KR101141360B1 - Heat pump system using compression type and absorption type - Google Patents

Heat pump system using compression type and absorption type Download PDF

Info

Publication number
KR101141360B1
KR101141360B1 KR1020100131382A KR20100131382A KR101141360B1 KR 101141360 B1 KR101141360 B1 KR 101141360B1 KR 1020100131382 A KR1020100131382 A KR 1020100131382A KR 20100131382 A KR20100131382 A KR 20100131382A KR 101141360 B1 KR101141360 B1 KR 101141360B1
Authority
KR
South Korea
Prior art keywords
refrigerant
solution
heat exchanger
passes
absorption
Prior art date
Application number
KR1020100131382A
Other languages
Korean (ko)
Inventor
신광호
최민환
차우호
이경렬
오세재
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020100131382A priority Critical patent/KR101141360B1/en
Application granted granted Critical
Publication of KR101141360B1 publication Critical patent/KR101141360B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/02Compression-sorption machines, plants, or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/385Dispositions with two or more expansion means arranged in parallel on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02731Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one three-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02742Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two four-way valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE: A heat pump system using the absorption and the compression is provided to obtain high-temperature water without an auxiliary heat source or en extra compression. CONSTITUTION: The heat pump system using compression and absorption comprises a refrigerant line(22), an intake solution line(24) and a line(48). The refrigerant in an accumulator(12) meets an intake solution in a junction(P1) through a compressor(16) and passes by an absorber(20) with a state of a mixed refrigerant in a heating mode. The mixed refrigerant is collected in the accumulator(12) after the mixed refrigerant passed by the absorber passes through a first expansion valve(30a), a first heat exchanger(32) and a desorber(36). The intake solution in the accumulator passes the first heat exchanger through an intake solution pump(40) and a direction valve(42). " The absorption solution passed by the first heat exchanger joins the refrigerant transferred from the compressor through the direction valve in a first absorption solution junction In a cooling mode, the absorption solution passing by the direction valve joins the refrigerant in the second absorption solution junction of the refrigerant line and passes the desorber with a state of the mixed refrigerant.

Description

압축식 및 흡수식을 이용한 히트펌프 시스템{Heat Pump System Using Compression Type and Absorption Type}Heat Pump System Using Compression Type and Absorption Type

본 발명은 압축식 및 흡수식을 이용한 히트펌프 시스템에 관한 것으로, 더욱 상세하게는 압축식 히트펌프에 흡수식 사이클의 장점을 적용하여 일반적인 히트 펌프에서 얻을 수 없었던 난방용 고온수를 얻을 수 있도록 한다. 아울러 난방수와 열교환하게 되는 혼합 냉매의 비가역 손실을 줄여 시스템 효율을 향상시킬 수 있도록 한다.
The present invention relates to a heat pump system using a compression type and an absorption type, and more particularly, by applying the advantages of an absorption cycle to a compression heat pump, it is possible to obtain high temperature water for heating that cannot be obtained in a general heat pump. In addition, it is possible to improve the system efficiency by reducing the irreversible loss of the mixed refrigerant to be exchanged with the heating water.

일반적으로, 증기 압축식 히트펌프 또는 흡수식 히트 펌프를 이용하여 90℃ 이상 고온수를 얻는 방법으로 통상 보일러 혹은 가열기와 같은 보조 열원을 히트 펌프 시스템에 적용하고 있다. 그러나 추가적인 보조 열원의 적용에 의해 시스템 의 성능계수 저하가 필연적으로 발생하게 됨으로써 전체적으로 시스템 효율이 좋지 못하다.In general, an auxiliary heat source such as a boiler or a heater is generally applied to a heat pump system by using a vapor compression heat pump or an absorption heat pump to obtain hot water of 90 ° C. or higher. However, the application of additional auxiliary heat sources inevitably leads to a decrease in the system's coefficient of performance, resulting in poor overall system efficiency.

특히, 증기 압축식 히트 펌프에서는 난방수와 열교환하게 되는 냉매를 고온으로 형성하기 위해 여러 개의 압축기를 적용하는 다단 압축 방식이 채택될 수 있으나, 실제로는 압축기의 성능 및 압축비 한계가 있다. 그와 함께 막대한 시설비용도 소요되어 실용적이지 못한 단점이 있고, 예컨대 여러 개의 압축기가 적용될 경우 가역 손실이 크게 작용하여 시스템의 효율이 저하되는 문제도 발생한다.In particular, in the steam compression heat pump, a multi-stage compression method using multiple compressors may be adopted to form a refrigerant that is heat-exchanged with the heating water at a high temperature. Along with this, a huge facility cost is also required, which is not practical. For example, when a plurality of compressors are applied, reversible losses are large, resulting in a problem that the efficiency of the system is lowered.

