記吸収式冷凍機Yにおける発生器Gにおいて吸収溶液と前記蒸気圧縮式冷凍機Xの冷媒とが熱交換を行い、熱交換した後の蒸気圧縮式冷凍機Xの冷媒が、前記蒸気圧縮式冷凍機Xの熱源側熱交換器3に流入し、前記バイパス回路13の入口冷媒温度が前記吸収式冷凍機Yの発生器Gの冷媒温度以下であれば、前記バイパス回路13の開閉弁14が開作動し、該バイパス回路13によって前記圧縮式冷凍機Xの冷媒を、前記蒸気圧縮式冷凍機Xにおける熱源側熱交換器3に流入させる構成とし、前記蒸気圧縮式冷凍機Xに、暖房運転時に冷房運転時とは逆方向に冷媒を流通させるように冷媒流通方向を切り替える四路切換弁2を付設し、暖房運転時には、前記熱源側熱交換器3を機能させるように構成する一方、前記バイパス回路13の開閉弁14を前記蒸気圧縮式冷凍機Xの熱源側熱交換器3の冷媒出口温度が低くなり過ぎた場合に閉作動させ、前記蒸気圧縮式冷凍機Xの冷媒が前記発生器G内の加熱器gにて、前記吸収式冷凍機Yの溶液ポンプPlと前記空冷熱交換器8および該空冷熱交換器8に併設された冷却ファン10とを運転することで、前記発生器G内の溶液より吸熱し、溶液は前記空冷熱交換器8にて外気より吸熱するように構成するとともに、前記吸収器Aの出口から溶液ポンプPlを経て前記発生器Gに送られる希溶液と前記発生器Gからの濃溶液とを熱交換させる溶液熱交換器Haを付設し、該溶液熱交換器Haに至る配管16の途中に開閉弁17を介設するとともに、吸収溶液を過冷却させる前記空冷熱交換器8の出口から前記吸収器Aに至る溶液配管18と前記溶液熱交換器Haから前記発生器Gに至る希溶液配管19とを開閉弁20を介設した溶液配管21で接続し、更に吸収溶液を過冷却させる前記空冷熱交換器8の出口から前記吸収器Aに至る溶液配管18から分岐して前記蒸発器Eの入口に至るバイパス配管25を設け且つ該バイパス配管25に開閉弁26を介設し、冷房運転時には、前記溶液配管18と発生器Gに至る希溶液配管19とを接続する溶液配管21に介設した開閉弁20および前記バイパス配管25の開閉弁26を閉作動させ且つ前記溶液熱交換器Haに至る配管16の開閉弁17を開作動させ、前記発生器Gの加熱器gをバイパスするバイパス回路13の開閉弁14を前記蒸気圧縮式冷凍機Xにおける前記バイパス回路13の入口冷媒温度が吸収式冷凍機Yの発生器Gの溶液温度を越えると閉作動させるが、暖房運転時には、前記溶液配管18と発生器Gに至る希溶液配管19とを接続する溶液配管21に介設した開閉弁20および前記バイパス配管25の開閉弁26を開作動させ、前記溶液熱交換器Haに至る配管16の開閉弁17を閉作動させ、前記発生器Gの加熱器gをバイパスするバイパス回路13の開閉弁14を前記蒸気圧縮式冷凍機Xの熱源側熱交換器3の冷媒出口温度が低くなり過ぎた場合に閉作動させるようにしている。 In the present invention, as a third means for solving the above Symbol object, a refrigeration apparatus combining an absorption chiller Y and vapor compression refrigerating machine X, the vapor compression type refrigerator X during cooling operation A refrigerant cooling system is employed in which the refrigerant is cooled or supercooled by the evaporator E of the absorption refrigeration machine Y, and the amount of heat generated when the refrigerant of the vapor compression refrigeration machine X is radiated during cooling operation is determined by the absorption refrigeration. In order to use as a heating source of the machine Y, the refrigerant compressed in the vapor compression refrigeration machine X flows into the heater g of the generator G of the absorption refrigeration machine Y. When the refrigerant temperature of the compressor 1 in the machine X is low, a bypass circuit 13 is provided in which the refrigerant of the vapor compression refrigeration machine X bypasses the generator G of the absorption refrigeration machine Y, and the bypass circuit 13 is opened and closed. Attach valve 14 The on-off valve 14 is closed when the inlet refrigerant temperature of the bypass circuit 13 in the vapor compression refrigerator X exceeds the solution temperature of the generator G in the absorption refrigerator Y, and In the generator G of the absorption refrigerator Y, the absorption solution and the refrigerant of the vapor compression refrigerator X exchange heat, and the refrigerant of the vapor compression refrigerator X after the heat exchange is the vapor compression refrigerator. If the inlet refrigerant temperature of the bypass circuit 13 is equal to or lower than the refrigerant temperature of the generator G of the absorption chiller Y, the on-off valve 14 of the bypass circuit 13 is opened. The refrigerant of the compression refrigeration machine X is caused to flow into the heat source side heat exchanger 3 in the vapor compression refrigeration machine X by the bypass circuit 13, and the vapor compression refrigeration machine X is cooled during heating operation. When driving Is provided with a four-way switching valve 2 for switching the refrigerant flow direction so that the refrigerant flows in the reverse direction, and is configured to function the heat source side heat exchanger 3 during heating operation, while opening and closing the bypass circuit 13 The valve 14 is closed when the refrigerant outlet temperature of the heat source side heat exchanger 3 of the vapor compression refrigeration machine X becomes too low, and the refrigerant of the vapor compression refrigeration machine X is heated by a heater in the generator G. g, the solution pump Pl of the absorption refrigeration machine Y, the air-cooled heat exchanger 8 and the cooling fan 10 provided in the air-cooled heat exchanger 8 are operated so that the solution in the generator G It absorbs heat, and the solution is configured to absorb heat from the outside air in the air-cooled heat exchanger 8, and from the outlet of the absorber A and the diluted solution sent to the generator G via the solution pump Pl and the generator G For heat exchange with a concentrated solution of A heat exchanger Ha is attached, an on-off valve 17 is provided in the middle of the pipe 16 leading to the solution heat exchanger Ha, and the absorber A is connected to the absorber A from the outlet of the air-cooled heat exchanger 8 that supercools the absorbed solution. The air-cooled heat exchanger is connected to the solution pipe 18 extending from the solution heat exchanger Ha and the dilute solution pipe 19 extending from the solution heat exchanger Ha to the generator G through a solution pipe 21 provided with an on-off valve 20 to further supercool the absorption solution. 8 is provided with a bypass pipe 25 which branches from the solution pipe 18 extending from the outlet 8 to the absorber A and reaches the inlet of the evaporator E, and an open / close valve 26 is provided in the bypass pipe 25. A pipe 16 that closes the on-off valve 20 and the on-off valve 26 of the bypass pipe 25 connected to the solution pipe 21 that connects the pipe 18 and the dilute solution pipe 19 that reaches the generator G, and that reaches the solution heat exchanger Ha. On-off valve 1 And the on-off valve 14 of the bypass circuit 13 that bypasses the heater g of the generator G is connected to the generator G of the absorption refrigerator chiller Y where the inlet refrigerant temperature of the bypass circuit 13 in the vapor compression refrigerator X is However, during heating operation, the on-off valve 20 and the bypass pipe 25 connected to the solution pipe 21 connecting the solution pipe 18 and the dilute solution pipe 19 leading to the generator G are opened and closed. The valve 26 is opened, the on-off valve 17 of the pipe 16 leading to the solution heat exchanger Ha is closed, and the on-off valve 14 of the bypass circuit 13 bypassing the heater g of the generator G is connected to the vapor compression refrigeration. When the refrigerant outlet temperature of the heat source side heat exchanger 3 of the machine X becomes too low, the operation is closed .

上記のように構成したことにより、冷房運転時において、蒸気圧縮式冷凍機Xの冷媒を放熱する際の熱量を前記吸収式冷凍機Yの加熱源として利用できるところから、熱源側熱交換器3を小さくすることが可能となる。仮に、発生器Gをバイパスして蒸気圧縮式冷凍機Xの冷媒が直接熱源側熱交換器3に流入する場合でも蒸気圧縮式冷凍機Xの冷媒温度が低いことから熱源側熱交換器3を小さくしても問題がなく、低コスト化ができる。With the above-described configuration, the heat source side heat exchanger 3 can be used since the amount of heat generated when the refrigerant of the vapor compression refrigerator X is radiated can be used as a heating source of the absorption refrigerator Y during the cooling operation. Can be reduced. Even if the refrigerant of the vapor compression refrigeration machine X directly flows into the heat source side heat exchanger 3 by bypassing the generator G, the heat source side heat exchanger 3 is changed because the refrigerant temperature of the vapor compression refrigeration machine X is low. Even if it is made smaller, there is no problem and the cost can be reduced.

また、本願発明では、上記のように構成したことにより、冷房運転時の部分負荷時など蒸気圧縮式冷凍機Xにおける圧縮機1の冷媒温度が低い場合は、前記蒸気圧縮式冷凍機Xの冷媒が吸収式冷凍機Yにおける発生器Gをバイパスするバイパス回路13の開閉弁14を開作動することによって、蒸気圧縮式冷凍機Xの冷媒が吸収式冷凍機Yの発生器Gをバイパスすることとなっているの、発生器Gに温度の低い蒸気圧縮式冷凍機Xの冷媒が流入して前記発生器Gの溶液温度を低下させるということもない。従って、蒸気圧縮式冷凍機Xの排熱を吸収式冷凍機Yの加熱源として有効に利用することができる。Moreover, in this invention, when it is comprised as mentioned above, and the refrigerant | coolant temperature of the compressor 1 in the vapor | steam compression refrigeration machine X is low at the time of the partial load at the time of air_conditionaing | cooling operation, the refrigerant | coolant of the said vapor | steam compression refrigeration machine X Opens the on-off valve 14 of the bypass circuit 13 that bypasses the generator G in the absorption refrigeration machine Y, whereby the refrigerant of the vapor compression refrigeration machine X bypasses the generator G of the absorption refrigeration machine Y; Therefore, the refrigerant of the vapor compression refrigerator X having a low temperature does not flow into the generator G to lower the solution temperature of the generator G. Therefore, the exhaust heat of the vapor compression refrigerator X can be effectively used as a heating source for the absorption refrigerator Y.

さらに、本願発明では、上記のように構成したことにより、前記熱源側熱交換器3の冷媒出口温度が低くなり過ぎた場合、前記バイパス回路13の開閉弁14を閉作動し、前記吸収式冷凍機Yの溶液ポンプPlと前記空冷熱交換器8および該空冷熱交換器8に付設された冷却ファン10とを運転することで、蒸気圧縮式冷凍機Xの冷媒が吸収式冷凍機Yの溶液より吸熱し、吸収式冷凍機Yの溶液は空冷熱交換器8において外気より吸熱することとなり、蒸気圧縮式冷凍機Xと吸収式冷凍機Yとを組み合わせた冷凍装置において、暖房運転を円滑に行うことができる。Further, according to the present invention, by configuring as described above, when the refrigerant outlet temperature of the heat source side heat exchanger 3 becomes too low, the on-off valve 14 of the bypass circuit 13 is closed and the absorption refrigeration is performed. By operating the solution pump Pl of the machine Y, the air-cooling heat exchanger 8 and the cooling fan 10 attached to the air-cooling heat exchanger 8, the refrigerant of the vapor compression refrigerator X is the solution of the absorption refrigerator Y The absorption chiller Y absorbs more heat, and the air-cooled heat exchanger 8 absorbs heat from the outside air. In the refrigeration system that combines the vapor compression refrigeration machine X and the absorption refrigeration machine Y, the heating operation is smoothly performed. It can be carried out.

しかも、本願発明では、上記のように構成したことにより、前記吸収式冷凍機Yの溶液ポンプPlと前記空冷熱交換器8および冷却ファン10とを運転することで、蒸気圧縮式冷凍機Xにおける冷媒が吸収式冷凍機Yの発生器G内の溶液より吸熱し、吸収式冷凍機Yの溶液が空冷熱交換器8にて外気より吸熱することとなり、冷暖房運転(換言すれば、ヒートポンプ運転)が可能となる。 And in this invention, by having comprised as mentioned above, by operating the solution pump Pl of the said absorption-type refrigerator Y, the said air-cooling heat exchanger 8, and the cooling fan 10, in vapor compression-type refrigerator X The refrigerant absorbs heat from the solution in the generator G of the absorption refrigeration machine Y, and the solution in the absorption refrigeration machine Y absorbs heat from the outside air in the air-cooling heat exchanger 8, so that air conditioning operation (in other words, heat pump operation) is performed. Is possible.

本願発明では、上記課題を解決するための第の手段として、蒸気圧縮式冷凍機Xと吸収式冷凍機Yとを組み合わせた冷凍装置において、冷房運転時における前記蒸気圧縮式冷凍機Xの冷媒を前記吸収式冷凍機Yの蒸発器Eで冷却、または過冷却する冷媒冷却方式を採用し、冷房運転時における前記蒸気圧縮式冷凍機Xの冷媒を放熱する際の熱量を前記吸収式冷凍機Yの加熱源として利用すべく、前記蒸気圧縮式冷凍機Xにおける圧縮後の冷媒を前記吸収式冷凍機Yの発生器Gの加熱器gに流入させるが、部分負荷など前記蒸気圧縮式冷凍機Xにおける圧縮機1の冷媒温度が低い場合には、前記蒸気圧縮式冷凍機Xの冷媒が前記吸収式冷凍機Yの発生器Gをバイパスするバイパス回路13を設け且つ該バイパス回路13に開閉弁14を付設するとともに、前記蒸気圧縮式冷凍機Xにおける前記バイパス回路13の入口冷媒温度が前記吸収式冷凍機Yにおける発生器Gの溶液温度を越えると、前記開閉弁14が閉作動するように構成し、前記吸収式冷凍機Yにおける発生器Gにおいて吸収溶液と前記蒸気圧縮式冷凍機Xの冷媒とが熱交換を行い、熱交換した後の蒸気圧縮式冷凍機Xの冷媒が、前記蒸気圧縮式冷凍機Xの熱源側熱交換器3に流入し、前記バイパス回路13の入口冷媒温度が前記吸収式冷凍機Yの発生器Gの冷媒温度以下であれば、前記バイパス回路13の開閉弁14が開作動し、該バイパス回路13によって前記圧縮式冷凍機Xの冷媒を、前記蒸気圧縮式冷凍機Xにおける熱源側熱交換器3に流入させる構成とし、前記蒸気圧縮式冷凍機Xに、暖房運転時に冷房運転時とは逆方向に冷媒を流通させるように冷媒流通方向を切り替える四路切換弁2を付設し、暖房運転時には、前記熱源側熱交換器3を機能させるように構成する一方、前記バイパス回路13の開閉弁14を前記蒸気圧縮式冷凍機Xの熱源側熱交換器3の冷媒出口温度が低くなり過ぎた場合に閉作動させ、前記蒸気圧縮式冷凍機Xの冷媒が前記発生器G内の加熱器gにて、前記吸収式冷凍機Yの溶液ポンプPlと前記空冷熱交換器8および該空冷熱交換器8に併設された冷却ファン10とを運転することで、前記発生器G内の溶液より吸熱し、溶液は前記空冷熱交換器8にて外気より吸熱するように構成するとともに、吸収溶液を過冷却させる前記空冷熱交換器8の出口から前記吸収器Aに至る溶液配管18と前記溶液熱交換器Haから前記発生器Gに至る希溶液配管19とを開閉弁20を介設した溶液配管21で接続し、更に吸収溶液を過冷却させる前記空冷熱交換器8の出口から前記吸収器Aに至る溶液配管18と前記蒸発器Eの入口側の冷媒配管22とを開閉弁23を介設してなるバイパス配管24で連結するとともに、前記吸吸収器Aの入口側の溶液配管18に開閉弁27を介設し、冷房運転時には、前記溶液配管21に介設した開閉弁20および前記バイパス配管24の開閉弁23を閉作動させ且つ前記溶液配管18の開閉弁27を開作動させ、前記溶液熱交換器Haに至る配管16の開閉弁17を開作動させ、前記発生器Gの加熱器gをバイパスするバイパス回路13の開閉弁14を前記蒸気圧縮式冷凍機Xにおける前記バイパス回路13の入口冷媒温度が吸収式冷凍機Yの発生器Gの溶液温度を越えると閉作動させるが、暖房運転時には、前記溶液配管21に介設した開閉弁20および前記バイパス配管24の開閉弁23を開作動させ且つ前記溶液配管18の開閉弁27を閉作動させ、前記溶液熱交換器Haに至る配管16の開閉弁17を閉作動させ、前記発生器Gの加熱器gをバイパスするバイパス回路13の開閉弁14を前記蒸気圧縮式冷凍機Xの熱源側熱交換器3の冷媒出口温度が低くなり過ぎた場合に閉作動させるようにしている。 In the present invention, as a fourth means for solving the above Symbol object, a refrigeration apparatus combining an absorption chiller Y and vapor compression refrigerating machine X, the vapor compression type refrigerator X during cooling operation A refrigerant cooling system is employed in which the refrigerant is cooled or supercooled by the evaporator E of the absorption refrigeration machine Y, and the amount of heat generated when the refrigerant of the vapor compression refrigeration machine X is radiated during cooling operation is determined by the absorption refrigeration. In order to use as a heating source of the machine Y, the refrigerant compressed in the vapor compression refrigeration machine X flows into the heater g of the generator G of the absorption refrigeration machine Y. When the refrigerant temperature of the compressor 1 in the machine X is low, a bypass circuit 13 is provided in which the refrigerant of the vapor compression refrigeration machine X bypasses the generator G of the absorption refrigeration machine Y, and the bypass circuit 13 is opened and closed. Attach valve 14 The on-off valve 14 is closed when the inlet refrigerant temperature of the bypass circuit 13 in the vapor compression refrigerator X exceeds the solution temperature of the generator G in the absorption refrigerator Y, and In the generator G of the absorption refrigerator Y, the absorption solution and the refrigerant of the vapor compression refrigerator X exchange heat, and the refrigerant of the vapor compression refrigerator X after the heat exchange is the vapor compression refrigerator. If the inlet refrigerant temperature of the bypass circuit 13 is equal to or lower than the refrigerant temperature of the generator G of the absorption chiller Y, the on-off valve 14 of the bypass circuit 13 is opened. The refrigerant of the compression refrigeration machine X is caused to flow into the heat source side heat exchanger 3 in the vapor compression refrigeration machine X by the bypass circuit 13, and the vapor compression refrigeration machine X is cooled during heating operation. When driving Is provided with a four-way switching valve 2 for switching the refrigerant flow direction so that the refrigerant flows in the reverse direction, and is configured to function the heat source side heat exchanger 3 during heating operation, while opening and closing the bypass circuit 13 The valve 14 is closed when the refrigerant outlet temperature of the heat source side heat exchanger 3 of the vapor compression refrigeration machine X becomes too low, and the refrigerant of the vapor compression refrigeration machine X is heated by a heater in the generator G. g, the solution pump Pl of the absorption refrigeration machine Y, the air-cooled heat exchanger 8 and the cooling fan 10 provided in the air-cooled heat exchanger 8 are operated so that the solution in the generator G The solution absorbs heat, and the solution is configured to absorb heat from the outside air in the air-cooled heat exchanger 8, and the solution pipe 18 extending from the outlet of the air-cooled heat exchanger 8 for supercooling the absorbing solution to the absorber A and the solution From the heat exchanger Ha to the generator The dilute solution pipe 19 reaching G is connected by a solution pipe 21 provided with an on-off valve 20, and the solution pipe 18 extending from the outlet of the air-cooled heat exchanger 8 for supercooling the absorbing solution to the absorber A and the above-mentioned The refrigerant pipe 22 on the inlet side of the evaporator E is connected by a bypass pipe 24 having an on-off valve 23 interposed, and an on-off valve 27 is provided on the solution pipe 18 on the inlet side of the absorber A. During the cooling operation, the on-off valve 20 provided in the solution pipe 21 and the on-off valve 23 of the bypass pipe 24 are closed, and the on-off valve 27 of the solution pipe 18 is opened to reach the solution heat exchanger Ha. The on-off valve 17 of the bypass circuit 13 in the vapor compression refrigeration machine X absorbs the on-off valve 14 of the bypass circuit 13 that opens the on-off valve 17 of the pipe 16 and bypasses the heater g of the generator G. Of machine Y When the temperature of the living vessel G exceeds the solution temperature, the operation is closed. During heating operation, the on-off valve 20 interposed in the solution pipe 21 and the on-off valve 23 of the bypass pipe 24 are opened and the on-off valve of the solution pipe 18 is opened. 27 is closed, the open / close valve 17 of the pipe 16 leading to the solution heat exchanger Ha is closed, and the open / close valve 14 of the bypass circuit 13 bypassing the heater g of the generator G is connected to the vapor compression refrigerator. coolant outlet temperature of the heat source side heat exchanger 3 of X is that not so as to closing operation when too low.

