JPH09236350A - Absorption refrigerating machine - Google Patents

Absorption refrigerating machine

Info

Publication number
JPH09236350A
JPH09236350A JP8042737A JP4273796A JPH09236350A JP H09236350 A JPH09236350 A JP H09236350A JP 8042737 A JP8042737 A JP 8042737A JP 4273796 A JP4273796 A JP 4273796A JP H09236350 A JPH09236350 A JP H09236350A
Authority
JP
Japan
Prior art keywords
heat exchanger
solution
low temperature
high temperature
heat source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8042737A
Other languages
Japanese (ja)
Other versions
JP3283178B2 (en
Inventor
Nobuyuki Takeda
伸之 武田
Satoshi Miyake
聡 三宅
Yumi Takeuchi
由実 竹内
Masahiro Oka
雅博 岡
Masaru Edera
勝 江寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Tokyo Gas Co Ltd
Original Assignee
Hitachi Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Tokyo Gas Co Ltd filed Critical Hitachi Ltd
Priority to JP04273796A priority Critical patent/JP3283178B2/en
Publication of JPH09236350A publication Critical patent/JPH09236350A/en
Application granted granted Critical
Publication of JP3283178B2 publication Critical patent/JP3283178B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the crystallization of a salute in a waste heat feed type absorption refrigerating machine by preventing a solution in a hot heat source heat exchanger from being concentrated. SOLUTION: In this absorption type refrigerating machine, in which a hot heat source heat exchanger 8 for heat exchange between a fluid supplied from a hot heat source outside the absorption type refrigerating machine and a dilute solution of an absorbent flowing through a dilute solution line is provided in the dilute solution line of an absorbent including a high temperature solution heat exchanger 18 and a low temperature solution heat exchanger 17, inlet and outlet side pipes 19, 20 connected to the heat exchanger 8 are formed at a level below the exchanger 8 so that water vapor generated in the dilute solution line in the exchanger 8 is prevented from going out of the line and hence saturated vapor pressure is provided to prevent the concentration of the solution.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、吸収式冷凍機に係
り、とくに他の装置からの排熱をその熱源の一部として
有効利用するようにした排熱投入型の吸収冷凍機に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption refrigerating machine, and more particularly to an exhaust heat input type absorption refrigerating machine in which exhaust heat from another device is effectively used as a part of its heat source.

【0002】[0002]

【従来の技術】コージェネレーション・システム等から
30℃〜120℃程度の温水又は低圧蒸気が発生する
が、このような温熱源を有効利用するようにした吸収冷
凍機が開発されている。この吸収冷凍機では、温熱源を
なるべく効率よく利用し、かつその利用にあたっては、
吸収冷凍機配管内での溶液の結晶等が生じないようにす
る必要がある。
2. Description of the Related Art Although hot water or low-pressure steam of about 30 ° C. to 120 ° C. is generated from a cogeneration system or the like, an absorption refrigerator having an effective use of such a heat source has been developed. In this absorption refrigerator, the heat source is used as efficiently as possible, and in using it,
It is necessary to prevent crystallization of the solution in the absorption refrigerator piping.

【0003】[0003]

【発明が解決しようとする課題】本出願人の一方は先に
そのような排熱投入型の吸収冷凍機を提案した(特願平
6−73428)。その吸収冷凍機の動作を図7を用い
て以下に説明する。図7において、冷水、冷却水、冷
媒、溶液の流れの方向を矢印で示す。蒸発器1は約百分
の一気圧に保たれており、この中で冷媒2(水)は冷媒
配管13に具備された冷媒ポンプ3により、冷水が流通
する蒸発器伝熱管4上にスプレーされ、冷水の熱を奪い
蒸発して冷却効果が発生する。蒸発した冷媒蒸気は、冷
却水により低圧に保たれた吸収器5へ流れ込み、こゝで
吸収器伝熱管6上にスプレーされる臭化リチウム水溶液
に吸収され、臭化リチウム水溶液は稀釈される。この稀
溶液は、稀溶液配管14に具備された溶液ポンプ7によ
り低温溶液熱交換器17および温熱源用熱交換器8を経
て、一部は高温溶液熱交換器18を経て高温再生器9
へ、残りは低温再生器10へ送り込まれる。
One of the present applicants has previously proposed such an exhaust heat input type absorption refrigerator (Japanese Patent Application No. 6-73428). The operation of the absorption refrigerator will be described below with reference to FIG. 7. In FIG. 7, the flow directions of cold water, cooling water, a refrigerant, and a solution are indicated by arrows. The evaporator 1 is maintained at about one-hundredth atmospheric pressure, in which the refrigerant 2 (water) is sprayed by a refrigerant pump 3 provided in a refrigerant pipe 13 onto an evaporator heat transfer tube 4 through which cold water flows. , Takes the heat of cold water and evaporates to generate a cooling effect. The evaporated refrigerant vapor flows into the absorber 5 kept at a low pressure by the cooling water, is absorbed by the lithium bromide aqueous solution sprayed on the absorber heat transfer tube 6, and the lithium bromide aqueous solution is diluted. This dilute solution is passed through a low temperature solution heat exchanger 17 and a heat exchanger 8 for a heat source by a solution pump 7 provided in a dilute solution pipe 14, and a part thereof is passed through a high temperature solution heat exchanger 18 to a high temperature regenerator 9
And the rest are sent to the low temperature regenerator 10.