이에 본 발명은 상기와 같은 종래의 문제점을 해결하기 위해 이루어진 것으로서, 본 발명의 목적은 압축식 히트펌프에 흡수식 사이클의 장점을 적용하여 일반적인 히트 펌프에서 얻을 수 없는 난방용 고온수를 얻을 수 있도록 하고, 아울러 난방수와 열교환하게 되는 혼합 냉매의 비가역 손실을 줄임으로써 시스템의 효율 향상시킬 수 있는 압축식 및 흡수식을 이용한 히트펌프 시스템을 제공하는데 그 목적이 있다.
Accordingly, the present invention has been made to solve the conventional problems as described above, the object of the present invention is to apply the advantages of the absorption cycle to the compression type heat pump to obtain a high temperature water for heating that can not be obtained in the general heat pump, In addition, it is an object of the present invention to provide a heat pump system using a compression type and an absorption type to improve the efficiency of the system by reducing the irreversible loss of the mixed refrigerant to heat exchange with the heating water.

본 발명의 목적을 달성하기 위한 해결 수단은, 난방 모드시, 어큐물레이터에 존재하는 냉매가 가스엔진에 의해 구동하는 압축기를 지나 제1 흡수 용액 합류지점에서 흡수 용액과 만나 혼합냉매를 형성하는 상태로 난방수가 흐르는 업소버를 지나가고, 상기 업소버를 통과한 혼합냉매가 제1 팽창밸브를 거쳐 제1 열교환기를 지나 냉수가 흐르는 디소버를 통과 후 사방밸브를 거쳐 어큐뮬레이터로 회수되는 냉매 라인과; 상기 어큐물레이터에 존재하는 흡수 용액이 어큐뮬레이터와 연결되는 흡수 용액 펌프와 사방밸브를 거쳐 제1 열교환기를 지나가고, 상기 제1 열교환기를 통과한 흡수 용액은 삼방밸브를 거쳐 상기 제1 흡수 용액 합류지점에서 압축기로부터 이송되는 냉매와 합류하도록 연결되는 흡입 용액 라인과; 냉방 모드시, 상기 삼방밸브를 지나가는 흡수 용액이 냉매 라인의 제2 흡수 용액 합류지점에서 냉매와 만나 혼합냉매를 형성하는 상태로 디소버를 지나가도록 연결되는 라인;을 포함하여 구성되는 압축식 및 흡수식을 이용한 히트펌프 시스템이 제공된다.Solution to achieve the object of the present invention, in the heating mode, the refrigerant present in the accumulator passes through the compressor driven by the gas engine to meet the absorbing solution at the confluence of the first absorbing solution to form a mixed refrigerant A refrigerant line passing through the absorber through which the heating water flows, the mixed refrigerant passing through the absorber passing through the first expansion valve, passing through the first heat exchanger, and the cold water flowing through the absorber, and then returned to the accumulator through the four-way valve; The absorbent solution present in the accumulator passes through the first heat exchanger via an absorbent solution pump and a four-way valve connected to the accumulator, and the absorbent solution passed through the first heat exchanger passes through a three-way valve at the first absorbent solution confluence point. A suction solution line connected to join a refrigerant conveyed from the compressor; In the cooling mode, the absorbent solution passing through the three-way valve is connected to pass through the desorber in a state of forming a mixed refrigerant to meet the refrigerant at the second absorbing solution confluence point of the refrigerant line; Provided is a heat pump system.

또한, 상기 흡수 용액이 지나가는 제1 열교환기와 삼방밸브 사이에 제2 열교환가 설치되고, 상기 가스엔진의 배기가스 열교환기를 지나 제2 열교환기를 통과하면서 제2 열교환기에서 흡수 용액과 열교환을 수행 후 가스엔진으로 유입되는 냉각수 라인을 더 포함하여 구성되는 압축식 및 흡수식을 이용한 히트펌프 시스템이 제공된다.
In addition, a second heat exchanger is installed between the first heat exchanger and the three-way valve through which the absorbent solution passes, and after performing heat exchange with the absorbent solution in the second heat exchanger while passing through the second heat exchanger through the exhaust gas heat exchanger of the gas engine, the gas engine Provided are a heat pump system using a compressed and absorbed type configured to further include a cooling water line flowing into.