上記のように構成したことにより、冷房運転時において、蒸気圧縮式冷凍機Xの冷媒を放熱する際の熱量を前記吸収式冷凍機Yの加熱源として利用できるところから、熱源側熱交換器3を小さくすることが可能となる。仮に、発生器Gをバイパスして蒸気圧縮式冷凍機Xの冷媒が直接熱源側熱交換器3に流入する場合でも蒸気圧縮式冷凍機Xの冷媒温度が低いことから熱源側熱交換器3を小さくしても問題がなく、低コスト化ができる。With the above-described configuration, the heat source side heat exchanger 3 can be used since the amount of heat generated when the refrigerant of the vapor compression refrigerator X is radiated can be used as a heating source of the absorption refrigerator Y during the cooling operation. Can be reduced. Even if the refrigerant of the vapor compression refrigeration machine X directly flows into the heat source side heat exchanger 3 by bypassing the generator G, the heat source side heat exchanger 3 is changed because the refrigerant temperature of the vapor compression refrigeration machine X is low. Even if it is made smaller, there is no problem and the cost can be reduced.

また、本願発明では、上記のように構成したことにより、冷房運転時の部分負荷時など蒸気圧縮式冷凍機Xにおける圧縮機1の冷媒温度が低い場合は、前記蒸気圧縮式冷凍機Xの冷媒が吸収式冷凍機Yにおける発生器Gをバイパスするバイパス回路13の開閉弁14を開作動することによって、蒸気圧縮式冷凍機Xの冷媒が吸収式冷凍機Yの発生器Gをバイパスすることとなっているの、発生器Gに温度の低い蒸気圧縮式冷凍機Xの冷媒が流入して前記発生器Gの溶液温度を低下させるということもない。従って、蒸気圧縮式冷凍機Xの排熱を吸収式冷凍機Yの加熱源として有効に利用することができる。Moreover, in this invention, when it is comprised as mentioned above, and the refrigerant | coolant temperature of the compressor 1 in the vapor | steam compression refrigeration machine X is low at the time of the partial load at the time of air_conditionaing | cooling operation, the refrigerant | coolant of the said vapor compression refrigeration machine X Opens the on-off valve 14 of the bypass circuit 13 that bypasses the generator G in the absorption refrigeration machine Y, whereby the refrigerant of the vapor compression refrigeration machine X bypasses the generator G of the absorption refrigeration machine Y; Therefore, the refrigerant of the vapor compression refrigerator X having a low temperature does not flow into the generator G to lower the solution temperature of the generator G. Therefore, the exhaust heat of the vapor compression refrigerator X can be effectively used as a heating source for the absorption refrigerator Y.

さらに、本願発明では、上記のように構成したことにより、前記熱源側熱交換器3の冷媒出口温度が低くなり過ぎた場合、前記バイパス回路13の開閉弁14を閉作動し、前記吸収式冷凍機Yの溶液ポンプPlと前記空冷熱交換器8および該空冷熱交換器8に付設された冷却ファン10とを運転することで、蒸気圧縮式冷凍機Xの冷媒が吸収式冷凍機Yの溶液より吸熱し、吸収式冷凍機Yの溶液は空冷熱交換器8において外気より吸熱することとなり、蒸気圧縮式冷凍機Xと吸収式冷凍機Yとを組み合わせた冷凍装置において、暖房運転を円滑に行うことができる。Further, according to the present invention, by configuring as described above, when the refrigerant outlet temperature of the heat source side heat exchanger 3 becomes too low, the on-off valve 14 of the bypass circuit 13 is closed and the absorption refrigeration is performed. By operating the solution pump Pl of the machine Y, the air-cooling heat exchanger 8 and the cooling fan 10 attached to the air-cooling heat exchanger 8, the refrigerant of the vapor compression refrigerator X is the solution of the absorption refrigerator Y The absorption chiller Y absorbs more heat, and the air-cooled heat exchanger 8 absorbs heat from the outside air. In the refrigeration system that combines the vapor compression refrigeration machine X and the absorption refrigeration machine Y, the heating operation is smoothly performed. It can be carried out.

しかも、本願発明では、上記のように構成したことにより、前記吸収式冷凍機Yの溶液ポンプPlと前記空冷熱交換器8および冷却ファン10とを運転することで、蒸気圧縮式冷凍機Xにおける冷媒が吸収式冷凍機Yの発生器G内の溶液より吸熱し、吸収式冷凍機Yの溶液が空冷熱交換器8にて外気より吸熱することとなり、冷暖房運転(換言すれば、ヒートポンプ運転)が可能となる。 And in this invention, by having comprised as mentioned above, by operating the solution pump Pl of the said absorption-type refrigerator Y, the said air-cooling heat exchanger 8, and the cooling fan 10, in vapor compression-type refrigerator X The refrigerant absorbs heat from the solution in the generator G of the absorption refrigeration machine Y, and the solution in the absorption refrigeration machine Y absorbs heat from the outside air in the air-cooling heat exchanger 8, so that air conditioning operation (in other words, heat pump operation) is performed. Is possible.

本願発明では、さらに、上記課題を解決するための第の手段として、上記第1、第2、第3又は第4の手段を備えた冷凍装置において、前記吸収式冷凍機Yにおける吸収器Aに入る吸収溶液を空冷熱交換器8にて過冷却し、前記吸収器Aにおいては冷媒蒸気を吸収するだけで、吸収熱は前記吸収溶液で取り去る間接空冷方式としており、そのように構成した場合、吸収器Aで冷媒蒸気を吸収させながら吸収溶液を水冷もしくは空冷式で冷却する直接冷却方式に比較して、吸収器Aの構造の簡略化、小型化を図ることができる。 In the present invention, as a fifth means for solving the above-described problem, in the refrigeration apparatus provided with the first , second, third or fourth means, the absorber A in the absorption refrigeration machine Y. When the absorption solution entering is supercooled by the air-cooling heat exchanger 8, and the absorption heat is removed by the absorption solution only by absorbing the refrigerant vapor in the absorber A. The structure of the absorber A can be simplified and miniaturized as compared with the direct cooling method in which the absorbing solution is cooled by water cooling or air cooling while absorbing the refrigerant vapor by the absorber A.

本願発明では、さらに、上記課題を解決するための第の手段として、上記第の手段を備えた冷凍装置において、前記蒸発器Eに溶液を流入させる場合の散布器は、冷媒用とは別に散布器が取り付けられているか、もしくは共用ができるようにすることもでき、そのように構成した場合、溶液がうまく蒸発器Eの伝熱面に散布されることとなる。 In the present invention, as a sixth means for solving the above problem, in the refrigeration apparatus provided with the fourth means, the spreader when the solution is allowed to flow into the evaporator E is used for the refrigerant. A separate sprayer may be attached or shared, and in such a configuration, the solution is successfully sprayed onto the heat transfer surface of the evaporator E.

本願発明では、さらに、上記課題を解決するための第の手段として、上記第1、第2、第3、第4、第5又は第の手段を備えた冷凍装置において、前記蒸発器Eを、液冷媒が一過性でその伝熱面を流れ、未蒸発冷媒が前記吸収器A側へ移動し、吸収溶液に吸収されるように構成することもでき、そのように構成した場合、凝縮器Cからの液冷媒は、蒸発器Eの伝熱面を流下するが、未蒸発冷媒は、吸収器Aへ移動した後、吸収溶液に吸収されることとなり、蒸発器Eと吸収器Aとの構造が簡略化できる。 In the present invention, further, as the seventh means for solving the above problems, the first, second, third, fourth, fifth or refrigeration system including a sixth means, the evaporator E can be configured such that the liquid refrigerant is transient and flows through the heat transfer surface, and the non-evaporated refrigerant moves to the absorber A side and is absorbed by the absorbing solution. The liquid refrigerant from the condenser C flows down the heat transfer surface of the evaporator E, but the non-evaporated refrigerant moves to the absorber A and is then absorbed by the absorbing solution. The structure with A can be simplified.

本願発明では、さらに、上記課題を解決するための第の手段として、上記第1、第2、第3、第4、第5、第6又は第の手段を備えた冷凍装置において、前記蒸気圧縮式冷凍機Xを複数台とし、それらの冷媒の排熱を各々回収し、一つの吸収式冷凍機Yの発生器Gで冷媒蒸気を発生させて駆動するように構成することもでき、そのように構成した場合、複数台の蒸気圧縮式冷凍機Xの排熱を有効に利用して1台の吸収式冷凍機Yを駆動させることができる。 In the present invention, further, as an eighth means for solving the above problems, the first, second, third, fourth, fifth, sixth or refrigeration system including a seventh means, A plurality of the vapor compression refrigeration machines X may be provided, and the exhaust heat of those refrigerants may be collected, and the refrigerant vapor may be generated and driven by the generator G of one absorption refrigeration machine Y. In such a configuration, it is possible to drive one absorption chiller Y by effectively using the exhaust heat of the plurality of vapor compression chillers X.

本願発明では、さらに、上記課題を解決するための第の手段として、上記第1、第2、第3、第4、第5、第6、第7又は第の手段を備えた冷凍装置において、前記発生器Gの熱源として排熱を用いることもでき、そのように構成した場合、やや低温の排熱温水を有効に利用できる。 Frozen in the present invention, furthermore, the ninth means for solving the above problems, the first, second, third, fourth, fifth, sixth, seventh or with the eighth means In the apparatus, exhaust heat can also be used as a heat source of the generator G. When configured in this way, a slightly low temperature exhaust heat hot water can be used effectively.

本願発明では、さらに、上記課題を解決するための第10の手段として、上記第の手段を備えた冷凍装置において、前記排熱として太陽熱を用いることもでき、そのように構成した場合、冷凍装置の利用範囲を大幅に拡大することができる。 In the present invention, as a tenth means for solving the above-described problem, in the refrigeration apparatus provided with the ninth means, solar heat can be used as the exhaust heat. The range of use of the device can be greatly expanded.

本願発明の第1の手段によれば、蒸気圧縮式冷凍機Xと吸収式冷凍機Yとを組み合わせた冷凍装置において、冷房運転時における前記蒸気圧縮式冷凍機Xの冷媒を前記吸収式冷凍機Yの蒸発器Eで冷却、または過冷却する冷媒冷却方式を採用し、冷房運転時における前記蒸気圧縮式冷凍機Xの冷媒を放熱する際の熱量を前記吸収式冷凍機Yの加熱源として利用すべく、前記蒸気圧縮式冷凍機Xにおける圧縮後の冷媒を前記吸収式冷凍機Yの発生器Gの加熱器gに流入させるが、部分負荷時など前記蒸気圧縮式冷凍機Xにおける圧縮機1の冷媒温度が低い場合には、前記蒸気圧縮式冷凍機Xの冷媒が前記発生器Gをバイパスするようにバイパス回路13を設け且つ該バイパス回路13に開閉弁14を付設するとともに、前記蒸気圧縮式冷凍機Xにおける前記バイパス回路13の入口冷媒温度が前記吸収式冷凍機Yにおける発生器Gの溶液温度を越えると、前記開閉弁14が閉作動するように構成し、前記吸収式冷凍機Yにおける発生器Gにおいて吸収溶液と前記蒸気圧縮式冷凍機Xの冷媒とが熱交換を行い、熱交換した後の蒸気圧縮式冷凍機Xの冷媒が、前記蒸気圧縮式冷凍機Xの熱源側熱交換器3に流入し、前記バイパス回路13の入口冷媒温度が前記吸収式冷凍機Yの発生器Gの溶液温度以下であれば、前記バイパス回路13の開閉弁14が開作動し、該バイパス回路13によって前記蒸気圧縮式冷凍機Xの冷媒を、前記蒸気圧縮式冷凍機Xにおける熱源側熱交換器3に流入させる構成として、蒸気圧縮式冷凍機Xの冷媒が熱源側熱交換器3にて放熱、冷却された後、吸収式冷凍機Yの蒸発器E内の熱交換器eに流入、冷却または過冷却させるようにしているので、冷房運転時において、吸収式冷凍機Yによる冷熱変換で、蒸気圧縮式冷凍機Xの性能を大幅に改善すると同時に蒸気圧縮式冷凍機Xの冷媒を放熱する際の熱量を前記吸収式冷凍機Yの加熱源として利用できるところから、熱源側熱交換器3を小さくすることが可能となるという効果がある。また、蒸気圧縮式冷凍機Xの冷媒温度が吸収式冷凍機Yにおける発生器Gの溶液温度よりも低い場合には、バイパス回路13に設けた開閉弁14を開作動することによって、蒸気圧縮式冷凍機Xの発生器G内の溶液温度を低下させるということもなくなるところから、蒸気圧縮式冷凍機Xの排熱を吸収式冷凍機Yの加熱源として有効に利用することができるという効果もある。さらに、前記蒸気圧縮式冷凍機Xに、暖房運転時に冷房運転時とは逆方向に冷媒を流通させるように冷媒流通方向を切り替える四路切換弁2を付設するとともに、暖房運転時には、前記熱源側熱交換器3を機能させるように構成する一方、前記バイパス回路13の開閉弁14を、前記熱源側熱交換器3の冷媒出口温度が低くなり過ぎた場合閉作動し、前記吸収式冷凍機Yの溶液ポンプPlと前記空冷熱交換器8および該空冷熱交換器8に付設された冷却ファン10とを運転することで、蒸気圧縮式冷凍機Xの冷媒が吸収式冷凍機Yの溶液より吸熱し、吸収式冷凍機Yの溶液は空冷熱交換器8において外気より吸熱するようにしているので、蒸気圧縮式冷凍機Xと吸収式冷凍機Yとを組み合わせた冷凍装置において、暖房運転を円滑に行うことができるという効果もある。しかも、前記吸収器Aの出口から溶液ポンプPlを経て前記発生器Gに送られる希溶液と前記発生器Gからの濃溶液とを熱交換させる溶液熱交換器Haを付設し、該溶液熱交換器Haに至る配管16の途中に開閉弁17を介設するとともに、吸収溶液を過冷却させる前記空冷熱交換器8の出口から前記吸収器Aに至る溶液配管18と前記溶液熱交換器Haから前記発生器Gに至る希溶液配管19とを開閉弁20を介設した溶液配管21で接続し、冷房運転時には、前記溶液熱交換器Haに至る配管16の開閉弁17を開作動させ且つ前記溶液配管21の開閉弁20を閉作動させ、前記発生器Gの加熱器gをバイパスするバイパス回路13の開閉弁14を前記蒸気圧縮式冷凍機Xにおける前記バイパス回路13の入口冷媒温度が吸収式冷凍機Yの発生器Gの溶液温度を越えると閉作動させるが、暖房運転時には、前記溶液熱交換器Haに至る配管16の開閉弁17を閉作動させ、前記溶液配管21の開閉弁20を前記蒸気圧縮式冷凍機Xの熱源側熱交換器3の冷媒出口温度が低くなり過ぎた場合に閉作動させ、前記吸収式冷凍機Yの溶液ポンプPlと前記空冷熱交換器8および該空冷熱交換器8に付設された冷却ファン10とを運転することで、蒸気圧縮式冷凍機Xの冷媒が吸収式冷凍機Yの溶液より吸熱し、吸収式冷凍機Yの溶液は空冷熱交換器8において外気より吸熱することとなり、冷暖房運転(換言すれば、ヒートポンプ運転)が可能となるという効果もある。 According to the first means of the present invention, in the refrigerating apparatus combining the vapor compression refrigerator X and the absorption refrigerator Y, the refrigerant of the vapor compression refrigerator X during the cooling operation is used as the absorption refrigerator. Adopting a refrigerant cooling system that cools or supercools with the evaporator E of Y, and uses the amount of heat when radiating the refrigerant of the vapor compression refrigerator X during cooling operation as a heating source of the absorption refrigerator Y Therefore, the refrigerant compressed in the vapor compression refrigerator X is caused to flow into the heater g of the generator G of the absorption refrigerator Y, but the compressor 1 in the vapor compression refrigerator X such as during partial load. When the refrigerant temperature is low, a bypass circuit 13 is provided so that the refrigerant of the vapor compression refrigerator X bypasses the generator G, and an on-off valve 14 is attached to the bypass circuit 13, and the vapor compression Type refrigerator X When the refrigerant temperature at the inlet of the bypass circuit 13 exceeds the solution temperature of the generator G in the absorption refrigeration machine Y, the on-off valve 14 is configured to close, and the generator G in the absorption refrigeration machine Y is configured. The refrigerant in the vapor compression refrigeration machine X exchanges heat and the refrigerant in the vapor compression refrigeration machine X after heat exchange enters the heat source side heat exchanger 3 of the vapor compression refrigeration machine X. If the inlet refrigerant temperature of the bypass circuit 13 is equal to or lower than the solution temperature of the generator G of the absorption refrigeration machine Y, the on-off valve 14 of the bypass circuit 13 is opened, and the bypass circuit 13 As a configuration in which the refrigerant of the compression refrigerator X flows into the heat source side heat exchanger 3 in the vapor compression refrigerator X, the refrigerant of the vapor compression refrigerator X is radiated and cooled by the heat source side heat exchanger 3. After absorption refrigeration Since it flows into the heat exchanger e in the evaporator E of Y, and is cooled or supercooled, the performance of the vapor compression refrigeration machine X is greatly improved by cooling with the absorption chiller Y during cooling operation. Since the heat quantity at the time of releasing heat from the refrigerant of the vapor compression refrigerator X can be used as a heating source for the absorption refrigerator Y, the heat source side heat exchanger 3 can be made smaller. There is. When the refrigerant temperature of the vapor compression refrigerator X is lower than the solution temperature of the generator G in the absorption refrigerator Y, the vapor compression type is opened by opening the on-off valve 14 provided in the bypass circuit 13. Since the temperature of the solution in the generator G of the refrigerator X is not reduced, the exhaust heat of the vapor compression refrigerator X can be effectively used as a heating source for the absorption refrigerator Y. is there. Further, the vapor compression refrigerator X is provided with a four-way switching valve 2 for switching the refrigerant flow direction so that the refrigerant flows in the direction opposite to that during the cooling operation during the heating operation. While the heat exchanger 3 is configured to function, the on-off valve 14 of the bypass circuit 13 is closed when the refrigerant outlet temperature of the heat source side heat exchanger 3 becomes too low, and the absorption refrigeration machine Y The refrigerant of the vapor compression refrigeration machine X absorbs heat from the solution of the absorption refrigeration machine Y by operating the solution pump Pl, the air cooling heat exchanger 8 and the cooling fan 10 attached to the air cooling heat exchanger 8. In addition, since the solution of the absorption refrigeration machine Y absorbs heat from the outside air in the air-cooled heat exchanger 8, the heating operation is smoothly performed in the refrigeration apparatus in which the vapor compression refrigeration machine X and the absorption refrigeration machine Y are combined. To do An effect that can be there. In addition, a solution heat exchanger Ha for exchanging heat between the dilute solution sent from the outlet of the absorber A via the solution pump Pl to the generator G and the concentrated solution from the generator G is provided, and the solution heat exchange is performed. An on-off valve 17 is provided in the middle of the pipe 16 leading to the absorber Ha, and the solution pipe 18 extending from the outlet of the air-cooled heat exchanger 8 for supercooling the absorption solution to the absorber A and the solution heat exchanger Ha. The dilute solution pipe 19 leading to the generator G is connected by a solution pipe 21 provided with an on-off valve 20, and during the cooling operation, the on-off valve 17 of the pipe 16 leading to the solution heat exchanger Ha is opened and the The on-off valve 20 of the bypass line 13 in the vapor compression refrigeration machine X absorbs the on-off valve 14 of the bypass circuit 13 that closes the on-off valve 20 of the solution pipe 21 and bypasses the heater g of the generator G. Refrigerator Y When the solution temperature of the generator G is exceeded, it is closed, but during heating operation, the on-off valve 17 of the pipe 16 leading to the solution heat exchanger Ha is closed, and the on-off valve 20 of the solution pipe 21 is closed by the vapor compression type. When the refrigerant outlet temperature of the heat source side heat exchanger 3 of the refrigerator X becomes too low, the refrigerant pump P1 of the absorption refrigerator Y, the air-cooled heat exchanger 8 and the air-cooled heat exchanger 8 are closed. By operating the attached cooling fan 10, the refrigerant of the vapor compression refrigerator X absorbs heat from the solution of the absorption refrigerator Y, and the solution of the absorption refrigerator Y absorbs heat from the outside air in the air-cooling heat exchanger 8. Therefore, there is an effect that the cooling / heating operation (in other words, the heat pump operation) becomes possible.