【0004】高温再生器9では、バーナ等の直接熱源1
1により加熱されて蒸気と濃溶液に分離されて、濃溶液
は高温溶液熱交換器18および低温溶液熱交換器17を
経て、濃溶液配管15により吸収器5内の吸収器伝熱管
6上にスプレーされる。また、低温再生器10では、稀
溶液は高温再生器9で発生した蒸気により加熱されて蒸
気と濃溶液に分離され、濃溶液は低温溶液熱交換器17
を経て、濃溶液配管15により吸収器5内の吸収器伝熱
管6上にスプレーされる。一方、低温再生器10で溶液
を加熱し、凝縮したドレンは凝縮器12へ導かれる。ま
た、低温再生器10で発生した冷媒蒸気は凝縮器12で
凝縮する。このようにしてできた凝縮冷媒(液冷媒)は
凝縮冷媒配管16を経て蒸発器1へ導かれ、スプレーさ
れてサイクルを一巡する。
In the high temperature regenerator 9, a direct heat source 1 such as a burner is used.
It is heated by 1 and separated into steam and concentrated solution, and the concentrated solution passes through a high temperature solution heat exchanger 18 and a low temperature solution heat exchanger 17, and then is concentrated solution pipe 15 onto the absorber heat transfer tube 6 in the absorber 5. Is sprayed. In the low-temperature regenerator 10, the dilute solution is heated by the steam generated in the high-temperature regenerator 9 to be separated into a vapor and a concentrated solution.
Is sprayed onto the absorber heat transfer tube 6 in the absorber 5 by the concentrated solution pipe 15. On the other hand, the drain condensed by heating the solution in the low temperature regenerator 10 is guided to the condenser 12. The refrigerant vapor generated in the low-temperature regenerator 10 is condensed in the condenser 12. The condensed refrigerant (liquid refrigerant) thus produced is guided to the evaporator 1 via the condensed refrigerant pipe 16, and is sprayed to make a cycle.

【0005】このような排熱投入型吸収冷凍機におい
て、特に冷凍停止中に排熱が入ると、溶液ポンプから来
る溶液が濃縮されてしまい、配管内で結晶が生じ易い。
そのような配管内に生じた結晶を溶解除去するための従
来方法としては、吸収剤の溶液ラインに付随して、U字
シール配管を設けるものがあった。このU字シール配管
は吸収剤の溶液ライン中に溶質の結晶が生じて詰まった
場合のバイパスで、発生器からの高温の溶液を吸収剤の
溶液のラインに流して結晶を除去するための装置である
(高田秋一著、吸収式冷凍機とヒート・ポンプ、第45
頁)。
In such an exhaust heat input type absorption refrigerating machine, when exhaust heat enters especially while refrigeration is stopped, the solution coming from the solution pump is concentrated and crystals are likely to be generated in the pipe.
As a conventional method for dissolving and removing the crystals generated in such a pipe, there has been one in which a U-shaped seal pipe is provided along with the absorbent solution line. This U-shaped seal pipe is a bypass in case the solute crystals are clogged in the absorbent solution line and is a device for removing the crystals by flowing the high temperature solution from the generator to the absorbent solution line. By Shuichi Takada, Absorption Refrigerator and Heat Pump, No. 45
page).

【0006】しかしこの方法では、生じた溶質の結晶を
溶かすのに数時間を、時には数日要することがあり、そ
の間吸収冷凍機の能力が低下し、場合によっては冷凍が
全く不可能になるという問題があった。
However, according to this method, it may take several hours, sometimes several days, to dissolve the crystals of the solute formed, and during that time, the capacity of the absorption refrigerating machine is lowered, and in some cases, refrigeration becomes completely impossible. There was a problem.