이와 같이, 본 발명에 따른 압축식 및 흡수식을 이용한 히트펌프 시스템을 사용하게 되면, 보일러 혹은 가열기와 같은 보조 열원이나 압축기의 추가 적용 없이도 높은 온도의 난방수를 얻을 수 있는 효과를 기대할 수 있다.As such, when the heat pump system using the compression type and the absorption type according to the present invention is used, an effect of obtaining high temperature heating water without additional application of an auxiliary heat source or a compressor such as a boiler or a heater can be expected.

그와 더불어 난방수와 열교환하는 혼합냉매가 열교환 과정 중 상변화가 없어 비가역 손실이 최소화 되고, 그로 인해 시스템의 효율을 향상시킬 수 있는 효과도 기대할 수 있다.
In addition, the mixed refrigerant heat-exchanging with the heating water does not have a phase change during the heat exchange process, thereby minimizing irreversible losses, thereby improving the efficiency of the system.

도 1은 본 발명에 따른 압축식 및 흡수식을 이용한 히트펌프 시스템이다.1 is a heat pump system using a compression and absorption in accordance with the present invention.

이하, 본 발명을 실시하기 위한 구체적인 내용을 첨부된 예시도면에 의거 상세하게 설명한다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

도 1에서는 본 발명에 따른 압축식 및 흡수식을 이용한 히트펌프 시스템이 도시되어 있다. 설명에 앞서, 난방 모드시 냉매 및 흡수 용액 순환 경로를 기준으로 하여 설명한다. 참고로 냉매는 암모니아이고, 흡수 용액은 물이 사용된다.1 shows a heat pump system using compression and absorption in accordance with the present invention. Prior to the description, description will be made based on the refrigerant and the absorption solution circulation paths in the heating mode. For reference, the refrigerant is ammonia and the absorption solution is water.

도면에 도시된 바와 같이, 먼저 히트펌프 시스템(10)의 구성을 냉매 라인(22)을 따라 살펴보면, 어큐뮬레이터(12)에 존재하는 냉매 기체는 가스엔진(14)의 구동력으로 구동하게 되는 압축기(16)를 거쳐 오일분리기(18) 및 사방밸브(38)을 통과 후 업소버(20)를 지나게 된다. 이때 오일분리기(18)와 업소버(20)를 지나가는 냉매 라인(22)에는 후술하는 흡수 용액 라인(24)이 제1 흡수액 합류지점(P1)에서 만나는 상태로 연결되어 있어, 냉매와 흡수 용액이 제1 흡수액 합류지점(P1)에서 만나 혼합냉매를 형성하게 된다. 이러한 혼합냉매가 업소버(20)를 통과하게 된다.As shown in the figure, first, the configuration of the heat pump system 10 along the refrigerant line 22, the refrigerant gas present in the accumulator 12 is driven by the driving force of the gas engine 14 (16) After passing through the oil separator 18 and the four-way valve 38 passes through the absorber 20. At this time, the refrigerant line 22 passing through the oil separator 18 and the absorber 20 is connected in a state where the absorption solution line 24 described later meets at the first absorption liquid confluence point P1, whereby the refrigerant and the absorption solution are formed. 1 is met at the absorbing liquid confluence point (P1) to form a mixed refrigerant. This mixed refrigerant passes through the absorber 20.

또한 상기 업소버(20)에는 난방수가 흐르도록 난방수 라인(28)이 설치되어 있어 업소버(20)를 통과하는 혼합냉매는 난방수와 열교환하게 되고, 그로 인해 난방수는 고온을 형성하게 된다.In addition, the absorber 20 is provided with a heating water line 28 so that the heating water flows, so that the mixed refrigerant passing through the absorber 20 exchanges heat with the heating water, and thus the heating water forms a high temperature.

상기 업소버(20)를 통과한 혼합냉매는 제1 팽창밸브(30a)를 거쳐 제1 열교환기(32)를 통과하게 되고, 제1 열교환기(32)를 통과한 혼합냉매는 제2 팽창밸브(30b)를 지나 냉수가 흐르도록 냉수 라인(34)이 설치된 디소버(36)를 통과 후 사방밸브(38)를 거쳐 어큐뮬레이터(12)로 회수되는 구성을 가진다.The mixed refrigerant passing through the absorber 20 passes through the first heat exchanger 32 through the first expansion valve 30a, and the mixed refrigerant passing through the first heat exchanger 32 passes through the second expansion valve ( After passing through the desorber 36 in which the cold water line 34 is installed so that the cold water flows through 30b), it is recovered to the accumulator 12 via the four-way valve 38.

