JPH10205907A - Waste heat inputted type absorption cooling and heating machine and operating method thereof - Google Patents

Waste heat inputted type absorption cooling and heating machine and operating method thereof

Info

Publication number
JPH10205907A
JPH10205907A JP9009647A JP964797A JPH10205907A JP H10205907 A JPH10205907 A JP H10205907A JP 9009647 A JP9009647 A JP 9009647A JP 964797 A JP964797 A JP 964797A JP H10205907 A JPH10205907 A JP H10205907A
Authority
JP
Japan
Prior art keywords
refrigerant
heat
heat source
heat exchanger
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9009647A
Other languages
Japanese (ja)
Inventor
Satoshi Miyake
聡 三宅
Ryohei Minowa
良平 箕輪
Yumi Takeuchi
由実 竹内
Masahiro Oka
雅博 岡
Masaru Edera
勝 江寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Tokyo Gas Co Ltd
Original Assignee
Hitachi Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Tokyo Gas Co Ltd filed Critical Hitachi Ltd
Priority to JP9009647A priority Critical patent/JPH10205907A/en
Publication of JPH10205907A publication Critical patent/JPH10205907A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To operate without deteriorating the recovering amount of heat from an external hot heat source by a method wherein a refrigerant heat exchanger for hot heat source for effecting heat exchange between fluid, supplied from the external hot heat source, and refrigerant solution in a machine upon heating operation is provided. SOLUTION: Upon heating operation cycle, refrigerant, condensed in an evaporator 1, is guided into a refrigerant heat exchanger 21 for hot heat source by a refrigerant pump 3 through a refrigerant pump discharging refrigerant supplying valve 22 or by natural circulation or the difference of heights through an evaporator refrigerant supplying valve 23. The refrigerant heat exchanger 21 for hot heat source is connected in series to a solution heat exchanger 8 for hot heat source while medium, discharged out of the solution heat exchanger 8 for hot heat source and still hot, passes through the refrigerant heat exchanger 21 for hot heat source to return into a hot heat source. Refrigerant vapor, evaporated by the heat exchange, is guided into the evaporator 1 through a vapor pipeline 24 for hot heat source and is condensed after heating hot-water through an evaporator heat transfer tube 4, through which hot-water in the evaporator 1 is conducted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はコージェネレーショ
ン・システム等から発生する温水または低圧蒸気等の流
体を吸収冷暖房機の熱源として有効利用する排熱投入型
吸収冷暖房機とその運転方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a waste heat input type absorption air conditioner and a method of operating the same, which effectively uses a fluid such as hot water or low pressure steam generated from a cogeneration system or the like as a heat source of the absorption air conditioner. .

【0002】[0002]

【従来の技術】従来、特願平6−73428号に記載さ
れているように、高温溶液熱交換器と低温溶液熱交換器
を含む吸収剤の稀溶液ラインに別の熱交換器を設け、吸
収冷暖房機外部の温熱源から供給される流体と稀溶液ラ
インを流れる稀溶液の間で熱交換を行ない、吸収冷暖房
機の熱源として有効利用する排熱投入型吸収冷暖房機の
技術が知られている。
2. Description of the Related Art Conventionally, as described in Japanese Patent Application No. 6-73428, another heat exchanger is provided in a dilute solution line of an absorbent including a high-temperature solution heat exchanger and a low-temperature solution heat exchanger. The technology of the exhaust heat input type absorption air conditioner that performs heat exchange between the fluid supplied from the heat source outside the absorption air heater and the dilute solution flowing in the dilute solution line and effectively uses it as the heat source of the absorption air heater is known. I have.

