KR0177715B1 - Hot water supplying absorptive type refrigerator - Google Patents

Hot water supplying absorptive type refrigerator Download PDF

Info

Publication number
KR0177715B1
KR0177715B1 KR1019960022402A KR19960022402A KR0177715B1 KR 0177715 B1 KR0177715 B1 KR 0177715B1 KR 1019960022402 A KR1019960022402 A KR 1019960022402A KR 19960022402 A KR19960022402 A KR 19960022402A KR 0177715 B1 KR0177715 B1 KR 0177715B1
Authority
KR
South Korea
Prior art keywords
operating point
heat exchanger
refrigerant
condenser
evaporator
Prior art date
Application number
KR1019960022402A
Other languages
Korean (ko)
Other versions
KR980003333A (en
Inventor
이동진
Original Assignee
구자홍
엘지전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 구자홍, 엘지전자주식회사 filed Critical 구자홍
Priority to KR1019960022402A priority Critical patent/KR0177715B1/en
Publication of KR980003333A publication Critical patent/KR980003333A/en
Application granted granted Critical
Publication of KR0177715B1 publication Critical patent/KR0177715B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B15/00Sorption machines, plant, or systems, operating continuously, e.g. absorption type
    • F25B15/006Sorption machines, plant, or systems, operating continuously, e.g. absorption type with cascade operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B15/00Sorption machines, plant, or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plant, or systems, operating continuously, e.g. absorption type without inert gas
    • F25B15/04Sorption machines, plant, or systems, operating continuously, e.g. absorption type without inert gas the refrigerant being ammonia evaporated from aqueous solution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/19Refrigerant outlet condenser temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Abstract

최고온 발생기와, 흡수기와, 정류기와, 응축기와 증발기를 갖는 흡수식 사이클에 있어서, 상기 최고온발생기(7)의 증기의 상기 정류기(2)로의 흐름을 개폐하는 밸브(13)와, 상기 흡수기로 부터의 온수가 흐르는 열교환기(15)와, 상기 열교환기와 연결된 제2응축기(16)와, 상기 제2응축기와 연결된 감압밸브(17)와, 상기 감압밸브와 연결되고 발생된 냉매증기를 흡수기에 공급하는 제2증발기(18)를 구비하고 상기 제2증발기의 냉매증기와 열교환된 열교환유체가 제1응축기의 냉각수로 공급되는 흡수식사이클.An absorption cycle having a super-warm generator, an absorber, a rectifier, a condenser and an evaporator, comprising: a valve (13) for opening and closing the flow of vapor of the super-warm generator (7) to the rectifier (2) A second condenser 16 connected to the heat exchanger, a pressure reducing valve 17 connected to the second condenser, and a refrigerant vapor connected to the pressure reducing valve and generated, And a heat exchange fluid, which is heat-exchanged with the refrigerant vapor of the second evaporator, is supplied to the cooling water of the first condenser.