【0007】本発明の目的は、生じた溶質の結晶を除去
するのではなく、溶質の結晶化を未然に防止する排熱投
入型の吸収冷凍機を提供することである。
It is an object of the present invention to provide an exhaust heat input type absorption refrigerating machine which does not remove the solute crystals formed but prevents the solute from crystallizing.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明による吸収冷凍機に係る第1の発明は、蒸発
器、吸収器、凝縮器、高温再生器、低温再生器、高温溶
液熱交換器、低温溶液熱交換器、溶液ポンプ、冷媒ポン
プ、およびこれらを作動的に結合する配管系で構成さ
れ、かつ上記高温溶液熱交換器と上記低温溶液熱交換器
を含む吸収剤の稀溶液ラインに、吸収冷凍機外部の温熱
源から供給される流体と上記稀溶液ラインを流れる稀溶
液の間で熱交換を行なうための温熱源用熱交換器が介装
されている吸収冷凍機において、上記温熱源用熱交換器
に接続されている入口側および出口側の稀溶液配管の経
路が上記温熱源用熱交換器より下方に形成されているこ
とを要旨とする。
In order to achieve the above object, a first invention relating to an absorption refrigerator according to the present invention is an evaporator, an absorber, a condenser, a high temperature regenerator, a low temperature regenerator, and a high temperature solution. A rare absorbent containing a heat exchanger, a low temperature solution heat exchanger, a solution pump, a refrigerant pump, and a piping system operatively connecting these, and including the high temperature solution heat exchanger and the low temperature solution heat exchanger. In an absorption refrigerator in which a heat exchanger for a heat source for exchanging heat between a fluid supplied from a heat source outside the absorption refrigerator and the dilute solution flowing in the dilute solution line is provided in the solution line The gist of the present invention is that the paths of the dilute solution pipes on the inlet side and the outlet side connected to the heat exchanger for warm heat source are formed below the heat exchanger for warm heat source.

【0009】また、上記目的を達成するために、本発明
の吸収冷凍機に係る第2の発明の構成によれば、蒸発
器、吸収器、凝縮器、高温再生器、低温再生器、高温溶
液熱交換器、低温溶液熱交換器、溶液ポンプ、冷媒ポン
プ、およびこれらを作動的に結合する配管系で構成さ
れ、かつ上記高温溶液熱交換器と上記低温溶液熱交換器
を含む吸収剤の稀溶液ラインに、吸収冷凍機外部の温熱
源から供給される流体と上記稀溶液ラインを流れる稀溶
液の間で熱交換を行なうための温熱源用熱交換器が介装
されている吸収冷凍機において、上記温熱源用熱交換器
に接続されている入口側および出口側の稀溶液配管の経
路がU字形に形成されている。
In order to achieve the above object, according to the configuration of the second invention relating to the absorption refrigerator of the present invention, the evaporator, the absorber, the condenser, the high temperature regenerator, the low temperature regenerator, and the high temperature solution. A rare absorbent containing a heat exchanger, a low temperature solution heat exchanger, a solution pump, a refrigerant pump, and a piping system operatively connecting these, and including the high temperature solution heat exchanger and the low temperature solution heat exchanger. In an absorption refrigerator in which a heat exchanger for a heat source for exchanging heat between a fluid supplied from a heat source outside the absorption refrigerator and the dilute solution flowing in the dilute solution line is provided in the solution line The paths of the dilute solution pipes on the inlet side and the outlet side connected to the heat exchanger for the heat source are formed in a U shape.

【0010】さらに、上記目的を達成するための本発明
による吸収冷凍機に係る第3の発明においては、蒸発
器、吸収器、凝縮器、高温再生器、低温再生器、高温溶
液熱交換器、低温溶液熱交換器、溶液ポンプ、冷媒ポン
プ、およびこれらを作動的に結合する配管系で構成さ
れ、かつ上記高温溶液熱交換器と上記低温溶液熱交換器
を含む吸収剤の稀溶液ラインに、吸収冷凍機外部の温熱
源から供給される流体と上記稀溶液ラインを流れる稀溶
液の間で熱交換を行なうための温熱源用熱交換器が介装
されている吸収冷凍機において、上記温熱源用熱交換
器、上記高温溶液熱交換器および上記低温溶液熱交換器
が一体に形成され、かつ上記温熱源用熱交換器が上記高
温溶液熱交換器と上記低温溶液熱交換器よりも高い位置
に設けられている。
Further, in the third invention relating to the absorption refrigerator according to the present invention for achieving the above object, an evaporator, an absorber, a condenser, a high temperature regenerator, a low temperature regenerator, a high temperature solution heat exchanger, A low temperature solution heat exchanger, a solution pump, a refrigerant pump, and a piping system that operatively couples these, and to a dilute solution line of an absorbent containing the high temperature solution heat exchanger and the low temperature solution heat exchanger, An absorption refrigerator in which a heat exchanger for a heat source for exchanging heat between a fluid supplied from a heat source outside the absorption refrigerator and the dilute solution flowing in the dilute solution line is interposed, Heat exchanger, the high temperature solution heat exchanger and the low temperature solution heat exchanger are integrally formed, and the hot heat source heat exchanger is located at a position higher than the high temperature solution heat exchanger and the low temperature solution heat exchanger. It is provided in.

【0011】[0011]

【発明の実施の形態】本発明は、以上の構成を備えてい
るので、吸収冷凍機停止中に吸収冷凍機外部の温熱源の
不具合により、上記温熱源用熱交換器内の溶液が温めら
れて水蒸気が発生しても、配管内の溶液柱により蒸気が
上記温熱源用熱交換器の外に流出することはない。その
ため上記溶液の過度の濃縮を防ぐことができる。以上の
ことにより溶質の結晶化を防止することができる。排熱
源から温熱源用熱交換器8に至る配管を弁等を用いて閉
じれば、溶液の濃縮は起らないが、排熱の利用度が低下
するという不都合となる。
BEST MODE FOR CARRYING OUT THE INVENTION Since the present invention has the above-mentioned structure, the solution in the heat exchanger for the heat source is warmed due to a malfunction of the heat source outside the absorption refrigerator while the absorption refrigerator is stopped. Even if steam is generated, the vapor does not flow out of the heat exchanger for the heat source due to the solution column in the pipe. Therefore, excessive concentration of the above solution can be prevented. As described above, crystallization of solute can be prevented. If the pipe from the exhaust heat source to the heat exchanger 8 for the heat source is closed using a valve or the like, the solution will not be concentrated but the utilization of the exhaust heat will be reduced.

