JP2010249356A - Refrigerating device - Google Patents

Refrigerating device Download PDF

Info

Publication number
JP2010249356A
JP2010249356A JP2009097119A JP2009097119A JP2010249356A JP 2010249356 A JP2010249356 A JP 2010249356A JP 2009097119 A JP2009097119 A JP 2009097119A JP 2009097119 A JP2009097119 A JP 2009097119A JP 2010249356 A JP2010249356 A JP 2010249356A
Authority
JP
Japan
Prior art keywords
refrigerant
heat
absorption
solution
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009097119A
Other languages
Japanese (ja)
Other versions
JP5402186B2 (en
Inventor
Mitsushi Kawai
満嗣 河合
Keisuke Tanimoto
啓介 谷本
Tadashi Nishimura
忠史 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2009097119A priority Critical patent/JP5402186B2/en
Publication of JP2010249356A publication Critical patent/JP2010249356A/en
Application granted granted Critical
Publication of JP5402186B2 publication Critical patent/JP5402186B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerating device that eliminates the need for a heat-radiating heat exchanger of a vapor compression refrigerator as a refrigerating device wherein a vapor compression refrigerator and an absorption refrigerator are combined and the compressed refrigerant of the vapor compression refrigerator is supercooled by a refrigerant evaporator of the absorption refrigerator. <P>SOLUTION: A heat exchanger 10 for collecting refrigerant heat is provided outside a generator 11 of the absorption refrigerator Y, the heat exchanger 10 collecting the heat of the compressed refrigerant in advance during the cooling operation of the vapor pressure refrigerator X, by means of a dilute absorbed solution supplied from an absorber 13 of the absorption refrigerator Y to the generator 11, and causing the dilute absorbed solution to flow into the generator 11 of the absorption refrigerator Y. At the generator 11 of the absorption refrigerator Y, vapor-liquid separation of the solution superheated by the heat of the compressed refrigerant of the vapor compression refrigerator X collected by the heat exchanger 10 is effected, and the solution is heated by an external heat source 34 to generate refrigerant vapor. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この出願の発明は、蒸気圧縮式冷凍機と該蒸気圧縮式冷凍機の排熱と他の外部熱源で駆動される吸収式冷凍機とを備え、それらを所望に組み合わせて作動可能とした冷凍装置に関するものである。   The invention of this application includes a vapor compression refrigerator, an absorption refrigerator driven by an exhaust heat of the vapor compression refrigerator and another external heat source, and a refrigeration apparatus operable by combining them as desired. It is about.

一般に蒸気圧縮式冷凍機は、圧縮機、凝縮器、膨張弁、蒸発器をヒートポンプ作動可能に冷媒配管で接続して冷凍回路を構成しており、同冷凍回路中を流れる冷媒の方向を逆にすることにより、冷房や暖房を行えるようにしている(例えば特許文献1を参照)。   In general, a vapor compression refrigerator has a refrigeration circuit in which a compressor, a condenser, an expansion valve, and an evaporator are connected by refrigerant piping so that a heat pump can be operated, and the direction of the refrigerant flowing in the refrigeration circuit is reversed. By doing so, cooling and heating can be performed (for example, refer to Patent Document 1).

このような蒸気圧縮式冷凍機における冷凍性能を改善する一つの方法として、例えば熱駆動型冷凍機である吸収式冷凍機を組み合わせることが従来から知られており、ガスエンジンその他の排熱で吸収式冷凍機を駆動し、そこで得られる冷熱を蒸気圧縮式の冷凍機に取り込み、蒸気圧縮式冷凍機の冷凍性能を増大させることについて、従来から種々の方法が提案されている(例えば特許文献2を参照)。   As one method for improving the refrigeration performance in such a vapor compression refrigeration machine, for example, combining an absorption chiller, which is a heat-driven chiller, has been conventionally known and absorbed by exhaust heat from a gas engine or the like. Conventionally, various methods have been proposed for driving a refrigerator and taking in the cold heat obtained there into a vapor compression refrigerator to increase the refrigeration performance of the vapor compression refrigerator (for example, Patent Document 2). See).

一方、これとは逆に上記蒸気圧縮式冷凍機側の排熱を利用して、吸収式冷凍機を駆動することについては、蒸気圧縮式冷凍機自体の排熱量が少なく、また排熱温度も低いため、そのままでは一般に吸収式冷凍機を駆動させることが困難であり、仮に駆動することが出来たとしても、その得られる冷凍性能向上効果が小さいこと、またコスト的にも課題があるなどの理由から、これまでは余り検討される事がなかった。   On the other hand, when the absorption chiller is driven by using the exhaust heat on the vapor compression refrigerator side, the exhaust heat amount of the vapor compression refrigerator itself is small and the exhaust heat temperature is also low. Since it is low, it is generally difficult to drive an absorption refrigerator as it is, and even if it can be driven, the effect of improving the obtained refrigeration performance is small, and there are problems in terms of cost, etc. For reasons that have not been considered so far.

しかし、最近のエネルギーコストの上昇に対する対策や、CO2冷媒等の自然冷媒を利用する空気調和機を開発するに際して蒸気圧縮式冷凍機の性能改善が必要である等の事情から、上記蒸気圧縮式冷凍機自身の排熱を単なる給湯や暖房のためではなく、冷熱自体に変換して更に有効に利用する利用方法が求められつつある。 However, because of the measures against the recent increase in energy costs and the need to improve the performance of the vapor compression refrigerator when developing an air conditioner using a natural refrigerant such as a CO 2 refrigerant, the vapor compression type There is a demand for a method of using the exhaust heat of the refrigerator itself not only for hot water supply or heating, but more effectively by converting it to cold heat itself.

このような事情に基いて提案されたものとして、例えば発生器、凝縮器、蒸発器、吸収器を備える吸収式冷凍サイクルと、圧縮機、熱源側熱交換器、減圧装置、利用側熱交換器を備える蒸気圧縮式冷凍サイクルとを備え、吸収式冷凍サイクルの各機器を循環する冷媒に蒸気圧縮式冷凍サイクルの熱源側熱交換器の排熱を熱回収させるとともに、吸収式冷凍サイクルの蒸発器によって蒸気圧縮式冷凍サイクルの熱源側熱交換器の出口側冷媒を冷却させることにより、系全体としての放出熱量を削減するとともに、消費電力の削減、並びに成績係数の向上を図るようにした冷凍装置がある(例えば特許文献3を参照)。   As proposed based on such circumstances, for example, an absorption refrigeration cycle including a generator, a condenser, an evaporator, an absorber, a compressor, a heat source side heat exchanger, a pressure reducing device, a use side heat exchanger A refrigerant that circulates through each device of the absorption refrigeration cycle, and recovers the exhaust heat of the heat source side heat exchanger of the vapor compression refrigeration cycle, and an evaporator of the absorption refrigeration cycle Cooling the outlet side refrigerant of the heat source side heat exchanger of the vapor compression refrigeration cycle, thereby reducing the amount of heat released as a whole system, reducing power consumption, and improving the coefficient of performance. (For example, refer to Patent Document 3).

このような構成によれば、蒸気圧縮式冷凍機自身の排熱を単なる給湯や暖房ではなく、必要な冷熱自体に変換して更に有効に利用することが可能となる。   According to such a configuration, the exhaust heat of the vapor compression refrigeration machine itself can be used more effectively by converting it to the necessary cold heat itself rather than mere hot water supply or heating.

特開2002−228229号公報JP 2002-228229 A 特開2004−28374号公報JP 2004-28374 A 特開2006−17350号公報JP 2006-17350 A

ところで、以上のような蒸気圧縮式冷凍機と吸収式冷凍機を組み合わせた冷凍装置の冷凍能力を向上させるためには、蒸気圧縮式冷凍機および吸収式冷凍機相互の排熱を如何に有効に活用するかが課題となる。   By the way, in order to improve the refrigeration capacity of a refrigeration system that combines a vapor compression refrigeration machine and an absorption refrigeration machine as described above, how to effectively eliminate the exhaust heat between the vapor compression refrigeration machine and the absorption chiller. The issue is whether to use it.

また、同時に相互の装置の構成を簡素化して、低コスト化を図ることも重要であり、蒸気圧縮式冷凍機側圧縮冷媒の熱を放熱する放熱用熱交換器を不要とすることが望まれる。   At the same time, it is also important to simplify the configuration of the devices and reduce costs, and it is desirable to eliminate the need for a heat-dissipating heat exchanger that dissipates the heat of the vapor compression refrigerator-side compressed refrigerant. .

また、小型の発電機やGHP等の温水排熱で駆動される排熱利用型の吸収式冷凍機においては、コストの面から単効用冷凍サイクルで使用されるケースが多いが、排温水により冷媒蒸気を発生させる発生器を如何に低コスト化するかが課題となる。   In addition, waste heat utilizing absorption refrigerators driven by hot water exhaust heat such as small generators and GHP are often used in single-effect refrigeration cycles from the viewpoint of cost. The problem is how to reduce the cost of the steam generator.

特に排温水の利用は、より安価な機器でないと回収熱量との関係で成立が困難であり、発生器の大幅な低コスト化が強く求められている。   In particular, the use of waste water is difficult to establish unless it is a cheaper device, and there is a strong demand for greatly reducing the cost of the generator.

しかし、上記特許文献3の冷凍装置の場合、蒸気圧縮式冷凍機からの圧縮冷媒を吸収式冷凍サイクル側発生器中の冷媒蒸気発生用第1の熱源側熱交換器に加え、外部空気を取り入れる冷却ファンを備えた圧縮冷媒放熱用の第3の熱源側熱交換器を介して蒸発器を構成している第2の熱源側熱交換器に供給して過冷却するようにしており、発生器の簡素化が不可能で、かつ圧縮冷媒放熱用の第3の熱源側熱交換器があることから、システム全体が複雑で高コストなものになる欠点があり、上述のような要求に応じ切れていない。   However, in the case of the refrigeration apparatus of Patent Document 3, the compressed refrigerant from the vapor compression refrigerator is added to the first heat source side heat exchanger for generating refrigerant vapor in the absorption refrigeration cycle side generator, and external air is taken in. The generator is supplied to the second heat source side heat exchanger constituting the evaporator via the third heat source side heat exchanger for radiating the compressed refrigerant with the cooling fan, and is supercooled. Since there is a third heat source side heat exchanger for radiating compressed refrigerant, there is a disadvantage that the entire system is complicated and expensive, and it is not possible to meet the above requirements. Not.

本願発明は、このような課題を解決するためになされたもので、冷房運転時には、圧縮式冷凍機の圧縮後の冷媒の熱を予じめ吸収式冷凍機の吸収希溶液で熱回収し、その上で昇温された吸収希溶液のみを吸収式冷凍機の発生器に流入させて冷媒蒸気を分離することにより吸収式冷凍機の発生器の構成の簡素化を図る一方、それによって同時に吸収式冷凍機の蒸発器に供給される蒸気圧縮式冷凍機の冷媒を冷却することによって過冷却性能をアップし、蒸気圧縮式冷凍機の放熱用熱交換器を不要にした冷凍装置を提供することを目的とするものである。   The present invention was made to solve such a problem, and during cooling operation, heat of the refrigerant after compression of the compression refrigerator is preliminarily recovered and heat is recovered with an absorption dilute solution of the absorption refrigerator, Then, only the absorption dilute solution whose temperature has been raised is allowed to flow into the absorption chiller generator to separate the refrigerant vapor, thereby simplifying the configuration of the absorption chiller generator and simultaneously absorbing it. Providing a refrigeration system that improves the supercooling performance by cooling the refrigerant of the vapor compression refrigerator supplied to the evaporator of the refrigerator, and eliminates the heat exchanger for heat dissipation of the vapor compression refrigerator It is intended.