Description

고온수 공급 흡수식 냉난방 장치High temperature water supply absorption type heating and cooling device
제1도는 종래의 암모니아 흡수식 사이클도.Figure 1 shows a conventional ammonia absorption cycle diagram.
제2도는 제1도의 사이클의 압력-온도선도.2 is a pressure-temperature diagram of the cycle of FIG. 1; FIG.
제3도는 본 발명에 따른 흡수식 냉난방 장치 구성도.FIG. 3 is a view showing the construction of the absorption type cooling and heating apparatus according to the present invention. FIG.
제4도는 제3도의 사이클의 압력-온도선도.4 is a pressure-temperature diagram of the cycle of FIG.
* 도면의 주요부분에 대한 부호의 설명DESCRIPTION OF THE REFERENCE NUMERALS
4 : 열교환기 7 : 최고온발생기4: heat exchanger 7: peak generator
8 : 제1응축기 10 : 제1증발기8: first condenser 10: first evaporator
5 : 온수열교환기 16 : 제2응축기5: hot water heat exchanger 16: second condenser
18 : 제2증발기18: Second evaporator
본 발명은 흡수식 사이클에 관한 것으로서, 특히 냉각수의 일부를 고온수로 공급하는 흡수식사이클의 효율을 향상하도록 한 흡수식 사이클에 관한 것이다.The present invention relates to an absorption cycle, and more particularly to an absorption cycle in which the efficiency of an absorption cycle for feeding a portion of cooling water to hot water is enhanced.
종래의 암모니아 흡수식 사이클에서는, 제1도 및 제2도에 도시된 바와 같이, 먼저, 고온 고압의 열교환기(7: 최고온발생기)내부로 압송된 작동점5의 저온 중간농도 용액은, 이 조건하에서 버너와 같은 고열원으로 부터의 열전달에 의해 작동점 10의 비교적 저농도의 암모니아 냉매증기와, 작동점6의 저농도 고온암모니아용액으로 분리되어 유출된다.(발생과정)In the conventional ammonia absorption cycle, as shown in FIG. 1 and FIG. 2, first, the low-temperature intermediate concentration solution of the operating point 5, which is fed into the high-temperature high-pressure heat exchanger 7 The ammonia refrigerant vapor at the operating point 10 and the low-concentration ammonia solution at the operating point 6 are separated and discharged by the heat transfer from the high-temperature source such as the burner.
작동점6의 약용액은 열교환기(6)를 거치는 동안 상대 열교환유체인 작동점4의 저온 강용액을, 암모니아증기를 발생시키면서, 작동점5의 중간농도까지 가열한다. 이때 열교환기(6)를 거쳐 유출하는 작동점6의 고온 약용액은 작동점7까지 온도가 떨어진다.The weak solution of working point 6 heats the low temperature steel solution of working point 4, which is the relative heat exchange fluid, to the intermediate concentration of operating point 5, while generating ammonia vapor, while passing through heat exchanger 6. At this time, the high temperature weak solution of the operating point 6 flowing out through the heat exchanger 6 is lowered to the operating point 7.
밸브(11)를 거친 작동점7의 고온약용액은 저압상태에서 작동점3의 저온 강용액과 열교환기(4)에서 열교환하여 열교환기(10: 증발기)로부터의 암모니아증기를 흡수하면서 작동점8까지 온도가 하강한다.The high temperature weak solution of the operating point 7 through the valve 11 exchanges heat with the low temperature steel solution at the operating point 3 in the low pressure state in the heat exchanger 4 and absorbs the ammonia vapor from the heat exchanger 10 (evaporator) The temperature is lowered.
작동점3의 저온약용액은 반대로 작동점4까지 가열되면서 암모니아증기를 발생한다.(흡수, 발생과정)The cold solution at operating point 3, on the contrary, is heated to operating point 4 to produce ammonia vapor (absorption, generation)
작동점8의 고온약용액은 작동점2의 저온강용액과 열교환하여 열교환기(10)으로 부터의 암모니아증기를 흡수하면서 작동점9까지 온도가 하강한다.The hot solution at operating point 8 is heat exchanged with the cold solution at operating point 2 to absorb the ammonia vapor from heat exchanger 10 and the temperature drops to operating point 9. [
작동점2의 저온강용액은 반대로 작동점3까지 가열된다.(흡수과정)The low temperature steel solution at operating point 2 is reversely heated to operating point 3. (Absorption process)
작동점9의 저온강용액은 열교환기(1)를 거치면서 작동점 23의 저온 열교환유체와 열교환하여 열교환기(10)으로부터의 암모니아증기를 흡수하면서 작동점1까지 온도가 하강한다. 작동점23의 저온 열교환유체는 작동점24까지 가열된다.(흡수과정)The low temperature steel solution at the operating point 9 undergoes heat exchange with the low temperature heat exchange fluid of the operating point 23 while passing through the heat exchanger 1 and absorbs the ammonia vapor from the heat exchanger 10 to lower the temperature to the operating point 1. The low temperature heat exchange fluid of the operating point 23 is heated to the operating point 24. (Absorption process)