【0012】第1の発明の実施の形態を図1を用いて説
明する。図1中の全ての符号は図7中の対応する符号と
同じ部分を表わし、その基本的な動作は特願平6−73
428に記載された装置の動作と同じである。第一の発
明の特徴は図1において温熱源用熱交換器8から出てい
る上記稀溶液配管19と20の経路が上記温熱源用熱交
換器8よりも下方に形成されていることである。このよ
うな構成の実施の形態の作用を説明する。吸収冷凍機停
止中に排熱源の不具合により上記温熱源用熱交換器8の
中の溶液が温められて、水蒸気が発生しても、上記温熱
源用熱交換器8に接続されている上記稀溶液配管19と
20が上記温熱源用熱交換器8よりも下方に形成されて
いるため、発生した水蒸気が上記稀溶液配管19と20
の溶液液柱により上記温熱源用熱交換器8の外部に流出
することはなく、したがって管内に溜った蒸気の圧力が
飽和圧力に達すると、それ以降はもはや蒸発が起らず、
上記温熱源用熱交換器8の中の溶液は濃縮しないので、
結晶化を未然に防ぐことができる。
An embodiment of the first invention will be described with reference to FIG. All the reference numerals in FIG. 1 represent the same portions as the corresponding reference numerals in FIG. 7, and the basic operation thereof is Japanese Patent Application No. 6-73.
The operation of the device described in 428 is the same. The feature of the first invention is that, in FIG. 1, the paths of the dilute solution pipes 19 and 20 extending from the heat exchanger 8 for heat source are formed below the heat exchanger 8 for heat source. . The operation of the embodiment having such a configuration will be described. Even if the solution in the heat exchanger 8 for heat source is warmed due to a malfunction of the exhaust heat source while the absorption chiller is stopped and water vapor is generated, the rare case connected to the heat exchanger 8 for heat source is rare. Since the solution pipes 19 and 20 are formed below the heat exchanger 8 for the heat source, the generated water vapor generates the dilute solution pipes 19 and 20.
Does not flow out of the heat exchanger 8 for the heat source by the solution liquid column, and therefore, when the pressure of the vapor accumulated in the pipe reaches the saturation pressure, no further evaporation occurs thereafter,
Since the solution in the heat exchanger 8 for the heat source is not concentrated,
Crystallization can be prevented in advance.

【0013】つぎに、第一の発明の他の実施の形態を図
2を用いて説明する。図2は一般的な排熱投入型吸収冷
凍機の冷凍サイクルの他の例を示す系統図である。図
中、図1と同一の符号を打たれた部分は同等部分を示
す。図2に示す例では、図1の例と較べて、臭化リチウ
ム水溶液の循環方法が異なる。すなわち、吸収器5で稀
釈された稀溶液は、稀溶液配管14に具備された溶液ポ
ンプ7により低温溶液熱交換器17、温熱源用熱交換器
8、高温溶液熱交換器18を経て全量が高温再生器9へ
導かれ、濃縮されたのち、高温溶液熱交換器18を経て
低温再生器10へ送り込まれ、さらに濃縮されたのち、
低温溶液熱交換器17を経て、濃溶液配管15により吸
収器5内の吸収器伝熱管6上にスプレーされる。各部の
働きと発明の特徴部分の構成および作用は図1の説明と
同じである。
Next, another embodiment of the first invention will be described with reference to FIG. FIG. 2 is a system diagram showing another example of a refrigeration cycle of a general exhaust heat input type absorption refrigerator. In the figure, the parts designated by the same reference numerals as those in FIG. 1 are equivalent parts. The example shown in FIG. 2 differs from the example in FIG. 1 in the method of circulating the lithium bromide aqueous solution. That is, the dilute solution diluted in the absorber 5 is entirely passed through the low temperature solution heat exchanger 17, the heat source heat exchanger 8 and the high temperature solution heat exchanger 18 by the solution pump 7 provided in the dilute solution pipe 14. After being guided to the high temperature regenerator 9 and concentrated, it is sent to the low temperature regenerator 10 via the high temperature solution heat exchanger 18 and further concentrated.
After passing through the low temperature solution heat exchanger 17, it is sprayed onto the absorber heat transfer tube 6 in the absorber 5 by the concentrated solution pipe 15. The function of each part and the configuration and operation of the characteristic part of the invention are the same as those described with reference to FIG.