本願発明は、上記の目的を達成するために、次のような有効な課題解決手段を備えて構成されている。   In order to achieve the above object, the present invention comprises the following effective problem solving means.

(1) 請求項1の発明の課題解決手段
この発明の課題解決手段は、蒸気圧縮式冷凍機と外部熱源を備えた吸収式冷凍機とを組み合わせ、冷房運転時、吸収式冷凍機の冷媒蒸発器で蒸気圧縮式冷凍機の圧縮冷媒を過冷却するようにしてなる冷凍装置において、上記吸収式冷凍機の発生器の外部に、上記蒸気圧縮式冷凍機の冷房運転時における圧縮冷媒の熱を、上記吸収式冷凍機の吸収器から発生器に供給される吸収希溶液によって予じめ回収した上で、同吸収希溶液を上記吸収式冷凍機の発生器内に流入させる冷媒熱回収用熱交換器を設け、上記吸収式冷凍機の発生器では、上記冷媒熱回収用熱交換器で回収した上記蒸気圧縮式冷凍機の圧縮冷媒の熱によって過熱された溶液の気液分離を行わせる一方、上記外部熱源により溶液を加熱して冷媒蒸気を発生させるようにしたことを特徴としている。
(1) The problem-solving means of the invention of claim 1 The problem-solving means of the present invention is a combination of a vapor compression refrigerator and an absorption refrigerator having an external heat source, and refrigerant cooling of the absorption refrigerator during cooling operation. In the refrigeration apparatus configured to supercool the compressed refrigerant of the vapor compression refrigeration machine, the heat of the compressed refrigerant during the cooling operation of the vapor compression refrigeration machine is provided outside the generator of the absorption refrigeration machine. The heat for recovering refrigerant heat that is collected in advance by the absorption dilute solution supplied from the absorber of the absorption chiller to the generator and then flows into the generator of the absorption chiller In the generator of the absorption refrigeration machine, a gas-liquid separation of a solution superheated by the heat of the compressed refrigerant of the vapor compression refrigeration machine recovered by the refrigerant heat recovery heat exchanger is performed in the generator of the absorption refrigeration machine. The solution is heated and cooled by the external heat source. It is characterized in that so as to generate steam.

すでに述べたように、蒸気圧縮式冷凍機と吸収式冷凍機を組み合わせた冷凍装置の冷凍能力を向上させるためには、蒸気圧縮式冷凍機および吸収式冷凍機相互の排熱を如何に有効に活用するかが課題となる。   As already mentioned, in order to improve the refrigeration capacity of a refrigeration system that combines a vapor compression refrigerator and an absorption chiller, how effectively the heat exhausted between the vapor compression chiller and the absorption chiller is effectively utilized. The issue is whether to use it.

また、同時に相互の装置の構成を簡素化して、低コスト化を図ることも重要であり、蒸気圧縮式冷凍機側圧縮冷媒の熱を放熱する放熱用熱交換器を不要とすることが望まれる。   At the same time, it is also important to simplify the configuration of the devices and reduce costs, and it is desirable to eliminate the need for a heat-dissipating heat exchanger that dissipates the heat of the vapor compression refrigerator-side compressed refrigerant. .

また、小型の発電機やGHP等の温水排熱で駆動される排熱利用型の吸収式冷凍機においては、コストの面から単効用冷凍サイクルで使用されるケースが多いが、排温水により冷媒蒸気を発生させる発生器を如何に低コスト化するかが問題となる。   In addition, waste heat utilizing absorption refrigerators driven by hot water exhaust heat such as small generators and GHP are often used in single-effect refrigeration cycles from the viewpoint of cost. The problem is how to reduce the cost of the steam generator.

特に排温水の利用は、より安価な機器でないと回収熱量との関係で成立が困難であり、発生器の大幅な低コスト化が強く求められている。   In particular, the use of waste water is difficult to establish unless it is a cheaper device, and there is a strong demand for greatly reducing the cost of the generator.

また、そのような外部排熱源の熱量は変動し、常に一定量以上の排熱量が安定して供給されるとは限らない。したがって、必要かつ十分な外部熱源量が得られないような場合にも、必要な冷媒蒸気発生作用を確保できるようにすることが求められる。   Further, the amount of heat of such an external exhaust heat source fluctuates, and a certain amount or more of the exhaust heat amount is not always supplied stably. Therefore, it is required to ensure a necessary refrigerant vapor generation action even when a necessary and sufficient amount of external heat source cannot be obtained.

これに対して、以上のような構成の場合、吸収式冷凍機の発生器の外部に設けた上記冷媒熱回収用熱交換器部分で、吸収器から発生器に供給される低温の吸収希溶液が、蒸気圧縮機側高温の圧縮冷媒の熱を回収し、十分に高温状態に加熱された後に発生器内に供給され、発生器内では吸収希溶液のフラッシュ作用により冷媒蒸気を発生させ、冷媒蒸気と吸収濃溶液に気液分離される。   On the other hand, in the case of the above configuration, a low-temperature absorbing dilute solution supplied from the absorber to the generator in the refrigerant heat recovery heat exchanger portion provided outside the generator of the absorption chiller However, the heat of the high-temperature compressed refrigerant on the vapor compressor side is recovered and heated to a sufficiently high temperature state, and then supplied into the generator. In the generator, refrigerant vapor is generated by the flash action of the absorbed diluted solution. Gas-liquid separation into vapor and absorption concentrated solution.

他方、それにより圧縮機から吐出された高温の圧縮冷媒が効率良く冷却された後に、さらに吸収式冷凍機の蒸発器に供給されて過冷却される。   On the other hand, after the high-temperature compressed refrigerant discharged from the compressor is efficiently cooled, it is further supplied to the evaporator of the absorption refrigeration machine to be supercooled.

したがって、同構成によると、蒸気圧縮式冷凍機側圧縮冷媒の熱を吸収式冷凍機の駆動に有効に活用することができるようになり、その分吸収式冷凍機の冷凍能力を増大させることができる。   Therefore, according to this configuration, the heat of the vapor compression refrigeration machine side compressed refrigerant can be effectively utilized for driving the absorption refrigeration machine, and the refrigeration capacity of the absorption refrigeration machine can be increased accordingly. it can.

また、外部排熱源の排熱量が一定値以下になったような場合にも、安定した吸収冷凍作用を確保することができる。   In addition, even when the amount of exhaust heat from the external heat source becomes a certain value or less, a stable absorption refrigeration operation can be ensured.

また、一方蒸気圧縮式冷凍機側の圧縮冷媒は、上記のようにして吸収式冷凍機側の希溶液側に熱が奪われることにより冷却されて温度が低下した後に、さらに吸収式冷凍機側の蒸発器に供給されて過冷却される。したがって、上記冷媒熱回収用熱交換器がない場合に比べて、より有効に圧縮冷媒が過冷却され、利用側熱交換器に供給される冷媒液の入口比エンタルピーを有効に低下させることができる。その結果、利用側熱交換器の冷房性能が向上する。   On the other hand, the compressed refrigerant on the one side of the vapor compression refrigeration machine is cooled as a result of the heat being taken away by the dilute solution side on the absorption refrigeration machine side as described above, and then the absorption refrigeration machine side is further reduced. Is supplied to the evaporator and supercooled. Therefore, compared with the case where there is no heat exchanger for recovering refrigerant heat, the compressed refrigerant is more effectively subcooled, and the inlet specific enthalpy of the refrigerant liquid supplied to the use side heat exchanger can be effectively reduced. . As a result, the cooling performance of the use side heat exchanger is improved.

以上の結果、同課題解決手段によると、従来のような蒸気圧縮式冷凍機側の圧縮冷媒の放熱用熱交換器が不要になるとともに、吸収式冷凍機側発生器も外部熱源により溶液を加熱して冷媒蒸気を発生させる熱交換器に単に気液分離機能を加えたシンプルかつ低コストな構成のもので足りるようになる。   As a result of the above, according to the means for solving the same problem, a heat exchanger for radiating compressed refrigerant on the vapor compression refrigerator side is not required, and the absorption refrigerator generator also heats the solution with an external heat source. Thus, a simple and low-cost configuration in which a gas-liquid separation function is simply added to a heat exchanger that generates refrigerant vapor is sufficient.

さらに、蒸気圧縮式冷凍機の圧縮冷媒の過冷却を吸収式冷凍機の蒸発器において行う場合、吸収式冷凍機側においては、蒸発器に別途冷水を循環させるような構造の場合に比較して、その構成が簡単になるとともに、蒸発器における吸収式冷凍機の冷媒の蒸発温度を高くすることができることから、例えば必要な冷媒の蒸発能力を一定とした場合には、冷媒に対する蒸発温度の上昇分だけ、上記蒸発器の能力を低く抑えて、より低コスト化あるいはコンパクト化を図ることが可能となる。   Furthermore, when supercooling of the refrigerant compressed in the vapor compression refrigerator is performed in the evaporator of the absorption refrigerator, the absorption refrigerator is compared with a structure in which cold water is separately circulated in the evaporator. In addition, since the structure becomes simple and the evaporation temperature of the refrigerant of the absorption refrigerator in the evaporator can be increased, for example, when the required evaporation capacity of the refrigerant is constant, the evaporation temperature with respect to the refrigerant increases. Therefore, it is possible to reduce the cost of the evaporator or reduce the size by reducing the capacity of the evaporator.

(2) 請求項2の発明の課題解決手段
この発明の課題解決手段は、上記請求項1の発明の課題解決手段の構成において、吸収器に流入させる吸収液を過冷却する吸収液空冷冷却器と、吸収器から発生器に供給される吸収希溶液と発生器からの吸収濃溶液とを熱交換する溶液熱交換器とを設け、吸収器出口側の吸収希溶液を、それら吸収液空冷冷却器、溶液熱交換器、冷媒熱回収用熱交換器の各々に分流させる一方、上記吸収器では、吸収液空冷冷却器を介して過冷却した上で流入させた吸収液の顕熱で冷媒蒸気を吸収させるようにしたことを特徴としている。
(2) The problem solving means of the invention of claim 2 The problem solving means of the invention is an absorption liquid air-cooled cooler that supercools the absorption liquid flowing into the absorber in the configuration of the problem solving means of the invention of claim 1 above. And a solution heat exchanger for exchanging heat between the absorption diluted solution supplied from the absorber to the generator and the absorption concentrated solution from the generator, and the absorption diluted solution at the outlet side of the absorber is cooled by air cooling of the absorption solution. In the above absorber, the refrigerant vapor is sensible by the sensible heat of the absorbed liquid after being supercooled via the absorption liquid air-cooled cooler. It is characterized in that it is made to absorb.