작동점1의 저온강용액은 상기 과정을 통해 발생된 냉매증기와 열교환기(2: 정류기)에서 열교환하면서 작동점2까지 가열되는 동안 냉매증기로부터 암모니아농도가 낮은 응축액을 (작동점 12)추출한다. 따라서, 이러한 정류과정을 통하여 작동점 13의 냉매증기는 순도가 높아지게 된다.(정류과정)The low-temperature steel solution at operating point 1 extracts a condensate (operating point 12) having a low ammonia concentration from the refrigerant vapor while heating up to operating point 2 while exchanging heat between the refrigerant vapor generated through the above-described process and the heat exchanger (2: rectifier) . Accordingly, the purity of the refrigerant vapor at the operating point 13 is increased through the rectification process (rectification process).
작동점13의 고온고농도의 냉매증기는 열교환기(8: 응축기)을 거치는 동안 작동점21의 저온 열교환유체에 열을 방출하면서 응축되어 작동점14의 저온냉매액이 된다.(방열응축과정)The refrigerant vapor at the high temperature and high concentration of the operating point 13 is condensed while discharging heat to the low temperature heat exchange fluid of the operating point 21 while passing through the heat exchanger 8 (condenser) to become the low temperature refrigerant at the operating point 14. (Heat Radiation Condensation Process)
작동점14의 냉매액은 열교환기(9)을 거치면서 열교환기(10: 증발기)로부터 유출되는 작동점17의 저온 냉매증기와 열교환하면서 작동점15의 더욱 낮은 온도까지 냉각된다.(열교환과정)The refrigerant liquid at the operating point 14 is cooled to a lower temperature of the operating point 15 while exchanging heat with the low temperature refrigerant vapor at the operating point 17 flowing out of the heat exchanger 10 (evaporator) through the heat exchanger 9. (Heat exchange process)
작동점15의 냉매액은 밸브(12)를 거치면서 감압되어 저압상태에서 열교환기(10)을 지나는 작동점19의 고온 열교환유체와 열교환하여 증발한다.The refrigerant liquid at the operating point 15 is reduced in pressure through the valve 12 and is heat-exchanged with the high temperature heat exchange fluid at the operating point 19 passing through the heat exchanger 10 at a low pressure to evaporate.
작동점19의 열교환유체는 저압의 냉매의 비등점이 매우 낮으므로 충분히 냉각되어 작동점20의 저온까지 냉각된다.The heat exchange fluid at the operating point 19 is cooled sufficiently to a low temperature of the operating point 20 because the boiling point of the low pressure refrigerant is very low.
작동점17의 냉매증기는 열교환기(9)를 거쳐 더욱 가열되어 작동점18의 상태로 열교환기(1)(3)(4)에 공급된다.(증발과정)The refrigerant vapor at the operating point 17 is further heated via the heat exchanger 9 and supplied to the heat exchangers 1, 3 and 4 in the state of the operating point 18. (Evaporation Process)
그런데, 이러한 종래의 암모니아 지에이엑스(GAX)흡수식 사이클에서는 냉각수를 온수로 사용하는 경우는 기존시스템을 개조할 필요가 없으며 작동방법도 동일하나, 온수의 온도(냉각수의 온도)와 시스템의 성능이 반비례하는 특성 때문에 충분히 높은 온도를 얻기 위해서는 시스템의 성능저하라는 큰 문제점이 있었다.However, in the conventional ammonia GAX absorption cycle, when the cooling water is used as the hot water, there is no need to modify the existing system and the operation method is the same, but the temperature of the hot water (the temperature of the cooling water) There is a problem in that the performance of the system is deteriorated in order to obtain a sufficiently high temperature.
본 발명은 이러한 종래기술의 문제점을 해결하기 위한 것으로, 최고온 발생기의 증기의 응축열과 흡수기의 흡수열을 회수하여 성능을 향상시킬 수 있는 흡수식사이클의 제공을 목적으로 한다.SUMMARY OF THE INVENTION It is an object of the present invention to provide an absorption cycle capable of recovering condensation heat of steam of a super-warm generator and absorption heat of an absorber to improve performance.