【0014】つぎに、第二の発明の実施の形態を図3を
用いて説明する。図3は図1と同様の排熱投入型吸収冷
凍機の冷凍サイクルの系統図である。図中、図1と同一
の符号を打たれたものは同等部分を示し、各部の働きは
図1の説明と同じである。第二の発明の特徴部分は、図
3において温熱源用熱交換器8に接続されている稀溶液
配管21と22の経路がU字形に形成されていることで
ある。このような構成の実施の形態の作用を説明する。
図1に示す実施の形態と同様に上記温熱源用熱交換器8
に水蒸気が発生した場合、上記稀溶液配管21と22が
液シールの役目をして、発生した水蒸気は上記温熱源用
熱交換器8から流出しない。そのため、上記温熱源用熱
交換器8の中の溶液は濃縮しないので、結晶化を未然に
防ぐことができる。
Next, an embodiment of the second invention will be described with reference to FIG. FIG. 3 is a system diagram of a refrigeration cycle of the exhaust heat input type absorption refrigeration machine similar to FIG. In the figure, the parts designated by the same reference numerals as those in FIG. 1 indicate the same parts, and the functions of the respective parts are the same as those explained in FIG. The characteristic part of the second invention is that the paths of the dilute solution pipes 21 and 22 connected to the heat exchanger 8 for the heat source in FIG. 3 are formed in a U shape. The operation of the embodiment having such a configuration will be described.
Similar to the embodiment shown in FIG. 1, the heat exchanger 8 for the heat source
When water vapor is generated, the diluted solution pipes 21 and 22 serve as a liquid seal, and the generated water vapor does not flow out from the heat source heat exchanger 8. Therefore, since the solution in the heat exchanger 8 for the heat source is not concentrated, crystallization can be prevented in advance.

【0015】つぎに、第二の発明の他の実施の形態を図
4を用いて説明する。図4は図2と同様の排熱投入型吸
収冷凍機の冷凍サイクルの系統図である。図中、図2と
同一の符号を打たれた部分は同等部分を示し、各部の働
きは図2の説明と同じである。また、発明の特徴部分の
構成および作用は図3の説明と同じである。
Next, another embodiment of the second invention will be described with reference to FIG. FIG. 4 is a system diagram of a refrigeration cycle of the exhaust heat input type absorption refrigerator similar to FIG. In the figure, the parts designated by the same reference numerals as those in FIG. 2 indicate the same parts, and the operation of each part is the same as that of the description of FIG. The configuration and operation of the characteristic part of the invention are the same as those described with reference to FIG.

【0016】つぎに、第三の発明の実施の形態を図5を
用いて説明する。図5は図1と同様の排熱投入型吸収冷
凍機の冷凍サイクルの系統図である。図中、図1と同一
符号を打たれた部分は同等部分を示し、各部の働きは図
1の説明と同じである。第三の発明の特徴部分は、図5
において温熱源用熱交換器8は低温溶液熱交換器17お
よび高温溶液熱交換器18と一体に形成され、かつそれ
らよりも高い位置に設けられていることである。このよ
うな構成の実施の形態の作用を説明する。図1の実施の
形態と同様に上記温熱源用熱交換器8に水蒸気が発生し
た場合、低温溶液熱交換器17と高温溶液熱交換器18
が液シールの役目をして、発生した水蒸気は上記温熱源
用熱交換器8から流出しない。そのため、上記温熱源用
熱交換器8の中の溶液は濃縮しないので、結晶化を未然
に防ぐことができる。
Next, an embodiment of the third invention will be described with reference to FIG. FIG. 5 is a system diagram of a refrigeration cycle of an exhaust heat input type absorption refrigerator similar to that in FIG. In the figure, the parts designated by the same reference numerals as those in FIG. 1 indicate the same parts, and the functions of the respective parts are the same as those explained in FIG. The characteristic part of the third invention is shown in FIG.
In the above, the heat exchanger 8 for the heat source is integrally formed with the low temperature solution heat exchanger 17 and the high temperature solution heat exchanger 18, and is provided at a position higher than them. The operation of the embodiment having such a configuration will be described. Similar to the embodiment of FIG. 1, when steam is generated in the heat source heat exchanger 8, the low temperature solution heat exchanger 17 and the high temperature solution heat exchanger 18
As a liquid seal, the generated steam does not flow out from the heat source heat exchanger 8. Therefore, since the solution in the heat exchanger 8 for the heat source is not concentrated, crystallization can be prevented in advance.

【0017】つぎに、第三の発明の他の実施の形態を図
6を用いて説明する。図6は図2と同様の排熱投入型吸
収冷凍機の冷凍サイクルの系統図である。図中、図2と
同一の符号を打たれた部分は同等部分を示し、各部の働
きは図2の説明と同じである。また、発明の特徴部分の
構成および作用は図5の説明と同じである。
Next, another embodiment of the third invention will be described with reference to FIG. FIG. 6 is a system diagram of a refrigeration cycle of the exhaust heat input type absorption refrigeration machine similar to FIG. In the figure, the parts designated by the same reference numerals as those in FIG. 2 indicate the same parts, and the operation of each part is the same as that of the description of FIG. The configuration and operation of the characteristic part of the invention are the same as those described with reference to FIG.

【0018】[0018]

【発明の効果】本発明の吸収冷凍機は、単純な配管構成
で溶液の濃縮を防ぐことができるので、溶質の結晶化を
未然に防止することができる。
Since the absorption refrigerator of the present invention can prevent the concentration of the solution with a simple piping structure, the solute can be prevented from crystallizing in advance.

【図面の簡単な説明】[Brief description of drawings]

【図1】第一の発明の一つの実施の形態を説明する図で
ある。
FIG. 1 is a diagram illustrating an embodiment of the first invention.

【図2】第一の発明の他の一つの実施の形態を説明する
図である。
FIG. 2 is a diagram illustrating another embodiment of the first invention.

【図3】第二の発明の一つの実施の形態を説明する図で
ある。
FIG. 3 is a diagram illustrating one embodiment of the second invention.

【図4】第二の発明の他の一つの実施の形態を説明する
図である。
FIG. 4 is a diagram for explaining another embodiment of the second invention.

【図5】第三の発明の一つの実施の形態を説明する図で
ある。
FIG. 5 is a diagram illustrating an embodiment of a third invention.

【図6】第三の発明の他の一つの実施の形態を説明する
図である。
FIG. 6 is a diagram for explaining another embodiment of the third invention.

【図6】第三の発明の他の一つの実施の形態を説明する
図である。
FIG. 6 is a diagram for explaining another embodiment of the third invention.

【図7】先の特許出願に記載された一つの実施の形態を
説明する図である。
FIG. 7 is a diagram illustrating one embodiment described in the previous patent application.

【符号の説明】[Explanation of symbols]

1 蒸発器 3 冷媒ポンプ 5 吸収器 7 溶液ポンプ 8 温熱源用熱交換器 9 高温再生器 10 低温再生器 12 凝縮器 17 低温溶液熱交換器 18 高温溶液熱交換器 19、20、21、22 稀溶液配管 1 Evaporator 3 Refrigerant Pump 5 Absorber 7 Solution Pump 8 Heat Exchanger for Heat Source 9 High Temperature Regenerator 10 Low Temperature Regenerator 12 Condenser 17 Low Temperature Solution Heat Exchanger 18 High Temperature Solution Heat Exchanger 19, 20, 21, 22 Rare Solution piping

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年7月16日[Submission date] July 16, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Correction target item name] Brief description of drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図面の簡単な説明】[Brief description of drawings]

【図1】第一の発明の一つの実施の形態を説明する図で
ある。
FIG. 1 is a diagram illustrating an embodiment of the first invention.

【図2】第一の発明の他の一つの実施の形態を説明する
図である。
FIG. 2 is a diagram illustrating another embodiment of the first invention.

【図3】第二の発明の一つの実施の形態を説明する図で
ある。
FIG. 3 is a diagram illustrating one embodiment of the second invention.

【図4】第二の発明の他の一つの実施の形態を説明する
図である。
FIG. 4 is a diagram for explaining another embodiment of the second invention.

【図5】第三の発明の一つの実施の形態を説明する図で
ある。
FIG. 5 is a diagram illustrating an embodiment of a third invention.

【図6】第三の発明の他の一つの実施の形態を説明する
図である。
FIG. 6 is a diagram for explaining another embodiment of the third invention.

【図7】先の特許出願に記載された一つの実施の形態を
説明する図である。
FIG. 7 is a diagram illustrating one embodiment described in the previous patent application.

【符号の説明】 1 蒸発器 3 冷媒ポンプ 5 吸収器 7 溶液ポンプ 8 温熱源用熱交換器 9 高温再生器 10 低温再生器 12 凝縮器 17 低温溶液熱交換器 18 高温溶液熱交換器 19、20、21、22 稀溶液配管[Explanation of Codes] 1 Evaporator 3 Refrigerant Pump 5 Absorber 7 Solution Pump 8 Heat Exchanger for Heat Source 9 High Temperature Regenerator 10 Low Temperature Regenerator 12 Condenser 17 Low Temperature Solution Heat Exchanger 18 High Temperature Solution Heat Exchanger 19, 20 , 21, 22 Dilute solution piping

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹内 由実 埼玉県大宮市三橋2−425−702 (72)発明者 岡 雅博 東京都江戸川区南小岩7−14−7 (72)発明者 江寺 勝 東京都足立区花畑7−10−4−209 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yumi Takeuchi 2-425-702 Mitsuhashi, Omiya City, Saitama Prefecture (72) Inventor Masahiro Oka 7-14-7 Minamikoiwa, Edogawa-ku, Tokyo (72) Inventor Katsuji Edera Tokyo 7-10-4-209 Hanabata, Adachi-ku, Tokyo

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 蒸発器、吸収器、凝縮器、高温再生器、
低温再生器、高温溶液熱交換器、低温溶液熱交換器、溶
液ポンプ、冷媒ポンプ、およびこれらを作動的に結合す
る配管系で構成され、かつ上記高温溶液熱交換器と上記
低温溶液熱交換器を含む吸収剤の稀溶液ラインに、吸収
冷凍機外部の温熱源から供給される流体と上記稀溶液ラ
インを流れる稀溶液の間で熱交換を行なうための温熱源
用熱交換器が介装されている吸収冷凍機において、上記
温熱源用熱交換器に接続されている入口側および出口側
の稀溶液配管の経路が上記温熱源用熱交換器より下方に
形成されていることを特徴とする吸収冷凍機。
An evaporator, an absorber, a condenser, a high-temperature regenerator,
A low temperature regenerator, a high temperature solution heat exchanger, a low temperature solution heat exchanger, a solution pump, a refrigerant pump, and a piping system operatively connecting these, and the high temperature solution heat exchanger and the low temperature solution heat exchanger. The heat exchanger for the heat source for exchanging heat between the fluid supplied from the heat source outside the absorption refrigerator and the dilute solution flowing through the dilute solution line is provided in the dilute solution line of the absorbent containing In the absorption refrigerating machine, the paths of the inlet side and outlet side dilute solution pipes connected to the heat exchanger for the heat source are formed below the heat exchanger for the heat source. Absorption refrigerator.
【請求項2】 稀溶液が、溶液ポンプによって、低温溶
液熱交換器および温熱源用熱交換器を経て、一部は高温
溶液熱交換器を経て高温再生器へ、残りは低温再生器へ
送り込まれることを特徴とする、請求項1記載の吸収冷
凍機。
2. The dilute solution is sent by a solution pump through a low temperature solution heat exchanger and a heat exchanger for a heat source, a part through a high temperature solution heat exchanger to a high temperature regenerator, and the rest to a low temperature regenerator. The absorption refrigerator according to claim 1, wherein
【請求項3】 低温溶液熱交換器および温熱源用熱交換
器を経て溶液ポンプによって送られる稀溶液の全量が高
温再生器へ送り込まれることを特徴とする、請求項1記
載の吸収冷凍機。
3. The absorption refrigerator according to claim 1, wherein the entire amount of the dilute solution sent by the solution pump through the low temperature solution heat exchanger and the heat source heat exchanger is sent to the high temperature regenerator.
【請求項4】 蒸発器、吸収器、凝縮器、高温再生器、
低温再生器、高温溶液熱交換器、低温溶液熱交換器、溶
液ポンプ、冷媒ポンプ、およびこれらを作動的に結合す
る配管系で構成され、かつ上記高温溶液熱交換器と上記
低温溶液熱交換器を含む吸収剤の稀溶液ラインに、吸収
冷凍機外部の温熱源から供給される流体と上記稀溶液ラ
インを流れる稀溶液の間で熱交換を行なうための温熱源
用熱交換器が介装されている吸収冷凍機において、上記
温熱源用熱交換器に接続されている入口側および出口側
の稀溶液配管の経路がU字形に形成されていることを特
徴とする吸収冷凍機。
4. An evaporator, an absorber, a condenser, a high temperature regenerator,
A low temperature regenerator, a high temperature solution heat exchanger, a low temperature solution heat exchanger, a solution pump, a refrigerant pump, and a piping system operatively connecting these, and the high temperature solution heat exchanger and the low temperature solution heat exchanger. The heat exchanger for the heat source for exchanging heat between the fluid supplied from the heat source outside the absorption refrigerator and the dilute solution flowing through the dilute solution line is provided in the dilute solution line of the absorbent containing In the absorption refrigerating machine, the path of the inlet side and outlet side dilute solution pipes connected to the heat exchanger for the heat source is formed in a U shape.
【請求項5】 稀溶液が、溶液ポンプによって、低温溶
液熱交換器および温熱源用熱交換器を経て、一部は高温
溶液熱交換器を経て高温再生器へ、残りは低温再生器へ
送り込まれることを特徴とする、請求項4記載の吸収冷
凍機。
5. The dilute solution is sent by a solution pump through a low temperature solution heat exchanger and a heat source heat source heat exchanger, partly through a high temperature solution heat exchanger to a high temperature regenerator, and the rest to a low temperature regenerator. The absorption refrigerator according to claim 4, wherein
【請求項6】 低温溶液熱交換器および温熱源用熱交換
器を経て溶液ポンプによって送られる稀溶液の全量が高
温再生器へ送り込まれることを特徴とする、請求項4記
載の吸収冷凍機。
6. The absorption refrigerator according to claim 4, wherein the entire amount of the dilute solution sent by the solution pump through the low temperature solution heat exchanger and the heat source heat exchanger is sent to the high temperature regenerator.
【請求項7】 蒸発器、吸収器、凝縮器、高温再生器、
低温再生器、高温溶液熱交換器、低温溶液熱交換器、溶
液ポンプ、冷媒ポンプ、およびこれらを作動的に結合す
る配管系で構成され、かつ上記高温溶液熱交換器と上記
低温溶液熱交換器を含む吸収剤の稀溶液ラインに、吸収
冷凍機外部の温熱源から供給される流体と上記稀溶液ラ
インを流れる稀溶液の間で熱交換を行なうための温熱源
用熱交換器が介装されている吸収冷凍機において、上記
温熱源用熱交換器、上記高温溶液熱交換器および上記低
温溶液熱交換器が一体に形成され、かつ上記温熱源用熱
交換器が上記高温溶液熱交換器と上記低温溶液熱交換器
よりも高い位置にあることを特徴とする吸収冷凍機。
7. An evaporator, an absorber, a condenser, a high temperature regenerator,
A low temperature regenerator, a high temperature solution heat exchanger, a low temperature solution heat exchanger, a solution pump, a refrigerant pump, and a piping system operatively connecting these, and the high temperature solution heat exchanger and the low temperature solution heat exchanger. The heat exchanger for the heat source for exchanging heat between the fluid supplied from the heat source outside the absorption refrigerator and the dilute solution flowing through the dilute solution line is provided in the dilute solution line of the absorbent containing In the absorption refrigerator, the heat source heat exchanger, the high temperature solution heat exchanger and the low temperature solution heat exchanger are integrally formed, and the heat source heat exchanger is the high temperature solution heat exchanger. An absorption refrigerator having a higher position than the low temperature solution heat exchanger.
【請求項8】 稀溶液が、溶液ポンプによって、低温溶
液熱交換器および温熱源用熱交換器を経て、一部は高温
溶液熱交換器を経て高温再生器へ、残りは低温再生器へ
送り込まれることを特徴とする、請求項7記載の吸収冷
凍機。
8. A dilute solution is fed by a solution pump through a low temperature solution heat exchanger and a heat source heat exchanger, part of which goes through a high temperature solution heat exchanger to a high temperature regenerator, and the rest is sent to a low temperature regenerator. The absorption refrigerator according to claim 7, wherein
【請求項9】 低温溶液熱交換器および温熱源用熱交換
器を経て溶液ポンプによって送られる稀溶液の全量が高
温再生器へ送り込まれることを特徴とする、請求項7記
載の吸収冷凍機。
9. The absorption refrigerator according to claim 7, wherein the entire amount of the dilute solution sent by the solution pump via the low temperature solution heat exchanger and the heat source heat exchanger is sent to the high temperature regenerator.
JP04273796A 1996-02-29 1996-02-29 Absorption refrigerator Expired - Lifetime JP3283178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04273796A JP3283178B2 (en) 1996-02-29 1996-02-29 Absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04273796A JP3283178B2 (en) 1996-02-29 1996-02-29 Absorption refrigerator