このように、上述した冷媒熱回収用熱交換器および発生器から吸収器に供給される吸収濃溶液の熱を吸収器から発生器に供給される吸収希溶液側に回収する溶液熱交換器に加えて、吸収器に流入させる吸収液を過冷却する吸収液空冷冷却器を設け、該吸収液空冷冷却器により吸収液を過冷却した上で吸収器に供給するようにして、吸収器では流入した吸収液の顕熱で蒸発器からの冷媒蒸気を吸収させる溶液分離冷却方式を採用した吸収式冷凍装置は、溶液自体の顕熱で吸収熱を取り去る方式のため、発生器への希溶液供給量を増加させても、従来の直接冷却方式の空冷又は水冷吸収器と比較して性能の低下がほとんど生じない。   Thus, in the heat exchanger for recovering refrigerant heat and the solution heat exchanger for recovering the heat of the absorbed concentrated solution supplied from the generator to the absorber to the absorption dilute solution side supplied from the absorber to the generator In addition, an absorption liquid air cooling cooler that supercools the absorption liquid flowing into the absorber is provided, and the absorption liquid is supercooled by the absorption liquid air cooling cooler and then supplied to the absorber. The absorption refrigeration system adopting the solution separation cooling system that absorbs the refrigerant vapor from the evaporator with the sensible heat of the absorbed liquid removes the absorbed heat with the sensible heat of the solution itself, so supply the dilute solution to the generator Even if the amount is increased, the performance hardly deteriorates as compared with the conventional direct cooling type air-cooled or water-cooled absorber.

したがって、発生器への希溶液供給量を増大させ、冷媒蒸気発生量を増大させたり、または冷媒熱回収用熱交換器を小型化することができる。   Therefore, it is possible to increase the supply amount of the dilute solution to the generator, increase the generation amount of refrigerant vapor, or reduce the size of the heat exchanger for recovering refrigerant heat.

一方、そのように吸収器では流入した吸収液の顕熱で蒸発器からの冷媒蒸気を吸収するように構成する一方、吸収器出口側の吸収希溶液を溶液熱交換器、冷媒熱回収用熱交換器の各々に分流して流入させるようにすると、それらの各々で有効かつ適切に吸収式冷凍機側希溶液への熱回収(吸収濃溶液および蒸気圧縮式冷凍機側圧縮冷媒の熱の回収)が行われ、トータルとして効率の良い熱回収が実現される。   On the other hand, the absorber is configured to absorb the refrigerant vapor from the evaporator with the sensible heat of the absorbed liquid that has flowed in, while the absorption diluted solution on the outlet side of the absorber is used as a solution heat exchanger, heat for refrigerant heat recovery If each of the exchangers is divided and introduced, heat recovery to the absorption refrigerator side dilute solution is performed effectively and appropriately in each of them (absorption of concentrated concentrated solution and vapor compression refrigerator side compressed refrigerant heat). ), And efficient heat recovery is realized as a whole.

(3) 請求項3の発明の課題解決手段
この発明の課題解決手段は、上記請求項2の発明の課題解決手段の構成において、溶液熱交換器を介して発生器からの吸収濃溶液と熱交換された吸収希溶液を冷媒熱回収用熱交換器に流入させるようにしたことを特徴としている。
(3) The problem-solving means of the invention of claim 3 The problem-solving means of the invention is the structure of the problem-solving means of the invention of claim 2 described above, wherein the absorption concentrated solution and heat from the generator are passed through the solution heat exchanger. The exchanged diluted diluted solution is allowed to flow into the refrigerant heat recovery heat exchanger.

このような構成によると、溶液熱交換器で発生器からの吸収濃溶液と熱交換されて温度が上昇した吸収希溶液が、さらに冷媒熱回収用熱交換器で圧縮冷媒の熱により加熱昇温されて発生器に供給されるようになり、より発生器での冷媒蒸気の発生効果が向上する。   According to such a configuration, the absorption dilute solution whose temperature has been increased through heat exchange with the absorption concentrated solution from the generator in the solution heat exchanger is further heated by the heat of the compressed refrigerant in the refrigerant heat recovery heat exchanger. Thus, the refrigerant is supplied to the generator, and the generation effect of the refrigerant vapor in the generator is further improved.

(4) 請求項4の発明の課題解決手段
この発明の課題解決手段は、上記請求項2の発明の課題解決手段の構成において、溶液熱交換器を介して発生器からの吸収濃溶液と熱交換された吸収希溶液を発生器と冷媒熱回収用熱交換器の各々に流入させるようにしたことを特徴としている。
(4) The problem-solving means of the invention of claim 4 The problem-solving means of the invention is the structure of the problem-solving means of the invention of claim 2 described above, wherein the absorption concentrated solution and heat from the generator are passed through the solution heat exchanger. The exchanged diluted diluted solution is caused to flow into the generator and the refrigerant heat recovery heat exchanger.

このような構成によると、溶液熱交換器で発生器からの吸収濃溶液と熱交換されて温度が上昇した吸収希溶液の一部が発生器に、その他のものが冷媒熱回収用熱交換器で圧縮冷媒により加熱昇温されて発生器に供給されるようになり、より発生器で有効に冷媒蒸気を発生できる。   According to such a configuration, a part of the absorption dilute solution whose temperature has been increased by heat exchange with the absorption concentrated solution from the generator in the solution heat exchanger is the generator, and the other is the heat exchanger for refrigerant heat recovery Thus, the temperature of the compressed refrigerant is increased by heating, and the refrigerant is supplied to the generator, so that the generator can generate refrigerant vapor more effectively.

(5) 請求項5の発明の課題解決手段
この発明の課題解決手段は、上記請求項2の発明の課題解決手段の構成において、冷媒熱回収用熱交換器を圧縮冷媒の上流側から下流側方向にかけて複数段に分割し、吸収器から溶液熱交換器を介して発生器に到る希溶液の内、溶液熱交換器に入る前の吸収希溶液を上記圧縮冷媒下流側の段の冷媒熱回収用熱交換器に、また溶液熱交換器を出た吸収希溶液を上記圧縮冷媒上流側の冷媒熱回収用熱交換器に流入させるようにしたことを特徴としている。
(5) The problem solving means of the invention of claim 5 The problem solving means of the present invention is the structure of the problem solving means of the invention of claim 2, wherein the refrigerant heat recovery heat exchanger is arranged from the upstream side to the downstream side of the compressed refrigerant. Of the dilute solution from the absorber to the generator through the solution heat exchanger, and the absorbed dilute solution before entering the solution heat exchanger is divided into the refrigerant heat in the downstream side of the compressed refrigerant. The absorption dilute solution exiting the solution heat exchanger is allowed to flow into the recovery heat exchanger and into the refrigerant heat recovery heat exchanger on the upstream side of the compressed refrigerant.

このような構成によると、溶液熱交換器を通っていない最も温度が低い吸収希溶液が圧縮冷媒下流側で、また溶液熱交換器を通して相対的に温度が高くなった吸収希溶液が圧縮冷媒上流側で、それぞれ圧縮冷媒の熱を回収することになり、それぞれ有効な温度差を確保して効率良く熱回収することができる。   According to such a configuration, the absorbing dilute solution having the lowest temperature that does not pass through the solution heat exchanger is on the downstream side of the compressed refrigerant, and the absorbing dilute solution having a relatively high temperature through the solution heat exchanger is disposed on the compressed refrigerant upstream. On the side, the heat of the compressed refrigerant is recovered, and an effective temperature difference can be ensured and heat can be recovered efficiently.

(6) 請求項6の発明の課題解決手段
この発明の課題解決手段は、上記請求項2の発明の課題解決手段の構成において、冷媒熱回収用熱交換器を圧縮冷媒の上流側から下流側方向にかけて複数段に分割し、吸収器から溶液熱交換器を介して発生器に到る希溶液の内、溶液熱交換器に入る前の吸収希溶液を上記圧縮冷媒下流側の段の冷媒熱回収用熱交換器に、また溶液熱交換器を出た吸収希溶液を発生器と上記圧縮冷媒上流側の冷媒熱回収用熱交換器に各々流入させるようにしたことを特徴としている。
(6) Problem solving means of the invention of claim 6 The problem solving means of the present invention is the structure of the problem solving means of the invention of claim 2, wherein the refrigerant heat recovery heat exchanger is arranged from the upstream side to the downstream side of the compressed refrigerant. Of the dilute solution from the absorber to the generator through the solution heat exchanger, and the absorbed dilute solution before entering the solution heat exchanger is divided into the refrigerant heat in the downstream side of the compressed refrigerant. The absorption dilute solution exiting from the solution heat exchanger is allowed to flow into the recovery heat exchanger and into the generator and the refrigerant heat recovery heat exchanger on the upstream side of the compressed refrigerant.

このような構成によると、溶液熱交換器を通っていない最も温度が低い吸収希溶液が圧縮冷媒下流側で、また溶液熱交換器を通して相対的に温度が高くなった吸収希溶液が発生器と圧縮冷媒上流側の冷媒熱回収用熱交換器に供給され、それぞれ有効な温度差を確保して効率良く熱回収することができる。   According to such a configuration, the absorption dilute solution having the lowest temperature that does not pass through the solution heat exchanger is the downstream side of the compressed refrigerant, and the absorption dilute solution having a relatively high temperature through the solution heat exchanger is The refrigerant is supplied to the refrigerant heat recovery heat exchanger on the upstream side of the compressed refrigerant, and an effective temperature difference can be ensured for efficient heat recovery.

(7) 請求項7の発明の課題解決手段
この発明の課題解決手段は、上記請求項1,2,3,4,5又は6の発明の課題解決手段の構成において、蒸発器は、冷媒液が蒸発器の伝熱面を一過性で流れるようになっており、同伝熱面を流下した未蒸発の冷媒液は、吸収器側に移動して吸収器を流下した吸収溶液に吸収されるようになっていることを特徴としている。
(7) Problem solving means of the invention of claim 7 The problem solving means of the invention is the structure of the problem solving means of the invention of claim 1, 2, 3, 4, 5 or 6, wherein the evaporator is a refrigerant liquid. Flows temporarily on the heat transfer surface of the evaporator, and the unevaporated refrigerant liquid flowing down the heat transfer surface moves to the absorber side and is absorbed by the absorption solution flowing down the absorber. It is characterized by becoming.

このような構成によると、蒸発器の伝熱面で蒸発し切れずに底部まで流れ落ちた未蒸発の冷媒液は吸収器の底部へ移動し、同吸収器底部で再び吸収溶液に吸収される。そのため、吸収効率が向上する。   According to such a configuration, the non-evaporated refrigerant liquid that has not evaporated on the heat transfer surface of the evaporator and has flowed down to the bottom moves to the bottom of the absorber, and is again absorbed by the absorbing solution at the bottom of the absorber. Therefore, the absorption efficiency is improved.

(8) 請求項8の発明の課題解決手段
この発明の課題解決手段は、上記請求項1,2,3,4,5,6又は7の発明の課題解決手段の構成において、複数台の蒸気圧縮式冷凍機と、それら各蒸気圧縮式冷凍機に対応した冷媒熱回収用熱交換器とを備え、各蒸気圧縮式冷凍機の圧縮冷媒の熱を回収して対応する吸収式冷凍機駆動用の熱源として利用するようにしたことを特徴としている。
(8) Problem solving means of the invention of claim 8 The problem solving means of the present invention is the structure of the problem solving means of the invention of claim 1, 2, 3, 4, 5, 6 or 7, wherein a plurality of steams are provided. It is equipped with a compression refrigeration machine and a heat exchanger for refrigerant heat recovery corresponding to each of these vapor compression refrigeration machines, for recovering the heat of the compressed refrigerant of each vapor compression refrigeration machine and for corresponding absorption chiller drive It is characterized by being used as a heat source.