상기 목적을 달성하기 위하여 본 발명의 흡수식 사이클은, 최고온 발생기와, 흡수기와, 정류기와, 응축기와 증발기를 갖는 흡수식 사이클에 있어서, 상기 최고온발생기의 증기의 상기 정류기로의 흐름을 개폐하는 밸브와, 상기 흡수기로 부터의 온수가 흐르는 열교환기와, 상기 열교환기와 연결된 제2응축기와, 상기 제2응축기와 연결된 감압밸브와, 상기 감압밸브와 연결되고 발생된 냉매증기를 흡수기에 공급하는 제2증발기를 구비하고, 상기 제2증발기의 냉매증기와 열교환된 열교환유체가 제1응축기의 냉각수로 공급되는 것을 특징으로 한다.In order to achieve the above object, the absorption cycle of the present invention is an absorption cycle having a super-warm generator, an absorber, a rectifier, a condenser and an evaporator, wherein the absorption cycle includes a valve for opening and closing the flow of the vapor of the super- A second condenser connected to the heat exchanger, a pressure reducing valve connected to the second condenser, and a second evaporator connected to the pressure reducing valve and supplying the generated refrigerant vapor to the absorber, And a heat exchange fluid, which is heat-exchanged with the refrigerant vapor of the second evaporator, is supplied to the cooling water of the first condenser.
이하, 첨부도면에 의거하여 본 발명의 흡수식 사이클을 상세히 설명한다.Hereinafter, the absorption cycle of the present invention will be described in detail with reference to the accompanying drawings.
제3도는 본 발명의 흡수식 사이클을 나타낸 것으로, 최고온 발생기와, 흡수기와, 정류기와, 응축기와 증발기를 갖는 흡수식 사이클에 있어서, 상기 최고온발생기(7)의 증기의 상기 정류기(2)로의 흐름을 개폐하는 밸브(13)와, 상기 흡수기로 부터의 온수가 흐르는 열교환기(15)와, 상기 열교환기와 연결된 제2응축기(16)와, 상기 제2응축기와 연결된 감압밸브(17)와, 상기 감압밸브와 연결되고 발생된 냉매증기를 흡수기에 공급하는 제2증발기(18)를 구비하고 있다.Figure 3 shows the absorption cycle of the present invention wherein in the absorption cycle with the highest temperature generator, the absorber, the rectifier, the condenser and the evaporator, the flow of vapor of the highest temperature generator 7 to the rectifier 2 A second condenser 16 connected to the heat exchanger, a pressure reducing valve 17 connected to the second condenser, and a second condenser 16 connected to the second condenser. And a second evaporator (18) connected to the pressure reducing valve and supplying the generated refrigerant vapor to the absorber.
한편, 상기 제2증발기(18)의 냉매증기와 열교환된 열교환유체는 제1응축기(8)의 냉각수로 공급된다.On the other hand, the heat exchange fluid, which is heat-exchanged with the refrigerant vapor of the second evaporator (18), is supplied to the cooling water of the first condenser (8).
한편, 상기 제2증발기(18)의 냉매증기와 제2응축기(16)의 액냉매를 열교환하는 제2냉매열교환기(17)이 상기 제2응축기(16)와 상기 감압밸브(14)사이에 설치되어 있다.A second refrigerant heat exchanger 17 for exchanging the refrigerant vapor of the second evaporator 18 and the liquid refrigerant of the second condenser 16 is provided between the second condenser 16 and the pressure reducing valve 14 Is installed.
이러한 본 발명의 흡수식 사이클의 작용을 제3도 및 제4도에 의거하여 설명한다.The operation of the absorption cycle of the present invention will be described with reference to FIGS. 3 and 4. FIG.
먼저, 온수 공급시가 아닌 경우에는 밸브(13)이 개방되고 감압밸브(14)가 폐쇄되어, 발생기(7), 정류기(2), 응축기(8), 증발기(10), 흡수기의 종래의 사이클이 운전된다.When the hot water is not supplied, the valve 13 is opened and the pressure reducing valve 14 is closed so that the generator 7, the rectifier 2, the condenser 8, the evaporator 10, Is operated.
한편, 온수공급시에는 밸브(13)이 폐쇄되고, 감압밸브(14)가 개방되어 다음과 같은 운전이 개시된다.On the other hand, when the hot water is supplied, the valve 13 is closed, the pressure reducing valve 14 is opened, and the following operation is started.
고온 고압의 열교환기(7: 최고온발생기)내부로 압송된 작동점5의 저온 중간농도 용액은, 이 조건하에서 버너와 같은 고열원으로 부터의 열전달에 의해 작동점10의 비교적 저농도의 암모니아 냉매증기와, 작동점6의 저농도 고온암모니아용액으로 분리되어 유출된다.The low-temperature intermediate-concentration solution of the operating point 5 fed into the high-temperature and high-pressure heat exchanger (7: the highest-temperature generator) is heated to a relatively low concentration of the ammonia refrigerant vapor at the operating point 10 by heat transfer from a high- And the low-concentration high-temperature ammonia solution at the operating point 6, and flows out.