本願発明の第の手段によれば、蒸気圧縮式冷凍機Xと吸収式冷凍機Yとを組み合わせた冷凍装置において、冷房運転時における前記蒸気圧縮式冷凍機Xの冷媒を前記吸収式冷凍機Yの蒸発器Eで冷却、または過冷却する冷媒冷却方式を採用し、冷房運転時における前記蒸気圧縮式冷凍機Xの冷媒を放熱する際の熱量を前記吸収式冷凍機Yの加熱源として利用すべく、前記蒸気圧縮式冷凍機Xにおける圧縮後の冷媒を前記吸収式冷凍機Yの発生器Gの加熱器gに流入させるが、部分負荷時など前記蒸気圧縮式冷凍機Xにおける圧縮機1の冷媒温度が低い場合には、前記蒸気圧縮式冷凍機Xの冷媒が前記発生器Gをバイパスするようにバイパス回路13を設け且つ該バイパス回路13に開閉弁14を付設するとともに、前記蒸気圧縮式冷凍機Xにおける前記バイパス回路13の入口冷媒温度が前記吸収式冷凍機Yにおける発生器Gの溶液温度を越えると、前記開閉弁14が閉作動するように構成し、前記吸収式冷凍機Yにおける発生器Gにおいて吸収溶液と前記蒸気圧縮式冷凍機Xの冷媒とが熱交換を行い、熱交換した後の蒸気圧縮式冷凍機Xの冷媒が、前記蒸気圧縮式冷凍機Xの熱源側熱交換器3に流入し、前記バイパス回路13の入口冷媒温度が前記吸収式冷凍機Yの発生器Gの溶液温度以下であれば、前記バイパス回路13の開閉弁14が開作動し、該バイパス回路13によって前記蒸気圧縮式冷凍機Xの冷媒を、前記蒸気圧縮式冷凍機Xにおける熱源側熱交換器3に流入させる構成として、蒸気圧縮式冷凍機Xの冷媒が熱源側熱交換器3にて放熱、冷却された後、吸収式冷凍機Yの蒸発器E内の熱交換器eに流入、冷却または過冷却させるようにしているので、冷房運転時において、吸収式冷凍機Yによる冷熱変換で、蒸気圧縮式冷凍機Xの性能を大幅に改善すると同時に蒸気圧縮式冷凍機Xの冷媒を放熱する際の熱量を前記吸収式冷凍機Yの加熱源として利用できるところから、熱源側熱交換器3を小さくすることが可能となるという効果がある。また、蒸気圧縮式冷凍機Xの冷媒温度が吸収式冷凍機Yにおける発生器Gの溶液温度よりも低い場合には、バイパス回路13に設けた開閉弁14を開作動することによって、蒸気圧縮式冷凍機Xの発生器G内の溶液温度を低下させるということもなくなるところから、蒸気圧縮式冷凍機Xの排熱を吸収式冷凍機Yの加熱源として有効に利用することができるという効果もある。さらに、前記蒸気圧縮式冷凍機Xに、暖房運転時に冷房運転時とは逆方向に冷媒を流通させるように冷媒流通方向を切り替える四路切換弁2を付設するとともに、暖房運転時には、前記熱源側熱交換器3を機能させるように構成する一方、前記バイパス回路13の開閉弁14を、前記熱源側熱交換器3の冷媒出口温度が低くなり過ぎた場合閉作動し、前記吸収式冷凍機Yの溶液ポンプPlと前記空冷熱交換器8および該空冷熱交換器8に付設された冷却ファン10とを運転することで、蒸気圧縮式冷凍機Xの冷媒が吸収式冷凍機Yの溶液より吸熱し、吸収式冷凍機Yの溶液は空冷熱交換器8において外気より吸熱するようにしているので、蒸気圧縮式冷凍機Xと吸収式冷凍機Yとを組み合わせた冷凍装置において、暖房運転を円滑に行うことができるという効果もある。しかも、前記吸収器Aの出口から溶液ポンプPlを経て前記発生器Gに送られる希溶液と前記発生器Gからの濃溶液とを熱交換させる溶液熱交換器Haを付設し、該溶液熱交換器Haに至る配管16の途中に開閉弁17を介設するとともに、溶液熱交換器Haから前記発生器Gに至る希溶液配管19とを開閉弁20を介設した溶液配管21で接続し、更に吸収溶液を過冷却させる前記空冷熱交換器8の出口から前記吸収器Aに至る溶液配管18と前記蒸発器Eの入口側の冷媒配管22とを開閉弁23を介設してなるバイパス配管24で連結し、冷房運転時には、前記バイパス配管24の開閉弁23および前記溶液配管18と発生器Gに至る希溶液配管19とを接続する溶液配管21に介設した開閉弁20を閉作動させ且つ前記溶液熱交換器Haに至る配管16の開閉弁17を開作動させ、前記発生器Gの加熱器gをバイパスするバイパス回路13の開閉弁14を前記蒸気圧縮式冷凍機Xにおける前記バイパス回路13の入口冷媒温度が吸収式冷凍機Yの発生器Gの溶液温度を越えると閉作動させるが、暖房運転時には、前記バイパス配管24の開閉弁23および前記溶液配管18より発生器Gに至る希溶液配管19に介設した開閉弁20を開作動させ、前記溶液熱交換器Haに至る配管16の開閉弁17を閉作動させ、前記発生器Gの加熱器gをバイパスするバイパス回路13の開閉弁14を前記蒸気圧縮式冷凍機Xの熱源側熱交換器3の冷媒出口温度が低くなり過ぎた場合に閉作動させるようにし、前記吸収式冷凍機Yの溶液ポンプPlと前記空冷熱交換器8および冷却ファン10とを運転することで、蒸気圧縮式冷凍機Xにおける冷媒が吸収式冷凍機Yの発生器G内の溶液より吸熱し、吸収式冷凍機Yの溶液が空冷熱交換器8にて外気より吸熱することとなり、冷暖房運転(換言すれば、ヒートポンプ運転)が可能となるという効果もある According to the second means of the present invention, in the refrigerating apparatus in which the vapor compression refrigerator X and the absorption refrigerator Y are combined, the refrigerant of the vapor compression refrigerator X during the cooling operation is used as the absorption refrigerator. Adopting a refrigerant cooling system that cools or supercools with the evaporator E of Y, and uses the amount of heat when radiating the refrigerant of the vapor compression refrigerator X during cooling operation as a heating source of the absorption refrigerator Y Therefore, the refrigerant compressed in the vapor compression refrigerator X is caused to flow into the heater g of the generator G of the absorption refrigerator Y, but the compressor 1 in the vapor compression refrigerator X such as during partial load. When the refrigerant temperature is low, a bypass circuit 13 is provided so that the refrigerant of the vapor compression refrigerator X bypasses the generator G, and an on-off valve 14 is attached to the bypass circuit 13, and the vapor compression Type refrigerator X When the refrigerant temperature at the inlet of the bypass circuit 13 exceeds the solution temperature of the generator G in the absorption refrigeration machine Y, the on-off valve 14 is configured to close, and the generator G in the absorption refrigeration machine Y is configured. The refrigerant in the vapor compression refrigeration machine X exchanges heat and the refrigerant in the vapor compression refrigeration machine X after heat exchange enters the heat source side heat exchanger 3 of the vapor compression refrigeration machine X. If the inlet refrigerant temperature of the bypass circuit 13 is equal to or lower than the solution temperature of the generator G of the absorption refrigeration machine Y, the on-off valve 14 of the bypass circuit 13 is opened, and the bypass circuit 13 As a configuration in which the refrigerant of the compression refrigerator X flows into the heat source side heat exchanger 3 in the vapor compression refrigerator X, the refrigerant of the vapor compression refrigerator X is radiated and cooled by the heat source side heat exchanger 3. After absorption refrigeration Since it flows into the heat exchanger e in the evaporator E of Y, and is cooled or supercooled, the performance of the vapor compression refrigeration machine X is greatly improved by cooling with the absorption chiller Y during cooling operation. Since the heat quantity at the time of releasing heat from the refrigerant of the vapor compression refrigerator X can be used as a heating source for the absorption refrigerator Y, the heat source side heat exchanger 3 can be made smaller. There is. When the refrigerant temperature of the vapor compression refrigerator X is lower than the solution temperature of the generator G in the absorption refrigerator Y, the vapor compression type is opened by opening the on-off valve 14 provided in the bypass circuit 13. Since the temperature of the solution in the generator G of the refrigerator X is not reduced, the exhaust heat of the vapor compression refrigerator X can be effectively used as a heating source for the absorption refrigerator Y. is there. Further, the vapor compression refrigerator X is provided with a four-way switching valve 2 for switching the refrigerant flow direction so that the refrigerant flows in the direction opposite to that during the cooling operation during the heating operation. While the heat exchanger 3 is configured to function, the on-off valve 14 of the bypass circuit 13 is closed when the refrigerant outlet temperature of the heat source side heat exchanger 3 becomes too low, and the absorption refrigeration machine Y The refrigerant of the vapor compression refrigeration machine X absorbs heat from the solution of the absorption refrigeration machine Y by operating the solution pump Pl, the air cooling heat exchanger 8 and the cooling fan 10 attached to the air cooling heat exchanger 8. In addition, since the solution of the absorption refrigeration machine Y absorbs heat from the outside air in the air-cooled heat exchanger 8, the heating operation is smoothly performed in the refrigeration apparatus in which the vapor compression refrigeration machine X and the absorption refrigeration machine Y are combined. To do An effect that can be there. In addition, a solution heat exchanger Ha for exchanging heat between the dilute solution sent from the outlet of the absorber A via the solution pump Pl to the generator G and the concentrated solution from the generator G is provided, and the solution heat exchange is performed. An on-off valve 17 is provided in the middle of the pipe 16 leading to the vessel Ha, and a dilute solution pipe 19 extending from the solution heat exchanger Ha to the generator G is connected by a solution pipe 21 provided with an on-off valve 20; Furthermore, a bypass pipe comprising a solution pipe 18 extending from the outlet of the air-cooling heat exchanger 8 for supercooling the absorbent solution to the absorber A and a refrigerant pipe 22 on the inlet side of the evaporator E via an open / close valve 23. 24, and at the time of cooling operation, the on-off valve 23 connected to the on-off valve 23 of the bypass pipe 24 and the solution pipe 21 connecting the solution pipe 18 and the dilute solution pipe 19 reaching the generator G is closed. And the solution heat exchanger H The on-off valve 17 of the bypass circuit 13 in the vapor compression refrigeration machine X absorbs the on-off valve 14 of the bypass circuit 13 that opens the on-off valve 17 of the piping 16 leading to the pipe G and bypasses the heater g of the generator G. When the solution temperature of the generator G of the refrigerating machine Y exceeds the temperature, it is closed, but during the heating operation, it is interposed in the open / close valve 23 of the bypass pipe 24 and the dilute solution pipe 19 extending from the solution pipe 18 to the generator G. The on-off valve 20 is opened, the on-off valve 17 of the pipe 16 leading to the solution heat exchanger Ha is closed, and the on-off valve 14 of the bypass circuit 13 bypassing the heater g of the generator G is connected to the vapor compression type. When the refrigerant outlet temperature of the heat source side heat exchanger 3 of the refrigerator X becomes too low, the refrigerant pump P1 of the absorption refrigerator Y, the air-cooling heat exchanger 8 and the cooling fan 1 are closed. , The refrigerant in the vapor compression refrigerator X absorbs heat from the solution in the generator G of the absorption refrigerator Y, and the solution in the absorption refrigerator Y absorbs heat from the outside air in the air-cooled heat exchanger 8. Therefore, there is an effect that the cooling / heating operation (in other words, the heat pump operation) becomes possible.

本願発明の第の手段によれば、蒸気圧縮式冷凍機Xと吸収式冷凍機Yとを組み合わせた冷凍装置において、冷房運転時における前記蒸気圧縮式冷凍機Xの冷媒を前記吸収式冷凍機Yの蒸発器Eで冷却、または過冷却する冷媒冷却方式を採用し、冷房運転時における前記蒸気圧縮式冷凍機Xの冷媒を放熱する際の熱量を前記吸収式冷凍機Yの加熱源として利用すべく、前記蒸気圧縮式冷凍機Xにおける圧縮後の冷媒を前記吸収式冷凍機Yの発生器Gの加熱器gに流入させるが、部分負荷時など前記蒸気圧縮式冷凍機Xにおける圧縮機1の冷媒温度が低い場合には、前記蒸気圧縮式冷凍機Xの冷媒が前記発生器Gをバイパスするようにバイパス回路13を設け且つ該バイパス回路13に開閉弁14を付設するとともに、前記蒸気圧縮式冷凍機Xにおける前記バイパス回路13の入口冷媒温度が前記吸収式冷凍機Yにおける発生器Gの溶液温度を越えると、前記開閉弁14が閉作動するように構成し、前記吸収式冷凍機Yにおける発生器Gにおいて吸収溶液と前記蒸気圧縮式冷凍機Xの冷媒とが熱交換を行い、熱交換した後の蒸気圧縮式冷凍機Xの冷媒が、前記蒸気圧縮式冷凍機Xの熱源側熱交換器3に流入し、前記バイパス回路13の入口冷媒温度が前記吸収式冷凍機Yの発生器Gの溶液温度以下であれば、前記バイパス回路13の開閉弁14が開作動し、該バイパス回路13によって前記蒸気圧縮式冷凍機Xの冷媒を、前記蒸気圧縮式冷凍機Xにおける熱源側熱交換器3に流入させる構成として、蒸気圧縮式冷凍機Xの冷媒が熱源側熱交換器3にて放熱、冷却された後、吸収式冷凍機Yの蒸発器E内の熱交換器eに流入、冷却または過冷却させるようにしているので、冷房運転時において、吸収式冷凍機Yによる冷熱変換で、蒸気圧縮式冷凍機Xの性能を大幅に改善すると同時に蒸気圧縮式冷凍機Xの冷媒を放熱する際の熱量を前記吸収式冷凍機Yの加熱源として利用できるところから、熱源側熱交換器3を小さくすることが可能となるという効果がある。また、蒸気圧縮式冷凍機Xの冷媒温度が吸収式冷凍機Yにおける発生器Gの溶液温度よりも低い場合には、バイパス回路13に設けた開閉弁14を開作動することによって、蒸気圧縮式冷凍機Xの発生器G内の溶液温度を低下させるということもなくなるところから、蒸気圧縮式冷凍機Xの排熱を吸収式冷凍機Yの加熱源として有効に利用することができるという効果もある。さらに、前記蒸気圧縮式冷凍機Xに、暖房運転時に冷房運転時とは逆方向に冷媒を流通させるように冷媒流通方向を切り替える四路切換弁2を付設するとともに、暖房運転時には、前記熱源側熱交換器3を機能させるように構成する一方、前記バイパス回路13の開閉弁14を、前記熱源側熱交換器3の冷媒出口温度が低くなり過ぎた場合閉作動し、前記吸収式冷凍機Yの溶液ポンプPlと前記空冷熱交換器8および該空冷熱交換器8に付設された冷却ファン10とを運転することで、蒸気圧縮式冷凍機Xの冷媒が吸収式冷凍機Yの溶液より吸熱し、吸収式冷凍機Yの溶液は空冷熱交換器8において外気より吸熱するようにしているので、蒸気圧縮式冷凍機Xと吸収式冷凍機Yとを組み合わせた冷凍装置において、暖房運転を円滑に行うことができるという効果もある。しかも、前記吸収器Aの出口から溶液ポンプPlを経て前記発生器Gに送られる希溶液と前記発生器Gからの濃溶液とを熱交換させる溶液熱交換器Haを付設し、該溶液熱交換器Haに至る配管16の途中に開閉弁17を介設するとともに、吸収溶液を過冷却させる前記空冷熱交換器8の出口から前記吸収器Aに至る溶液配管18と前記溶液熱交換器Haから前記発生器Gに至る希溶液配管19とを開閉弁20を介設した溶液配管21で接続し、更に吸収溶液を過冷却させる前記空冷熱交換器8の出口から前記吸収器Aに至る溶液配管18から分岐して前記蒸発器Eの入口に至るバイパス配管25を設け且つ該バイパス配管25に開閉弁26を介設し、冷房運転時には、前記溶液配管18と発生器Gに至る希溶液配管19とを接続する溶液配管21に介設した開閉弁20および前記バイパス配管25の開閉弁26を閉作動させ且つ前記溶液熱交換器Haに至る配管16の開閉弁17を開作動させ、前記発生器Gの加熱器gをバイパスするバイパス回路13の開閉弁14を前記蒸気圧縮式冷凍機Xにおける前記バイパス回路13の入口冷媒温度が吸収式冷凍機Yの発生器Gの溶液温度を越えると閉作動させるが、暖房運転時には、前記溶液配管18と発生器Gに至る希溶液配管19とを接続する溶液配管21に介設した開閉弁20および前記バイパス配管25の開閉弁26を開作動させ、前記溶液熱交換器Haに至る配管16の開閉弁17を閉作動させ、前記発生器Gの加熱器gをバイパスするバイパス回路13の開閉弁14を前記蒸気圧縮式冷凍機Xの熱源側熱交換器3の冷媒出口温度が低くなり過ぎた場合に閉作動させるようにし、前記吸収式冷凍機Yの溶液ポンプPlと前記空冷熱交換器8および冷却ファン10とを運転することで、蒸気圧縮式冷凍機Xにおける冷媒が吸収式冷凍機Yの発生器G内の溶液より吸熱し、吸収式冷凍機Yの溶液が空冷熱交換器8にて外気より吸熱することとなり、冷暖房運転(換言すれば、ヒートポンプ運転)が可能となるという効果もあるAccording to the third means of the present invention, in the refrigerating apparatus in which the vapor compression refrigerator X and the absorption refrigerator Y are combined, the refrigerant of the vapor compression refrigerator X during the cooling operation is used as the absorption refrigerator. Adopting a refrigerant cooling system that cools or supercools with the evaporator E of Y, and uses the amount of heat when radiating the refrigerant of the vapor compression refrigerator X during cooling operation as a heating source of the absorption refrigerator Y Therefore, the refrigerant compressed in the vapor compression refrigerator X is caused to flow into the heater g of the generator G of the absorption refrigerator Y, but the compressor 1 in the vapor compression refrigerator X such as during partial load. When the refrigerant temperature is low, a bypass circuit 13 is provided so that the refrigerant of the vapor compression refrigerator X bypasses the generator G, and an on-off valve 14 is attached to the bypass circuit 13, and the vapor compression Type refrigerator X When the refrigerant temperature at the inlet of the bypass circuit 13 exceeds the solution temperature of the generator G in the absorption refrigeration machine Y, the on-off valve 14 is configured to close, and the generator G in the absorption refrigeration machine Y is configured. The refrigerant in the vapor compression refrigeration machine X exchanges heat and the refrigerant in the vapor compression refrigeration machine X after heat exchange enters the heat source side heat exchanger 3 of the vapor compression refrigeration machine X. If the inlet refrigerant temperature of the bypass circuit 13 is equal to or lower than the solution temperature of the generator G of the absorption refrigeration machine Y, the on-off valve 14 of the bypass circuit 13 is opened, and the bypass circuit 13 As a configuration in which the refrigerant of the compression refrigerator X flows into the heat source side heat exchanger 3 in the vapor compression refrigerator X, the refrigerant of the vapor compression refrigerator X is radiated and cooled by the heat source side heat exchanger 3. After absorption refrigeration Since it flows into the heat exchanger e in the evaporator E of Y, and is cooled or supercooled, the performance of the vapor compression refrigeration machine X is greatly improved by cooling with the absorption chiller Y during cooling operation. Since the heat quantity at the time of releasing heat from the refrigerant of the vapor compression refrigerator X can be used as a heating source for the absorption refrigerator Y, the heat source side heat exchanger 3 can be made smaller. There is. When the refrigerant temperature of the vapor compression refrigerator X is lower than the solution temperature of the generator G in the absorption refrigerator Y, the vapor compression type is opened by opening the on-off valve 14 provided in the bypass circuit 13. Since the temperature of the solution in the generator G of the refrigerator X is not reduced, the exhaust heat of the vapor compression refrigerator X can be effectively used as a heating source for the absorption refrigerator Y. is there. Further, the vapor compression refrigerator X is provided with a four-way switching valve 2 for switching the refrigerant flow direction so that the refrigerant flows in the direction opposite to that during the cooling operation during the heating operation. While the heat exchanger 3 is configured to function, the on-off valve 14 of the bypass circuit 13 is closed when the refrigerant outlet temperature of the heat source side heat exchanger 3 becomes too low, and the absorption refrigeration machine Y The refrigerant of the vapor compression refrigeration machine X absorbs heat from the solution of the absorption refrigeration machine Y by operating the solution pump Pl, the air cooling heat exchanger 8 and the cooling fan 10 attached to the air cooling heat exchanger 8. In addition, since the solution of the absorption refrigeration machine Y absorbs heat from the outside air in the air-cooled heat exchanger 8, the heating operation is smoothly performed in the refrigeration apparatus in which the vapor compression refrigeration machine X and the absorption refrigeration machine Y are combined. To do An effect that can be there. In addition, a solution heat exchanger Ha for exchanging heat between the dilute solution sent from the outlet of the absorber A via the solution pump Pl to the generator G and the concentrated solution from the generator G is provided, and the solution heat exchange is performed. An on-off valve 17 is provided in the middle of the pipe 16 leading to the absorber Ha, and the solution pipe 18 extending from the outlet of the air-cooled heat exchanger 8 for supercooling the absorption solution to the absorber A and the solution heat exchanger Ha. A solution pipe from the outlet of the air-cooling heat exchanger 8 that connects the dilute solution pipe 19 leading to the generator G to a solution pipe 21 provided with an on-off valve 20 and further supercools the absorbed solution to the absorber A. A bypass pipe 25 branched from 18 to the inlet of the evaporator E is provided, and an open / close valve 26 is provided in the bypass pipe 25. During cooling operation, a dilute solution pipe 19 reaching the solution pipe 18 and the generator G is provided. Solution arrangement to connect with The opening / closing valve 20 of the bypass pipe 25 and the opening / closing valve 26 of the bypass pipe 25 are closed and the opening / closing valve 17 of the pipe 16 leading to the solution heat exchanger Ha is opened. The on-off valve 14 of the bypass circuit 13 to be bypassed is closed when the inlet refrigerant temperature of the bypass circuit 13 in the vapor compression refrigerator X exceeds the solution temperature of the generator G of the absorption refrigerator Y. Then, the on-off valve 20 and the on-off valve 26 of the bypass pipe 25 connected to the solution pipe 21 connecting the solution pipe 18 and the dilute solution pipe 19 leading to the generator G are opened, and the solution heat exchanger Ha is turned on. The on-off valve 17 of the bypass circuit 13 that closes the on-off valve 17 of the pipe 16 to reach and bypasses the heater g of the generator G is connected to the refrigerant outlet of the heat source side heat exchanger 3 of the vapor compression refrigerator X. The refrigerant in the vapor compression refrigeration machine X is operated by operating the solution pump Pl of the absorption refrigeration machine Y, the air-cooling heat exchanger 8 and the cooling fan 10 when the temperature becomes too low. Absorbs heat from the solution in the generator G of the absorption chiller Y, and the solution in the absorption chiller Y absorbs heat from the outside air in the air-cooling heat exchanger 8, so that the cooling / heating operation (in other words, the heat pump operation) is performed. There is also an effect that it becomes possible.