このような構成によると、上述の各発明の構成による作用効果が得られることはもちろん、蒸気圧縮式冷凍機側圧縮冷媒の排熱量が大きくなるので(設置台数分だけ)、吸収式冷凍機側の駆動能力(冷媒蒸気発生量)も大きくすることができる。   According to such a configuration, the effects of the configurations of the above-described inventions can be obtained, and the exhaust heat amount of the compressed refrigerant on the vapor compression refrigerator side is increased (by the number of installed units), so that the absorption refrigerator side The driving ability (the amount of generated refrigerant vapor) can also be increased.

以上の結果、本願発明によると、蒸気圧縮式冷凍機および吸収式冷凍機相互の排熱を有効に活用し得ることはもちろん、従来のような蒸気圧縮式冷凍機側の圧縮冷媒の冷媒熱放熱用熱交換器が不要になるとともに、吸収式冷凍機側発生器も外部熱源により溶液を加熱して冷媒蒸気を発生させる熱交換器に単に気液分離機能を加えたシンプルかつ低コストな構成のもので足りるようになる。   As a result of the above, according to the present invention, it is possible to effectively utilize the exhaust heat between the vapor compression refrigerator and the absorption refrigerator, as well as the heat dissipation of the refrigerant in the conventional compressed refrigerant on the vapor compression refrigerator. The heat exchanger for the absorption refrigeration machine has a simple and low-cost configuration that simply adds a gas-liquid separation function to the heat exchanger that generates refrigerant vapor by heating the solution with an external heat source. Things will suffice.

さらに、吸収式冷凍機の蒸発器においても、蒸発器に別途冷水を循環させる構成の場合に比較して、その構成が簡単になるとともに、蒸発器における吸収式冷凍機の冷媒の蒸発温度を高くすることができることから、必要な冷媒の蒸発能力を一定とした場合には、冷媒に対する蒸発温度の上昇分だけ、上記蒸発器の能力を低く抑えて、より低コスト化あるいはコンパクト化を図ることが可能となる。   Furthermore, in the evaporator of the absorption chiller, the configuration is simplified and the evaporation temperature of the refrigerant of the absorption chiller in the evaporator is higher than that in the case where the chilled water is separately circulated through the evaporator. Therefore, if the required evaporation capacity of the refrigerant is constant, the evaporator capacity can be kept low by the increase in the evaporation temperature relative to the refrigerant, and the cost can be reduced or the size can be reduced. It becomes possible.

また、外部排熱源の排熱量が一定値以下になったような場合にも、安定した吸収冷凍作用を確保することができる。   In addition, even when the amount of exhaust heat from the external heat source becomes a certain value or less, a stable absorption refrigeration operation can be ensured.

本願発明の実施の形態1に係る冷凍装置の構成を示す冷凍回路図である。It is a freezing circuit diagram which shows the structure of the freezing apparatus which concerns on Embodiment 1 of this invention. 本願発明の実施の形態2に係る冷凍装置の構成を示す冷凍回路図である。It is a freezing circuit diagram which shows the structure of the freezing apparatus which concerns on Embodiment 2 of this invention. 本願発明の実施の形態3に係る冷凍装置の構成を示す冷凍回路図である。It is a freezing circuit diagram which shows the structure of the freezing apparatus which concerns on Embodiment 3 of this invention. 本願発明の実施の形態4に係る冷凍装置の構成を示す冷凍回路図である。It is a freezing circuit diagram which shows the structure of the freezing apparatus which concerns on Embodiment 4 of this invention.

以下、本願発明の幾つかの実施の形態について、詳細に説明する。   Hereinafter, several embodiments of the present invention will be described in detail.

(実施の形態1)
先ず図1は、蒸気圧縮式冷凍機と外部熱源を備えた吸収式冷凍機とを組み合わせ、吸収式冷凍機の蒸発器で蒸気圧縮式冷凍機の圧縮冷媒を過冷却するようにしてなる冷凍装置において、蒸気圧縮式冷凍機の冷房運転時における冷媒の熱を、予じめ吸収式冷凍機の吸収器から発生器に供給される吸収希溶液によって回収した上で、同吸収希溶液を吸収式冷凍機の発生器内に流入させる冷媒熱回収用熱交換器を発生器とは別に設け、吸収式冷凍機の発生器では、外部熱源による熱により溶液を加熱して冷媒蒸気を発生させるのに加えて、同冷媒熱回収用熱交換器で回収した蒸気圧縮式冷凍機の冷媒の熱によって効率良く気液分離を行わせるようにした本願発明の実施の形態1に係る冷凍装置の構成を示している。
(Embodiment 1)
First, FIG. 1 shows a combination of a vapor compression refrigerator and an absorption refrigerator equipped with an external heat source, and the refrigerant of the vapor compression refrigerator is supercooled by the evaporator of the absorption refrigerator. In the cooling operation of the vapor compression refrigeration machine, the heat of the refrigerant is recovered in advance by the absorption dilute solution supplied from the absorber of the absorption refrigeration machine to the generator, and then the absorption dilute solution is absorbed by the absorption type. A heat exchanger for recovering refrigerant heat that flows into the generator of the refrigerator is provided separately from the generator, and in the generator of the absorption chiller, the solution is heated by heat from an external heat source to generate refrigerant vapor. In addition, the configuration of the refrigeration apparatus according to Embodiment 1 of the present invention in which gas-liquid separation is efficiently performed by the heat of the refrigerant of the vapor compression refrigeration machine recovered by the refrigerant heat recovery heat exchanger is shown. ing.

この実施の形態における一例として、蒸気圧縮式冷凍機Xは、冷媒として自然冷媒である二酸化炭素(CO2)が採用されており、同冷媒を圧縮する圧縮機1、膨張弁2,2、利用側熱交換器(室内機)3,3、アキュムレーター4等を、図示のようにヒートポンプ作動可能に冷媒配管5a,5b(圧縮機吐出側5a/吸入側5b)で接続して冷凍回路を構成しており、例えば4路切換弁等(図示省略)を設け、必要に応じて同冷凍回路中を流れる冷媒の方向を逆にすることにより、冷房や暖房を行えるようにしている。すなわち、上記利用側熱交換器3,3は冷房運転時には上記二酸化炭素冷媒に室内の熱を吸熱させて室内の冷房を行う作用を果す一方、暖房運転時には上記二酸化炭素冷媒の熱を放熱して室内の暖房を行う作用を果たすようになっている。 As an example in this embodiment, the vapor compression refrigeration machine X employs carbon dioxide (CO 2 ), which is a natural refrigerant, as a refrigerant. Side heat exchangers (indoor units) 3, 3, accumulator 4 and the like are connected by refrigerant pipes 5a and 5b (compressor discharge side 5a / suction side 5b) so that a heat pump can be operated as shown in the figure to constitute a refrigeration circuit For example, a four-way switching valve or the like (not shown) is provided, and cooling and heating can be performed by reversing the direction of the refrigerant flowing in the refrigeration circuit as necessary. That is, the use-side heat exchangers 3 and 3 function to cool the room by absorbing the indoor heat to the carbon dioxide refrigerant during the cooling operation, while dissipating the heat of the carbon dioxide refrigerant during the heating operation. It serves to heat the room.

但し、この実施の形態では、暖房運転時の場合を問題としないので、図は冷房運転時の場合を前提として示している(したがって、上記4路切換弁の図示も省略している)。   However, in this embodiment, since the case of the heating operation is not a problem, the drawing shows the case of the cooling operation (therefore, the illustration of the four-way switching valve is also omitted).

一方、吸収式冷凍機Yは、例えば臭化リチウム(LiBr)を吸収液、水(H2O)を冷媒とし、吸収液(LiBr)への冷媒の吸収(H2O)および放出作用を利用して必要な冷凍能力を発揮するようにしたものである。そして、この実施の形態の場合、外部熱源による温水式熱交換器34を備え、同温水式熱交換器34内に例えば小型発電機やGHP等の外部排熱源からの温水を循環させることにより、吸収器13で冷媒を吸収して濃度が低下した吸収希溶液中から冷媒蒸気を分離して濃度が高い吸収濃溶液を得る発生器11と、冷却ファン12aを備え、上記発生器11において希溶液から分離した冷媒蒸気を導入し、外部空気により冷却することによって凝縮液化させる空冷凝縮器12と、1つの密閉容器19内に相互に隣接して配置されていて、上記空冷凝縮器12によって液化された冷媒液を導入して低圧下で蒸発(気化)させる蒸発器14および上記蒸発器14で発生した冷媒蒸気を吸収させるための吸収器13と、冷却ファン15aを備え、溶液ポンプ17から吐出される吸収希溶液の一部(濃溶液と希溶液の混合液の大部分)を導入してこれを過冷却する空冷冷却器15と、上記発生器11からの高温の吸収濃溶液と上記吸収器13からの低温の吸収希溶液とを相互に熱交換させて吸収希溶液の温度を上げる溶液熱交換器16と、上記吸収器13で冷媒蒸気を吸収して吸収剤の濃度が低下した吸収希溶液を濃縮するために再び上記発生器11に供給するとともに上記空冷冷却器15を介して過冷却した上で上記吸収器13に供給する溶液ポンプ17とを備え、これらの各々を冷媒配管21および溶液配管23〜27によってヒートポンプ作動可能に接続して構成されている。 On the other hand, the absorption refrigerator Y uses, for example, lithium bromide (LiBr) as an absorption liquid and water (H 2 O) as a refrigerant, and utilizes the absorption (H 2 O) and release action of the refrigerant into the absorption liquid (LiBr). In this way, the necessary refrigeration capacity is exhibited. In the case of this embodiment, a hot water heat exchanger 34 by an external heat source is provided, and hot water from an external exhaust heat source such as a small generator or GHP is circulated in the hot water heat exchanger 34, The generator 11 is provided with a generator 11 that separates the refrigerant vapor from the absorption dilute solution whose concentration has been reduced by absorbing the refrigerant in the absorber 13 to obtain a high concentration concentrated absorption solution, and a cooling fan 12a. The air-cooled condenser 12 that condenses and liquefies by introducing the refrigerant vapor separated from the air and cooled by external air and the air-cooled condenser 12 are disposed adjacent to each other in one sealed container 19. An evaporator 14 for evaporating (vaporizing) the refrigerant liquid under low pressure, an absorber 13 for absorbing the refrigerant vapor generated in the evaporator 14, and a cooling fan 15a. An air-cooled cooler 15 that introduces a part of the absorbing dilute solution discharged from the pump 17 (most of the mixture of the concentrated solution and dilute solution) and supercools this, and the high-temperature absorbing concentration from the generator 11 A solution heat exchanger 16 that raises the temperature of the absorption dilute solution by mutually exchanging heat between the solution and the low-temperature absorption dilute solution from the absorber 13, and the concentration of the absorbent by absorbing the refrigerant vapor in the absorber 13 A solution pump 17 that is supplied again to the generator 11 to concentrate the absorbed dilute solution having decreased, and is supercooled via the air-cooled cooler 15 and then supplied to the absorber 13. Are connected by a refrigerant pipe 21 and solution pipes 23 to 27 so that a heat pump can be operated.