한편, 히트펌프 시스템(10)의 구성을 용액 라인을 따라 살펴보면,어큐물레이터(12)에 존재하는 흡수 용액은 흡수 용액 펌프(40)와 사방밸브(42)를 순차적으로 거쳐 제1 열교환기(32) 및 제2 열교환기(44)를 순차적으로 지나게 된다. 참고로, 제1 열교환기(32)에서는 앞서 설명하였듯이 혼합냉매와 열교환을 하게 된다. On the other hand, looking at the configuration of the heat pump system 10 along the solution line, the absorbent solution present in the accumulator 12 is sequentially passed through the absorption solution pump 40 and the four-way valve 42 to the first heat exchanger ( 32) and second heat exchanger (44) in order. For reference, as described above, the first heat exchanger 32 performs heat exchange with the mixed refrigerant.

상기 제2 열교환기(44)를 통과한 흡수 용액은 사방밸브(42)와 삼방밸브(46)을 각각 거쳐 제1 흡수 용액 합류지점(P1)에서 냉매와 만나게 된다.The absorbent solution passing through the second heat exchanger 44 meets the refrigerant at the first absorbent solution confluence point P1 through the four-way valve 42 and the three-way valve 46, respectively.

냉방 모드시, 상기 삼방밸브(46)를 지나가는 흡수 용액이 냉매 라인(22)의 제2 흡수 용액 합류지점(P2)에서 냉매와 만나 혼합냉매를 형성하는 상태로 디소버(36)를 지나가도록 라인이 연결된다. In the cooling mode, the absorbent solution passing through the three-way valve 46 passes through the solver 36 in a state where the absorbent solution meets the refrigerant at the second absorption solution confluence point P2 of the refrigerant line 22 to form a mixed refrigerant. This is connected.

한편, 상기 가스엔진(14)을 식히기 위해 가스엔진(14)을 지나가는 냉각수 라인(50)은, 먼저 가스엔진(14)의 배기가스 열교환기(52)를 지나 제2 열교환기(44)를 통과하면서 제2 열교환기(44)를 지나가는 흡수 용액과 열교환을 수행 후 방열기(54)를 통과하면서 냉각되고, 방열기(54)를 통과한 냉각수는 냉각수 펌프(56)를 통해 가스엔진(14)으로 다시 유입되는 순환 구조로 구성된다.
Meanwhile, the coolant line 50 passing through the gas engine 14 to cool the gas engine 14 first passes through the exhaust gas heat exchanger 52 of the gas engine 14 and passes through the second heat exchanger 44. While performing the heat exchange with the absorbing solution passing through the second heat exchanger 44, and then cooled while passing through the radiator 54, the coolant passed through the radiator 54 is back to the gas engine 14 through the cooling water pump (56). It is composed of incoming circulation structure.

하기에서는 압축식 및 흡수식을 이용한 히트펌프 시스템의 동작 모드를 설명하기로 한다.
Hereinafter, the operation mode of the heat pump system using the compression type and the absorption type will be described.

[난방 모드][Heating Mode]

어큐물레이터(12)에 존재하는 냉매 기체는 압축기(16)를 통과하면서 고온 고압으로 형성된 후 오일분리기(18)와 사방밸브(38)를 순차적으로 거쳐 합류지점(P1)을 지나게 된다.The refrigerant gas present in the accumulator 12 is formed at a high temperature and high pressure while passing through the compressor 16, and then passes through the confluence point P1 through the oil separator 18 and the four-way valve 38 sequentially.

이와 동시에 어큐물레이터(12)에 존재하는 흡수 용액은 흡수 용액 펌프(40)를 통해 사방밸브(42)를 거쳐 제1 열교환기(32)를 지나가는 혼합냉매와 열교환하여 1차적으로 온도가 높아지는 상태로 된다.At the same time, the absorbent solution present in the accumulator 12 exchanges heat with the mixed refrigerant passing through the first heat exchanger 32 via the four-way valve 42 through the absorbent solution pump 40, thereby increasing the temperature first. It becomes

그리고, 상기 제1 열교환(32)을 통과한 흡수 용액은 제2 열교환기(44)를 지나게 되는데, 이때 배기가스 열교환기(52)를 통과하면서 고온으로 형성된 냉각수와 열교환하여 2차적으로 가열되는 상태가 됨으로써 더 높은 온도를 형성한 후 제1 흡수 용액(P1)에서 고온 고압의 냉매와 만나게 된다. 참고로, 상기 흡수 용액의 온도를 고온으로 형성시키는 이유는 냉매의 특성상 화학반응이 활발히 잘 일어나도록 하기 위함이다.In addition, the absorbent solution passing through the first heat exchanger 32 passes through the second heat exchanger 44. At this time, the absorbent solution passes through the exhaust gas heat exchanger 52 and heats with the coolant formed at a high temperature to be secondarily heated. By forming a higher temperature and then meet the high temperature and high pressure refrigerant in the first absorption solution (P1). For reference, the reason for forming the temperature of the absorbent solution at a high temperature is to allow the chemical reaction to occur actively due to the characteristics of the refrigerant.