本願発明の第の手段によれば、蒸気圧縮式冷凍機Xと吸収式冷凍機Yとを組み合わせた冷凍装置において、冷房運転時における前記蒸気圧縮式冷凍機Xの冷媒を前記吸収式冷凍機Yの蒸発器Eで冷却、または過冷却する冷媒冷却方式を採用し、冷房運転時における前記蒸気圧縮式冷凍機Xの冷媒を放熱する際の熱量を前記吸収式冷凍機Yの加熱源として利用すべく、前記蒸気圧縮式冷凍機Xにおける圧縮後の冷媒を前記吸収式冷凍機Yの発生器Gの加熱器gに流入させるが、部分負荷時など前記蒸気圧縮式冷凍機Xにおける圧縮機1の冷媒温度が低い場合には、前記蒸気圧縮式冷凍機Xの冷媒が前記発生器Gをバイパスするようにバイパス回路13を設け且つ該バイパス回路13に開閉弁14を付設するとともに、前記蒸気圧縮式冷凍機Xにおける前記バイパス回路13の入口冷媒温度が前記吸収式冷凍機Yにおける発生器Gの溶液温度を越えると、前記開閉弁14が閉作動するように構成し、前記吸収式冷凍機Yにおける発生器Gにおいて吸収溶液と前記蒸気圧縮式冷凍機Xの冷媒とが熱交換を行い、熱交換した後の蒸気圧縮式冷凍機Xの冷媒が、前記蒸気圧縮式冷凍機Xの熱源側熱交換器3に流入し、前記バイパス回路13の入口冷媒温度が前記吸収式冷凍機Yの発生器Gの溶液温度以下であれば、前記バイパス回路13の開閉弁14が開作動し、該バイパス回路13によって前記蒸気圧縮式冷凍機Xの冷媒を、前記蒸気圧縮式冷凍機Xにおける熱源側熱交換器3に流入させる構成として、蒸気圧縮式冷凍機Xの冷媒が熱源側熱交換器3にて放熱、冷却された後、吸収式冷凍機Yの蒸発器E内の熱交換器eに流入、冷却または過冷却させるようにしているので、冷房運転時において、吸収式冷凍機Yによる冷熱変換で、蒸気圧縮式冷凍機Xの性能を大幅に改善すると同時に蒸気圧縮式冷凍機Xの冷媒を放熱する際の熱量を前記吸収式冷凍機Yの加熱源として利用できるところから、熱源側熱交換器3を小さくすることが可能となるという効果がある。また、蒸気圧縮式冷凍機Xの冷媒温度が吸収式冷凍機Yにおける発生器Gの溶液温度よりも低い場合には、バイパス回路13に設けた開閉弁14を開作動することによって、蒸気圧縮式冷凍機Xの発生器G内の溶液温度を低下させるということもなくなるところから、蒸気圧縮式冷凍機Xの排熱を吸収式冷凍機Yの加熱源として有効に利用することができるという効果もある。さらに、前記蒸気圧縮式冷凍機Xに、暖房運転時に冷房運転時とは逆方向に冷媒を流通させるように冷媒流通方向を切り替える四路切換弁2を付設するとともに、暖房運転時には、前記熱源側熱交換器3を機能させるように構成する一方、前記バイパス回路13の開閉弁14を、前記熱源側熱交換器3の冷媒出口温度が低くなり過ぎた場合閉作動し、前記吸収式冷凍機Yの溶液ポンプPlと前記空冷熱交換器8および該空冷熱交換器8に付設された冷却ファン10とを運転することで、蒸気圧縮式冷凍機Xの冷媒が吸収式冷凍機Yの溶液より吸熱し、吸収式冷凍機Yの溶液は空冷熱交換器8において外気より吸熱するようにしているので、蒸気圧縮式冷凍機Xと吸収式冷凍機Yとを組み合わせた冷凍装置において、暖房運転を円滑に行うことができるという効果もある。しかも、吸収溶液を過冷却させる前記空冷熱交換器8の出口から前記吸収器Aに至る溶液配管18と前記溶液熱交換器Haから前記発生器Gに至る希溶液配管19とを開閉弁20を介設した溶液配管21で接続し、更に吸収溶液を過冷却させる前記空冷熱交換器8の出口から前記吸収器Aに至る溶液配管18と前記蒸発器Eの入口側の冷媒配管22とを開閉弁23を介設してなるバイパス配管24で連結するとともに、前記吸吸収器Aの入口側の溶液配管18に開閉弁27を介設し、冷房運転時には、前記溶液配管21に介設した開閉弁20および前記バイパス配管24の開閉弁23を閉作動させ且つ前記溶液配管18の開閉弁27を開作動させ、前記溶液熱交換器Haに至る配管16の開閉弁17を開作動させ、前記発生器Gの加熱器gをバイパスするバイパス回路13の開閉弁14を前記蒸気圧縮式冷凍機Xにおける前記バイパス回路13の入口冷媒温度が吸収式冷凍機Yの発生器Gの溶液温度を越えると閉作動させるが、暖房運転時には、前記溶液配管21に介設した開閉弁20および前記バイパス配管24の開閉弁23を開作動させ且つ前記溶液配管18の開閉弁27を閉作動させ、前記溶液熱交換器Haに至る配管16の開閉弁17を閉作動させ、前記発生器Gの加熱器gをバイパスするバイパス回路13の開閉弁14を前記蒸気圧縮式冷凍機Xの熱源側熱交換器3の冷媒出口温度が低くなり過ぎた場合に閉作動させるようにし、前記吸収式冷凍機Yの溶液ポンプPlと前記空冷熱交換器8および冷却ファン10とを運転することで、蒸気圧縮式冷凍機Xにおける冷媒が吸収式冷凍機Yの発生器G内の溶液より吸熱し、吸収式冷凍機Yの溶液が空冷熱交換器8にて外気より吸熱することとなり、冷暖房運転(換言すれば、ヒートポンプ運転)が可能となるという効果もあるAccording to the fourth means of the present invention, in the refrigerating apparatus combining the vapor compression refrigerator X and the absorption refrigerator Y, the refrigerant of the vapor compression refrigerator X during the cooling operation is used as the absorption refrigerator. Adopting a refrigerant cooling system that cools or supercools with the evaporator E of Y, and uses the amount of heat when radiating the refrigerant of the vapor compression refrigerator X during cooling operation as a heating source of the absorption refrigerator Y Therefore, the refrigerant compressed in the vapor compression refrigerator X is caused to flow into the heater g of the generator G of the absorption refrigerator Y, but the compressor 1 in the vapor compression refrigerator X such as during partial load. When the refrigerant temperature is low, a bypass circuit 13 is provided so that the refrigerant of the vapor compression refrigerator X bypasses the generator G, and an on-off valve 14 is attached to the bypass circuit 13, and the vapor compression Type refrigerator X When the refrigerant temperature at the inlet of the bypass circuit 13 exceeds the solution temperature of the generator G in the absorption refrigeration machine Y, the on-off valve 14 is configured to close, and the generator G in the absorption refrigeration machine Y is configured. The refrigerant in the vapor compression refrigeration machine X exchanges heat and the refrigerant in the vapor compression refrigeration machine X after heat exchange enters the heat source side heat exchanger 3 of the vapor compression refrigeration machine X. If the inlet refrigerant temperature of the bypass circuit 13 is equal to or lower than the solution temperature of the generator G of the absorption refrigeration machine Y, the on-off valve 14 of the bypass circuit 13 is opened, and the bypass circuit 13 As a configuration in which the refrigerant of the compression refrigerator X flows into the heat source side heat exchanger 3 in the vapor compression refrigerator X, the refrigerant of the vapor compression refrigerator X is radiated and cooled by the heat source side heat exchanger 3. After absorption refrigeration Since it flows into the heat exchanger e in the evaporator E of Y, and is cooled or supercooled, the performance of the vapor compression refrigeration machine X is greatly improved by cooling with the absorption chiller Y during cooling operation. Since the heat quantity at the time of releasing heat from the refrigerant of the vapor compression refrigerator X can be used as a heating source for the absorption refrigerator Y, the heat source side heat exchanger 3 can be made smaller. There is. When the refrigerant temperature of the vapor compression refrigerator X is lower than the solution temperature of the generator G in the absorption refrigerator Y, the vapor compression type is opened by opening the on-off valve 14 provided in the bypass circuit 13. Since the temperature of the solution in the generator G of the refrigerator X is not reduced, the exhaust heat of the vapor compression refrigerator X can be effectively used as a heating source for the absorption refrigerator Y. is there. Further, the vapor compression refrigerator X is provided with a four-way switching valve 2 for switching the refrigerant flow direction so that the refrigerant flows in the direction opposite to that during the cooling operation during the heating operation. While the heat exchanger 3 is configured to function, the on-off valve 14 of the bypass circuit 13 is closed when the refrigerant outlet temperature of the heat source side heat exchanger 3 becomes too low, and the absorption refrigeration machine Y The refrigerant of the vapor compression refrigeration machine X absorbs heat from the solution of the absorption refrigeration machine Y by operating the solution pump Pl, the air cooling heat exchanger 8 and the cooling fan 10 attached to the air cooling heat exchanger 8. In addition, since the solution of the absorption refrigeration machine Y absorbs heat from the outside air in the air-cooled heat exchanger 8, the heating operation is smoothly performed in the refrigeration apparatus in which the vapor compression refrigeration machine X and the absorption refrigeration machine Y are combined. To do An effect that can be there. In addition, the on-off valve 20 connects the solution pipe 18 from the outlet of the air-cooled heat exchanger 8 for supercooling the absorbent solution to the absorber A and the dilute solution pipe 19 from the solution heat exchanger Ha to the generator G. Connected by an intervening solution pipe 21 and further opens and closes a solution pipe 18 from the outlet of the air-cooled heat exchanger 8 for supercooling the absorbing solution to the absorber A and a refrigerant pipe 22 on the inlet side of the evaporator E. In addition to being connected by a bypass pipe 24 provided with a valve 23, an open / close valve 27 is provided in the solution pipe 18 on the inlet side of the absorber A, and the open / close provided in the solution pipe 21 during cooling operation. The valve 20 and the on-off valve 23 of the bypass pipe 24 are closed, the on-off valve 27 of the solution pipe 18 is opened, the on-off valve 17 of the pipe 16 leading to the solution heat exchanger Ha is opened, and the generation Heater g of vessel G The on-off valve 14 of the bypass circuit 13 that bypasses is closed when the inlet refrigerant temperature of the bypass circuit 13 in the vapor compression refrigerator X exceeds the solution temperature of the generator G of the absorption refrigerator Y. The on-off valve 20 provided in the solution pipe 21 and the on-off valve 23 of the bypass pipe 24 are opened, and the on-off valve 27 of the solution pipe 18 is closed, and the pipe 16 reaching the solution heat exchanger Ha is opened. The refrigerant outlet temperature of the heat source side heat exchanger 3 of the vapor compression refrigerator X is too low in the on-off valve 14 of the bypass circuit 13 that closes the on-off valve 17 and bypasses the heater g of the generator G. In this case, by operating the solution pump Pl of the absorption refrigeration machine Y, the air-cooling heat exchanger 8 and the cooling fan 10, the refrigerant in the vapor compression refrigeration machine X is The absorption refrigeration machine Y absorbs heat from the solution in the generator G, and the absorption refrigeration machine Y solution absorbs heat from the outside air in the air-cooling heat exchanger 8, so that air conditioning operation (in other words, heat pump operation) is possible. There is also an effect of becoming.

本願発明の第の手段におけるように、上記第1、第2、第3又は第4の手段を備えた冷凍装置において、前記吸収式冷凍機Yにおける吸収器Aに入る吸収溶液を空冷熱交換器8にて過冷却し、前記吸収器Aにおいては冷媒蒸気を吸収するだけで、吸収熱は前記吸収溶液で取り去る間接空冷方式としており、そのように構成した場合、吸収器Aで冷媒蒸気を吸収させながら吸収溶液を水冷もしくは空冷式で冷却する直接冷却方式に比較して、吸収器Aの構造の簡略化、小型化を図ることができる。 As in the fifth means of the present invention, in the refrigeration apparatus provided with the first , second, third or fourth means, the absorption solution entering the absorber A in the absorption chiller Y is air-cooled heat exchange. The refrigerant is supercooled by the cooler 8 and only absorbs the refrigerant vapor in the absorber A. The absorption heat is removed by the absorbing solution. In this configuration, the refrigerant vapor is absorbed by the absorber A. The structure of the absorber A can be simplified and reduced in size as compared with the direct cooling method in which the absorbing solution is cooled by water cooling or air cooling while absorbing.

本願発明の第の手段におけるように、上記第4の手段を備えた冷凍装置において、前記蒸発器Eに溶液を流入させる場合の散布器は、冷媒用とは別に散布器が取り付けられているか、もしくは共用ができるようにすることもでき、そのように構成した場合、溶液がうまく蒸発器Eの伝熱面に散布されることとなる。 As in the sixth means of the present invention, in the refrigerating apparatus provided with the fourth means, is the spreader installed when the solution is allowed to flow into the evaporator E, attached separately from the refrigerant? Alternatively, it can be shared, and in such a configuration, the solution is successfully spread on the heat transfer surface of the evaporator E.

本願発明の第の手段におけるように、上記第1、第2、第3、第4、第5又は第の手段を備えた冷凍装置において、前記蒸発器Eを、液冷媒が一過性でその伝熱面を流れ、未蒸発冷媒が前記吸収器A側へ移動し、吸収溶液に吸収されるように構成することもでき、そのように構成した場合、凝縮器Cからの液冷媒は、蒸発器Eの伝熱面を流下するが、未蒸発冷媒は、吸収器Aへ移動した後、吸収溶液に吸収されることとなり、蒸発器Eと吸収器Aとの構造が簡略化できる。 As in the seventh means of the present invention, the first, second, third, fourth, fifth or the refrigeration system including a sixth means, the evaporator E, the liquid refrigerant transient It can also be configured such that the non-evaporated refrigerant moves to the absorber A side and is absorbed by the absorbing solution, and in such a case, the liquid refrigerant from the condenser C Flows down the heat transfer surface of the evaporator E, but the unevaporated refrigerant moves to the absorber A and is then absorbed by the absorbing solution, thereby simplifying the structure of the evaporator E and the absorber A. .

本願発明の第の手段におけるように、上記第1、第2、第3、第4、第5、第6又は第の手段を備えた冷凍装置において、前記蒸気圧縮式冷凍機Xを複数台とし、それらの冷媒の排熱を各々回収し、一つの吸収式冷凍機Yの発生器Gで冷媒蒸気を発生させて駆動するように構成することもでき、そのように構成した場合、複数台の蒸気圧縮式冷凍機Xの排熱を有効に利用して1台の吸収式冷凍機Yを駆動させることができる。 As in the eighth means of the present invention, the first, second, third, fourth, fifth, sixth or the refrigeration system including a seventh means, the vapor compression type refrigerator X It is also possible to configure a plurality of units, recover the exhaust heat of each of the refrigerants, and generate and drive the refrigerant vapor with the generator G of one absorption refrigeration machine Y. When configured as such, One absorption refrigeration machine Y can be driven by effectively utilizing the exhaust heat of a plurality of vapor compression refrigeration machines X.

本願発明の第の手段におけるように、上記第1、第2、第3、第4、第5、第6、第7又は第の手段を備えた冷凍装置において、前記発生器Gの熱源として排熱を用いることもでき、そのように構成した場合、やや低温の排熱温水を有効に利用できる。 As in the ninth means of the present invention, the first, second, third, fourth, fifth, sixth, seventh or refrigeration system including a first means 8, of the generator G Exhaust heat can also be used as a heat source. When configured as such, a slightly low temperature exhaust heat hot water can be used effectively.

本願発明の第10の手段におけるように、上記第の手段を備えた冷凍装置において、前記排熱として太陽熱を用いることもでき、そのように構成した場合、冷凍装置の利用範囲を大幅に拡大することができる。 As in the tenth means of the present invention, in the refrigeration apparatus provided with the ninth means, solar heat can also be used as the exhaust heat, and in such a case, the use range of the refrigeration apparatus is greatly expanded. can do.

本願発明の第1の実施の形態にかかる冷凍装置における冷凍サイクルである。It is the refrigerating cycle in the freezing apparatus concerning 1st Embodiment of this invention. 本願発明の第2の実施の形態にかかる冷凍装置における冷凍サイクルである。It is the refrigerating cycle in the freezing apparatus concerning 2nd Embodiment of this invention. 本願発明の第3の実施の形態にかかる冷凍装置における冷凍サイクルである。It is the refrigerating cycle in the freezing apparatus concerning 3rd Embodiment of this invention. 本願発明の第4の実施の形態にかかる冷凍装置における冷凍サイクルである。It is the refrigerating cycle in the freezing apparatus concerning the 4th Embodiment of this invention. 本願発明の第5の実施の形態にかかる冷凍装置における冷凍サイクルである。It is the refrigerating cycle in the freezing apparatus concerning the 5th Embodiment of this invention. 本願発明の第6の実施の形態にかかる冷凍装置における冷凍サイクルである。It is the refrigerating cycle in the freezing apparatus concerning the 6th Embodiment of this invention. 本願発明の第7の実施の形態にかかる冷凍装置における冷凍サイクルである。It is the refrigerating cycle in the freezing apparatus concerning the 7th Embodiment of this invention. 本願発明の第8の実施の形態にかかる冷凍装置における冷凍サイクルである。It is the refrigerating cycle in the refrigerating device concerning the 8th Embodiment of this invention.

以下、添付の図面を参照して、本願発明の幾つかの好適な実施の形態について説明する。   Hereinafter, several preferred embodiments of the present invention will be described with reference to the accompanying drawings.

第1の実施の形態
図1には、本願発明の第1の実施の形態にかかる冷凍装置における冷凍サイクルが示されている。
First Embodiment FIG. 1 shows a refrigeration cycle in a refrigeration apparatus according to a first embodiment of the present invention.