すなわち、この実施の形態の場合、上記のように吸収器13に入る吸収溶液を冷却ファン15aを備えた空冷冷却器15によって十分に過冷却(溶液配管25を介して循環)し、同過冷却された吸収溶液に蒸発器14と並設された吸収器13内で、蒸発器14で蒸発させた冷媒蒸気を吸収させるようになっており、吸収時に発生する吸収熱は当該空冷冷却器15により過冷却された吸収溶液の顕熱で取り去り、吸収溶液は空冷冷却器15で間接的に冷却される溶液分離冷却(間接空冷)方式が採用されている。   That is, in the case of this embodiment, the absorption solution entering the absorber 13 is sufficiently subcooled (circulated through the solution pipe 25) by the air cooling cooler 15 provided with the cooling fan 15a as described above. In the absorber 13 arranged in parallel with the evaporator 14, the absorbed vapor is absorbed by the refrigerant vapor evaporated by the evaporator 14. Absorption heat generated during absorption is absorbed by the air-cooled cooler 15. A solution separation cooling (indirect air cooling) system in which the supercooled absorbing solution is removed by sensible heat and the absorbing solution is indirectly cooled by an air cooling cooler 15 is employed.

このように、吸収器13に流入させる吸収溶液を過冷却する空冷冷却器15を設け、吸収器13では流入した吸収溶液の顕熱で蒸発器14からの冷媒蒸気を吸収する溶液溶液分離冷却方式を採用した吸収式冷凍機の場合、空冷その他の溶液冷却器(図は空冷)で溶液を過冷却し、溶液の顕熱で吸収熱を取り去る方式のため、発生器11への希溶液供給量を増加させても、性能の低下がほとんど生じない。   As described above, the air cooling cooler 15 for supercooling the absorbing solution flowing into the absorber 13 is provided, and the absorber 13 absorbs the refrigerant vapor from the evaporator 14 by the sensible heat of the flowing absorbing solution. In the case of an absorption chiller that employs the above, the amount of dilute solution supplied to the generator 11 because the solution is supercooled by air cooling or other solution cooler (air cooling in the figure) and the absorbed heat is removed by sensible heat of the solution. Even if this is increased, the performance is hardly degraded.

したがって、発生器11への希溶液供給量を増大させることができるので冷媒蒸気発生量を増大させたり、または冷媒熱回収用熱交換器を小型化することができる。   Therefore, since the supply amount of the dilute solution to the generator 11 can be increased, the amount of refrigerant vapor generated can be increased, or the refrigerant heat recovery heat exchanger can be downsized.

また吸収器13部分において直接冷媒蒸気を吸収した溶液を冷却して冷媒蒸気を吸収させる直接冷却方式に比較して、吸収器13のコンパクト化を図ることができる。   Further, the absorber 13 can be made more compact than a direct cooling method in which the solution that directly absorbs the refrigerant vapor in the absorber 13 portion is cooled to absorb the refrigerant vapor.

なお、図1では詳細な構造は示していないが、上記蒸発器14、吸収器13の各々上部には、例えば冷媒、吸収溶液をそれぞれ均等に分配するための冷媒分配トレイ、吸収溶液分配トレイを各々設けている。また上記蒸発器14の熱交換器7は例えば蒸気圧縮式冷凍機X側冷凍回路の圧縮機吐出側冷媒配管5aの一部をなすように構成されており、その内部は圧縮機1から吐出された圧縮冷媒(CO2冷媒)を流す被冷却体通路となっている。 Although a detailed structure is not shown in FIG. 1, for example, a refrigerant distribution tray and an absorption solution distribution tray for evenly distributing the refrigerant and the absorption solution are provided above the evaporator 14 and the absorber 13, respectively. Each is provided. Further, the heat exchanger 7 of the evaporator 14 is configured to form a part of the compressor discharge side refrigerant pipe 5a of the vapor compression refrigerator X side refrigeration circuit, for example, and the inside thereof is discharged from the compressor 1. It becomes a to-be-cooled body passage through which the compressed refrigerant (CO 2 refrigerant) flows.

そして、同熱交換器7の表面に冷媒を例えば液膜状態で流下させて蒸発させることにより内部の圧縮冷媒を効率良く冷却するようになっている。また上記吸収器13の熱交換器18は、例えばコルゲート構造に折り曲げて並設したプレートの両面を溶液が液膜状態で垂直に流下することで、冷媒蒸気の吸収をより効果的に促進させるような構造になっている。   Then, the internal compressed refrigerant is efficiently cooled by allowing the refrigerant to flow down, for example, in a liquid film state on the surface of the heat exchanger 7 and evaporating it. Further, the heat exchanger 18 of the absorber 13 can more effectively promote the absorption of the refrigerant vapor by allowing the solution to flow vertically in a liquid film state on both sides of a plate that is bent and arranged in a corrugated structure, for example. It has a simple structure.

また上記蒸発器14は、例えば冷媒液が一過性で上記熱交換器7の伝熱面を流れ落ちるようになっており、底部まで流れ落ちた未蒸発の冷媒液は上記吸収器13底部の液留り部19aへ移動し、同液留り部19a部分で再び吸収溶液に吸収されるようになっている。そのため、吸収効率が向上する。   Further, the evaporator 14 is configured such that, for example, the refrigerant liquid is transient and flows down the heat transfer surface of the heat exchanger 7, and the unevaporated refrigerant liquid that has flowed down to the bottom of the evaporator 14 is liquid at the bottom of the absorber 13. It moves to the nozzle part 19a and is absorbed by the absorbing solution again at the liquid retaining part 19a. Therefore, the absorption efficiency is improved.

また、符号10は、その内側熱交換部6が、上記蒸発器14の熱交換器7と同じように、上記蒸気圧縮式冷凍機Xの圧縮機吐出側冷媒配管5aの一部を形成しているとともに、同熱交換部6の外周に希溶液通路を形成する希溶液通路8が設けられた2重管構造の熱交換器に構成されており、上記蒸気圧縮式冷凍機Xの圧縮機1で圧縮された圧縮冷媒の熱を上記吸収式冷凍機Yの吸収器13から発生器11に供給される吸収希溶液により熱回収するための冷媒熱回収用熱交換器であり、同冷媒熱回収用熱交換器10の希溶液通路8内に、上記吸収器13で冷媒蒸気を吸収して、濃度および温度が低下した吸収希溶液の一部、例えば溶液熱交換器16を通る前の希溶液を溶液配管(分岐管)26Bを介して導入して、圧縮冷媒の下流側から上流側方向に流し、上記圧縮機1から吐出された圧縮冷媒の熱を有効に回収させた上で、溶液配管27を介して上記吸収式冷凍機Yの発生器11内に液単体で流入混合させることによって外部熱源とは別に吸収希溶液そのものの温度を上げ、冷媒蒸気の発生効率を大きく向上させる一方、蒸気圧縮式冷凍機X側の圧縮冷媒を効率良く冷却することによって、以降の蒸発器14の熱交換器7での過冷却性能をアップさせるとともに、従来の蒸気圧縮式冷凍機側の放熱用熱交換器(特許文献3の第3の熱源用熱交換器35)を不要にしている。この冷媒熱回収用熱交換器10は、発生器11の外部(吸収式冷凍機Yと蒸気圧縮式冷凍機Xとの間)にあって全く別体に構成されている。   Reference numeral 10 indicates that the inner heat exchanging portion 6 forms a part of the compressor discharge side refrigerant pipe 5a of the vapor compression refrigerator X in the same manner as the heat exchanger 7 of the evaporator 14. And a heat exchanger having a double-pipe structure in which a dilute solution passage 8 is formed on the outer periphery of the heat exchanging section 6. The compressor 1 of the vapor compression refrigerator X This is a heat exchanger for heat recovery of the refrigerant for recovering heat of the compressed refrigerant compressed in step 1 by the absorbed diluted solution supplied from the absorber 13 of the absorption refrigeration machine Y to the generator 11. The refrigerant vapor is absorbed in the dilute solution passage 8 of the industrial heat exchanger 10 by the absorber 13, and a part of the dilute diluted solution whose concentration and temperature are reduced, for example, the dilute solution before passing through the solution heat exchanger 16 Is introduced via a solution pipe (branch pipe) 26B, from the downstream side of the compressed refrigerant to the upstream side. The heat of the compressed refrigerant discharged from the compressor 1 is effectively recovered, and then the liquid is introduced and mixed into the generator 11 of the absorption refrigeration machine Y through the solution pipe 27. By increasing the temperature of the absorption diluted solution itself separately from the external heat source and greatly improving the generation efficiency of the refrigerant vapor, while efficiently cooling the compressed refrigerant on the vapor compression refrigerator X side, While improving the supercooling performance in the heat exchanger 7, the heat dissipation heat exchanger (the third heat source heat exchanger 35 of Patent Document 3) on the conventional vapor compression refrigerator side is not required. The refrigerant heat recovery heat exchanger 10 is external to the generator 11 (between the absorption refrigeration machine Y and the vapor compression refrigeration machine X) and is completely separate.

一方、溶液熱交換器16を通して昇温された吸収希溶液は、そのまま下流側溶液配管26Aを介して発生器11に流入される。 On the other hand, the absorption dilute solution heated up through the solution heat exchanger 16 is directly flowed into the generator 11 through the downstream solution pipe 26A.

すでに述べたように、蒸気圧縮式冷凍機Xと吸収式冷凍機Yを組み合わせた冷凍装置の冷凍能力を向上させるためには、蒸気圧縮式冷凍機Yおよび吸収式冷凍機X相互の排熱を如何に有効に活用するかが課題となる。   As described above, in order to improve the refrigerating capacity of the refrigerating apparatus that combines the vapor compression refrigerator X and the absorption refrigerator Y, the exhaust heat between the vapor compression refrigerator Y and the absorption refrigerator X is reduced. The issue is how to use it effectively.

また、同時に相互の装置の構成を簡素化して、低コスト化を図ることも重要であり、蒸気圧縮式冷凍機X側圧縮冷媒の熱を放熱する従来の放熱用熱交換器を不要にすることが望まれる。   At the same time, it is important to simplify the configuration of each other and reduce costs, and eliminate the need for a conventional heat-dissipating heat exchanger that dissipates the heat of the vapor compression refrigerator X side compressed refrigerant. Is desired.

また、小型の発電機やGHP等の温水排熱で駆動される排熱利用型の吸収式冷凍機Xにおいては、コストの面から単効用冷凍サイクルで使用されるが、排温水により冷媒蒸気を発生させる発生器を如何に低コスト化するかが問題となる。   In addition, the waste heat utilization type absorption refrigerator X driven by hot water exhaust heat such as a small generator or GHP is used in a single-effect refrigeration cycle from the viewpoint of cost. The problem is how to reduce the cost of the generator to be generated.

特に排温水の利用は、より安価な機器でないと回収熱量との関係で成立が困難であり、発生器の大幅な低コスト化が排熱駆動型の吸収式冷凍装置には求められている。   In particular, the use of waste heat water is difficult to establish unless it is a cheaper device, and a drastic reduction in the cost of the generator is required for the waste heat drive type absorption refrigeration apparatus.