상기 저농도 냉매증기는 열교환기(15)의 내부를 흐르는 작동점25의 온수에 의해 정류되어 온도가 감소하고 (작동점13'), 암모니아농도가 낮은 응축액은 작동점12'를 거쳐 열교환기(7)로 회수된다. 작동점25의 온수는 온도가 상승한 작동점26의 상태로 나간다.The low-concentration refrigerant vapor is rectified by the hot water of the operating point 25 flowing through the inside of the heat exchanger 15 to decrease the temperature (operating point 13 ') and the condensate having a low ammonia concentration passes through the heat exchanger 7 ). The hot water at the operating point 25 goes to the operating point 26 where the temperature rises.
작동점13'의 냉매증기는 열교환기(16: 제2응축기)에서 작동점26의 온수에 의해 응축되고(작동점14') 그 응축열에 의해 온수는 작동점27의 고온으로 가열된다.The refrigerant vapor of the operating point 13 'is condensed by the hot water of the operating point 26 (operating point 14') in the heat exchanger 16 (second condenser) and the hot water is heated to the high temperature of the operating point 27 by its condensation heat.
작동점14'의 응축액은 열교환기(18)로부터의 작동점17'의 증기와, 열교환기(17)에서, 열교환하여 더욱 냉각되고(작동점15') 응축액에 의해 가열된 작동점17'의 증기 작동점18'의 상태로 열교환기(1)(3)(4)에 공급된다.The condensate of the operating point 14 'is further cooled by heat exchange with the vapor of the operating point 17' from the heat exchanger 18 in the heat exchanger 17 (operating point 15 ') and the working point 17' And is supplied to the heat exchangers 1, 3 and 4 in the state of the steam operating point 18 '.
작동점15'의 응축액은 감압밸브(14)에 의해 감압되어 저압상태에서 열교환기(18: 제2증발기)의 내부를 흐르는 작동점28의 열교환유체에 의해 가열 증발되어 작동점17'의 증기가 된다.The condensate of the operating point 15 'is depressurized by the pressure reducing valve 14 and is heated and evaporated by the heat exchange fluid of the operating point 28 flowing through the inside of the heat exchanger 18 (second evaporator) under the low pressure state so that the vapor of the operating point 17' do.
작동점28의 열교환유체는 증발에 의해 온도가 하강한 상태(작동점29)에서 열교환기(8: 제1응축기)을 냉각하는 작동점21의 냉각수로 공급된다.The heat exchange fluid of the operating point 28 is supplied to the cooling water of the operating point 21 which cools the heat exchanger 8 (first condenser) in a state where the temperature is lowered by evaporation (operating point 29).
작동점6의 약용액은 열교환기(6)를 거치는 동안 상대 열교환유체인 작동점4의 저온 강용액을, 암모니아증기로 발생시키면서, 작동점5의 중간농도까지 가열한다.The weak solution of the operating point 6 heats the low temperature steel solution of the operating point 4, which is the relative heat exchange fluid, through the heat exchanger 6 to the intermediate concentration of the operating point 5 while generating ammonia vapor.
이때, 열교환기(6)를 거쳐 유출하는 작동점6의 고온 약용액은 작동점7까지 온도가 떨어진다.At this time, the high-temperature weak solution of the operating point 6 flowing out through the heat exchanger 6 drops in temperature to the operating point 7. [
밸브(11)를 거친 작동점7의 고온약용액은 저압상태에서 작동점3의 저온 강용액과 열교환기(4)에서 열교환하여 열교환기(10: 증발기)로부터의 암모니아증기를 흡수하면서 작동점8까지 온도가 하강한다.The high temperature weak solution of the operating point 7 through the valve 11 exchanges heat with the low temperature steel solution at the operating point 3 in the low pressure state in the heat exchanger 4 and absorbs the ammonia vapor from the heat exchanger 10 (evaporator) The temperature is lowered.
작동점3의 저온약용액은 반대로 작동점4까지 가열되면서 암모니아증기를 발생한다.(흡수, 발생과정)The cold solution at operating point 3, on the contrary, is heated to operating point 4 to produce ammonia vapor (absorption, generation)
작동점8의 고온약용액은 작동점2의 저온강용액과 열교환하여 열교환기(10)으로 부터의 암모니아증기를 흡수하면서 작동점9까지 온도가 하강한다.The hot solution at operating point 8 is heat exchanged with the cold solution at operating point 2 to absorb the ammonia vapor from heat exchanger 10 and the temperature drops to operating point 9. [
작동점2의 저온강용액은 반대로 작동점3까지 가열된다.(흡수과정)The low temperature steel solution at operating point 2 is reversely heated to operating point 3. (Absorption process)