この冷凍サイクルは、例えばCO2を冷媒とする蒸気圧縮式冷凍機Xと吸収式冷凍機Yとを備えて構成されており、前記蒸気圧縮式冷凍機Xは、圧縮機1、四路切換弁2、空冷式の熱源側熱交換器3および二つの利用側熱交換器4,4を備えて構成される一方、前記吸収式冷凍機Yは、冷媒(例えば、水)を吸収する能力に優れた吸収液(例えば、LiBr)の水溶液(以下、単に吸収溶液という)の冷媒吸収能力を回復させるために該溶液を加熱媒体(例えば、排温水)で加熱して濃縮するための発生器Gと、該発生器Gにおいて溶液から分離した蒸気(冷媒)を導入してこれを冷却することによって液化させる空冷式の凝縮器Cと、該凝縮器Cによって液化された冷媒を導入して低圧下で蒸発(気化)させる蒸発器Eと、該蒸発器Eで発生した蒸気(冷媒)を吸収するために過冷却された溶液を散布する吸収器Aと、該吸収器Aで蒸気(冷媒)を吸収したことによって希釈された溶液(希溶液)を濃縮するために再び発生器Gへ送り込むための溶液ポンプPlと、前記吸収器Aに入る吸収溶液を過冷却する空冷熱交換器8とを備えて構成されている。符号5はアキュムレータ、6は熱源側熱交換器3に併設された冷却ファン、7Aは冷房用膨張機構、7Bは暖房用膨張機構、9は凝縮器Cに付設された冷却ファン、10は空冷熱交換器8に付設された冷却ファン、11Aは冷房用膨張機構7Aに併設された逆止弁、11Bは暖房用膨張機構7Bに併設された逆止弁、Haは吸収器Aから出た希溶液の一部(発生器Gへ供給される希溶液)と発生器Gから出た濃溶液とを熱交換する溶液熱交換器である。   This refrigeration cycle includes, for example, a vapor compression refrigeration machine X and an absorption refrigeration machine Y using CO 2 as a refrigerant. The vapor compression refrigeration machine X includes a compressor 1 and a four-way switching valve 2. While the air-cooled heat source side heat exchanger 3 and the two utilization side heat exchangers 4 and 4 are configured, the absorption refrigerator Y has an excellent ability to absorb a refrigerant (for example, water). A generator G for heating and concentrating the solution with a heating medium (for example, waste water) in order to restore the refrigerant absorption capacity of an aqueous solution (for example, LiBr) of an absorption liquid (for example, LiBr); The generator G introduces vapor (refrigerant) separated from the solution and cools it to liquefy it, and introduces the refrigerant liquefied by the condenser C and evaporates under low pressure. (Vaporization) the evaporator E and the evaporator E In order to concentrate the absorber (dilute solution) diluted by absorbing the vapor (refrigerant) with the absorber A that sprays the supercooled solution to absorb the vapor (refrigerant) A solution pump Pl for feeding again into the generator G and an air cooling heat exchanger 8 for supercooling the absorbing solution entering the absorber A are provided. Reference numeral 5 is an accumulator, 6 is a cooling fan attached to the heat source side heat exchanger 3, 7A is a cooling expansion mechanism, 7B is a heating expansion mechanism, 9 is a cooling fan attached to the condenser C, and 10 is air cooling heat. A cooling fan attached to the exchanger 8, 11 A is a check valve attached to the cooling expansion mechanism 7 A, 11 B is a check valve attached to the heating expansion mechanism 7 B, and Ha is a dilute solution from the absorber A Is a solution heat exchanger for exchanging heat between a part of (a dilute solution supplied to the generator G) and the concentrated solution discharged from the generator G.

上記蒸気圧縮式冷凍機Xにおいては、圧縮機1から吐出された冷媒(例えば、CO2)は、冷房運転時には、四路切換弁2、熱源側熱交換器3、膨張機構7A,7A、利用側熱交換器4,4、四路切換弁2およびアキュムレータ5を経て圧縮機1に還流し、暖房運転時には、四路切換弁2、利用側熱交換器4,4、膨張機構7B、熱源側熱交換器3、四路切換弁2およびアキュムレータ5を経て圧縮機1に還流することとなっており、その過程において、利用側熱交換器4,4において冷房作用および暖房作用が得られることとなっている。   In the vapor compression refrigeration machine X, the refrigerant (for example, CO2) discharged from the compressor 1 is in the cooling operation, the four-way switching valve 2, the heat source side heat exchanger 3, the expansion mechanisms 7A and 7A, the usage side. It returns to the compressor 1 through the heat exchangers 4 and 4, the four-way switching valve 2 and the accumulator 5, and during the heating operation, the four-way switching valve 2, the use side heat exchangers 4 and 4, the expansion mechanism 7B, and the heat source side heat. The refrigerant is returned to the compressor 1 through the exchanger 3, the four-way switching valve 2, and the accumulator 5, and in the process, cooling and heating actions are obtained in the use side heat exchangers 4 and 4. ing.

一方、上記吸収式冷凍機Yは、凝縮器Cからの液冷媒が蒸発器Eの上部から伝熱面に散布される冷媒一過性方式の蒸発器Eが用いられており、前記蒸発器Eと一体の駆体Z内に収められた吸収器A内では、前記蒸発器Eで蒸発させた冷媒蒸気を単に吸収させるだけで、吸収熱は過冷却された溶液Lの顕熱で取り去る間接空冷(溶液分離冷却)方式の吸収式冷凍機とされている。   On the other hand, the absorption refrigeration machine Y uses a transient refrigerant type evaporator E in which the liquid refrigerant from the condenser C is sprayed from the upper part of the evaporator E to the heat transfer surface. In the absorber A housed in the fuselage Z integrated with the refrigerant E, the refrigerant vapor evaporated by the evaporator E is simply absorbed, and the absorbed heat is removed by sensible heat of the supercooled solution L. It is an absorption refrigerator of the (solution separation cooling) system.

そして、本実施の形態にかかる冷凍装置においては、冷房運転時における前記蒸気圧縮式冷凍機Xの冷媒を前記吸収式冷凍機Yの蒸発器Eで冷却、または過冷却する冷媒冷却方式を採用し、冷房運転時における前記蒸気圧縮式冷凍機Xの冷媒を放熱する際の熱量を前記吸収式冷凍機Yの加熱源として利用すべく、前記蒸気圧縮式冷凍機Xにおける圧縮後の冷媒を前記吸収式冷凍機Yの発生器Gの加熱器gに流入させるが、部分負荷時など前記蒸気圧縮式冷凍機Xにおける圧縮機1の冷媒温度が低い場合には、前記蒸気圧縮式冷凍機Xの冷媒が前記発生器Gをバイパスするようにバイパス回路13を設け且つ該バイパス回路13に開閉弁14を付設している。前記蒸気圧縮式冷凍機Xにおける前記バイパス回路13の入口冷媒温度が前記吸収式冷凍機Yにおける発生器Gの溶液温度を越えると、前記開閉弁14が閉作動するようにし、前記吸収式冷凍機Yにおける発生器Gにおいて吸収溶液と前記蒸気圧縮式冷凍機Xの冷媒とが熱交換を行い、熱交換した後の蒸気圧縮式冷凍機Xの冷媒を蒸気圧縮式冷凍機Xの熱源側熱交換器3に流入し、前記バイパス回路13の入口冷媒温度が吸収式冷凍機Yの発生器Gの溶液温度以下であれば、バイパス回路13の開閉弁14を開作動し、バイパス回路13によって蒸気圧縮式冷凍機Xの冷媒が、該蒸気圧縮式冷凍機Xにおける熱源側熱交換器3に流入し、該熱源側熱交換器3から前記吸収式冷凍機Yにおける蒸発器Eの熱交換器eに流入させる構成としている。   The refrigeration apparatus according to the present embodiment employs a refrigerant cooling system in which the refrigerant of the vapor compression refrigeration machine X is cooled or supercooled by the evaporator E of the absorption refrigeration machine Y during the cooling operation. The refrigerant compressed in the vapor compression refrigeration machine X is absorbed in order to use the amount of heat generated when radiating the refrigerant of the vapor compression refrigeration machine X during cooling operation as a heating source of the absorption refrigeration machine Y. When the refrigerant temperature of the compressor 1 in the vapor compression refrigerator X is low, such as during partial load, the refrigerant of the vapor compression refrigerator X is introduced into the heater g of the generator G of the refrigerator Y. Is provided with a bypass circuit 13 so as to bypass the generator G, and an on-off valve 14 is attached to the bypass circuit 13. When the refrigerant temperature at the inlet of the bypass circuit 13 in the vapor compression refrigerator X exceeds the solution temperature of the generator G in the absorption refrigerator Y, the on-off valve 14 is closed, and the absorption refrigerator In the generator G in Y, the absorption solution and the refrigerant of the vapor compression refrigeration machine X perform heat exchange, and after the heat exchange, the refrigerant of the vapor compression refrigeration machine X is exchanged with heat on the heat source side of the vapor compression refrigeration machine X. If the inlet refrigerant temperature of the bypass circuit 13 is equal to or lower than the solution temperature of the generator G of the absorption refrigeration machine Y, the on-off valve 14 of the bypass circuit 13 is opened, and the bypass circuit 13 performs vapor compression. The refrigerant of the refrigerating machine X flows into the heat source side heat exchanger 3 in the vapor compression refrigerating machine X, and from the heat source side heat exchanger 3 to the heat exchanger e of the evaporator E in the absorption refrigerating machine Y. It is configured to flow in

上記のように構成したことにより、冷房運転時において、吸収式冷凍機Yによる冷熱変換で、蒸気圧縮式冷凍機Xの性能を大幅に改善すると同時に蒸気圧縮式冷凍機Xの冷媒を放熱する際の熱量を前記吸収式冷凍機Yの加熱源として利用できるところから、熱源側熱交換器3を小さくすることが可能となる。仮に、発生器Gをバイパスして蒸気圧縮式冷凍機Xの冷媒が直接熱源側熱交換器3に流入する場合でも蒸気圧縮式冷凍機Xの冷媒温度が低いことから熱源側熱交換器3を小さくしても問題がなく、低コスト化ができる。さらに、上記のように構成したことにより、冷房運転時の部分負荷時など蒸気圧縮式冷凍機Xにおける圧縮機1の冷媒温度が低い場合には、前記蒸気圧縮式冷凍機Xの冷媒が吸収式冷凍機Yにおける発生器Gをバイパスするバイパス回路13の開閉弁14を開作動することで、吸収式冷凍機Yの発生器Gに温度の低い蒸気圧縮式冷凍機Xの冷媒が流入して前記発生器Gの溶液温度を低下させるということもない。従って、バイパス回路13と開閉弁14とを付設するという簡単な構成で、冷房運転時において、蒸気圧縮式冷凍機Xの排熱を吸収式冷凍機Yの加熱源として有効に利用することができる。   With the above-described configuration, during cooling operation, the heat conversion by the absorption refrigeration machine Y greatly improves the performance of the vapor compression refrigeration machine X and at the same time releases heat from the refrigerant of the vapor compression refrigeration machine X. Since the amount of heat can be used as a heating source for the absorption refrigerator Y, the heat source side heat exchanger 3 can be made smaller. Even if the refrigerant of the vapor compression refrigeration machine X directly flows into the heat source side heat exchanger 3 by bypassing the generator G, the heat source side heat exchanger 3 is changed because the refrigerant temperature of the vapor compression refrigeration machine X is low. Even if it is made smaller, there is no problem and the cost can be reduced. Furthermore, by having comprised as mentioned above, when the refrigerant | coolant temperature of the compressor 1 in the vapor | steam compression refrigeration machine X is low, such as the time of the partial load at the time of cooling operation, the refrigerant | coolant of the said vapor | steam compression refrigeration machine X is an absorption type. By opening the on-off valve 14 of the bypass circuit 13 that bypasses the generator G in the refrigerator Y, the refrigerant of the vapor compression refrigerator X having a low temperature flows into the generator G of the absorption refrigerator Y, and It does not reduce the solution temperature of the generator G. Therefore, with a simple configuration in which the bypass circuit 13 and the on-off valve 14 are provided, the exhaust heat of the vapor compression refrigerator X can be effectively used as a heating source for the absorption refrigerator Y during the cooling operation. .

本実施の形態においては、前記吸収式冷凍機Yにおける吸収器Aに入る吸収溶液を空冷,熱交換器8にて過冷却し、前記吸収器Aにおいては冷媒蒸気を吸収するだけで、吸収熱は前記吸収溶液の顕熱で取り去る間接空冷方式としており、そのように構成した場合、吸収器Aで冷媒蒸気を吸収させながら吸収溶液を水冷もしくは空冷式で冷却する直接冷却方式に比較して、吸収器Aの構造の簡略化、小型化を図ることができる。   In the present embodiment, the absorption solution entering the absorber A in the absorption refrigerator Y is air-cooled and supercooled by the heat exchanger 8, and the absorber A absorbs the refrigerant vapor only by absorbing the refrigerant vapor. Is an indirect air cooling method that removes the absorption solution by sensible heat, and in such a case, compared to a direct cooling method in which the absorption solution is cooled by water cooling or air cooling while absorbing the refrigerant vapor in the absorber A, The structure of the absorber A can be simplified and downsized.

第2の実施の形態
図2には、本願発明の第2の実施の形態にかかる冷凍装置における冷凍サイクルが示されている。
Second Embodiment FIG. 2 shows a refrigeration cycle in a refrigeration apparatus according to a second embodiment of the present invention.

この場合、蒸気圧縮式冷凍機Xと吸収式冷凍機Yとを組み合わせた冷凍装置において、四路切換弁2の切換作動によって、暖房運転時には、蒸気圧縮式冷凍機Xの冷媒が冷房運転時と逆方向に流通するように切り換えられ、蒸気圧縮式冷凍機Xの熱源側熱交換器3を機能させるように構成する一方、バイパス回路13の開閉弁14は、前記蒸気圧縮式冷凍機Xの熱源側熱交換器3の冷媒出口温度が低くなり過ぎた場合に閉作動され、前記蒸気圧縮式冷凍機Xの冷媒が前記吸収式冷凍機Yの発生器G内の加熱器gに流入し、前記吸収式冷凍機Yの溶液ポンプPlと前記空冷熱交換器8および該空冷熱交換器8に付設された冷却ファン10とを運転することで、蒸気圧縮式冷凍機Xの冷媒が吸収式冷凍機Yの溶液より吸熱し、吸収式冷凍機Yの溶液は空冷熱交換器8において外気より吸熱することとなり、暖房運転を円滑に行うことができる。その他の構成および作用効果は、第1の実施の形態におけると同様なので説明を省略する。   In this case, in the refrigeration apparatus in which the vapor compression refrigeration machine X and the absorption refrigeration machine Y are combined, the refrigerant of the vapor compression refrigeration machine X is in the cooling operation during the heating operation by the switching operation of the four-way switching valve 2. The heat source side heat exchanger 3 of the vapor compression refrigeration machine X is switched to flow in the reverse direction and is configured to function, while the on-off valve 14 of the bypass circuit 13 is a heat source of the vapor compression refrigeration machine X. When the refrigerant outlet temperature of the side heat exchanger 3 becomes too low, it is closed and the refrigerant of the vapor compression refrigeration machine X flows into the heater g in the generator G of the absorption refrigeration machine Y, By operating the solution pump Pl of the absorption refrigerator Y, the air cooling heat exchanger 8 and the cooling fan 10 attached to the air cooling heat exchanger 8, the refrigerant of the vapor compression refrigerator X is an absorption refrigerator. Absorbs heat from the Y solution and dissolves in the absorption refrigerator Y Can become possible to heat absorption from the outside air in the air-cooled heat exchanger 8, smoothly perform the heating operation. Since other configurations and operational effects are the same as those in the first embodiment, the description thereof is omitted.

第3の実施の形態
図3には、本願発明の第3の実施の形態にかかる冷凍装置における冷凍サイクルが示されている。
Third Embodiment FIG. 3 shows a refrigeration cycle in a refrigeration apparatus according to a third embodiment of the present invention.

この場合、溶液熱交換器Haに至る配管16の途中に開閉弁17を介設するとともに、空冷熱交換器8の出口から吸収器Aに至る溶液配管18と前記溶液熱交換器Haから前記発生器Gに至る希溶液配管19とを開閉弁20を介設した溶液配管21で接続している。 そして、冷房運転時には、前記発生器Gをバイパスするバイパス回路13に介設した開閉弁14を、蒸気圧縮式冷凍機Xにおける前記バイパス回路13の入口冷媒温度が吸収式冷凍機Yの発生器Gの溶液温度を越えると閉作動し、前記溶液熱交換器Haに至る配管16の開閉弁17を開作動させ且つ前記溶液配管21の開閉弁20を閉作動させることとなっている。   In this case, an on-off valve 17 is provided in the middle of the pipe 16 leading to the solution heat exchanger Ha, and the generation from the solution pipe 18 leading from the outlet of the air-cooled heat exchanger 8 to the absorber A and the solution heat exchanger Ha. A dilute solution pipe 19 reaching the vessel G is connected by a solution pipe 21 having an on-off valve 20 interposed therebetween. In the cooling operation, the on-off valve 14 provided in the bypass circuit 13 that bypasses the generator G is connected to the generator G of the absorption refrigerator chiller Y whose inlet refrigerant temperature in the vapor compression refrigerator X is the absorption refrigerant refrigerator Y. When the solution temperature is exceeded, the closing operation is performed, the opening / closing valve 17 of the piping 16 leading to the solution heat exchanger Ha is opened, and the opening / closing valve 20 of the solution piping 21 is closed.

一方、暖房運転時には、前記蒸気圧縮式冷凍機Xの冷媒が冷房運転時と逆方向に流通するように四路切換弁2を切換え、前記溶液熱交換器Haに至る配管16の開閉弁17を閉作動させ、前記溶液配管21の開閉弁20を開作動させ、前記発生器Gの加熱器gをバイパスするバイパス回路13の開閉弁14を前記蒸気圧縮式冷凍機Xの熱源側熱交換器3の冷媒出口温度が低くなり過ぎると閉作動させることとなっている。   On the other hand, during the heating operation, the four-way switching valve 2 is switched so that the refrigerant of the vapor compression refrigerator X flows in the opposite direction to that during the cooling operation, and the on-off valve 17 of the pipe 16 leading to the solution heat exchanger Ha is set. The open / close valve 20 of the solution pipe 21 is opened, and the open / close valve 14 of the bypass circuit 13 that bypasses the heater g of the generator G is connected to the heat source side heat exchanger 3 of the vapor compression refrigerator X. When the refrigerant outlet temperature becomes too low, the operation is closed.

このようにすると、開閉弁14,17,20の開閉作動により、暖房運転時において、前記吸収式冷凍機Yの溶液ポンプPlと前記空冷熱交換器8および該空冷熱交換器8に付設された冷却ファン10とを運転することで、蒸気圧縮式冷凍機Xの冷媒が前記蒸気圧縮式冷凍機Xの熱源側熱交換器3の冷媒出口温度が低くなり過ぎた場合に吸収式冷凍機Yの発生器G内の溶液より吸熱し、吸収式冷凍機Yの溶液が空冷熱交換器8において外気より吸熱することとなり、蒸気圧縮式冷凍機Xにおける冷暖房運転(換言すれば、ヒートポンプ運転)が可能となる。その他の構成および作用効果は、第1の実施の形態におけると同様なので説明を省略する。   In this way, the opening / closing operation of the on-off valves 14, 17, 20 is attached to the solution pump Pl of the absorption refrigeration machine Y, the air-cooling heat exchanger 8, and the air-cooling heat exchanger 8 during heating operation. By operating the cooling fan 10, when the refrigerant outlet temperature of the refrigerant of the vapor compression refrigerator X becomes too low, the refrigerant outlet temperature of the heat source side heat exchanger 3 of the vapor compression refrigerator X is reduced. Heat is absorbed from the solution in the generator G, and the solution in the absorption refrigeration machine Y absorbs heat from the outside air in the air-cooling heat exchanger 8, so that air-conditioning operation (in other words, heat pump operation) in the vapor compression refrigeration machine X is possible. It becomes. Since other configurations and operational effects are the same as those in the first embodiment, the description thereof is omitted.

第4の実施の形態
図4には、本願発明の第4の実施の形態にかかる冷凍装置における冷凍サイクルが示されている。
Fourth Embodiment FIG. 4 shows a refrigeration cycle in a refrigeration apparatus according to a fourth embodiment of the present invention.