따라서, 상기 제1 흡수 용액(P1)에서 냉매와 흡수 용액이 만나 화학 반응을 하게 되고, 그에 따라 높은 온도의 반응열(약 450℃ ~ 550℃)을 지닌 혼합냉매가 업소버(20)를 통과하게 된다. 그로 인해 업소버(20)를 지나가는 난방수와 열교환하게 되어 90℃ 이상의 난방수를 얻을 수 있게 된다.Therefore, in the first absorption solution P1, the refrigerant and the absorption solution meet and chemically react, and thus, a mixed refrigerant having a high temperature reaction heat (about 450 ° C. to 550 ° C.) passes through the absorber 20. . Therefore, the heat exchanger with the heating water passing through the absorber 20 is able to obtain the heating water of 90 ℃ or more.

그리고, 위와 같이 업소버(20)를 통과하는 혼합냉매는 난방수와의 열교환으로 인해 온도가 낮아진 상태이지만 반응열이 매우 높아 높은 온도를 형성하는 상태로 제1 팽창밸브(30a)를 통과하게 된다.In addition, the mixed refrigerant passing through the absorber 20 as described above passes through the first expansion valve 30a in a state where the temperature is lowered due to heat exchange with the heating water, but the reaction heat is very high to form a high temperature.

상기 제1 팽창밸브(30a)를 통과한 혼합냉매는 제1 열교환기(32)를 지나가게 되는데, 이때 제1 열교환기(32)를 통과는 흡수 용액과 열교환하여 흡수 용액의 온도를 높여주고 혼합냉매는 저온 저압을 형성하게 된다.The mixed refrigerant passing through the first expansion valve 30a passes through the first heat exchanger 32. At this time, the first refrigerant passes through the first heat exchanger 32 to exchange heat with the absorbent solution to increase the temperature of the absorbent solution and to mix the refrigerant. The refrigerant will form a low temperature low pressure.

그리고, 상기 제1 열교환기(32)를 통과한 저온 저압 혼합냉매는 제2 팽창밸브(30b)를 통과하면서 압력이 더 낮아진 상태로 디소버(36)를 지나가게 된다. 이때 디소버(36)를 지나가는 혼합냉매는 디소버(36)를 순환하는 냉수와 열교환하여 증발을 일으키게 되고, 이러한 증발에 의해 혼합냉매는 냉매 기체와 흡수 용액으로 분리되어 어큐뮬레이터(12)로 회수되는 순환을 반복하게 된다.In addition, the low temperature low pressure mixed refrigerant passing through the first heat exchanger 32 passes through the absorber 36 while the pressure is lowered while passing through the second expansion valve 30b. At this time, the mixed refrigerant passing through the desorber 36 causes evaporation by exchanging heat with cold water circulating through the desorber 36. The mixed refrigerant is separated into a refrigerant gas and an absorbing solution and recovered by the accumulator 12. The cycle will repeat.

[냉방 모드][Cooling mode]

어큐물레이터(12)에 존재하는 냉매 기체는 압축기를 통과하면서 고온 고압을 형성하게 되고, 압축기(16)를 통과한 냉매는 사방밸브(38)를 거쳐 제2 흡수 용액 합류지점(P2)을 지나가게 된다. 이와 동시에 어큐물레이터(12)에 존재하는 흡수 용액은 사방밸브(42)와 삼방밸브(46)를 각각 거쳐 제2 흡수 용액 합류지점(P2)에서 고온 고압을 형성하는 냉매와 만나게 된다.The refrigerant gas present in the accumulator 12 forms a high temperature and high pressure while passing through the compressor, and the refrigerant passing through the compressor 16 passes through the second absorbing solution confluence point P2 via the four-way valve 38. I will go. At the same time, the absorbent solution present in the accumulator 12 meets the refrigerant forming the high temperature and high pressure at the second absorbent solution confluence point P2 via the four-way valve 42 and the three-way valve 46, respectively.

위와 같이 제2 흡수 용액 합류지점(P2)에서 냉매와 흡수 용액이 만나게 되면 화학 반응을 일으키게 되는데, 이때 흡수 용액은 저온 저압을 형성하고 있어 높은 반응열을 형성하지 못하게 되고, 이러한 혼합냉매가 디소버(36)를 지나가는 동안 냉수에 의해 냉각되어 더 낮은 저온을 형성하게 된다.As described above, when the refrigerant and the absorbent solution meet at the second absorbent solution confluence point (P2), a chemical reaction occurs. At this time, the absorbent solution forms a low temperature and low pressure, and thus does not form a high reaction heat. As it passes 36) it is cooled by cold water to form lower temperatures.