これに対し、以上のような構成の場合、冷媒蒸気発生器11の外部に位置して発生器11とは全く別体に構成された上記冷媒熱回収用熱交換器10部分で、吸収器13から発生器11に供給される低温の吸収希溶液により圧縮機1から吐出された高温の圧縮冷媒が効率良く冷却された後に吸収式冷凍機Yの蒸発器に供給されて過冷却されるとともに、吸収希溶液が高温状態に加熱された後に出口側溶液配管27を介して発生器11内に供給され、効果的にフラッシュして冷媒蒸気と吸収濃溶液に気液分離される。   On the other hand, in the case of the configuration as described above, the absorber 13 is the heat exchanger 10 for recovering the refrigerant heat that is located outside the refrigerant vapor generator 11 and is completely separate from the generator 11. The high-temperature compressed refrigerant discharged from the compressor 1 is efficiently cooled by the low-temperature absorbing dilute solution supplied from the generator 11 to the generator 11 and then is supplied to the evaporator of the absorption refrigeration machine Y and is supercooled. After the absorbing dilute solution is heated to a high temperature, it is supplied into the generator 11 through the outlet side solution pipe 27, and is effectively flushed to be separated into a refrigerant vapor and an absorbing concentrated solution.

したがって、同構成によると、蒸気圧縮式冷凍機側圧縮冷媒の熱を吸収式冷凍機の駆動に有効に活用することができるようになり、その分吸収式冷凍機の冷凍能力を増大させることができる。   Therefore, according to this configuration, the heat of the vapor compression refrigeration machine side compressed refrigerant can be effectively utilized for driving the absorption refrigeration machine, and the refrigeration capacity of the absorption refrigeration machine can be increased accordingly. it can.

また、温水式熱交換器34を介して供給される外部排熱源の排熱量が一定値以下になったような場合にも、安定した吸収冷凍作用を確保することができる。   In addition, even when the amount of exhaust heat from the external heat source supplied via the hot water heat exchanger 34 becomes a certain value or less, a stable absorption refrigeration operation can be ensured.

特に上記蒸気圧縮式冷凍機側の圧縮冷媒は、上記のように吸収希溶液側に熱が奪われることにより冷却されて温度が低下した後に、さらに吸収式冷凍機側の蒸発器に供給されて過冷却される。したがって、上記冷媒熱回収用熱交換器がない場合に比べて、より有効に圧縮冷媒が過冷却され、利用側熱交換器に供給される冷媒の入口比エンタルピーを有効に低下させることができる。その結果、利用側熱交換器の冷房性能が向上する。   In particular, the compressed refrigerant on the vapor compression refrigeration machine side is cooled by the heat deprived on the absorption dilute solution side as described above and the temperature is lowered, and is further supplied to the evaporator on the absorption refrigeration machine side. Undercooled. Therefore, compared with the case where there is no heat exchanger for recovering refrigerant heat, the compressed refrigerant is more effectively subcooled, and the inlet specific enthalpy of the refrigerant supplied to the use side heat exchanger can be effectively reduced. As a result, the cooling performance of the use side heat exchanger is improved.

それらの結果、従来のような蒸気圧縮式冷凍機側の圧縮冷媒の冷媒熱放熱用熱交換器が不要になるとともに、吸収式冷凍機側発生器も外部熱源により溶液を加熱して冷媒蒸気を発生させる熱交換器に、単に気液分離機能を加えたシンプルかつ低コストな構成のもので足りるようになる。   As a result, the conventional heat exchanger for heat dissipation of the compressed refrigerant on the vapor compression refrigeration machine side becomes unnecessary, and the absorption chiller side generator also heats the solution with an external heat source to generate refrigerant vapor. A simple and low-cost configuration in which a gas-liquid separation function is simply added to the generated heat exchanger is sufficient.

さらに、蒸気圧縮式冷凍機の圧縮冷媒の過冷却を吸収式冷凍機の蒸発器において行う場合、吸収式冷凍機側においては、蒸発器に別途冷水を循環させるような構造の場合に比較して、その構成が簡単になるとともに、蒸発器における吸収式冷凍機の冷媒液の蒸発温度を高くすることができることから、例えば必要な冷媒液の蒸発能力を一定とした場合には、冷媒に対する加熱温度の上昇分だけ、上記蒸発器の能力を低く抑えて、より低コスト化あるいはコンパクト化を図ることが可能となる。   Furthermore, when supercooling of the refrigerant compressed in the vapor compression refrigerator is performed in the evaporator of the absorption refrigerator, the absorption refrigerator is compared with a structure in which cold water is separately circulated in the evaporator. In addition, since the structure can be simplified and the evaporation temperature of the refrigerant liquid of the absorption chiller in the evaporator can be increased, for example, when the required evaporation capacity of the refrigerant liquid is constant, the heating temperature for the refrigerant Therefore, it is possible to reduce the cost of the evaporator or reduce the size of the evaporator by reducing the capacity of the evaporator by the amount of the increase.

(実施の形態2)
次に図2は、本願発明の実施の形態2に係る冷凍装置の構成を示している。
(Embodiment 2)
Next, FIG. 2 shows a configuration of a refrigeration apparatus according to Embodiment 2 of the present invention.

この実施の形態2の場合にも、上記実施の形態1のものと同様に、蒸気圧縮式冷凍機と外部熱源を備えた吸収式冷凍機とを組み合わせ、吸収式冷凍機の冷媒蒸発器で蒸気圧縮式冷凍機の圧縮冷媒を過冷却するようにしてなる冷凍装置において、蒸気圧縮式冷凍機の冷房運転時における圧縮冷媒の熱を、吸収式冷凍機の吸収器から発生器に供給される吸収希溶液によって回収した上で、吸収式冷凍機の発生器に流入させる冷媒熱回収用熱交換器を設け、吸収式冷凍機の発生器では、外部熱源と同冷媒熱回収用熱交換器で回収した蒸気圧縮式冷凍機の圧縮冷媒の熱によって効率良く冷媒蒸気の発生を行わせるようにしている。   Also in the case of this second embodiment, similarly to the first embodiment, a vapor compression refrigerator and an absorption refrigerator having an external heat source are combined and steam is absorbed by the refrigerant evaporator of the absorption refrigerator. In a refrigeration system configured to supercool the compressed refrigerant of the compression refrigerator, absorption of heat supplied from the absorber of the absorption refrigerator to the generator during cooling operation of the vapor compression refrigerator After collecting with a dilute solution, a heat exchanger for recovering refrigerant heat that flows into the generator of the absorption refrigeration machine is provided. In the generator of the absorption refrigeration machine, recovery is performed with an external heat source and the same heat exchanger for heat recovery of the refrigerant. The refrigerant vapor is efficiently generated by the heat of the compressed refrigerant of the vapor compression refrigerator.

そして、その場合において、この実施の形態2では、例えば図2に詳細に示すように、上述の実施の形態1における冷媒熱回収用熱交換器10の外周側吸収希溶液通路8部分を、圧縮冷媒の流れに沿って上流側8A部分と下流側8B部分との2つの部分に分け、同2つの吸収希溶液通路8A,8B部分を連通路29で相互に連通させることによって、上流側熱交換器10Aと下流側熱交換器10Bとの2つの熱交換器とし、吸収器13側から溶液配管26,26Bを介して溶液熱交換器16を通すことなく発生器11側に供給される吸収希溶液を下流側熱交換器10Bの吸収希溶液通路8Bの下流端に供給し、下流側吸収希溶液チューブ8B側から上流側吸収希溶液通路8A方向に高温の蒸気圧縮式冷凍機側圧縮冷媒(CO2冷媒)の流れと対向するように流すように構成されている。また溶液熱交換器16を通して発生器11からの吸収濃溶液と熱交換された若干温度の高い吸収希溶液を上流側長さの長い冷媒熱回収用熱交換器10Aの吸収希溶液通路8Aの下端部分に供給して、それぞれ高温の圧縮冷媒(CO2冷媒)と熱交換させ、それぞれ圧縮冷媒の熱を有効に回収して十分に昇温させた後に、出口側溶液配管27を介して発生器11内に供給するようにしている。 In this case, in this second embodiment, as shown in detail in FIG. 2, for example, the outer peripheral absorption diluted solution passage 8 portion of the refrigerant heat recovery heat exchanger 10 in the first embodiment is compressed. The upstream heat exchange is performed by dividing the two absorption dilute solution passages 8A and 8B through the communication passage 29 by dividing them into two parts, the upstream 8A part and the downstream 8B part, along the refrigerant flow. Absorption heat supplied from the absorber 13 side to the generator 11 side without passing through the solution heat exchanger 16 via the solution pipes 26 and 26B. The solution is supplied to the downstream end of the absorption diluted solution passage 8B of the downstream heat exchanger 10B, and a high-temperature vapor compression refrigerator side compressed refrigerant (from the downstream absorption diluted solution tube 8B side to the upstream absorption diluted solution passage 8A) the flow of CO 2 refrigerant) It is configured to flow to direction. Also, the lower end of the absorption dilute solution passage 8A of the refrigerant heat recovery heat exchanger 10A having a long upstream length is used for the slightly diluted high temperature absorption dilute solution heat-exchanged with the absorption concentrated solution from the generator 11 through the solution heat exchanger 16. After being supplied to the portion and exchanging heat with each of the high-temperature compressed refrigerant (CO 2 refrigerant), the heat of the compressed refrigerant is effectively recovered and sufficiently heated, and then the generator is generated via the outlet-side solution pipe 27. 11 is supplied.

このように、冷媒熱回収用熱交換器10(具体的には、その吸収希溶液が流れる希溶液通路8部分)を上流側部分10Aと下流側部分10Bに分割し、それらの間を連通路29で連通させて段階的に吸収希溶液を流すようにすると、下流側熱交換器10B、上流側熱交換器10A各々の通路部分での吸収希溶液の滞留時間が長くなり、対応する熱交換部6B,6Aとの熱交換時間も長くなる。   As described above, the refrigerant heat recovery heat exchanger 10 (specifically, the dilute solution passage 8 portion through which the absorbed dilute solution flows) is divided into the upstream portion 10A and the downstream portion 10B, and a communication passage is formed between them. If the absorbing dilute solution is caused to flow stepwise by communicating at 29, the residence time of the absorbing dilute solution in the passage portion of each of the downstream heat exchanger 10B and the upstream heat exchanger 10A becomes longer, and the corresponding heat exchange The heat exchange time with the parts 6B and 6A also becomes longer.

そして、それによって溶液熱交換器16を通す前の低温の吸収希溶液を高温の圧縮冷媒(CO2冷媒)と効率良く熱交換させ、より有効に圧縮冷媒の熱を回収して十分に昇温させた後に、希溶液単体を出口側溶液配管27を介して発生器11内に供給し、発生器11内で外部熱源と共同して効率良く冷媒蒸気を発生させる一方、蒸気圧縮式冷凍機X側圧縮冷媒の温度を有効に低下させた上で蒸発器14に供給し、より効果的に過冷却するようにしたことを特徴とするものである。 Then, the low-temperature absorption dilute solution before passing through the solution heat exchanger 16 is efficiently heat-exchanged with the high-temperature compressed refrigerant (CO 2 refrigerant), and the heat of the compressed refrigerant is recovered more effectively to sufficiently raise the temperature. Then, the dilute solution alone is supplied into the generator 11 through the outlet side solution pipe 27, and the refrigerant vapor is efficiently generated in cooperation with an external heat source in the generator 11, while the vapor compression refrigerator X The temperature of the side compressed refrigerant is effectively lowered and then supplied to the evaporator 14 to be more effectively supercooled.