Publications (2)

Publication Number Publication Date
JPH09236350A true JPH09236350A (en) 1997-09-09
JP3283178B2 JP3283178B2 (en) 2002-05-20

Family

ID=12644353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04273796A Expired - Lifetime JP3283178B2 (en) 1996-02-29 1996-02-29 Absorption refrigerator

Country Status (1)

Country Link
JP (1) JP3283178B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009002539A (en) * 2007-06-19 2009-01-08 Daikin Ind Ltd Exhaust-heat driving type absorption refrigerating device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009002539A (en) * 2007-06-19 2009-01-08 Daikin Ind Ltd Exhaust-heat driving type absorption refrigerating device

Also Published As

Publication number Publication date
JP3283178B2 (en) 2002-05-20

Similar Documents

Publication Publication Date Title
JP3883838B2 (en) Absorption refrigerator
JP2002147885A (en) Absorption refrigerating machine
KR20040092481A (en) Absorption chiller
JP2003343940A (en) Absorption water cooler/heater
JPH09236350A (en) Absorption refrigerating machine
JP2858908B2 (en) Absorption air conditioner
KR100543484B1 (en) Single-and Double-Effect Absorption Refrigerator
JP3444203B2 (en) Absorption refrigerator
JP2837058B2 (en) Absorption type heat pump device
JP2554782B2 (en) Absorption heat pump device
JP4260095B2 (en) Single double effect absorption refrigerator
JPS6122225B2 (en)
JP3285306B2 (en) Waste heat input absorption refrigerator
JP2785154B2 (en) Single effect absorption refrigerator
JPS6122224B2 (en)
JP3404225B2 (en) Absorption refrigerator
JP2787182B2 (en) Single / double absorption chiller / heater
JPH09229510A (en) Absorption refrigenerating machine
JP3173057B2 (en) Absorption heat pump
JP4557468B2 (en) Absorption refrigerator
JP2003139433A (en) Absorption refrigerator
JPS6125986B2 (en)
JPS62242776A (en) Multiple effect absorption refrigerator
JPH03105171A (en) Absorption type water cooling and heating machine
JPH03105170A (en) Absorption type water cooling and heating machine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080301

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080301

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080301

Year of fee payment: 6

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080301

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080301

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090301

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100301

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110301

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130301

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130301

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140301

Year of fee payment: 12

EXPY Cancellation because of completion of term