그리고, 상기 디소버(36)를 통과한 혼합냉매는 제2 팽창밸브(30b)와 제1 열교환기(32) 및 제1 팽창밸브(30a)를 순차적으로 통과하면서 저온 저압을 형성하게 된다. 참고로, 냉방모드에서는 사방밸브(42)의 유로 전환에 따라 흡수 용액이 삼방밸브(46)를 거쳐 제2 흡수 용액 합류지점(P2)으로 흐르게 됨으로써 제1 열교환기(32)에서 흡수 용액과 열교환이 없는 상태가 된다.Then, the mixed refrigerant passing through the absorber 36 forms a low temperature low pressure while sequentially passing through the second expansion valve 30b, the first heat exchanger 32, and the first expansion valve 30a. For reference, in the cooling mode, the absorbent solution flows through the three-way valve 46 to the second absorbing solution confluence point P2 as the flow path of the four-way valve 42 changes, thereby exchanging heat with the absorbent solution in the first heat exchanger 32. There is no state.

상기 제1 팽창밸브(30a)를 통과하는 혼합냉매는 업소버(20)를 지나가는 난방수와 열교환하게 되어 난방수가 냉각됨으로써 냉방에 사용되는 냉각수를 얻게 된다.The mixed refrigerant passing through the first expansion valve 30a exchanges heat with the heating water passing through the absorber 20, thereby cooling the heating water to obtain cooling water used for cooling.

그리고, 위와 같이 업소버(20)를 통과하는 혼합냉매는 사방밸브(38)를 거쳐 어큐뮬레이터(12)로 회수되는 순환을 반복하게 된다.As described above, the mixed refrigerant passing through the absorber 20 is repeated through the four-way valve 38 to the accumulator 12.

따라서, 본 발명에 따른 압축식 및 흡수식을 이용한 히트펌프 시스템(10)을 사용하게 되면, 냉매와 흡수 용액의 화학반응으로 발생하는 높은 반응열을 이용하게 됨으로써, 보일러 혹은 가열기와 같은 보조 열원이나 압축기의 추가 적용 없이도 높은 온도의 난방수를 얻을 수 있게 된다. 특히 본 발명에 따른 압축식 및 흡수식을 이용한 히트펌프 시스템은 난방수와 열교환하는 혼합냉매가 열교환 과정 중 상변화 없어 비가역 손실이 최소됨으로써 시스템 효율도 향상된다.
Therefore, when the heat pump system 10 using the compression type and the absorption type according to the present invention is used, the high heat of reaction generated by the chemical reaction between the refrigerant and the absorbing solution is used, and thus, the auxiliary heat source or the compressor such as a boiler or a heater is used. High temperature heating water can be obtained without further application. In particular, the heat pump system using the compression type and the absorption type according to the present invention improves system efficiency by minimizing irreversible losses without phase change during the heat exchange process.

본 발명은 편의상 첨부된 예시도면에 의거 본 발명의 실시 예를 설명하였지만, 이에 국한되지 않고 본 발명의 기술적 사상의 범주내에서 여러가지 변형 및 수정이 가능하고, 이러한 변형 및 수정은 본 발명의 청구범위내에 포함됨은 자명한 사실이다.
While the invention has been described for the embodiments of the invention based on the accompanying drawings for convenience, various modifications and variations are possible within the scope of the technical idea of the present invention, such variations and modifications are claims of the present invention Inclusion within is self-evident.

10 : 히트 펌프 12 : 어큐뮬레이터
14 : 가스엔진 16 : 압축기
18 : 오일분리기 20 : 업소버
22 : 냉매라인 24 : 흡수 용액 라인
28 : 난방수 라인 30a : 제1 팽창밸브
30b : 제2 팽창밸브 32 : 제1 열교환기
34 : 냉수 라인 36 : 디소버
38, 42 : 사방밸브 40 : 흡수 용액 펌프
44 : 제2 열교환기 46 : 삼방밸브
48 : 라인 50 : 냉각수 라인
52 : 배기가스 열교환기 54 : 방열기
56 : 냉각수 펌프
10: heat pump 12: accumulator
14 gas engine 16 compressor
18: oil separator 20: absorber
22 refrigerant line 24 absorption solution line
28: heating water line 30a: first expansion valve
30b: second expansion valve 32: first heat exchanger
34: cold water line 36: the absorber
38, 42 four-way valve 40: absorption solution pump
44: second heat exchanger 46: three-way valve
48: line 50: coolant line
52 exhaust gas heat exchanger 54 radiator
56: coolant pump