この場合、溶液熱交換器Haに至る配管16の途中に開閉弁17を介設するとともに、空冷熱交換器8の出口から吸収器Aに至る溶液配管18と蒸発器Eの入口側の冷媒配管22とを開閉弁23を介設してなるバイパス配管24で連結している。   In this case, an on-off valve 17 is provided in the middle of the pipe 16 leading to the solution heat exchanger Ha, a solution pipe 18 extending from the outlet of the air-cooled heat exchanger 8 to the absorber A, and a refrigerant pipe on the inlet side of the evaporator E. 22 is connected by a bypass pipe 24 having an on-off valve 23 interposed therebetween.

そして、冷房運転時には、前記発生器Gの加熱器gをバイパスするバイパス回路13の開閉弁14を、蒸気圧縮式冷凍機Xにおける前記バイパス回路13の入口冷媒温度が吸収式冷凍機Yの発生器Gの溶液温度を越えると閉作動させ、前記バイパス配管24の開閉弁23を閉作動させ且つ前記溶液熱交換器Haに至る配管16の開閉弁17を開作動させるようにしている。   During the cooling operation, the on-off valve 14 of the bypass circuit 13 that bypasses the heater g of the generator G is connected to the generator of the absorption refrigerator Y where the inlet refrigerant temperature of the bypass circuit 13 in the vapor compression refrigerator X is When the G solution temperature is exceeded, the valve is closed, the open / close valve 23 of the bypass pipe 24 is closed, and the open / close valve 17 of the pipe 16 leading to the solution heat exchanger Ha is opened.

一方、暖房運転時には、前記蒸気圧縮式冷凍機Xの冷媒が冷房運転時と逆方向に流通するように四路切換弁2を切換え、前記バイパス配管24の開閉弁23を開作動させ、前記溶液熱交換器Haに至る配管16の開閉弁17を閉作動させ、前記発生器Gの加熱器gをバイパスするバイパス回路13の開閉弁14を前記蒸気圧縮式冷凍機Xの熱源側熱交換器3の冷媒出口温度が低くなり過ぎると閉作動させるようにしている。   On the other hand, during the heating operation, the four-way switching valve 2 is switched so that the refrigerant of the vapor compression refrigerator X flows in the opposite direction to that during the cooling operation, and the on-off valve 23 of the bypass pipe 24 is opened, and the solution The on-off valve 17 of the bypass circuit 13 that bypasses the heater g of the generator G is closed by operating the on-off valve 17 of the pipe 16 leading to the heat exchanger Ha, and the heat source side heat exchanger 3 of the vapor compression refrigerator X. When the refrigerant outlet temperature becomes too low, the operation is closed.

このようにすると、開閉弁14,17,23の開閉作動により、暖房運転時において、前記吸収式冷凍機Yの溶液ポンプPlと前記空冷熱交換器8および該空冷熱交換器8に付設された冷却ファン10とを運転することで、蒸気圧縮式冷凍機Xの冷媒が前記蒸気圧縮式冷凍機Xの熱源側熱交換器3の冷媒出口温度が低くなり過ぎた場合に吸収式冷凍機Yの発生器G内の溶液より吸熱し、吸収式冷凍機Yの溶液が空冷熱交換器8において外気より吸熱することとなり、蒸気圧縮式冷凍機Xにおける冷暖房運転(換言すれば、ヒートポンプ運転)が可能となる。その他の構成および作用効果は、第1の実施の形態におけると同様なので説明を省略する。   In this way, the opening / closing operation of the on-off valves 14, 17, 23 is attached to the solution pump Pl of the absorption refrigeration machine Y, the air-cooling heat exchanger 8, and the air-cooling heat exchanger 8 during heating operation. By operating the cooling fan 10, when the refrigerant outlet temperature of the refrigerant of the vapor compression refrigerator X becomes too low, the refrigerant outlet temperature of the heat source side heat exchanger 3 of the vapor compression refrigerator X is reduced. Heat is absorbed from the solution in the generator G, and the solution in the absorption refrigeration machine Y absorbs heat from the outside air in the air-cooling heat exchanger 8, so that air-conditioning operation (in other words, heat pump operation) in the vapor compression refrigeration machine X is possible. It becomes. Since other configurations and operational effects are the same as those in the first embodiment, the description thereof is omitted.

第5の実施の形態
図5には、本願発明の第5の実施の形態にかかる冷凍装置における冷凍サイクルが示されている。
Fifth Embodiment FIG. 5 shows a refrigeration cycle in a refrigeration apparatus according to a fifth embodiment of the present invention.

この場合、溶液熱交換器Haに至る配管16の途中に開閉弁17を介設するとともに、空冷熱交換器8の出口から吸収器Aに至る溶液配管18から分岐して蒸発器Eの入口に至るバイパス配管25を設け且つ該バイパス配管25に開閉弁26を介設している。   In this case, an on-off valve 17 is provided in the middle of the pipe 16 leading to the solution heat exchanger Ha, branching from the solution pipe 18 leading from the outlet of the air-cooled heat exchanger 8 to the absorber A to the inlet of the evaporator E. A bypass pipe 25 is provided, and an open / close valve 26 is provided in the bypass pipe 25.

そして、冷房運転時には、前記発生器Gの加熱器gをバイパスするバイパス回路13の開閉弁14を、蒸気圧縮式冷凍機Xにおける前記バイパス回路13の入口冷媒温度が吸収式冷凍機Yの発生器Gの溶液温度を越えると閉作動させ、前記バイパス配管25の開閉弁26を閉作動させ且つ前記溶液熱交換器Haに至る配管16の開閉弁17を開作動させるようにしている。   During the cooling operation, the on-off valve 14 of the bypass circuit 13 that bypasses the heater g of the generator G is connected to the generator of the absorption refrigerator Y where the inlet refrigerant temperature of the bypass circuit 13 in the vapor compression refrigerator X is When the G solution temperature is exceeded, the valve is closed, the open / close valve 26 of the bypass pipe 25 is closed, and the open / close valve 17 of the pipe 16 leading to the solution heat exchanger Ha is opened.

一方、暖房運転時には、前記蒸気圧縮式冷凍機Xの冷媒が冷房運転時と逆方向に流通するように四路切換弁2を切換え、前記バイパス配管25の開閉弁26を開作動させ、前記溶液熱交換器Haに至る配管16の開閉弁17を閉作動させ、前記発生器Gの加熱器gをバイパスするバイパス回路13の開閉弁14を前記蒸気圧縮式冷凍機Xの熱源側熱交換器3の冷媒出口温度が低くなり過ぎると閉作動させるようにしている。   On the other hand, during the heating operation, the four-way switching valve 2 is switched so that the refrigerant of the vapor compression refrigerator X flows in the opposite direction to that during the cooling operation, and the on-off valve 26 of the bypass pipe 25 is opened, and the solution The on-off valve 17 of the bypass circuit 13 that bypasses the heater g of the generator G is closed by operating the on-off valve 17 of the pipe 16 leading to the heat exchanger Ha, and the heat source side heat exchanger 3 of the vapor compression refrigerator X. When the refrigerant outlet temperature becomes too low, the operation is closed.

このようにすると、開閉弁14,17,26の開閉作動により、暖房運転時において、前記吸収式冷凍機Yの溶液ポンプPlと前記空冷熱交換器8および該空冷熱交換器8に付設された冷却ファン10とを運転することで、蒸気圧縮式冷凍機Xの冷媒が前記蒸気圧縮式冷凍機Xの熱源側熱交換器3の冷媒出口温度が低くなり過ぎた場合に吸収式冷凍機Yの発生器G内の溶液より吸熱し、吸収式冷凍機Yの溶液が空冷熱交換器8において外気より吸熱することとなり、蒸気圧縮式冷凍機Xにおける冷暖房運転(換言すれば、ヒートポンプ運転)が可能となる。   In this way, the opening / closing operation of the on-off valves 14, 17, 26 is attached to the solution pump Pl of the absorption refrigeration machine Y, the air-cooling heat exchanger 8, and the air-cooling heat exchanger 8 during heating operation. By operating the cooling fan 10, when the refrigerant outlet temperature of the refrigerant of the vapor compression refrigerator X becomes too low, the refrigerant outlet temperature of the heat source side heat exchanger 3 of the vapor compression refrigerator X is reduced. Heat is absorbed from the solution in the generator G, and the solution in the absorption refrigeration machine Y absorbs heat from the outside air in the air-cooling heat exchanger 8, so that air-conditioning operation (in other words, heat pump operation) in the vapor compression refrigeration machine X is possible. It becomes.

なお、この場合、蒸発器Eに溶液を流入させる場合の散布器は、冷媒用とは別に散布器が取り付けられているか、もしくは共用ができるようにすることもできる。このようにすると、溶液がうまく蒸発器Eの伝熱面に散布されることとなる。その他の構成および作用効果は、第1の実施の形態におけると同様なので説明を省略する。   In this case, the spreader in the case where the solution is allowed to flow into the evaporator E may be provided with a spreader separately from the refrigerant, or can be shared. If it does in this way, a solution will be spread | dispersed on the heat-transfer surface of the evaporator E well. Since other configurations and operational effects are the same as those in the first embodiment, the description thereof is omitted.

第6の実施の形態
図6には、本願発明の第6の実施の形態にかかる冷凍装置における冷凍サイクルが示されている。
Sixth Embodiment FIG. 6 shows a refrigeration cycle in a refrigeration apparatus according to a sixth embodiment of the present invention.

この場合、第4の実施の形態において、空冷熱交換器8の出口から吸収器Aに至る溶液配管18と蒸発器Eの入口側の冷媒配管22とを開閉弁23を介設してなるバイパス配管24で連結するとともに、吸収器Aの入口側の溶液配管18に開閉弁27を介設し、冷房運転時には、前記バイパス配管24の開閉弁23を閉作動させ且つ前記溶液配管18の開閉弁27を開作動させ、前記溶液配管21の開閉弁20を閉作動させ且つ前記溶液熱交換器Haに至る配管16の開閉弁17を開作動させ、前記発生器Gの加熱器gをバイパスするバイパス回路13の開閉弁14を蒸気圧縮式冷凍機Xにおける前記バイパス回路13の入口冷媒温度が吸収式冷凍機Yの発生器Gの溶液温度を越えると閉作動させるが、暖房運転時には、前記蒸気圧縮式冷凍機Xの冷媒が冷房運転時と逆方向に流通するように四路切換弁2を切換え、前記バイパス配管24の開閉弁23を開作動させ且つ前記溶液配管18の開閉弁27を閉作動させ、前記溶液配管21の開閉弁20を開作動させ且つ前記溶液熱交換器Haに至る配管16の開閉弁17を閉作動させ、前記発生器Gの加熱器gをバイパスするバイパス回路13の開閉弁14を前記蒸気圧縮式冷凍機Xの熱源側熱交換器3の冷媒出口温度が低くなり過ぎると閉作動させるように構成している。このようにすると、開閉弁14,17,20,23,27の開閉作動により、暖房運転時において、前記吸収式冷凍機Yの溶液ポンプPlと前記空冷熱交換器8および該空冷熱交換器8に付設された冷却ファン10とを運転することで、蒸気圧縮式冷凍機Xの冷媒が前記蒸気圧縮式冷凍機Xの熱源側熱交換器3の冷媒出口温度が低くなり過ぎた場合に吸収式冷凍機Yの発生器G内の溶液より吸熱し、吸収式冷凍機Yの溶液が空冷熱交換器8において外気より吸熱することとなり、蒸気圧縮式冷凍機Xにおける冷暖房運転(換言すれば、ヒートポンプ運転)が可能となる。その他の構成および作用効果は、第4の実施の形態におけると同様なので説明を省略する。   In this case, in the fourth embodiment, the bypass formed by connecting the solution pipe 18 extending from the outlet of the air-cooled heat exchanger 8 to the absorber A and the refrigerant pipe 22 on the inlet side of the evaporator E via the open / close valve 23. In addition to being connected by a pipe 24, an opening / closing valve 27 is provided in the solution pipe 18 on the inlet side of the absorber A, and during the cooling operation, the opening / closing valve 23 of the bypass pipe 24 is closed and the opening / closing valve of the solution pipe 18 is closed. 27 is opened, the on-off valve 20 of the solution pipe 21 is closed, and the on-off valve 17 of the pipe 16 leading to the solution heat exchanger Ha is opened to bypass the heater g of the generator G The on-off valve 14 of the circuit 13 is closed when the inlet refrigerant temperature of the bypass circuit 13 in the vapor compression refrigerator X exceeds the solution temperature of the generator G of the absorption refrigerator Y, but during the heating operation, the vapor compression Freezing The four-way switching valve 2 is switched so that the refrigerant of X flows in the opposite direction to that during the cooling operation, the on-off valve 23 of the bypass pipe 24 is opened, and the on-off valve 27 of the solution pipe 18 is closed. The on-off valve 20 of the bypass circuit 13 that opens the on-off valve 20 of the solution pipe 21 and closes the on-off valve 17 of the pipe 16 leading to the solution heat exchanger Ha and bypasses the heater g of the generator G is provided. When the refrigerant outlet temperature of the heat source side heat exchanger 3 of the vapor compression refrigeration machine X becomes too low, the operation is closed. In this way, the opening / closing operation of the on-off valves 14, 17, 20, 23, 27 causes the solution pump Pl of the absorption refrigeration machine Y, the air-cooled heat exchanger 8, and the air-cooled heat exchanger 8 during heating operation. By operating the cooling fan 10 attached to the refrigerant, the refrigerant of the vapor compression refrigeration machine X absorbs the refrigerant when the refrigerant outlet temperature of the heat source side heat exchanger 3 of the vapor compression refrigeration machine X becomes too low. Heat is absorbed from the solution in the generator G of the refrigerator Y, and the solution in the absorption refrigerator Y absorbs heat from the outside air in the air-cooling heat exchanger 8, so that air-conditioning operation (in other words, heat pump) in the vapor compression refrigerator X Operation). Other configurations and operational effects are the same as those in the fourth embodiment, and thus description thereof is omitted.

第7の実施の形態
図7には、本願発明の第7の実施の形態にかかる冷凍装置における冷凍サイクルが示されている。
Seventh Embodiment FIG. 7 shows a refrigeration cycle in a refrigeration apparatus according to a seventh embodiment of the present invention.

この場合、2台の蒸気圧縮式冷凍機X,X′と1台の吸収式冷凍機Yとを組み合わせた構成とされている。つまり、2台の蒸気圧縮式冷凍機X,X′を1台の吸収式冷凍機Yに対して並列に接続し、冷房運転時における蒸気圧縮式冷凍機X,X′の吐出冷媒が吸収式冷凍機Yにおける発生器Gの加熱器gに供給される構成となっているのである。また、吸収式冷凍機Yにおける発生器Gの加熱器gをそれぞれバイパスするバイパス回路13,13′に開閉弁14,14′を介設している。そして、吸収式冷凍機Yにおいては、溶液熱交換器Haに至る配管16の途中に開閉弁17を介設するとともに、空冷熱交換器8の出口から吸収器Aに至る溶液配管18と蒸発器Eの入口側の冷媒配管22とを開閉弁23を介設してなるバイパス配管24で連結し且つ吸収器Aの入口側の溶液配管18に開閉弁26を介設している。   In this case, two vapor compression refrigerators X and X ′ and one absorption refrigerator Y are combined. That is, two vapor compression refrigerators X and X ′ are connected in parallel to one absorption refrigerator Y, and the refrigerant discharged from the vapor compression refrigerators X and X ′ during the cooling operation is an absorption type. It is configured to be supplied to the heater g of the generator G in the refrigerator Y. Further, on-off valves 14 and 14 'are provided in bypass circuits 13 and 13' for bypassing the heater g of the generator G in the absorption refrigerator Y, respectively. In the absorption refrigerator Y, an on-off valve 17 is provided in the middle of the pipe 16 leading to the solution heat exchanger Ha, and the solution pipe 18 and the evaporator extending from the outlet of the air-cooled heat exchanger 8 to the absorber A The refrigerant pipe 22 on the inlet side of E is connected by a bypass pipe 24 having an on-off valve 23 interposed therebetween, and an on-off valve 26 is provided on the solution pipe 18 on the inlet side of the absorber A.

そして、冷房運転時には、前記バイパス配管24の開閉弁23を閉作動させ且つ前記溶液熱交換器Haに至る配管16の開閉弁17を開作動させ、前記吸収器Aの入口側の溶液配管18の開閉弁27を開作動させ、前記発生器Gの加熱器gをそれぞれバイパスするバイパス回路13,13′の開閉弁14,14′を蒸気圧縮式冷凍機X,X′における前記バイパス回路13,13′の入口冷媒温度が吸収式冷凍機Yの発生器Gの溶液温度を越えると閉作動させるようになっている。   During the cooling operation, the on-off valve 23 of the bypass pipe 24 is closed and the on-off valve 17 of the pipe 16 leading to the solution heat exchanger Ha is opened, and the solution pipe 18 on the inlet side of the absorber A is opened. The on-off valve 27 is opened and the on-off valves 14 and 14 'of the bypass circuits 13 and 13' for bypassing the heater g of the generator G are connected to the bypass circuits 13 and 13 in the vapor compression refrigerators X and X '. When the inlet refrigerant temperature of 'exceeds the solution temperature of the generator G of the absorption refrigerator Y, the closing operation is performed.

一方、暖房運転時には、前記バイパス配管24の開閉弁23を開作動させ、前記溶液熱交換器Haに至る配管16の開閉弁17を閉作動させ、前記吸収器Aの入口側の溶液配管18の開閉弁27を閉作動させ、前記発生器Gの加熱器gをそれぞれバイパスするバイパス回路13,13′の開閉弁14,14′を前記蒸気圧縮式冷凍機X,X′の熱源側熱交換器3,3の冷媒出口温度が低くなり過ぎると閉作動させるようになっている。図示の場合、追加された蒸気圧縮式冷凍機X′における四路切換弁は図示省略されている。   On the other hand, during heating operation, the on-off valve 23 of the bypass pipe 24 is opened, the on-off valve 17 of the pipe 16 leading to the solution heat exchanger Ha is closed, and the solution pipe 18 on the inlet side of the absorber A is closed. The on-off valve 27 is closed and the on-off valves 14 and 14 'of the bypass circuits 13 and 13' bypassing the heater g of the generator G are connected to the heat source side heat exchangers of the vapor compression refrigerators X and X '. When the refrigerant outlet temperatures 3 and 3 become too low, the operation is closed. In the case of illustration, the four-way switching valve in the added vapor compression refrigerator X ′ is not shown.

上記のようにすると、2台の蒸気圧縮式冷凍機X,X′の排熱を有効に利用して1台の吸収式冷凍機Yを駆動させることができ、吸収式冷凍機Yによる冷熱変換で、蒸気圧縮式冷凍機Xの性能を大幅に改善することができる。また、蒸気圧縮式冷凍機Xにおける冷暖房運転(換言すれば、ヒートポンプ運転)が可能となり、冷凍装置の利用範囲を大幅に拡大することができる。   If it carries out as mentioned above, one absorption refrigerator Y can be driven using the exhaust heat of two vapor compression refrigerators X and X 'effectively, and cold heat conversion by absorption refrigerator Y is carried out. Thus, the performance of the vapor compression refrigerator X can be greatly improved. In addition, the cooling and heating operation (in other words, the heat pump operation) in the vapor compression refrigerator X can be performed, and the utilization range of the refrigeration apparatus can be greatly expanded.

なお、第1ないし第7の実施の形態においても、複数台の蒸気圧縮式冷凍機の冷媒の排熱を各々回収し、一つの吸収式冷凍機の発生器で冷媒蒸気を発生させて駆動するように構成することもできる。このようにすると、複数台の蒸気圧縮式冷凍機の排熱を有効に利用して1台の吸収式冷凍機を駆動させることができる。   In the first to seventh embodiments as well, the exhaust heat of the refrigerants of a plurality of vapor compression refrigerators is recovered, and the refrigerant vapor is generated by the generator of one absorption refrigerator and driven. It can also be configured as follows. If it does in this way, one absorption type refrigerator can be driven using the exhaust heat of a plurality of vapor compression refrigerators effectively.

その他の構成および作用効果は、第1の実施の形態におけると同様なので説明を省略する。   Since other configurations and operational effects are the same as those in the first embodiment, the description thereof is omitted.

第8の実施の形態
図8には、本願発明の第8の実施の形態にかかる冷凍装置における冷凍サイクルが示されている。
Eighth Embodiment FIG. 8 shows a refrigeration cycle in a refrigeration apparatus according to an eighth embodiment of the present invention.