작동점9의 저온강용액은 열교환기(1)를 거치면서 작동점23의 저온 열교환유체와 열교환하여 열교환기(10)으로부터의 암모니아증기를 흡수하면서 작동점1까지 온도가 하강한다. 작동점23의 저온 열교환유체는 작동점24까지 가열되어 온수로 사용되기 위하여 열교환기(15)의 온수입구(작동점25)에 연결된다.The low temperature steel solution at the operating point 9 undergoes heat exchange with the low temperature heat exchange fluid of the operating point 23 while passing through the heat exchanger 1 and absorbs the ammonia vapor from the heat exchanger 10 to lower the temperature to the operating point 1. The low temperature heat exchange fluid of the operating point 23 is heated to the operating point 24 and connected to the hot water inlet (operating point 25) of the heat exchanger 15 for use as hot water.
작동점1의 저온강용액은 상기 과정을 통해 발생된 냉매증기와 열교환기(2: 정류기)에서 열교환하면서 작동점2까지 가열되는 동안 냉매증기로부터 암모니아농도가 낮은 응축액을(작동점12)추출한다. 따라서, 이러한 정류과정을 통하여 작동점13의 냉매증기는 순도가 높아지게 된다.(정류과정)The low-temperature steel solution at operating point 1 extracts a condensate (operating point 12) having a low ammonia concentration from the refrigerant vapor while heating up to operating point 2 while exchanging heat between the refrigerant vapor generated through the above-described process and the heat exchanger (2: rectifier) . Accordingly, the purity of the refrigerant vapor at the operating point 13 is increased through the rectification process (rectification process).
작동점13의 고온 고농도의 냉매증기는 열교환기(8: 응축기)을 거치는 동안 열교환기(18)에서 공급된 작동점21의 저온 열교환유체에 열을 방출하면서 응축되어 작동점14의 저은냉매액이 된다.(방열응축과정)The refrigerant vapor at the high temperature and high concentration of the operating point 13 is condensed while discharging heat to the low temperature heat exchange fluid of the operating point 21 supplied from the heat exchanger 18 through the heat exchanger (condenser) 8, (Heat condensation process)
작동점14의 냉매액은 열교환기(9)을 거치면서 열교환기(10: 증발기)로부터 유출되는 작동점17의 저온 냉매증기와 열교환하면서 작동점15의 더욱 낮은 온도까지 냉각된다.(열교환과정)The refrigerant liquid at the operating point 14 is cooled to a lower temperature of the operating point 15 while exchanging heat with the low temperature refrigerant vapor at the operating point 17 flowing out of the heat exchanger 10 (evaporator) through the heat exchanger 9. (Heat exchange process)
작동점15의 냉매액은 밸브(12)를 거치면서 감압되어 저압상태에서 열교환기(10)을 지나는 작동점19의 고온 열교환유체와 열교환하여 증발한다. 작동점19의 열교환유체는 저압의 냉매의 비등점이 매우 낮으므로 충분히 냉각되어 작동점20의 저온까지 냉각된다. 작동점17의 냉매증기는 열교환기(9)를 거쳐 더욱 가열되어 작동점18의 상태로 열교환기(1)(3)(4)에 공급된다.(증발과정)The refrigerant liquid at the operating point 15 is reduced in pressure through the valve 12 and is heat-exchanged with the high temperature heat exchange fluid at the operating point 19 passing through the heat exchanger 10 at a low pressure to evaporate. The heat exchange fluid at the operating point 19 is cooled sufficiently to a low temperature of the operating point 20 because the boiling point of the low pressure refrigerant is very low. The refrigerant vapor at the operating point 17 is further heated via the heat exchanger 9 and supplied to the heat exchangers 1, 3 and 4 in the state of the operating point 18. (Evaporation Process)
이상, 설명한 바와 같이, 본 발명에 따르면, 제2응축기에서 발생된 낮은 농도의 응축액을 제2증발기의 저압에서 증발시켜 제1응축기의 열교환유체의 온도를 낮추어 제1응축기의 성능을 향상시켜 시스템효율을 향상시킬 수 있다.As described above, according to the present invention, the performance of the first condenser is improved by lowering the temperature of the heat exchange fluid of the first condenser by evaporating the low concentration condensate generated in the second condenser at the low pressure of the second evaporator, Can be improved.
또한, 제2응축기의 증기 응축온도가 높아 고온을 얻는데에 유리한 효과가 있다.Further, the vapor condensation temperature of the second condenser is high, which is advantageous in obtaining a high temperature.