【0003】代表的な排熱投入型吸収冷暖房機の冷凍サ
イクルを図4を用いて説明する。図4において、矢印は
冷水、冷却水、冷媒および溶液の流れの方向を示す。ま
た、冷房運転時には、蒸気弁19および冷媒ブロ−弁2
0は閉じている。蒸発器1は約1/100気圧に保たれ
ており、この中で冷媒(水)2は冷媒配管13に具備さ
れた冷媒ポンプ3により、冷水が流通する蒸発器伝熱管
4上にスプレーされ、冷水の熱を奪い、蒸発して冷却効
果が発生する。蒸発した冷媒蒸気は、冷却水により低圧
に保たれた吸収器5へ流れ込み、こゝで吸収器伝熱管6
上にスプレーされる臭化リチウム水溶液に吸収され、臭
化リチウム水溶液は稀釈される。この稀溶液は、稀溶液
配管14に具備された溶液ポンプ7により低温溶液熱交
換器17を経て温熱源用溶液熱交換器8に送り込まれ、
外部の温熱源により加熱された後、一部は高温溶液熱交
換器18を経て高温再生器9へ、残りは低温再生器10
へ送り込まれる。高温再生器9ではバーナ等の直接熱源
11により加熱されて蒸気と濃溶液に分離され、濃溶液
は高温溶液熱交換器18および低温溶液熱交換器17を
経て、濃溶液配管15により吸収器5内の吸収器伝熱管
6上にスプレーされる。また、低温再生器10では、稀
溶液は高温再生器9で発生した蒸気により加熱されて蒸
気と濃溶液に分離され、濃溶液は低温溶液熱交換器17
を経て、濃溶液配管15により吸収器5内の吸収器伝熱
管6上にスプレーされる。
[0003] A refrigeration cycle of a typical exhaust heat input absorption air conditioner will be described with reference to FIG. In FIG. 4, arrows indicate the directions of flows of cold water, cooling water, refrigerant, and solution. During the cooling operation, the steam valve 19 and the refrigerant blow valve 2
0 is closed. The evaporator 1 is maintained at about 1/100 atm. In this, a refrigerant (water) 2 is sprayed by a refrigerant pump 3 provided on a refrigerant pipe 13 onto an evaporator heat transfer tube 4 through which cold water flows. It takes away the heat of the cold water and evaporates to produce a cooling effect. The evaporated refrigerant vapor flows into the absorber 5 maintained at a low pressure by the cooling water, and the heat is transferred to the absorber heat transfer tube 6.
Absorbed in the aqueous lithium bromide solution sprayed on, the aqueous lithium bromide solution is diluted. This diluted solution is sent to the solution heat exchanger 8 for the hot heat source through the low temperature solution heat exchanger 17 by the solution pump 7 provided in the diluted solution pipe 14,
After being heated by an external heat source, a part is passed through the high-temperature solution heat exchanger 18 to the high-temperature regenerator 9, and the rest is supplied to the low-temperature regenerator
Sent to In the high-temperature regenerator 9, the concentrated solution is heated by a direct heat source 11 such as a burner and separated into steam and a concentrated solution. The concentrated solution passes through a high-temperature solution heat exchanger 18 and a low-temperature solution heat exchanger 17, and is concentrated by an absorbent Is sprayed on the heat transfer tube 6 in the absorber. In the low-temperature regenerator 10, the dilute solution is heated by the steam generated in the high-temperature regenerator 9 to be separated into a vapor and a concentrated solution.
Is sprayed onto the absorber heat transfer tube 6 in the absorber 5 by the concentrated solution pipe 15.

【0004】低温再生器10で加熱、凝縮されたドレン
は凝縮器12へ導かれる。また、低温再生器10で発生
した冷媒蒸気は凝縮器12で凝縮される。このようにし
てできた凝縮冷媒(液冷媒)は凝縮冷媒配管16を経て
蒸発器1へ導かれ、スプレーされてサイクルを一巡す
る。
The drain heated and condensed by the low-temperature regenerator 10 is led to a condenser 12. The refrigerant vapor generated in the low-temperature regenerator 10 is condensed in the condenser 12. The condensed refrigerant (liquid refrigerant) thus produced is guided to the evaporator 1 via the condensed refrigerant pipe 16, and is sprayed to make a cycle.

【0005】つぎに、代表的な排熱投入型吸収冷暖房機
の暖房サイクルを図3を用いて説明する。図3に示す装
置は装置としては図4に示す装置と同一であり、したが
って全ての引用番号は図4に関して先に説明した部分を
表わす。図3においても、矢印は温水、冷媒および溶液
の流れの方向を示す。暖房運転時には、蒸気弁19およ
び冷媒ブロ−弁20は開いている。高温再生器9におい
て、稀溶液はバーナ等の直接熱源11により加熱され、
蒸気と濃溶液に分離される。高温再生器9で発生した蒸
気は蒸気弁19を経て蒸発器1に導かれる。蒸発器1で
蒸気は、温水が流通する蒸発器伝熱管4上で温水を加熱
した後凝縮する。凝縮した冷媒液は、冷媒ポンプ3によ
り冷媒ブロ−弁20を経て吸収器5へ導かれる。一方、
高温再生器9で濃縮された濃溶液は、高温溶液熱交換器
18および低温溶液熱交換器17を経て、濃溶液配管1
5により吸収器5内の吸収器伝熱管6上にスプレーされ
る。吸収器5において溶液は、蒸発器1で凝縮した冷媒
液と混合し稀釈される。この稀溶液は、稀溶液配管14
に具備された溶液ポンプ7により低温溶液熱交換器17
を経て温熱源用溶液熱交換器8に送り込まれ、外部の温
熱源により加熱された後、一部は低温再生器10へ、残
りは高温溶液熱交換器18を経て高温再生器9へ送り込
まれ、サイクルを一巡する。また、低温再生器10で稀
溶液は高温再生器9で発生した蒸気により加熱されて、
高温溶液熱交換器18を経た高温再生器9で濃縮された
濃溶液と合流し、低温溶液熱交換器17を経て濃溶液配
管15により吸収器5内の吸収器伝熱管6上にスプレー
されサイクルを一巡する。
Next, a heating cycle of a typical exhaust heat input type absorption cooling / heating machine will be described with reference to FIG. The device shown in FIG. 3 is identical in device to the device shown in FIG. 4, so that all reference numbers refer to parts previously described with respect to FIG. Also in FIG. 3, the arrows indicate the directions of the flows of the hot water, the refrigerant, and the solution. During the heating operation, the steam valve 19 and the refrigerant blow valve 20 are open. In the high-temperature regenerator 9, the dilute solution is heated by a direct heat source 11 such as a burner.
Separated into vapor and concentrated solution. The steam generated in the high-temperature regenerator 9 is guided to the evaporator 1 via the steam valve 19. In the evaporator 1, the steam condenses after heating the hot water on the evaporator heat transfer tube 4 through which the hot water flows. The condensed refrigerant liquid is guided to the absorber 5 through the refrigerant blow valve 20 by the refrigerant pump 3. on the other hand,
The concentrated solution concentrated in the high-temperature regenerator 9 passes through the high-temperature solution heat exchanger 18 and the low-temperature solution heat exchanger 17 and passes through the concentrated solution pipe 1.
5 sprays onto an absorber heat transfer tube 6 in the absorber 5. The solution is mixed with the refrigerant liquid condensed in the evaporator 1 and diluted in the absorber 5. This diluted solution is supplied to the diluted solution piping 14.
Low-temperature solution heat exchanger 17 by the solution pump 7
After being sent to the heat source solution heat exchanger 8 and heated by the external heat source, a part is sent to the low temperature regenerator 10 and the rest is sent to the high temperature regenerator 9 via the high temperature solution heat exchanger 18. Goes around the cycle. The dilute solution is heated by the steam generated in the high-temperature regenerator 9 in the low-temperature regenerator 10,
The concentrated solution mixed with the concentrated solution in the high-temperature regenerator 9 through the high-temperature solution heat exchanger 18 is sprayed onto the absorber heat transfer tube 6 in the absorber 5 by the concentrated solution pipe 15 through the low-temperature solution heat exchanger 17 and cycled. Go around once.

【0006】[0006]

【発明が解決しようとする課題】上記のように、排熱投
入型吸収冷暖房機では、吸収器から再生器に至る稀溶液
を外部の温熱源で加熱し、溶液の温度上昇として熱回収
(顕熱回収)するが、低温溶液熱交換器17から高温溶
液熱交換器18へ送られる溶液の温度例は冷房時70
℃、暖房時80〜85℃、一方、温熱源用溶液熱交換器
8へ入る温熱源は88℃で、出るときは78℃程度であ
る。従って、稀溶液温度が低い冷房運転時には比較的容
易に外部の温熱源から熱を回収することができるが、暖
房運転時には冷却水が流れていないため、吸収器5を出
る溶液は冷却されず、前述のように温度が高い。したが
って、暖房運転時には温熱源用溶液熱交換器8での熱交
換量は少なく、十分に温熱源のエネルギーを利用できな
い。このため、稀溶液循環量を増やすことが考えられる
が、そうすると冷房運転時の効率が低下するという問題
が生じる。
As described above, in the exhaust heat input type absorption cooling and heating machine, the dilute solution from the absorber to the regenerator is heated by an external heat source, and the temperature of the solution is raised to recover heat. However, the temperature of the solution sent from the low-temperature solution heat exchanger 17 to the high-temperature solution heat exchanger 18 is 70 ° C. during cooling.
80 ° -85 ° C. during heating and 88 ° C. when entering the heat source solution heat exchanger 8 and about 78 ° C. when exiting. Therefore, during cooling operation with a low diluted solution temperature, heat can be relatively easily recovered from an external heat source. However, during cooling operation, since the cooling water is not flowing, the solution leaving the absorber 5 is not cooled, As mentioned earlier, the temperature is high. Therefore, the amount of heat exchange in the heat source solution heat exchanger 8 during the heating operation is small, and the energy of the heat source cannot be sufficiently utilized. For this reason, it is conceivable to increase the circulation amount of the dilute solution, but this causes a problem that the efficiency during the cooling operation decreases.

【0007】本発明の目的は、暖房運転時でも外部の温
熱源からの熱回収量を低下させることなく運転すること
できる排熱投入型吸収冷暖房機を提供することである。
An object of the present invention is to provide an exhaust heat input type absorption cooling / heating machine which can be operated without reducing the amount of heat recovered from an external heat source even during a heating operation.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、蒸発器、吸収器、凝縮器、高温再生器、低温再生
器、高温溶液熱交換器、低温溶液熱交換器、溶液ポン
プ、冷媒ポンプ、およびこれらを作動させるように結合
する配管系で構成される、本発明による排熱投入型吸収
冷暖房機は、暖房運転時に外部の温熱源から供給される
流体と機内冷媒液の間で熱交換を行なうための温熱源用
冷媒熱交換器を備え、暖房運転時に外部の温熱源と飽和
温度の低い機内冷媒の間で熱交換し、冷媒を蒸発させる
ことによって冷媒蒸発潜熱として熱回収することを要旨
とする。
In order to achieve the above object, an evaporator, an absorber, a condenser, a high temperature regenerator, a low temperature regenerator, a high temperature solution heat exchanger, a low temperature solution heat exchanger, a solution pump, a refrigerant The exhaust heat input type absorption cooling and heating machine according to the present invention, which is constituted by a pump and a piping system that operatively couples the pump and the pump, heats between a fluid supplied from an external heat source and a refrigerant liquid in the machine during a heating operation. Provided with a heat source refrigerant heat exchanger for performing exchange, heat exchange between an external heat source and an in-machine refrigerant having a low saturation temperature during heating operation, and recovering heat as refrigerant evaporation latent heat by evaporating the refrigerant. Is the gist.

【0009】暖房運転時には、上記冷媒ポンプの吐出冷
媒液または上記蒸発器の冷媒液、あるいはその双方が切
換え弁を介して上記温熱源用冷媒熱交換器に導かれ、上
記温熱源用冷媒熱交換器で発生する冷媒蒸気は、逆Uの
字形の配管を介して上記蒸発器に導かれる。従来と同様
に温熱源用溶液熱交換器も設けた時は、この温熱源用溶
液熱交換器と上記温熱源用冷媒熱交換器は直列または並
列に上記温熱源に接続されるが、暖房時に上記温熱源用
冷媒熱交換器のみ、冷房時に上記温熱源用溶液熱交換器
のみを上記温熱源と接続してもよい。本発明の有利な実
施の態様においては、上記温熱源用溶液熱交換器と上記
温熱源用冷媒熱交換器は一体に形成される。回収できる
熱量は顕熱ではなく潜熱として回収できるので、大きな
熱交換量を獲得することができる。また、温熱源用熱交
換器に供給される冷媒は、蒸発器と温熱源用熱交換器の
間で一巡サイクルを構成するから、循環量を暖房運転に
関係なく自由に選択することができる。したがって、熱
回収量を自由に選択することができる。
During a heating operation, the refrigerant liquid discharged from the refrigerant pump and / or the refrigerant liquid from the evaporator are guided to the heat source refrigerant heat exchanger via a switching valve, and the heat source refrigerant heat exchange is performed. Refrigerant vapor generated in the evaporator is guided to the evaporator through an inverted U-shaped pipe. When the solution heat exchanger for the heat source is also provided as in the conventional case, the solution heat exchanger for the heat source and the refrigerant heat exchanger for the heat source are connected to the heat source in series or in parallel. Only the refrigerant heat exchanger for the heat source and only the solution heat exchanger for the heat source during cooling may be connected to the heat source. In a preferred embodiment of the present invention, the solution heat exchanger for the heat source and the refrigerant heat exchanger for the heat source are formed integrally. Since the amount of heat that can be recovered can be recovered as latent heat instead of sensible heat, a large amount of heat exchange can be obtained. In addition, since the refrigerant supplied to the heat source heat exchanger forms a single cycle between the evaporator and the heat source heat exchanger, the amount of circulation can be freely selected regardless of the heating operation. Therefore, the heat recovery amount can be freely selected.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。図1は、本発明になる排熱投入型吸収冷暖房機の
一構成例を示す図で、図3に示す装置とは、温熱源用冷
媒熱交換器21、冷媒ポンプ吐出冷媒供給弁22、蒸発
器冷媒供給弁23、逆Uの字形の温熱源用蒸気配管24
を備えた点で異なっている。この構成における暖房運転
サイクルでは、蒸発器1において凝縮した冷媒は、冷媒
ポンプ3により冷媒ポンプ吐出冷媒供給弁22を介し
て、あるいは自然循環により、すなわち高さの差によっ
て、蒸発器冷媒供給弁23を介して温熱源用冷媒熱交換
器21に導かれる。この温熱源用冷媒熱交換器21は上
記温熱源用溶液熱交換器8と直列に接続され、上記温熱
源用溶液熱交換器8を出たまだ熱い媒体が上記温熱源用
冷媒熱交換器21を通過し、温熱源に戻る。従って温熱
源用冷媒熱交換器21へ入る温熱源の温度は温熱源用溶
液熱交換器8より出てきたときの78℃程度あるいはそ
れ以下であるが、暖房運転時、上記蒸発器1の冷媒2の
温度は例えば55〜60℃であるので、温熱源用冷媒熱
交換器21において十分効率のよい熱交換が行われる。
こうしてここでの熱交換により蒸発した冷媒蒸気は、温
熱源用蒸気配管24を介して蒸発器1に導かれ、蒸発器
1内の温水が流通する蒸発器伝熱管4上で温水を加熱し
た後凝縮する。凝縮した冷媒液は再び冷媒ポンプ3によ
り冷媒ポンプ吐出冷媒供給弁22を介して、あるいは自
然循環により蒸発器冷媒供給弁23を介して温熱源用冷
媒熱交換器21に導かれ、サイクルを一巡する。
Embodiments of the present invention will be described below. FIG. 1 is a diagram showing an example of the configuration of a waste heat input type absorption cooling and heating device according to the present invention. The device shown in FIG. 3 includes a heat source refrigerant heat exchanger 21, a refrigerant pump discharge refrigerant supply valve 22, an evaporator. Refrigerant supply valve 23, inverted U-shaped steam pipe 24 for heat source
Is different in that it has In the heating operation cycle in this configuration, the refrigerant condensed in the evaporator 1 is supplied to the evaporator refrigerant supply valve 23 by the refrigerant pump 3 through the refrigerant pump discharge refrigerant supply valve 22 or by natural circulation, that is, by a height difference. Through the heat exchanger 21 for the heat source. The heat source refrigerant heat exchanger 21 is connected in series with the heat source solution heat exchanger 8, and the still hot medium that has exited the heat source solution heat exchanger 8 is connected to the heat source refrigerant heat exchanger 21. And returns to the heat source. Therefore, the temperature of the heat source entering the heat source refrigerant heat exchanger 21 is about 78 ° C. or lower when it comes out of the heat source solution heat exchanger 8, but during the heating operation, the refrigerant of the evaporator 1 is heated. Since the temperature of No. 2 is, for example, 55 to 60 ° C., sufficiently efficient heat exchange is performed in the refrigerant heat exchanger 21 for the heat source.
The refrigerant vapor evaporated by the heat exchange in this way is led to the evaporator 1 through the heat source steam pipe 24 and heats the hot water on the evaporator heat transfer tube 4 through which the hot water in the evaporator 1 flows. Condense. The condensed refrigerant liquid is again guided by the refrigerant pump 3 via the refrigerant pump discharge refrigerant supply valve 22 or by natural circulation to the warm heat source refrigerant heat exchanger 21 via the evaporator refrigerant supply valve 23, and goes through a cycle. .