この場合は、第7の実施の形態で示されている吸収式冷凍機Yにおける発生器Gにおいては、複数台の蒸気圧縮式冷凍機Xの冷媒が供給される加熱器gとなっているが、第8の実施の形態では、これとは別に排熱(例えば、太陽熱)が供給される加熱器g′が追加配設されている。このようにすると、別の排熱温水を有効に利用でき、排熱として太陽熱を用いた場合等、冷凍装置の利用範囲を大幅に拡大することができる。その他の構成および作用効果は、第6の実施の形態におけると同様なので説明を省略する。   In this case, the generator G in the absorption refrigeration machine Y shown in the seventh embodiment is a heater g to which refrigerants of a plurality of vapor compression refrigeration machines X are supplied. In addition, in the eighth embodiment, a heater g ′ to which exhaust heat (for example, solar heat) is supplied is additionally provided. If it does in this way, another exhaust heat warm water can be used effectively, and the use range of refrigeration equipment can be expanded greatly, such as when solar heat is used as exhaust heat. Other configurations and operational effects are the same as those in the sixth embodiment, and thus description thereof is omitted.

ところで、上記各実施の形態において、前記蒸発器Eを、液冷媒が一過性でその伝熱面を流れ、未蒸発冷媒が前記吸収器A側へ移動し、吸収溶液に吸収されるように構成することもできる。このようにすると、凝縮器Cからの液冷媒は、蒸発器Eの伝熱面を流下するが、未蒸発冷媒は、吸収器Aへ移動した後、吸収溶液に吸収されることとなり、蒸発器Eと吸収器Aとの構造が簡略化できる。   By the way, in each of the above-described embodiments, the liquid refrigerant is temporarily moved through the heat transfer surface of the evaporator E so that the non-evaporated refrigerant moves to the absorber A side and is absorbed by the absorbing solution. It can also be configured. In this case, the liquid refrigerant from the condenser C flows down the heat transfer surface of the evaporator E, but the unevaporated refrigerant moves to the absorber A and is then absorbed by the absorbing solution. The structure of E and the absorber A can be simplified.

本願発明は、上記各実施の形態に限定されるものではなく、発明の要旨を逸脱しない範囲において適宜設計変更可能なことは勿論である。   The invention of the present application is not limited to the above-described embodiments, and it goes without saying that the design can be changed as appropriate without departing from the scope of the invention.

2は四路切換弁
3は熱源側熱交換器
6は冷却ファン
8は空冷熱交換器
13はバイパス回路
14は開閉弁
16は配管
17は開閉弁
18は溶液配管
19は希溶液配管
20は開閉弁
21は溶液配管
22は冷媒配管
23は開閉弁
24,25はバイパス配管
26,27は開閉弁
Aは吸収器
Cは凝縮器
Eは蒸発器
Gは発生器
eは熱交換器
gは加熱器
Plは溶液ポンプ
Xは蒸気圧縮式冷凍機
Yは吸収式冷凍機
2 is a four-way switching valve 3 is a heat source side heat exchanger 6 is a cooling fan 8 is an air-cooling heat exchanger 13 is a bypass circuit 14 is an on-off valve 16 is a pipe 17 is an on-off valve 18 is a solution pipe 19 is a dilute solution pipe 20 is open and close Valve 21 is solution pipe 22 is refrigerant pipe 23 is on-off valve 24, 25 is bypass pipe 26, 27 is on-off valve A is absorber C is condenser E is evaporator G is generator e is heat exchanger g is heater Pl is a solution pump X is a vapor compression refrigerator Y is an absorption refrigerator

Claims (10)

蒸気圧縮式冷凍機(X)と吸収式冷凍機(Y)とを組み合わせた冷凍装置であって、冷房運転時における前記蒸気圧縮式冷凍機(X)の冷媒を前記吸収式冷凍機(Y)の蒸発器(E)で冷却、または過冷却する冷媒冷却方式を採用し、冷房運転時における前記蒸気圧縮式冷凍機(X)の冷媒を放熱する際の熱量を前記吸収式冷凍機(Y)の加熱源として利用すべく、前記蒸気圧縮式冷凍機(X)における圧縮後の冷媒を前記吸収式冷凍機(Y)の発生器(G)の加熱器(g)に流入させるが、部分負荷など前記蒸気圧縮式冷凍機(X)における圧縮機(1)の冷媒温度が低い場合には、前記蒸気圧縮式冷凍機(X)の冷媒が前記吸収式冷凍機(Y)の発生器(G)をバイパスするバイパス回路(13)を設け且つ該バイパス回路(13)に開閉弁(14)を付設し、前記バイパス回路(13)の入口冷媒温度が前記発生器(G)の溶液温度を越えると、前記開閉弁(14)が閉作動するとともに、前記発生器(G)において吸収溶液と熱交換した後の蒸気圧縮式冷凍機(X)の冷媒、もしくは前記バイパス回路(13)からの前記蒸気圧縮式冷凍機(X)の冷媒を、前記吸収式冷凍機(Y)における蒸発器(E)の熱交換器(e)に流入させる構成とし、前記蒸気圧縮式冷凍機(X)に、暖房運転時に冷房運転時とは逆方向に冷媒を流通させるように冷媒流通方向を切り替える四路切換弁(2)を付設し、暖房運転時には、前記熱源側熱交換器(3)を機能させるように構成する一方、前記バイパス回路(13)の開閉弁(14)を前記蒸気圧縮式冷凍機(X)の熱源側熱交換器(3)の冷媒出口温度が低くなり過ぎた場合に閉作動させ、前記蒸気圧縮式冷凍機(X)の冷媒が前記発生器(G)内の加熱器(g)にて、前記吸収式冷凍機(Y)の溶液ポンプ(Pl)と前記空冷熱交換器(8)および該空冷熱交換器(8)に併設された冷却ファン(10)とを運転することで、前記発生器(G)内の溶液より吸熱し、溶液は前記空冷熱交換器(8)にて外気より吸熱するように構成するとともに、前記吸収器(A)の出口から溶液ポンプ(Pl)を経て前記発生器(G)に送られる希溶液と前記発生器(G)からの濃溶液とを熱交換させる溶液熱交換器(Ha)を付設し、該溶液熱交換器(Ha)に至る配管(16)の途中に開閉弁(17)を介設するとともに、吸収溶液を過冷却させる前記空冷熱交換器(8)の出口から前記吸収器(A)に至る溶液配管(18)と前記溶液熱交換器(Ha)から前記発生器(G)に至る希溶液配管(19)とを開閉弁(20)を介設した溶液配管(21)で接続し、冷房運転時には、前記溶液熱交換器(Ha)に至る配管(16)の開閉弁(17)を開作動させ且つ前記溶液配管(21)の開閉弁(20)を閉作動させ、前記発生器(G)の加熱器(g)をバイパスするバイパス回路(13)の開閉弁(14)を前記バイパス回路(13)の入口冷媒温度が前記発生器(G)の溶液温度を越えると閉作動させるが、暖房運転時には、前記溶液熱交換器(Ha)に至る配管(16)の開閉弁(17)を閉作動させ、前記溶液配管(21)の開閉弁(20)を開作動させ、前記発生器(G)の加熱器(g)をバイパスするバイパス回路(13)の開閉弁(14)を前記蒸気圧縮式冷凍機(X)の熱源側熱交換器(3)の冷媒出口温度が低くなり過ぎた場合に閉作動させ、前記蒸気圧縮式冷凍機(X)の冷媒が前記発生器(G)内の加熱器(g)にて、前記吸収式冷凍機(Y)の溶液ポンプ(Pl)と前記空冷熱交換器(8)および該空冷熱交換器(8)に併設された冷却ファン(10)とを運転することで、前記発生器(G)内の溶液より吸熱し、溶液は前記空冷熱交換器(8)にて外気より吸熱するように構成したことを特徴とする冷凍装置。 A refrigeration apparatus combining a vapor compression refrigeration machine (X) and an absorption refrigeration machine (Y), wherein the refrigerant of the vapor compression refrigeration machine (X) during cooling operation is used as the absorption refrigeration machine (Y). The refrigerant cooling method of cooling or supercooling with the evaporator (E) of the above is adopted, and the amount of heat when radiating the refrigerant of the vapor compression refrigerator (X) during the cooling operation is expressed as the absorption refrigerator (Y) the order to use as a heat source, but flowing the refrigerant after compression in said vapor compression refrigerating machine (X) to said heater generator absorption refrigerator (Y) (G) (g ), part load When the refrigerant temperature of the compressor (1) in the vapor compression refrigerator (X) is low, the refrigerant of the vapor compression refrigerator (X) is generated by the generator (G) of the absorption refrigerator (Y). ) Is bypassed and opened to the bypass circuit (13). When the valve (14) is attached and the refrigerant temperature at the inlet of the bypass circuit (13) exceeds the solution temperature of the generator (G), the on-off valve (14) is closed and the generator (G) The refrigerant of the vapor compression refrigeration machine (X) after heat exchange with the absorption solution or the refrigerant of the vapor compression refrigeration machine (X) from the bypass circuit (13) is used as the absorption refrigeration machine (Y). Refrigerant flow direction so that the refrigerant flows through the vapor compression refrigerator (X) in the opposite direction to the cooling operation during the heating operation. A four-way switching valve (2) for switching the heat source side heat exchanger (3) is configured to function during heating operation, while the on-off valve (14) of the bypass circuit (13) is connected to the steam Heat source side heat exchanger of compression refrigerator (X) ( ) When the refrigerant outlet temperature becomes too low, the refrigerant of the vapor compression refrigerator (X) is transferred to the absorption refrigerator (G) by the heater (g) in the generator (G). Y) by operating the solution pump (Pl), the air-cooled heat exchanger (8), and the cooling fan (10) provided in the air-cooled heat exchanger (8), the generator (G) The heat is absorbed from the solution, and the solution is configured to absorb heat from the outside air in the air-cooled heat exchanger (8), and from the outlet of the absorber (A) to the generator (G) via the solution pump (Pl). A solution heat exchanger (Ha) for exchanging heat between the dilute solution to be sent and the concentrated solution from the generator (G) is attached, and an open / close valve is provided in the middle of the pipe (16) leading to the solution heat exchanger (Ha). (17) and an outlet of the air-cooled heat exchanger (8) for supercooling the absorbing solution A solution pipe (18) connected to the absorber (A) and a dilute solution pipe (19) from the solution heat exchanger (Ha) to the generator (G) through an on-off valve (20). In the cooling operation, the on-off valve (17) of the pipe (16) leading to the solution heat exchanger (Ha) is opened and the on-off valve (20) of the solution pipe (21) is closed during the cooling operation. The on-off valve (14) of the bypass circuit (13), which is operated and bypasses the heater (g) of the generator (G), the inlet refrigerant temperature of the bypass circuit (13) is the solution temperature of the generator (G) However, during heating operation, the on-off valve (17) of the pipe (16) leading to the solution heat exchanger (Ha) is closed and the on-off valve (20) of the solution pipe (21) is closed. Bypass opening and bypassing the heater (g) of the generator (G) The on-off valve (14) of the passage (13) is closed when the refrigerant outlet temperature of the heat source side heat exchanger (3) of the vapor compression refrigerator (X) becomes too low, and the vapor compression refrigerator The refrigerant (X) is heated by the heater (g) in the generator (G), the solution pump (Pl) of the absorption refrigeration machine (Y), the air cooling heat exchanger (8), and the air cooling heat exchange. By operating the cooling fan (10) attached to the generator (8), heat is absorbed from the solution in the generator (G), and the solution absorbs heat from the outside air in the air-cooled heat exchanger (8). refrigerating apparatus characterized by being configured to. 蒸気圧縮式冷凍機(X)と吸収式冷凍機(Y)とを組み合わせた冷凍装置であって、冷房運転時における前記蒸気圧縮式冷凍機(X)の冷媒を前記吸収式冷凍機(Y)の蒸発器(E)で冷却、または過冷却する冷媒冷却方式を採用し、冷房運転時における前記蒸気圧縮式冷凍機(X)の冷媒を放熱する際の熱量を前記吸収式冷凍機(Y)の加熱源として利用すべく、前記蒸気圧縮式冷凍機(X)における圧縮後の冷媒を前記吸収式冷凍機(Y)の発生器(G)の加熱器(g)に流入させるが、部分負荷など前記蒸気圧縮式冷凍機(X)における圧縮機(1)の冷媒温度が低い場合には、前記蒸気圧縮式冷凍機(X)の冷媒が前記吸収式冷凍機(Y)の発生器(G)をバイパスするバイパス回路(13)を設け且つ該バイパス回路(13)に開閉弁(14)を付設し、前記バイパス回路(13)の入口冷媒温度が前記発生器(G)の溶液温度を越えると、前記開閉弁(14)が閉作動するとともに、前記発生器(G)において吸収溶液と熱交換した後の蒸気圧縮式冷凍機(X)の冷媒、もしくは前記バイパス回路(13)からの前記蒸気圧縮式冷凍機(X)の冷媒を、前記吸収式冷凍機(Y)における蒸発器(E)の熱交換器(e)に流入させる構成とし、前記蒸気圧縮式冷凍機(X)に、暖房運転時に冷房運転時とは逆方向に冷媒を流通させるように冷媒流通方向を切り替える四路切換弁(2)を付設し、暖房運転時には、前記熱源側熱交換器(3)を機能させるように構成する一方、前記バイパス回路(13)の開閉弁(14)を前記蒸気圧縮式冷凍機(X)の熱源側熱交換器(3)の冷媒出口温度が低くなり過ぎた場合に閉作動させ、前記蒸気圧縮式冷凍機(X)の冷媒が前記発生器(G)内の加熱器(g)にて、前記吸収式冷凍機(Y)の溶液ポンプ(Pl)と前記空冷熱交換器(8)および該空冷熱交換器(8)に併設された冷却ファン(10)とを運転することで、前記発生器(G)内の溶液より吸熱し、溶液は前記空冷熱交換器(8)にて外気より吸熱するように構成するとともに、前記吸収器(A)の出口から溶液ポンプ(Pl)を経て前記発生器(G)に送られる希溶液と前記発生器(G)からの濃溶液とを熱交換させる溶液熱交換器(Ha)を付設し、該溶液熱交換器(Ha)に至る配管(16)の途中に開閉弁(17)を介設するとともに、吸収溶液を過冷却させる前記空冷熱交換器(8)の出口から前記吸収器(A)に至る溶液配管(18)と前記蒸発器(E)の入口側の冷媒配管(22)とを開閉弁(23)を介設してなるバイパス配管(24)で連結し、冷房運転時には、前記バイパス配管(24)の開閉弁(23)を閉作動させ且つ前記溶液熱交換器(Ha)に至る配管(16)の開閉弁(17)を開作動させ、前記発生器(G)の加熱器(g)をバイパスするバイパス回路(13)の開閉弁(14)を前記バイパス回路(13)の入口冷媒温度が前記発生器(G)の溶液温度を越えると閉作動させるが、暖房運転時には、前記バイパス配管(24)の開閉弁(23)を開作動させ、前記発生器(G)の加熱器(g)をバイパスするバイパス回路(13)の開閉弁(14)を前記蒸気圧縮式冷凍機(X)の冷媒が前記発生器(G)内の加熱器(g)にて、前記吸収式冷凍機(Y)の溶液ポンプ(Pl)と前記空冷熱交換器(8)および該空冷熱交換器(8)に併設された冷却ファン(10)とを運転することで、前記発生器(G)内の溶液より吸熱し、溶液は前記空冷熱交換器(8)にて外気より吸熱するように構成したことを特徴とする冷凍装置。 A refrigeration apparatus combining a vapor compression refrigeration machine (X) and an absorption refrigeration machine (Y), wherein the refrigerant of the vapor compression refrigeration machine (X) during cooling operation is used as the absorption refrigeration machine (Y). The refrigerant cooling method of cooling or supercooling with the evaporator (E) of the above is adopted, and the amount of heat when radiating the refrigerant of the vapor compression refrigerator (X) during the cooling operation is expressed as the absorption refrigerator (Y) The refrigerant after compression in the vapor compression refrigerator (X) is allowed to flow into the heater (g) of the generator (G) of the absorption refrigerator (Y) to be used as a heating source for When the refrigerant temperature of the compressor (1) in the vapor compression refrigerator (X) is low, the refrigerant of the vapor compression refrigerator (X) is generated by the generator (G) of the absorption refrigerator (Y). ) Is bypassed and opened to the bypass circuit (13). When the valve (14) is attached and the refrigerant temperature at the inlet of the bypass circuit (13) exceeds the solution temperature of the generator (G), the on-off valve (14) is closed and the generator (G) The refrigerant of the vapor compression refrigeration machine (X) after heat exchange with the absorption solution or the refrigerant of the vapor compression refrigeration machine (X) from the bypass circuit (13) is used as the absorption refrigeration machine (Y). Refrigerant flow direction so that the refrigerant flows through the vapor compression refrigerator (X) in the opposite direction to the cooling operation during the heating operation. A four-way switching valve (2) for switching the heat source side heat exchanger (3) is configured to function during heating operation, while the on-off valve (14) of the bypass circuit (13) is connected to the steam Heat source side heat exchanger of compression refrigerator (X) ( ) When the refrigerant outlet temperature becomes too low, the refrigerant of the vapor compression refrigerator (X) is transferred to the absorption refrigerator (G) by the heater (g) in the generator (G). Y) by operating the solution pump (Pl), the air-cooled heat exchanger (8), and the cooling fan (10) provided in the air-cooled heat exchanger (8), the generator (G) The heat is absorbed from the solution, and the solution is configured to absorb heat from the outside air in the air-cooled heat exchanger (8), and from the outlet of the absorber (A) to the generator (G) via the solution pump (Pl). A solution heat exchanger (Ha) for exchanging heat between the dilute solution to be sent and the concentrated solution from the generator (G) is attached, and an open / close valve is provided in the middle of the pipe (16) leading to the solution heat exchanger (Ha). (17) and an outlet of the air-cooled heat exchanger (8) for supercooling the absorbing solution The solution pipe (18) leading to the absorber (A) and the refrigerant pipe (22) on the inlet side of the evaporator (E) are connected by a bypass pipe (24) having an on-off valve (23). During the cooling operation, the open / close valve (23) of the bypass pipe (24) is closed and the open / close valve (17) of the pipe (16) leading to the solution heat exchanger (Ha) is opened. The on-off valve (14) of the bypass circuit (13) bypassing the heater (g) of (G) is closed when the inlet refrigerant temperature of the bypass circuit (13) exceeds the solution temperature of the generator (G). However, during the heating operation, the on-off valve (23) of the bypass pipe (24) is opened to open the on-off valve (14) of the bypass circuit (13) that bypasses the heater (g) of the generator (G). The refrigerant of the vapor compression refrigerator (X) is in the generator (G). In the heater (g), a solution pump (Pl) of the absorption refrigeration machine (Y), the air cooling heat exchanger (8), and a cooling fan (10) provided in the air cooling heat exchanger (8) by operating the said absorbs heat from the solution in the generator (G), the solution is freeze cold you characterized by being configured to heat absorption from the outside air by the air-cooled heat exchanger (8) devices. 蒸気圧縮式冷凍機(X)と吸収式冷凍機(Y)とを組み合わせた冷凍装置であって、冷房運転時における前記蒸気圧縮式冷凍機(X)の冷媒を前記吸収式冷凍機(Y)の蒸発器(E)で冷却、または過冷却する冷媒冷却方式を採用し、冷房運転時における前記蒸気圧縮式冷凍機(X)の冷媒を放熱する際の熱量を前記吸収式冷凍機(Y)の加熱源として利用すべく、前記蒸気圧縮式冷凍機(X)における圧縮後の冷媒を前記吸収式冷凍機(Y)の発生器(G)の加熱器(g)に流入させるが、部分負荷など前記蒸気圧縮式冷凍機(X)における圧縮機(1)の冷媒温度が低い場合には、前記蒸気圧縮式冷凍機(X)の冷媒が前記吸収式冷凍機(Y)の発生器(G)をバイパスするバイパス回路(13)を設け且つ該バイパス回路(13)に開閉弁(14)を付設し、前記バイパス回路(13)の入口冷媒温度が前記発生器(G)の溶液温度を越えると、前記開閉弁(14)が閉作動するとともに、前記発生器(G)において吸収溶液と熱交換した後の蒸気圧縮式冷凍機(X)の冷媒、もしくは前記バイパス回路(13)からの前記蒸気圧縮式冷凍機(X)の冷媒を、前記吸収式冷凍機(Y)における蒸発器(E)の熱交換器(e)に流入させる構成とし、前記蒸気圧縮式冷凍機(X)に、暖房運転時に冷房運転時とは逆方向に冷媒を流通させるように冷媒流通方向を切り替える四路切換弁(2)を付設し、暖房運転時には、前記熱源側熱交換器(3)を機能させるように構成する一方、前記バイパス回路(13)の開閉弁(14)を前記蒸気圧縮式冷凍機(X)の熱源側熱交換器(3)の冷媒出口温度が低くなり過ぎた場合に閉作動させ、前記蒸気圧縮式冷凍機(X)の冷媒が前記発生器(G)内の加熱器(g)にて、前記吸収式冷凍機(Y)の溶液ポンプ(Pl)と前記空冷熱交換器(8)および該空冷熱交換器(8)に併設された冷却ファン(10)とを運転することで、前記発生器(G)内の溶液より吸熱し、溶液は前記空冷熱交換器(8)にて外気より吸熱するように構成するとともに、 前記吸収器(A)の出口から溶液ポンプ(Pl)を経て前記発生器(G)に送られる希溶液と前記発生器(G)からの濃溶液とを熱交換させる溶液熱交換器(Ha)を付設し、該溶液熱交換器(Ha)に至る配管(16)の途中に開閉弁(17)を介設するとともに、吸収溶液を過冷却させる前記空冷熱交換器(8)の出口から前記吸収器(A)に至る溶液配管(18)から分岐して前記蒸発器(E)の入口に至るバイパス配管(25)を設け且つ該バイパス配管(25)に開閉弁(26)を介設し、冷房運転時には、前記バイパス配管(25)の開閉弁(26)を閉作動させ且つ前記溶液熱交換器(Ha)に至る配管(16)の開閉弁(17)を開作動させ、前記発生器(G)の加熱器(g)をバイパスするバイパス回路(13)の開閉弁(14)を前記バイパス回路(13)の入口冷媒温度が前記発生器(G)の溶液温度を越えると閉作動させるが、暖房運転時には、前記バイパス配管(25)の開閉弁(26)を開作動させ、前記溶液熱交換器(Ha)に至る配管(16)の開閉弁(17)を閉作動させ、前記発生器(G)の加熱器(g)をバイパスするバイパス回路(13)の開閉弁(14)を前記蒸気圧縮式冷凍機(X)の熱源側熱交換器(3)の冷媒出口温度が低くなり過ぎた場合に閉作動させ、前記蒸気圧縮式冷凍機(X)の冷媒が前記発生器(G)内の加熱器(g)にて、前記吸収式冷凍機(Y)の溶液ポンプ(Pl)と前記空冷熱交換器(8)および該空冷熱交換器(8)に併設された冷却ファン(10)とを運転することで、前記発生器(G)内の溶液より吸熱し、溶液は前記空冷熱交換器(8)にて外気より吸熱するように構成したことを特徴とする冷凍装置。 A refrigeration apparatus combining a vapor compression refrigeration machine (X) and an absorption refrigeration machine (Y), wherein the refrigerant of the vapor compression refrigeration machine (X) during cooling operation is used as the absorption refrigeration machine (Y). The refrigerant cooling method of cooling or supercooling with the evaporator (E) of the above is adopted, and the amount of heat when radiating the refrigerant of the vapor compression refrigerator (X) during the cooling operation is expressed as the absorption refrigerator (Y) The refrigerant after compression in the vapor compression refrigerator (X) is allowed to flow into the heater (g) of the generator (G) of the absorption refrigerator (Y) to be used as a heating source for When the refrigerant temperature of the compressor (1) in the vapor compression refrigerator (X) is low, the refrigerant of the vapor compression refrigerator (X) is generated by the generator (G) of the absorption refrigerator (Y). ) Is bypassed and opened to the bypass circuit (13). When the valve (14) is attached and the refrigerant temperature at the inlet of the bypass circuit (13) exceeds the solution temperature of the generator (G), the on-off valve (14) is closed and the generator (G) The refrigerant of the vapor compression refrigeration machine (X) after heat exchange with the absorption solution or the refrigerant of the vapor compression refrigeration machine (X) from the bypass circuit (13) is used as the absorption refrigeration machine (Y). Refrigerant flow direction so that the refrigerant flows through the vapor compression refrigerator (X) in the opposite direction to the cooling operation during the heating operation. A four-way switching valve (2) for switching the heat source side heat exchanger (3) is configured to function during heating operation, while the on-off valve (14) of the bypass circuit (13) is connected to the steam Heat source side heat exchanger of compression refrigerator (X) ( ) When the refrigerant outlet temperature becomes too low, the refrigerant of the vapor compression refrigerator (X) is transferred to the absorption refrigerator (G) by the heater (g) in the generator (G). Y) by operating the solution pump (Pl), the air-cooled heat exchanger (8), and the cooling fan (10) provided in the air-cooled heat exchanger (8), the generator (G) The heat is absorbed from the solution, and the solution is configured to absorb heat from the outside air in the air-cooled heat exchanger (8), and from the outlet of the absorber (A) to the generator (G) via the solution pump (Pl). A solution heat exchanger (Ha) for exchanging heat between the dilute solution to be sent and the concentrated solution from the generator (G) is attached, and an open / close valve is provided in the middle of the pipe (16) leading to the solution heat exchanger (Ha). (17) and an outlet of the air-cooled heat exchanger (8) for supercooling the absorbing solution A bypass pipe (25) branched from the solution pipe (18) leading to the absorber (A) to the inlet of the evaporator (E) is provided, and an open / close valve (26) is provided in the bypass pipe (25). During the cooling operation, the on-off valve (26) of the bypass pipe (25) is closed and the on-off valve (17) of the pipe (16) leading to the solution heat exchanger (Ha) is opened, The on-off valve (14) of the bypass circuit (13) bypassing the heater (g) of the generator (G) is closed when the inlet refrigerant temperature of the bypass circuit (13) exceeds the solution temperature of the generator (G). However, during heating operation, the on-off valve (26) of the bypass pipe (25) is opened, the on-off valve (17) of the pipe (16) leading to the solution heat exchanger (Ha) is closed, Viper bypassing heater (g) of generator (G) The on-off valve (14) of the circuit (13) is closed when the refrigerant outlet temperature of the heat source side heat exchanger (3) of the vapor compression refrigerator (X) becomes too low, and the vapor compression refrigerator The refrigerant (X) is heated by the heater (g) in the generator (G), the solution pump (Pl) of the absorption refrigeration machine (Y), the air cooling heat exchanger (8), and the air cooling heat exchange. By operating the cooling fan (10) attached to the generator (8), heat is absorbed from the solution in the generator (G), and the solution absorbs heat from the outside air in the air-cooled heat exchanger (8). refrigerating device characterized by being configured to. 蒸気圧縮式冷凍機(X)と吸収式冷凍機(Y)とを組み合わせた冷凍装置であって、冷房運転時における前記蒸気圧縮式冷凍機(X)の冷媒を前記吸収式冷凍機(Y)の蒸発器(E)で冷却、または過冷却する冷媒冷却方式を採用し、冷房運転時における前記蒸気圧縮式冷凍機(X)の冷媒を放熱する際の熱量を前記吸収式冷凍機(Y)の加熱源として利用すべく、前記蒸気圧縮式冷凍機(X)における圧縮後の冷媒を前記吸収式冷凍機(Y)の発生器(G)の加熱器(g)に流入させるが、部分負荷など前記蒸気圧縮式冷凍機(X)における圧縮機(1)の冷媒温度が低い場合には、前記蒸気圧縮式冷凍機(X)の冷媒が前記吸収式冷凍機(Y)の発生器(G)をバイパスするバイパス回路(13)を設け且つ該バイパス回路(13)に開閉弁(14)を付設し、前記バイパス回路(13)の入口冷媒温度が前記発生器(G)の溶液温度を越えると、前記開閉弁(14)が閉作動するとともに、前記発生器(G)において吸収溶液と熱交換した後の蒸気圧縮式冷凍機(X)の冷媒、もしくは前記バイパス回路(13)からの前記蒸気圧縮式冷凍機(X)の冷媒を、前記吸収式冷凍機(Y)における蒸発器(E)の熱交換器(e)に流入させる構成とし、前記蒸気圧縮式冷凍機(X)に、暖房運転時に冷房運転時とは逆方向に冷媒を流通させるように冷媒流通方向を切り替える四路切換弁(2)を付設し、暖房運転時には、前記熱源側熱交換器(3)を機能させるように構成する一方、前記バイパス回路(13)の開閉弁(14)を前記蒸気圧縮式冷凍機(X)の熱源側熱交換器(3)の冷媒出口温度が低くなり過ぎた場合に閉作動させ、前記蒸気圧縮式冷凍機(X)の冷媒が前記発生器(G)内の加熱器(g)にて、前記吸収式冷凍機(Y)の溶液ポンプ(Pl)と前記空冷熱交換器(8)および該空冷熱交換器(8)に併設された冷却ファン(10)とを運転することで、前記発生器(G)内の溶液より吸熱し、溶液は前記空冷熱交換器(8)にて外気より吸熱するように構成するとともに、吸収溶液を過冷却させる前記空冷熱交換器(8)の出口から前記吸収器(A)に至る溶液配管(18)と前記蒸発器(E)の入口側の冷媒配管(22)とを開閉弁(23)を介設してなるバイパス配管(24)で連結するとともに、前記吸収器(A)の入口側の溶液配管(18)に開閉弁(27)を介設し、冷房運転時には、前記バイパス配管(24)の開閉弁(23)を閉作動させ且つ前記溶液配管(18)の開閉弁(27)を開作動させ、前記溶液配管(21)の開閉弁(20)を閉作動させ且つ前記溶液熱交換器(Ha)に至る配管(16)の開閉弁(17)を開作動させ、前記発生器(G)の加熱器(g)をバイパスするバイパス回路(13)の開閉弁(14)を前記バイパス回路(13)の入口冷媒温度が前記発生器(G)の溶液温度を越えると閉作動させるが、暖房運転時には、前記バイパス配管(24)の開閉弁(23)を開作動させ且つ前記溶液配管(18)の開閉弁(27)を閉作動させ、前記溶液配管(21)の開閉弁(20)を開作動させ且つ前記溶液熱交換器(Ha)に至る配管(16)の開閉弁(17)を閉作動させ、前記発生器(G)の加熱器(g)をバイパスするバイパス回路(13)の開閉弁(14)を開作動させ、前記蒸気圧縮式冷凍機(X)の冷媒が前記発生器(G)内の加熱器(g)にて、前記吸収式冷凍機(Y)の溶液ポンプ(Pl)と前記空冷熱交換器(8)および該空冷熱交換器(8)に併設された冷却ファン(10)とを運転することで、前記発生器(G)内の溶液より吸熱し、溶液は前記空冷熱交換器(8)にて外気より吸熱するように構成したことを特徴とする冷凍装置。 A refrigeration apparatus combining a vapor compression refrigeration machine (X) and an absorption refrigeration machine (Y), wherein the refrigerant of the vapor compression refrigeration machine (X) during cooling operation is used as the absorption refrigeration machine (Y). The refrigerant cooling method of cooling or supercooling with the evaporator (E) of the above is adopted, and the amount of heat when radiating the refrigerant of the vapor compression refrigerator (X) during the cooling operation is expressed as the absorption refrigerator (Y) The refrigerant after compression in the vapor compression refrigerator (X) is allowed to flow into the heater (g) of the generator (G) of the absorption refrigerator (Y) to be used as a heating source for When the refrigerant temperature of the compressor (1) in the vapor compression refrigerator (X) is low, the refrigerant of the vapor compression refrigerator (X) is generated by the generator (G) of the absorption refrigerator (Y). ) Is bypassed and opened to the bypass circuit (13). When the valve (14) is attached and the refrigerant temperature at the inlet of the bypass circuit (13) exceeds the solution temperature of the generator (G), the on-off valve (14) is closed and the generator (G) The refrigerant of the vapor compression refrigeration machine (X) after heat exchange with the absorption solution or the refrigerant of the vapor compression refrigeration machine (X) from the bypass circuit (13) is used as the absorption refrigeration machine (Y). Refrigerant flow direction so that the refrigerant flows through the vapor compression refrigerator (X) in the opposite direction to the cooling operation during the heating operation. A four-way switching valve (2) for switching the heat source side heat exchanger (3) is configured to function during heating operation, while the on-off valve (14) of the bypass circuit (13) is connected to the steam Heat source side heat exchanger of compression refrigerator (X) ( ) When the refrigerant outlet temperature becomes too low, the refrigerant of the vapor compression refrigerator (X) is transferred to the absorption refrigerator (G) by the heater (g) in the generator (G). Y) by operating the solution pump (Pl), the air-cooled heat exchanger (8), and the cooling fan (10) provided in the air-cooled heat exchanger (8), the generator (G) The absorber (A) absorbs heat from the solution, and the solution absorbs heat from the outside air in the air-cooled heat exchanger (8) and supercools the absorbing solution from the outlet of the air-cooled heat exchanger (8). The solution pipe (18) leading to the evaporator (E) and the refrigerant pipe (22) on the inlet side of the evaporator (E) are connected by a bypass pipe (24) having an on-off valve (23), and the absorber ( A) An on-off valve (27) is installed in the solution pipe (18) on the inlet side of the inlet side. The on-off valve (23) of the bypass pipe (24) is closed and the on-off valve (27) of the solution pipe (18) is opened, and the on-off valve (20) of the solution pipe (21) is closed. And an open / close valve (13) of the bypass circuit (13) that opens the open / close valve (17) of the pipe (16) leading to the solution heat exchanger (Ha) and bypasses the heater (g) of the generator (G) ( 14) is closed when the inlet refrigerant temperature of the bypass circuit (13) exceeds the solution temperature of the generator (G), but during heating operation, the on-off valve (23) of the bypass pipe (24) is opened. And the opening and closing valve (27) of the solution pipe (18) is closed and the opening and closing valve (20) of the solution pipe (21) is opened and the pipe (16) reaching the solution heat exchanger (Ha). The on-off valve (17) of the generator is closed and the generator (G) The on-off valve (14) of the bypass circuit (13) that bypasses the heater (g) is opened, and the refrigerant of the vapor compression refrigerator (X) is transferred to the heater (g) in the generator (G). By operating the solution pump (Pl) of the absorption refrigeration machine (Y), the air-cooled heat exchanger (8), and the cooling fan (10) provided in the air-cooled heat exchanger (8), wherein absorbs heat from the solution in the generator (G), the solution is freeze cold you characterized by being configured to heat absorption from the outside air by the air-cooled heat exchanger (8) devices. 前記吸収式冷凍機(Y)における吸収器(A)に入る吸収溶液を空冷熱交換器(8)にて過冷却し、前記吸収器(A)においては冷媒蒸気を吸収するだけで、吸収熱は前記吸収溶液で取り去る間接空冷方式としたことを特徴とする請求項1、2、3およびのいずれか一項記載の冷凍装置。 The absorption solution entering the absorber (A) in the absorption refrigerator (Y) is supercooled by an air-cooled heat exchanger (8), and the absorber (A) simply absorbs the refrigerant vapor to absorb heat. The refrigeration apparatus according to any one of claims 1 , 2, 3, and 4 , wherein an indirect air cooling system in which the absorption solution is removed. 前記蒸発器(E)に溶液を流入させる場合の散布器を、冷媒用とは別に散布器が取り付けられているか、もしくは共用ができるようにしたことを特徴とする請求項記載の冷凍装置。 The refrigerating apparatus according to claim 4, wherein a spreader when the solution is allowed to flow into the evaporator (E) is attached or shared with a spreader separately from the refrigerant. 前記蒸発器(E)を、液冷媒が一過性でその伝熱面を流れ、未蒸発冷媒が前記吸収器(A)側へ移動し、吸収溶液に吸収されるように構成したことを特徴とする請求項1、2、3、4、5およびのいずれか一項記載の冷凍装置。 The evaporator (E) is configured such that the liquid refrigerant is transient and flows through the heat transfer surface, and the non-evaporated refrigerant moves to the absorber (A) side and is absorbed by the absorbing solution. to claim 1, 2, 3, 4, 5 Contact and 6 refrigeration apparatus according to any one claim of. 前記蒸気圧縮式冷凍機(X)を複数台とし、それらの冷媒の排熱を各々回収し、一つの吸収式冷凍機Yの発生器Gで冷媒蒸気を発生させて駆動するように構成したことを特徴とする請求項1、2、3、4、5、6およびのいずれか一項記載の冷凍装置。 A plurality of the vapor compression refrigeration units (X) are configured to recover the exhaust heat of each of the refrigerants, and to generate and drive the refrigerant vapor with the generator G of one absorption refrigeration unit Y. claim 1, 2, 3, 4, characterized in, 6 Contact and 7 refrigeration apparatus according to any one claim of. 前記発生器(G)の熱源として排熱を用いたことを特徴とする請求項1、2、3、4、5、6、7およびのいずれか一項記載の冷凍装置。 The generator according to claim 1, 2, 3, 4, characterized in that using the waste heat as a heat source (G), 7 Contact and refrigeration apparatus according to any one claim of 8. 前記排熱として太陽熱を用いたことを特徴とする請求項記載の冷凍装置。 The refrigeration apparatus according to claim 9, wherein solar heat is used as the exhaust heat.
JP2009092902A 2009-04-07 2009-04-07 Refrigeration equipment Expired - Fee Related JP5375283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009092902A JP5375283B2 (en) 2009-04-07 2009-04-07 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009092902A JP5375283B2 (en) 2009-04-07 2009-04-07 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2010243079A JP2010243079A (en) 2010-10-28
JP5375283B2 true JP5375283B2 (en) 2013-12-25