Claims (2)

난방 모드시, 어큐물레이터(12)에 존재하는 냉매가 가스엔진(14)에 의해 구동하는 압축기(16)를 지나 제1 흡수 용액 합류지점(P1)에서 흡수 용액과 만나 혼합냉매를 형성하는 상태로 난방수가 흐르는 업소버(20)를 지나가고, 상기 업소버(20)를 통과한 혼합냉매가 제1 팽창밸브(30a)를 거쳐 제1 열교환기(32)를 지나 냉수가 흐르는 디소버(36)를 통과 후 사방밸브(38)를 거쳐 어큐뮬레이터(12)로 회수되는 냉매 라인(22)과;
상기 어큐물레이터(12)에 존재하는 흡수 용액이 어큐뮬레이터(12)와 연결되는 흡수 용액 펌프(40)와 사방밸브(42)를 거쳐 제1 열교환기(32)를 지나가고, 상기 제1 열교환기(32)를 통과한 흡수 용액은 사방밸브(42)를 거쳐 상기 제1 흡수 용액 합류지점(P1)에서 압축기(16)로부터 이송되는 냉매와 합류하도록 연결되는 흡입 용액 라인(24)과;
냉방 모드시, 상기 사방밸브(42)를 지나가는 흡수 용액이 냉매 라인(22)의
제2 흡수 용액 합류지점(P2)에서 냉매와 만나 혼합냉매를 형성하는 상태로 디소버(36)를 지나가도록 연결되는 라인(48);을 포함하여 구성되는 것을 특징으로 하는 압축식 및 흡수식을 이용한 히트펌프 시스템.
In the heating mode, the refrigerant present in the accumulator 12 passes through the compressor 16 driven by the gas engine 14 to meet the absorption solution at the first absorption solution confluence point P1 to form a mixed refrigerant. The refrigerant flows through the absorber 20 through which the heating water flows, and the mixed refrigerant passing through the absorber 20 passes through the first heat exchanger 32 through the first expansion valve 30a and passes through the absorber 36 through which cold water flows. A refrigerant line 22 which is then returned to the accumulator 12 via the four-way valve 38;
The absorbent solution present in the accumulator 12 passes through the first heat exchanger 32 via the absorbent solution pump 40 and the four-way valve 42 connected to the accumulator 12, and the first heat exchanger ( The absorbent solution passing through 32 is a suction solution line 24 connected to the refrigerant absorbed from the compressor 16 at the first absorbent solution confluence point P1 via a four-way valve 42;
In the cooling mode, the absorbing solution passing through the four-way valve 42 of the refrigerant line 22
Compression and absorption using a; characterized in that comprises a; (48) connected to pass through the desorber 36 to meet the refrigerant at the second absorption solution confluence point (P2) to form a mixed refrigerant Heat pump system.
제 1항에 있어서,
상기 흡수 용액이 지나가는 제1 열교환기(32)와 삼방밸브(46) 사이에 제2 열교환(44)가 설치되고, 상기 가스엔진(14)의 배기가스 열교환기(52)를 지나 제2 열교환기(44)를 통과하면서 제2 열교환기(44)에서 흡수 용액과 열교환을 수행 후 가스엔진(14)으로 유입되는 냉각수 라인(50)을 더 포함하여 구성되는 것을 특징으로 하는 압축식 및 흡수식을 이용한 히트펌프 시스템.
The method of claim 1,
The second heat exchanger 44 is installed between the first heat exchanger 32 and the three-way valve 46 through which the absorbing solution passes, and passes through the exhaust gas heat exchanger 52 of the gas engine 14 to the second heat exchanger. Compressed and absorbed, characterized in that it further comprises a cooling water line 50 flowing into the gas engine 14 after performing heat exchange with the absorbing solution in the second heat exchanger 44 while passing through (44) Heat pump system.
KR1020100131382A 2010-12-21 2010-12-21 Heat pump system using compression type and absorption type KR101141360B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100131382A KR101141360B1 (en) 2010-12-21 2010-12-21 Heat pump system using compression type and absorption type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100131382A KR101141360B1 (en) 2010-12-21 2010-12-21 Heat pump system using compression type and absorption type

Publications (1)

Publication Number Publication Date
KR101141360B1 true KR101141360B1 (en) 2012-05-14

Family

ID=46271333

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100131382A KR101141360B1 (en) 2010-12-21 2010-12-21 Heat pump system using compression type and absorption type