このような構成によると、圧縮冷媒の熱の回収度合が向上して十分に吸収希溶液の温度が高くなり、より有効な冷媒蒸気の分離効果、吸収液の濃縮効果を得ることができる。したがって、発生器11の簡素化が可能となる。   According to such a configuration, the degree of heat recovery of the compressed refrigerant is improved and the temperature of the absorbing diluted solution is sufficiently increased, and more effective refrigerant vapor separation effect and absorption liquid concentration effect can be obtained. Therefore, the generator 11 can be simplified.

また、蒸気圧縮式冷凍機の放熱用の熱交換器の削減が可能となり、吸収式冷凍機による冷熱変換が有効に利用可能となるので、蒸気圧縮式冷凍機の性能も大幅に改善される。   Further, it is possible to reduce the heat exchanger for heat dissipation of the vapor compression refrigerator, and the heat conversion by the absorption refrigerator can be effectively used, so the performance of the vapor compression refrigerator is greatly improved.

その他の部分の構成は、上述した実施の形態1のものと同様であり、同様の作用効果を奏する。   The structure of other parts is the same as that of the first embodiment described above, and has the same effects.

(実施の形態3)
次に図3は、本願発明の実施の形態3に係る冷凍装置の構成を示している。
(Embodiment 3)
Next, FIG. 3 shows a configuration of a refrigeration apparatus according to Embodiment 3 of the present invention.

この実施の形態3のものは、上記実施の形態2のものと同様に、冷媒熱回収用熱交換器10の吸収希溶液通路8部分を、例えば図3に示すように、蒸気圧縮式冷凍機Xの圧縮機1吐出側冷媒配管5aに沿って上流側8A部分と下流側8B部分との2つの部分に分けることによって2つの熱交換器10A,10Bを形成しているが、その上流側熱交換器10A部分の長さを下流側の熱交換器10Bよりも長くするとともに、上流側熱交換器10Aの下流端には希溶液配管26の溶液熱交換器16下流側の分岐管26cを、また下流側熱交換器10Bの下流端には同希溶液配管26の溶液熱交換器16上流側(手前側)からの分岐管26Bを、また発生器へは分岐管26Aをそれぞれ接続して、それぞれ吸収器13出口からの吸収希溶液が供給されるように構成している。   In the third embodiment, as in the second embodiment, the absorption diluted solution passage 8 of the refrigerant heat recovery heat exchanger 10 is replaced with a vapor compression refrigerator as shown in FIG. 3, for example. Two heat exchangers 10A and 10B are formed by dividing into two parts, an upstream side 8A part and a downstream side 8B part, along the X compressor 1 discharge side refrigerant pipe 5a. The length of the exchanger 10A is made longer than that of the downstream heat exchanger 10B, and a branch pipe 26c downstream of the solution heat exchanger 16 of the dilute solution pipe 26 is provided at the downstream end of the upstream heat exchanger 10A. A branch pipe 26B from the upstream side (front side) of the solution heat exchanger 16 of the dilute solution pipe 26 is connected to the downstream end of the downstream heat exchanger 10B, and a branch pipe 26A is connected to the generator. Absorbing dilute solution from each absorber 13 outlet is supplied It is configured to so that.

そして、それにより、先ず溶液熱交換器16を通さない低温で圧縮冷媒との温度差が大きい吸収希溶液を下流側長さの短かい冷媒熱回収用熱交換器10Bの下流端から上流側長さの長い冷媒熱回収用熱交換器10A部分に流し、また溶液熱交換器16を通して発生器11からの吸収濃溶液と熱交換された若干温度の高い吸収希溶液を上流側長さの長い冷媒熱回収用熱交換器10Aの下流端部分に供給して、それぞれ高温の圧縮冷媒(CO2冷媒)と熱交換させ、それぞれ圧縮冷媒の熱を有効に回収して十分に昇温させた後に、出口側溶液配管27を介して発生器11内に供給するようにし、有効に吸収希溶液を気液分離させられるようにしたことを特徴とするものである。 As a result, the absorption dilute solution having a large temperature difference from the compressed refrigerant at a low temperature that does not pass through the solution heat exchanger 16 is first removed from the downstream end of the refrigerant heat recovery heat exchanger 10B having a short downstream length to the upstream length. The refrigerant having a long upstream side is passed through the heat exchanger 10A for long refrigerant heat recovery, and the slightly diluted high-temperature absorption diluted solution exchanged with the absorption concentrated solution from the generator 11 through the solution heat exchanger 16. After supplying the downstream end portion of the heat recovery heat exchanger 10A and exchanging heat with each of the high-temperature compressed refrigerant (CO 2 refrigerant), and effectively recovering the heat of each compressed refrigerant and sufficiently raising the temperature, This is characterized in that it is supplied into the generator 11 through the outlet side solution pipe 27 so that the absorption diluted solution can be effectively gas-liquid separated.

このような構成にすると、上流側長さの長い冷媒熱回収用熱交換器10A側では、溶液熱交換器16を介して熱回収した分だけ供給される吸収希溶液の温度が高くなるが、未だ熱交換されていないために圧縮冷媒の温度も高い。また、他方長さの短かい下流側冷媒熱回収用熱交換器10B側では、溶液熱交換器16を通していないために、供給される吸収希溶液の温度が低い。したがって、それぞれ相互に有効な温度差を取ることができ、その長さに応じた時間をかけて圧縮冷媒と熱交換させることにより、より効率的な熱交換を図ることができるので、上記実施の形態2のものよりも冷媒蒸気の分離効果、吸収液の濃縮効果が高くなる。   With such a configuration, on the refrigerant heat recovery heat exchanger 10A side having a long upstream length, the temperature of the diluted diluted solution supplied by the amount recovered through the solution heat exchanger 16 is increased, Since the heat has not yet been exchanged, the temperature of the compressed refrigerant is also high. On the other hand, the downstream side refrigerant heat recovery heat exchanger 10B side having the shorter length is not passed through the solution heat exchanger 16, so the temperature of the supplied diluted diluted solution is low. Therefore, each effective temperature difference can be taken, and more efficient heat exchange can be achieved by exchanging heat with the compressed refrigerant over time corresponding to the length thereof. The separation effect of the refrigerant vapor and the concentration effect of the absorption liquid are higher than those of the second embodiment.

その他の部分の構成は、上述した実施の形態2のものと同様であり、同様の作用効果を奏する。   The configuration of the other parts is the same as that of the second embodiment described above, and provides the same effects.

(実施の形態4)
次に図4は、本願発明の実施の形態4に係る冷凍装置の構成を示している。
(Embodiment 4)
Next, FIG. 4 shows a configuration of a refrigeration apparatus according to Embodiment 4 of the present invention.

この実施の形態4の場合、基本的には上記実施の形態1のものと同様の構成であるが、この実施の形態4では、上記冷媒熱回収用熱交換器10を備えた蒸気圧縮式冷凍機Xを複数台X1,X2分設け、それらを一台の吸収式冷凍機Yに共通に組み合わせて同じように熱回収するようにしたことを特徴とするものである。 In the case of the fourth embodiment, the configuration is basically the same as that of the first embodiment, but in the fourth embodiment, the vapor compression refrigeration provided with the refrigerant heat recovery heat exchanger 10 is used. the machine X provided multiple X 1, X 2 minutes, and is characterized in that they were adapted to heat recovery in the same way by combining the common on a single absorption refrigerating machine Y.

このような構成によると、上述の実施の形態1の構成による作用効果が得られることはもちろん、蒸気圧縮式冷凍機X側圧縮冷媒の排熱量が大きくなるので(設置台数分だけ)、それに応じて吸収式冷凍機Y側の駆動能力(冷媒蒸気発生量)も大きくすることができる。   According to such a configuration, not only the effects of the configuration of the first embodiment described above can be obtained, but also the amount of exhaust heat of the vapor compression refrigeration machine X side compressed refrigerant becomes large (only for the number of installed units). Thus, the driving capability (refrigerant vapor generation amount) on the absorption refrigerator Y side can also be increased.

1は圧縮機、2は膨張弁、3は利用側熱交換器、5aは圧縮機吐出側冷媒配管、5bは圧縮機吸入側冷媒配管、6(6A,6B)は圧縮機冷媒配管側熱交換部、7は蒸発器の熱交換部、8(8A,8B)は冷媒熱回収用熱交換器の希溶液通路、10(10A,10B)は冷媒熱回収用熱交換器、11は発生器、12は空冷凝縮器、13は吸収器、14は蒸発器、15は空冷冷却器、17は溶液ポンプ、18は吸収器のプレート、Xは蒸気圧縮式冷凍機、Yは吸収式冷凍機である。   1 is a compressor, 2 is an expansion valve, 3 is a use side heat exchanger, 5a is a compressor discharge side refrigerant pipe, 5b is a compressor suction side refrigerant pipe, and 6 (6A, 6B) is a compressor refrigerant pipe side heat exchange. , 7 is a heat exchanger of the evaporator, 8 (8A, 8B) is a diluted solution passage of the heat exchanger for refrigerant heat recovery, 10 (10A, 10B) is a heat exchanger for refrigerant heat recovery, 11 is a generator, 12 is an air-cooled condenser, 13 is an absorber, 14 is an evaporator, 15 is an air-cooled cooler, 17 is a solution pump, 18 is a plate of the absorber, X is a vapor compression refrigerator, and Y is an absorption refrigerator. .