Family

ID=43096262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009092902A Expired - Fee Related JP5375283B2 (en) 2009-04-07 2009-04-07 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP5375283B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101141360B1 (en) * 2010-12-21 2012-05-14 엘지전자 주식회사 Heat pump system using compression type and absorption type
KR101218547B1 (en) * 2011-09-07 2013-01-09 진주환 Composion refrigerator
KR102403512B1 (en) 2015-04-30 2022-05-31 삼성전자주식회사 Outdoor unit of air conditioner, control device applying the same
CN104964477B (en) * 2015-07-31 2017-11-24 上海缔森能源技术有限公司 A kind of multistage plate evaporation absorption type refrigerating unit and method
CN105650938B (en) * 2016-01-08 2018-01-09 上海缔森能源技术有限公司 A kind of absorption-type refrigerating method and device of full electric power reuse discharge heat
CN105485960B (en) * 2016-01-08 2017-09-26 上海缔森能源技术有限公司 A kind of dual vapor compressibility absorption-type refrigerating method and device
CN106091547B (en) * 2016-06-16 2018-09-07 中原工学院 The solar energy jetting of dual temperature refrigerator car and compression integrated refrigeration system
CN109631416B (en) * 2019-01-04 2021-02-26 重庆大学 Water-gas dual-purpose flat-plate solar heat collection and radiation refrigeration comprehensive utilization device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58108372A (en) * 1981-12-22 1983-06-28 松下電器産業株式会社 Air-conditioning hot-water supply device
JP3373948B2 (en) * 1994-09-22 2003-02-04 三郎 久保 Air conditioner
JP2002349996A (en) * 2001-05-29 2002-12-04 Ebara Corp Exhaust heat recovery air conditioner
JP2003004334A (en) * 2001-06-25 2003-01-08 Ebara Corp Waste heat recovery air conditioner
JP3871207B2 (en) * 2002-06-21 2007-01-24 株式会社荏原製作所 Refrigeration system combining absorption and compression
JP2006017350A (en) * 2004-06-04 2006-01-19 Sanyo Electric Co Ltd Refrigeration device
JP2009052811A (en) * 2007-08-28 2009-03-12 Daikin Ind Ltd Exhaust heat drive-type absorption refrigerating device

Also Published As

Publication number Publication date
JP2010243079A (en) 2010-10-28

Similar Documents

Publication Publication Date Title
JP5375283B2 (en) Refrigeration equipment
JP2004257586A (en) Refrigerator using carbon dioxide as refrigerant
JPWO2006051617A1 (en) Heat pump using CO2 as a refrigerant and operating method thereof
JP2013096586A (en) Adsorption type refrigeration device
JP5904628B2 (en) Refrigeration cycle with refrigerant pipe for defrost operation
KR20120132035A (en) Dual Heat Pump System Using Chiller
JP2007120872A (en) Hybrid heat pump system
JP5240040B2 (en) Refrigeration equipment
JP5402186B2 (en) Refrigeration equipment
JP5375284B2 (en) Refrigeration equipment
JPH0953864A (en) Engine type cooling device
JP2007051788A (en) Refrigerating device
JP2021508809A (en) Air conditioner system
JP6613404B2 (en) Refrigeration system
JP2003121025A (en) Heating-cooling combination appliance
JP5434207B2 (en) Refrigeration equipment
JP5338270B2 (en) Absorption refrigeration system
JP5229076B2 (en) Refrigeration equipment
JP5310224B2 (en) Refrigeration equipment
JP5434206B2 (en) Refrigeration equipment
JP2005326073A (en) Refrigeration device
JP5402187B2 (en) Refrigeration equipment
JP5233715B2 (en) Absorption refrigeration system
JP2014129944A (en) Refrigeration device
JP5233716B2 (en) Absorption refrigeration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111207

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130909

LAPS Cancellation because of no payment of annual fees