Country Status (1)

Country Link
KR (1) KR101141360B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106123393A (en) * 2015-06-08 2016-11-16 李华玉 4th class thermal drivers compression absorption heat pump
CN106152599A (en) * 2015-06-08 2016-11-23 李华玉 4th class thermal drivers compression absorption heat pump
KR102188984B1 (en) 2020-06-18 2020-12-10 오석재 heat pump system
CN115949486A (en) * 2023-02-03 2023-04-11 广东海洋大学 Internal combustion engine waste heat recovery system and transport means

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06123517A (en) * 1992-10-12 1994-05-06 Sanden Corp Engine heat pump system
JPH11108492A (en) * 1997-10-06 1999-04-23 Toyota Motor Corp Air conditioner
JP2007530897A (en) * 2003-07-14 2007-11-01 イーシーオー テクノロジー ソリューションズ,エルエルシー Heat pump system
JP2010243079A (en) * 2009-04-07 2010-10-28 Daikin Ind Ltd Refrigerating device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06123517A (en) * 1992-10-12 1994-05-06 Sanden Corp Engine heat pump system
JPH11108492A (en) * 1997-10-06 1999-04-23 Toyota Motor Corp Air conditioner
JP2007530897A (en) * 2003-07-14 2007-11-01 イーシーオー テクノロジー ソリューションズ,エルエルシー Heat pump system
JP2010243079A (en) * 2009-04-07 2010-10-28 Daikin Ind Ltd Refrigerating device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106123393A (en) * 2015-06-08 2016-11-16 李华玉 4th class thermal drivers compression absorption heat pump
CN106152599A (en) * 2015-06-08 2016-11-23 李华玉 4th class thermal drivers compression absorption heat pump
CN106152599B (en) * 2015-06-08 2019-11-12 李华玉 4th class thermal drivers compressing-absorbing type heat pump
CN106123393B (en) * 2015-06-08 2019-11-12 李华玉 4th class thermal drivers compressing-absorbing type heat pump
KR102188984B1 (en) 2020-06-18 2020-12-10 오석재 heat pump system
CN115949486A (en) * 2023-02-03 2023-04-11 广东海洋大学 Internal combustion engine waste heat recovery system and transport means
CN115949486B (en) * 2023-02-03 2024-03-08 广东海洋大学 Internal combustion engine waste heat recovery system and transport means

Similar Documents

Publication Publication Date Title
CN108679880B (en) Double-working medium combined cycle compression heat pump
Xu et al. Comparison of absorption refrigeration cycles for efficient air-cooled solar cooling
CN102449271B (en) Steam power cycle device
CN103727703B (en) A kind of recycling cold, heat and power triple supply system
CN102721230A (en) Thermodynamic cycle system and method for ammonia water mixed working medium power cooling combined supply
CN110542241B (en) Single-double effect composite steam-absorption two-section type first lithium bromide absorption heat pump unit
CN106123395B (en) Novel heating station system having both large-temperature-difference heat exchange and concentrated heat refrigeration functions
KR101141360B1 (en) Heat pump system using compression type and absorption type
CN105466063A (en) Heat pump system
CN101825374B (en) Cascade high-temperature heat pump with liquid intermediate-temperature heat source and double low-temperature heat sources
CN109519243A (en) Supercritical CO2With ammonium hydroxide combined cycle system and electricity generation system
KR101138970B1 (en) Defrosting system using air cooling refrigerant evaporator and condenser
Liu et al. New configurations of absorption heat transformer and refrigeration combined system for low-temperature cooling driven by low-grade heat
CN106403283B (en) Hot water type heat pump system
CN205783983U (en) The heat high efficiente callback device of air source handpiece Water Chilling Units
JPH11304274A (en) Waste heat utilized absorption type water cooling/ heating machine refrigerating machine
KR100814615B1 (en) Cogeneration system using compression type cycle and absorption type cycle
JP2017180323A (en) Power generation facility utilizing cold heat
CN111336714B (en) Absorption type cold and warm water unit
CN108489137B (en) Diversified utilization system and method for petrochemical waste heat in different seasons
CN210486625U (en) Two-stage compression type thermal mass decoupling heat exchanger
CN110500688B (en) Dilution type refrigeration heat pump system for air conditioning by utilizing dilution heat
KR20180122832A (en) Hybrid double effect absorption chiller with auxiliary heat exchangers
CN106440468B (en) Combined heat and power system
CN112344586A (en) Single-working medium combined cycle heat pump device

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160324

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170314

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180314

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190314

Year of fee payment: 8