【0011】以上の構成によると、温熱源用冷媒熱交換
器21を循環する冷媒量は、暖房サイクルとの関与が無
いから自由に選択でき、また、冷媒蒸発潜熱として外部
熱を回収できるから、大きな熱量を回収することができ
る。こゝで温熱源用蒸気配管24は逆Uの字形に構成さ
れているが、この効果は、冷房運転時に蒸発器1の冷媒
が温熱源用冷媒熱交換器21に流入し熱ロスとなること
を防ぐ役割を果たしている。
According to the above configuration, the amount of the refrigerant circulating through the heat source refrigerant heat exchanger 21 can be freely selected because it does not involve the heating cycle, and the external heat can be recovered as the refrigerant evaporation latent heat. A large amount of heat can be recovered. Here, the heat source steam pipe 24 is formed in an inverted U-shape, but the effect is that the refrigerant of the evaporator 1 flows into the heat source refrigerant heat exchanger 21 during the cooling operation, resulting in heat loss. Plays a role in preventing.

【0012】図2は、本発明になる排熱投入型吸収冷暖
房機の別の構成例を示すもので、温熱源用溶液熱交換器
8と温熱源用冷媒熱交換器21が一体に形成されてい
る。二つの熱交換器を一体化することにより設置空間の
縮小を図ることができる。各部の働きは図1に示す装置
と同じである。
FIG. 2 shows another example of the configuration of the exhaust heat input type absorption cooling and heating machine according to the present invention. The solution heat exchanger 8 for the heat source and the refrigerant heat exchanger 21 for the heat source are integrally formed. ing. By integrating the two heat exchangers, the installation space can be reduced. The function of each part is the same as that of the device shown in FIG.

【0013】なお、図1及び図の構成では、温熱源用溶
液熱交換器21と温熱源用冷媒熱交換器8は直列にして
温熱源に接続しているが、それらを互いに独立な二つの
弁を介して上記温熱源と接続し、暖房時に温熱源用冷媒
熱交換器21のみ、冷房時に温熱源用溶液熱交換器8の
みを上記温熱源と接続するようにしてもよい。
1 and 2, the solution heat exchanger 21 for the heat source and the refrigerant heat exchanger 8 for the heat source are connected in series to the heat source, but they are connected to two independent heat sources. The heating source may be connected to the heating source via a valve so that only the heating source refrigerant heat exchanger 21 is connected during heating and only the heating source solution heat exchanger 8 is connected during cooling.

【0014】[0014]

【発明の効果】以上詳述した通り、本発明によれば、コ
ージェネレーション・システム等から発生する70〜9
0℃の流体熱源(例えば、温水または低圧蒸気)を、冷
房運転時および暖房運転時とも効率よく利用することが
できる排熱投入型吸収冷暖房機を提供することができ
る。
As described in detail above, according to the present invention, 70 to 9 generated from a cogeneration system or the like are generated.
It is possible to provide an exhaust-heat-input-type absorption air conditioner that can efficiently use a fluid heat source at 0 ° C. (for example, hot water or low-pressure steam) during both the cooling operation and the heating operation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明になる排熱投入型吸収冷暖房機の一構成
例を示す図である。
FIG. 1 is a diagram showing a configuration example of an exhaust heat input type absorption cooling / heating machine according to the present invention.

【図2】本発明になる排熱投入型吸収冷暖房機の別の構
成例を示す図である。
FIG. 2 is a diagram showing another configuration example of the exhaust heat input type absorption cooling / heating machine according to the present invention.

【図3】従来の代表的な排熱投入型吸収冷暖房機の暖房
サイクルを説明するための図である。
FIG. 3 is a diagram for explaining a heating cycle of a conventional typical exhaust heat input type absorption cooling / heating machine.

【図4】従来の代表的な排熱投入型吸収冷暖房機の冷房
サイクルを説明するための図である。
FIG. 4 is a view for explaining a cooling cycle of a conventional typical exhaust heat input type absorption cooling / heating machine.

【符号の説明】[Explanation of symbols]

1 蒸発器 2 冷媒(水) 3 冷媒ポンプ 4 蒸発器伝熱管 5 吸収器 6 吸収器伝熱管 7 溶液ポンプ 8 温熱源用溶液熱交換器 9 高温再生器 10 低温再生器 11 直接熱源 12 凝縮器 13 冷媒配管 14 稀溶液配管 15 濃溶液配管 16 凝縮冷媒配管 17 低温溶液熱交換器 18 高温溶液熱交換器 19 蒸気弁 20 冷媒ブロー弁 21 温熱源用冷媒熱交換器 22 冷媒ポンプ吐出冷媒供給弁 23 蒸発器冷媒供給弁 24 温熱源用蒸気配管 DESCRIPTION OF SYMBOLS 1 Evaporator 2 Refrigerant (water) 3 Refrigerant pump 4 Evaporator heat transfer tube 5 Absorber 6 Absorber heat transfer tube 7 Solution pump 8 Heat heat source solution heat exchanger 9 High temperature regenerator 10 Low temperature regenerator 11 Direct heat source 12 Condenser 13 Refrigerant pipe 14 Dilute solution pipe 15 Concentrated solution pipe 16 Condensed refrigerant pipe 17 Low temperature solution heat exchanger 18 High temperature solution heat exchanger 19 Steam valve 20 Refrigerant blow valve 21 Refrigerant heat exchanger for hot heat source 22 Refrigerant pump discharge refrigerant supply valve 23 Evaporation Refrigerant supply valve 24 Steam piping for heat source

フロントページの続き (72)発明者 竹内 由実 埼玉県大宮市三橋2−425−702 (72)発明者 岡 雅博 東京都江戸川区南小岩7−14−7 (72)発明者 江寺 勝 東京都足立区花畑7−10−4−209Continued on the front page (72) Inventor Yumi Takeuchi 2-425-702, Mitsuhashi, Omiya City, Saitama Prefecture (72) Inventor Masahiro Oka 7-14-7, Minamikoiwa, Edogawa-ku, Tokyo (72) Inventor Masaru Edera, Adachi-ku, Tokyo Flower garden 7-10-4-209

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 蒸発器、吸収器、凝縮器、高温再生器、
低温再生器、高温溶液熱交換器、低温溶液熱交換器、溶
液ポンプ、冷媒ポンプ、およびこれらを作動させるよう
に結合する配管系で構成される吸収冷暖房機において、
さらに外部の温熱源から供給される流体と機内冷媒液と
の間で熱交換を行なうための温熱源用冷媒熱交換器を備
えたことを特徴とする排熱投入型吸収冷暖房機。
An evaporator, an absorber, a condenser, a high-temperature regenerator,
In an absorption air conditioner composed of a low-temperature regenerator, a high-temperature solution heat exchanger, a low-temperature solution heat exchanger, a solution pump, a refrigerant pump, and a piping system that couples these to operate,
An exhaust heat input type absorption cooling and heating machine further comprising a heat source-use refrigerant heat exchanger for exchanging heat between a fluid supplied from an external heat source and an in-machine refrigerant liquid.
【請求項2】 請求項1記載の排熱投入型吸収冷暖房機
において、暖房運転時に上記冷媒ポンプの吐出冷媒液を
第1の切換え弁を介して上記温熱源用冷媒熱交換器に導
き、上記温熱源用冷媒熱交換器で発生する冷媒蒸気を上
記蒸発器に導くことを特徴とする排熱投入型吸収冷暖房
機。
2. The exhaust heat input type absorption cooler / heater according to claim 1, wherein the refrigerant fluid discharged from the refrigerant pump is guided to the heat source refrigerant heat exchanger via a first switching valve during a heating operation. An exhaust heat input type absorption cooling / heating machine, wherein refrigerant vapor generated in a refrigerant heat exchanger for a heat source is guided to the evaporator.
【請求項3】 請求項1記載の排熱投入型吸収冷暖房機
において、暖房運転時に上記蒸発器の冷媒液を第2の切
換え弁を介して上記温熱源用冷媒熱交換器に導き、上記
温熱源用冷媒熱交換器で発生する冷媒蒸気を上記蒸発器
に導くことを特徴とする排熱投入型吸収冷暖房機。
3. The exhaust heat input type absorption cooling and heating device according to claim 1, wherein the refrigerant liquid of the evaporator is guided to the heating source refrigerant heat exchanger via a second switching valve during a heating operation, and An exhaust heat input type absorption cooling / heating machine, wherein refrigerant vapor generated in a source refrigerant heat exchanger is guided to the evaporator.
【請求項4】 請求項1記載の排熱投入型吸収冷暖房機
において、暖房運転時に上記冷媒ポンプの吐出冷媒液お
よび上記蒸発器の冷媒液を同時にそれぞれ別の弁を介し
て上記温熱源用冷媒熱交換器に導き、上記温熱源用冷媒
熱交換器で発生する冷媒蒸気を上記蒸発器に導くことを
特徴とする排熱投入型吸収冷暖房機。
4. The exhaust heat input type absorption cooler / heater according to claim 1, wherein the refrigerant for the heat source is discharged simultaneously with the refrigerant liquid discharged from the refrigerant pump and the refrigerant liquid from the evaporator through a separate valve during a heating operation. A waste heat input type absorption cooling and heating machine, wherein the cooling medium is guided to a heat exchanger, and refrigerant vapor generated in the refrigerant heat exchanger for a heat source is guided to the evaporator.
【請求項5】 請求項1乃至4の内の1つに記載の排熱
投入型吸収冷暖房機において、上記温熱源用冷媒熱交換
器で発生する冷媒蒸気を逆Uの字形の配管を介して上記
蒸発器に導くことを特徴とする排熱投入型吸収冷暖房
機。
5. The exhaust heat input type absorption cooler / heater according to claim 1, wherein the refrigerant vapor generated in the heat source refrigerant heat exchanger is passed through an inverted U-shaped pipe. An exhaust heat input type absorption cooling / heating machine, which is guided to the evaporator.
【請求項6】 上記吸収器から上記高温再生器及び低温
再生器へ送られる稀溶液と上記外部の温熱源から供給さ
れる流体との間で熱交換を行うための温熱源用溶液熱交
換器を付加したことを特徴とする排熱投入型吸収冷暖房
機。
6. A solution heat exchanger for a heat source for performing heat exchange between a dilute solution sent from the absorber to the high temperature regenerator and the low temperature regenerator and a fluid supplied from the external heat source. An exhaust heat input type absorption air conditioner characterized by adding.
【請求項7】 請求項6に記載の排熱投入型吸収冷暖房
機において、上記温熱源用溶液熱交換器と上記温熱源用
冷媒熱交換器が一体に形成されていることを特徴とする
排熱投入型吸収冷暖房機。
7. The exhaust heat input type absorption cooling and heating apparatus according to claim 6, wherein the solution heat exchanger for the heat source and the refrigerant heat exchanger for the heat source are integrally formed. Heat input absorption air conditioner.
【請求項8】 請求項6または7に記載の排熱投入型吸
収冷暖房機において、上記温熱源から供給される流体が
上記温熱源用溶液熱交換器で熱交換を行ったのち上記温
熱源用冷媒熱交換器で熱交換するように構成したことを
特徴とする排熱投入型吸収冷暖房機。
8. The exhaust heat input type absorption air conditioner according to claim 6, wherein the fluid supplied from the heat source exchanges heat with the solution heat exchanger for the heat source, and then the fluid is supplied to the heat source. An exhaust heat input type absorption cooling and heating machine characterized in that heat is exchanged in a refrigerant heat exchanger.
【請求項9】 請求項6または7に記載の排熱投入型吸
収冷暖房機において、上記温熱源から供給される流体が
上記温熱源用溶液熱交換器と上記温熱源用冷媒熱交換器
へ互いに独立な二つの弁を介して並列に供給されるよう
に構成したことを特徴とする排熱投入型吸収冷暖房機。
9. The exhaust heat input type absorption air conditioner according to claim 6, wherein the fluid supplied from the heat source is supplied to the solution heat exchanger for the heat source and the refrigerant heat exchanger for the heat source. An exhaust heat input type absorption cooling / heating machine characterized in that it is configured to be supplied in parallel via two independent valves.
【請求項10】 請求項9に記載の排熱投入型吸収冷暖
房機を運転するための運転方法であって、暖房時には上
記温熱源用冷媒熱交換器のみ、冷房時には上記温熱源用
溶液熱交換器のみを上記温熱源と接続するように上記二
つの弁の開閉制御を行うことを特徴とする排熱投入型吸
収冷暖房機の運転方法。
10. An operation method for operating the exhaust heat input type absorption cooling / heating machine according to claim 9, wherein the heating heat source refrigerant heat exchanger is used only for heating, and the heat source solution heat exchange is used for cooling. And controlling the opening and closing of the two valves so that only the heater is connected to the heat source.
JP9009647A 1997-01-22 1997-01-22 Waste heat inputted type absorption cooling and heating machine and operating method thereof Pending JPH10205907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9009647A JPH10205907A (en) 1997-01-22 1997-01-22 Waste heat inputted type absorption cooling and heating machine and operating method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9009647A JPH10205907A (en) 1997-01-22 1997-01-22 Waste heat inputted type absorption cooling and heating machine and operating method thereof

Publications (1)

Publication Number Publication Date
JPH10205907A true JPH10205907A (en) 1998-08-04

Family

ID=11726019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9009647A Pending JPH10205907A (en) 1997-01-22 1997-01-22 Waste heat inputted type absorption cooling and heating machine and operating method thereof

Country Status (1)

Country Link
JP (1) JPH10205907A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009002539A (en) * 2007-06-19 2009-01-08 Daikin Ind Ltd Exhaust-heat driving type absorption refrigerating device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009002539A (en) * 2007-06-19 2009-01-08 Daikin Ind Ltd Exhaust-heat driving type absorption refrigerating device

Similar Documents

Publication Publication Date Title
JP2000018762A (en) Absorption refrigerating machine
JP3865346B2 (en) Absorption chiller / heater
KR100526084B1 (en) Absorption Refrigerator
JPH10205907A (en) Waste heat inputted type absorption cooling and heating machine and operating method thereof
JP2002098436A (en) Freezing apparatus
JPS5812507B2 (en) Hybrid type absorption heat pump
KR100493598B1 (en) Absorption Type Refrigerator
JP4079570B2 (en) Control method of absorption refrigerator
KR0177714B1 (en) Gax cycle absorptive refrigerator
JP2000088391A (en) Absorption refrigerating machine
KR100858778B1 (en) Apparatus for supplying warm water during cooling mode or operation stop in absorption water cooler and heater
JPH1038402A (en) Steam-heating absorption type water cooler/heater
JPH06235558A (en) Absorption type heat pump
JP2645948B2 (en) Hot water absorption absorption chiller / heater
JPS5829818Y2 (en) absorption refrigerator
JPS6148064B2 (en)
KR0137580Y1 (en) Cooling apparatus of liquid refrigerator absorptive airconditioner
JP3811632B2 (en) Waste heat input type absorption refrigerator
KR0177715B1 (en) Hot water supplying absorptive type refrigerator
JPH01244257A (en) Double-effect absorption water cooler/heater
JP2543258B2 (en) Absorption heat source device
JP3851837B2 (en) Waste heat recovery type absorption refrigerator
JPH0754209B2 (en) Absorption cold / hot water device and its operating method
JPH01310272A (en) Absorption type air conditioner
JPS60117065A (en) Heat recovery device for absorption cold and hot water machine