Claims (1)

  1. 최고온 발생기와 흡수기, 정류기, 응축기 및 증발기를 갖는 흡수식 냉난방기에 있어서, 상기 최고온 발생기에서 발생한 증기의 상기 정류기로의 흐름을 개폐하는 밸브(13)에 의해 온수 공급시의 유로는 통상의 개폐 밸브인 밸브(13)가 폐쇄되고 유로 단면적 보다 상당히 작은 밸브 개도를 갖고 있어 양단에 압력 손실을 유발시킬 수 있는 감압 밸브(14)가 개방되어 최고온발생기에서 증발되는 일부냉매 증기가 열교환기(15) 및 제2응축기를 거치면서 흡수기(1)로부터 유출된 상대적으로 저온인 냉각수와 열교환기(15)와 제2응축기에서 차례로 냉매 증기와 열교환하여 냉매 증기는 응축되고 냉각수는 고온의 온수로 유출되며, 제2응축기에서 응축되어 유출된 액냉매는 제2냉매 열교환기와 감압 밸브(14)를 거쳐 제2증발기로 유입되어 상대적으로 고온인 냉수와 열교환하여 증발한 뒤 다시 제2냉매 열교환기 액냉매 유로의 반대 유로를 거쳐 열교환하여 증발한 뒤 다시 제2냉매 열교환기 액냉매 유로의 반대 유로를 거쳐 열교환기(1, 4)로 유입되어 상기 열교환기에서 통상의 정류기(2)와 응축기(8), 냉매 열교환기(9), 증발기(10)를 거쳐 유입된 나머니 냉매 증기와 합류되어 지게 도는 유로를 구성하고, 제2증발기에서 유출된 냉수는 통상의 제1응축기(8)의 냉각수 유로로 흐르는 유로를 구성하며, 온수 공급을 하지 않을 때에는 밸브(13)가 개방되고 감압 밸브(14)가 폐쇄되어 최고온발생기에서 증발한 냉매 증기 전부가 통상의 사이클 유로 구성에 따라 운전되는 것을 특징으로 하는 고온수 공급 흡수식 냉난방 장치.In an absorption type air conditioner having a super warm generator, an absorber, a rectifier, a condenser and an evaporator, the flow path for supplying hot water by the valve (13) for opening / closing the flow of the steam generated in the super- In valve 13 is closed and the valve opening degree is considerably smaller than the cross-sectional area of the flow path, so that the pressure reducing valve 14 capable of causing a pressure loss at both ends is opened so that some refrigerant vapor evaporated in the highest- And the second condenser, heat exchanges with the refrigerant vapor in the heat exchanger (15) and the second condenser in turn, so that the refrigerant vapor condenses and the cooling water flows out into the hot water of the high temperature, The liquid refrigerant condensed in the second condenser flows out through the second refrigerant heat exchanger and the pressure reducing valve (14) to the second evaporator, and flows into the second evaporator Exchanges and evaporates, and is again heat-exchanged through the opposite flow path of the second refrigerant heat exchanger liquid refrigerant flow path to be evaporated and then flows into the heat exchanger (1, 4) through the opposite flow path of the second refrigerant heat exchanger liquid refrigerant flow path, The refrigerant vapor refrigerant flowed through the common rectifier 2 and the condenser 8, the refrigerant heat exchanger 9 and the evaporator 10 constitutes a flow path to flow into the cold water evaporator 10, When the hot water is not supplied, the valve 13 is opened, the pressure reducing valve 14 is closed, and all of the refrigerant vapor evaporated in the highest-temperature generator is discharged to the outside And is operated in accordance with a normal cycle flow path configuration.
KR1019960022402A 1996-06-19 1996-06-19 Hot water supplying absorptive type refrigerator KR0177715B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960022402A KR0177715B1 (en) 1996-06-19 1996-06-19 Hot water supplying absorptive type refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960022402A KR0177715B1 (en) 1996-06-19 1996-06-19 Hot water supplying absorptive type refrigerator