Claims (8)

蒸気圧縮式冷凍機と外部熱源を備えた吸収式冷凍機とを組み合わせ、冷房運転時、吸収式冷凍機の冷媒蒸発器で蒸気圧縮式冷凍機の圧縮冷媒を過冷却するようにしてなる冷凍装置において、上記吸収式冷凍機の発生器の外部に、上記蒸気圧縮式冷凍機の冷房運転時における圧縮冷媒の熱を、上記吸収式冷凍機の吸収器から発生器に供給される吸収希溶液によって予じめ回収した上で、同吸収希溶液を上記吸収式冷凍機の発生器内に流入させる冷媒熱回収用熱交換器を設け、上記吸収式冷凍機の発生器では、上記冷媒熱回収用熱交換器で回収した上記蒸気圧縮式冷凍機の圧縮冷媒の熱によって過熱された溶液の気液分離を行わせる一方、上記外部熱源により溶液を加熱して冷媒蒸気を発生させるようにしたことを特徴とする冷凍装置。   A refrigeration system that combines a vapor compression refrigerator and an absorption refrigerator equipped with an external heat source to supercool the compressed refrigerant of the vapor compression refrigerator with the refrigerant evaporator of the absorption refrigerator during cooling operation In the above, the heat of the compressed refrigerant during the cooling operation of the vapor compression refrigeration machine is transferred to the outside of the generator of the absorption refrigeration machine by an absorption dilute solution supplied from the absorber of the absorption refrigeration machine to the generator. A refrigerant heat recovery heat exchanger is provided for allowing the absorption diluted solution to flow into the absorption chiller generator after being collected in advance. In the absorption chiller generator, the refrigerant heat recovery The solution superheated by the heat of the compressed refrigerant of the vapor compression refrigerator recovered by the heat exchanger is gas-liquid separated, while the solution is heated by the external heat source to generate refrigerant vapor. Refrigeration equipment characterized. 吸収器に流入させる吸収液を過冷却する吸収液空冷冷却器と、吸収器から発生器に供給される吸収希溶液と発生器からの吸収濃溶液とを熱交換する溶液熱交換器とを設け、吸収器出口側の吸収希溶液を、それら吸収液空冷冷却器、溶液熱交換器、冷媒熱回収用熱交換器の各々に分流させる一方、吸収器では、上記吸収液空冷冷却器を介して過冷却した上で流入させた吸収液の顕熱で冷媒蒸気を吸収させるようにしたことを特徴とする請求項1記載の冷凍装置。   An absorption liquid air-cooled cooler that supercools the absorbent flowing into the absorber, and a solution heat exchanger that exchanges heat between the absorbed diluted solution supplied from the absorber to the generator and the absorbed concentrated solution from the generator are provided. The absorption dilute solution at the outlet side of the absorber is divided into each of the absorption liquid air-cooled cooler, the solution heat exchanger, and the refrigerant heat recovery heat exchanger, while the absorber passes through the absorption liquid air-cooled cooler. 2. The refrigeration apparatus according to claim 1, wherein the refrigerant vapor is absorbed by the sensible heat of the absorption liquid introduced after being supercooled. 溶液熱交換器を介して発生器からの吸収濃溶液と熱交換された吸収希溶液を冷媒熱回収用熱交換器に流入させるようにしたことを特徴とする請求項2記載の冷凍装置。   3. The refrigeration apparatus according to claim 2, wherein the absorption diluted solution from the generator and the absorption diluted solution exchanged through the solution heat exchanger are caused to flow into the refrigerant heat recovery heat exchanger. 溶液熱交換器を介して発生器からの吸収濃溶液と熱交換された吸収希溶液を発生器と冷媒熱回収用熱交換器の各々に流入させるようにしたことを特徴とする請求項2記載の冷凍装置。   3. The absorption dilute solution heat-exchanged with the absorption concentrated solution from the generator through the solution heat exchanger is caused to flow into each of the generator and the refrigerant heat recovery heat exchanger. Refrigeration equipment. 冷媒熱回収用熱交換器を圧縮冷媒の上流側から下流側方向にかけて複数段に分割し、吸収器から溶液熱交換器を介して発生器に到る希溶液の内、溶液熱交換器に入る前の吸収希溶液を上記圧縮冷媒下流側の段の冷媒熱回収用熱交換器に、また溶液熱交換器を出た吸収希溶液を上記圧縮冷媒上流側の冷媒熱回収用熱交換器に流入させるようにしたことを特徴とする請求項2記載の冷凍装置。   The refrigerant heat recovery heat exchanger is divided into a plurality of stages from the upstream side to the downstream side of the compressed refrigerant, and enters the solution heat exchanger from the dilute solution that reaches the generator through the solution heat exchanger from the absorber. The previous diluted diluted solution flows into the refrigerant heat recovery heat exchanger on the downstream side of the compressed refrigerant, and the absorbed diluted solution exiting the solution heat exchanger flows into the refrigerant heat recovered heat exchanger on the upstream side of the compressed refrigerant. The refrigeration apparatus according to claim 2, wherein: 冷媒熱回収用熱交換器を圧縮冷媒の上流側から下流側方向にかけて複数段に分割し、吸収器から溶液熱交換器を介して発生器に到る希溶液の内、溶液熱交換器に入る前の吸収希溶液を上記圧縮冷媒下流側の段の冷媒熱回収用熱交換器に、また溶液熱交換器を出た吸収希溶液を発生器と上記圧縮冷媒上流側の冷媒熱回収用熱交換器に各々流入させるようにしたことを特徴とする請求項2記載の冷凍装置。   The refrigerant heat recovery heat exchanger is divided into a plurality of stages from the upstream side to the downstream side of the compressed refrigerant, and enters the solution heat exchanger from the dilute solution that reaches the generator through the solution heat exchanger from the absorber. The previous absorption diluted solution is transferred to the refrigerant heat recovery heat exchanger on the downstream side of the compressed refrigerant, and the absorption diluted solution discharged from the solution heat exchanger is transferred to the generator and the refrigerant refrigerant on the upstream side of the compressed refrigerant. The refrigeration apparatus according to claim 2, wherein each of the refrigeration apparatuses is allowed to flow into a container. 蒸発器は、冷媒液が蒸発器の伝熱面を一過性で流れるようになっており、同伝熱面を流下した未蒸発の冷媒液は、吸収器側に移動して吸収器を流下した吸収溶液に吸収されるようになっていることを特徴とする請求項1,2,3,4,5又は6記載の冷凍装置。   In the evaporator, the refrigerant liquid flows temporarily on the heat transfer surface of the evaporator, and the unevaporated refrigerant liquid flowing down the heat transfer surface moves to the absorber side and flows down the absorber. The refrigeration apparatus according to claim 1, wherein the refrigeration apparatus is adapted to be absorbed by the absorbed solution. 複数台の蒸気圧縮式冷凍機と、それら各蒸気圧縮式冷凍機に対応した冷媒熱回収用熱交換器とを備え、各蒸気圧縮式冷凍機の圧縮冷媒の熱を回収して対応する吸収式冷凍機駆動用の熱源として利用するようにしたことを特徴とする請求項1,2,3,4,5,6又は7記載の冷凍装置。   A plurality of vapor compression refrigeration units and a heat exchanger for recovering refrigerant heat corresponding to each of these vapor compression refrigeration units, recovering the heat of the compressed refrigerant of each vapor compression refrigeration unit and corresponding absorption type 8. The refrigeration apparatus according to claim 1, wherein the refrigeration apparatus is used as a heat source for driving a refrigerator.
JP2009097119A 2009-04-13 2009-04-13 Refrigeration equipment Expired - Fee Related JP5402186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009097119A JP5402186B2 (en) 2009-04-13 2009-04-13 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009097119A JP5402186B2 (en) 2009-04-13 2009-04-13 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2010249356A true JP2010249356A (en) 2010-11-04
JP5402186B2 JP5402186B2 (en) 2014-01-29

Family

ID=43311897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009097119A Expired - Fee Related JP5402186B2 (en) 2009-04-13 2009-04-13 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP5402186B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017051533A1 (en) * 2015-09-25 2017-03-30 日本電気株式会社 Cooling system and cooling method
JP2018071966A (en) * 2016-11-01 2018-05-10 バイス ウンベルトテヒニク ゲゼルシャフト ミット ベシュレンクテル ハフツング Test chamber
CN110455012A (en) * 2019-09-10 2019-11-15 华北电力大学 A kind of vapor compression types absorption heat pump
CN113899026A (en) * 2021-09-24 2022-01-07 安徽聪旗智能科技有限公司 High-cycle-energy-efficiency lithium chloride dehumidification system and lithium chloride solution circulation method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1183234A (en) * 1997-09-03 1999-03-26 Yamaha Motor Co Ltd Combined heat transfer equipment
JP2003207223A (en) * 2002-01-16 2003-07-25 Ebara Corp Exhaust heat recovery-type refrigerating device
JP2004190885A (en) * 2002-12-09 2004-07-08 Ebara Corp Absorption compression refrigerating machine and refrigerating system
JP2004324977A (en) * 2003-04-24 2004-11-18 Sanyo Electric Co Ltd Absorption type refrigerating machine
JP2007263515A (en) * 2006-03-29 2007-10-11 Daikin Ind Ltd Evaporation/absorption unit for absorption refrigerating machine
JP2009002539A (en) * 2007-06-19 2009-01-08 Daikin Ind Ltd Exhaust-heat driving type absorption refrigerating device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1183234A (en) * 1997-09-03 1999-03-26 Yamaha Motor Co Ltd Combined heat transfer equipment
JP2003207223A (en) * 2002-01-16 2003-07-25 Ebara Corp Exhaust heat recovery-type refrigerating device
JP2004190885A (en) * 2002-12-09 2004-07-08 Ebara Corp Absorption compression refrigerating machine and refrigerating system
JP2004324977A (en) * 2003-04-24 2004-11-18 Sanyo Electric Co Ltd Absorption type refrigerating machine
JP2007263515A (en) * 2006-03-29 2007-10-11 Daikin Ind Ltd Evaporation/absorption unit for absorption refrigerating machine
JP2009002539A (en) * 2007-06-19 2009-01-08 Daikin Ind Ltd Exhaust-heat driving type absorption refrigerating device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017051533A1 (en) * 2015-09-25 2017-03-30 日本電気株式会社 Cooling system and cooling method
JP2018071966A (en) * 2016-11-01 2018-05-10 バイス ウンベルトテヒニク ゲゼルシャフト ミット ベシュレンクテル ハフツング Test chamber
US10571169B2 (en) 2016-11-01 2020-02-25 Weiss Umwelttechnik Test chamber with temperature control device
CN110455012A (en) * 2019-09-10 2019-11-15 华北电力大学 A kind of vapor compression types absorption heat pump
CN113899026A (en) * 2021-09-24 2022-01-07 安徽聪旗智能科技有限公司 High-cycle-energy-efficiency lithium chloride dehumidification system and lithium chloride solution circulation method

Also Published As

Publication number Publication date
JP5402186B2 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
JP2011133123A (en) Refrigerating cycle device
JP5375283B2 (en) Refrigeration equipment
JP5402186B2 (en) Refrigeration equipment
KR100827570B1 (en) Heatpump for waste heat recycle of adsorption type refrigerator
JP5240040B2 (en) Refrigeration equipment
JP2004190885A (en) Absorption compression refrigerating machine and refrigerating system
JP2009236440A (en) Gas heat pump type air conditioning device or refrigerating device
JP2010164209A (en) Method of operating adsorption refrigerating machine
JP5338270B2 (en) Absorption refrigeration system
JP6613404B2 (en) Refrigeration system
JP5402187B2 (en) Refrigeration equipment
JP5310224B2 (en) Refrigeration equipment
JP5375284B2 (en) Refrigeration equipment
JP5434207B2 (en) Refrigeration equipment
JP5229076B2 (en) Refrigeration equipment
JP3821286B2 (en) Refrigeration system combining absorption type and compression type and its operating method
JP2008020094A (en) Absorption type heat pump device
KR20080094985A (en) Hot-water using absorption chiller
JP3830141B2 (en) Power generation and absorption cold / hot water equipment
JP3892689B2 (en) Combined cooling device and cooling operation method thereof
JP5434206B2 (en) Refrigeration equipment
JP2000018757A (en) Cooler
JP2004198087A (en) Absorption refrigerating device, and absorption refrigerating system
KR100827569B1 (en) Absorption refrigerating apparatus with heat pump
JP3830140B2 (en) Power generation and absorption cold / hot water equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111207

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130419

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131014

LAPS Cancellation because of no payment of annual fees