Publications (2)

Publication Number Publication Date
KR980003333A KR980003333A (en) 1998-03-30
KR0177715B1 true KR0177715B1 (en) 1999-04-15

Family

ID=19462542

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960022402A KR0177715B1 (en) 1996-06-19 1996-06-19 Hot water supplying absorptive type refrigerator

Country Status (1)

Country Link
KR (1) KR0177715B1 (en)

Also Published As

Publication number Publication date
KR980003333A (en) 1998-03-30

Similar Documents

Publication Publication Date Title
US6993933B2 (en) Absorption refrigerating machine
KR101208459B1 (en) Organic rankine cycle turbo generation system generating cooling air and hot water
CN104374117B (en) Water chilling unit and control method
KR0177719B1 (en) Gax absorptive type cycle apparatus
KR0177715B1 (en) Hot water supplying absorptive type refrigerator
KR0177714B1 (en) Gax cycle absorptive refrigerator
KR100493598B1 (en) Absorption Type Refrigerator
KR0132391B1 (en) Absorptive refrig
KR0177716B1 (en) Gax absorptive type refrigerator vapor purifying method
JP3865346B2 (en) Absorption chiller / heater
KR101045463B1 (en) Absorption type refrigerator having the solution heating condensor
JP3729102B2 (en) Steam-driven double-effect absorption chiller / heater
KR200154287Y1 (en) Absorption type air conditioner
KR0113790Y1 (en) Absorption refrigerating machine
KR0139277Y1 (en) Absorptive refrigerator
JP4288799B2 (en) Waste heat input type absorption refrigeration system
KR0184216B1 (en) Ammonia absorptive refrigerator
KR0137580Y1 (en) Cooling apparatus of liquid refrigerator absorptive airconditioner
JPH0697127B2 (en) Air-cooled absorption heat pump
KR200288627Y1 (en) a device of cooling and heating water to suction method for high degree of efficiency
KR0136205Y1 (en) Absorptive type airconditioner
JP2005106408A (en) Absorption type freezer
JP3429906B2 (en) Absorption refrigerator
SU86422A1 (en) Air handling unit
JP2865305B2 (en) Absorption refrigerator

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20070918

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee