JP4903743B2 - Absorption refrigerator - Google Patents

Absorption refrigerator Download PDF

Info

Publication number
JP4903743B2
JP4903743B2 JP2008097135A JP2008097135A JP4903743B2 JP 4903743 B2 JP4903743 B2 JP 4903743B2 JP 2008097135 A JP2008097135 A JP 2008097135A JP 2008097135 A JP2008097135 A JP 2008097135A JP 4903743 B2 JP4903743 B2 JP 4903743B2
Authority
JP
Japan
Prior art keywords
temperature
absorber
evaporator
low
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008097135A
Other languages
Japanese (ja)
Other versions
JP2009250485A (en
JP2009250485A5 (en
Inventor
浩伸 川村
達郎 藤居
伸之 武田
章 西口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2008097135A priority Critical patent/JP4903743B2/en
Publication of JP2009250485A publication Critical patent/JP2009250485A/en
Publication of JP2009250485A5 publication Critical patent/JP2009250485A5/ja
Application granted granted Critical
Publication of JP4903743B2 publication Critical patent/JP4903743B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Description

本発明は、吸収式冷凍機に係り、特に、2組の蒸発器と吸収器を有し、高圧側の蒸発器によって低圧側の吸収器を冷却する構成とした2段吸収冷凍機に好適なものである。   The present invention relates to an absorption refrigerator, and particularly suitable for a two-stage absorption refrigerator having two sets of evaporators and absorbers and configured to cool the low-pressure side absorber by the high-pressure side evaporator. Is.

従来技術としては、特開平7−139844号公報(特許文献1)に示された2段吸収式ヒートポンプ装置がある。   As a conventional technique, there is a two-stage absorption heat pump apparatus disclosed in Japanese Patent Laid-Open No. 7-139844 (Patent Document 1).

この特許文献1では、2組の蒸発器と吸収器が設置され、高温側の蒸発器で低温側の吸収器を冷却する構成となっている。低温側吸収器から高温側蒸発器への熱輸送は、ヒートパイプ23を用いた実施例と、高温側蒸発器の液冷媒を低温側吸収器の伝熱管内に循環させて吸収熱を奪い高温側蒸発器内でフラッシュ蒸発させる実施例が示されている。また、低温側の蒸発器の液冷媒を散布する冷媒ポンプの吸込配管と高温側蒸発器の下部とを連通する配管の構成が示されている。   In Patent Document 1, two sets of evaporators and absorbers are installed, and the low temperature side absorber is cooled by the high temperature side evaporator. Heat transport from the low-temperature side absorber to the high-temperature side evaporator is carried out by using the heat pipe 23 and the liquid refrigerant of the high-temperature side evaporator circulating in the heat transfer tube of the low-temperature side absorber to take away the heat of absorption. An example of flash evaporation in a side evaporator is shown. Moreover, the structure of the piping which connects the suction piping of the refrigerant | coolant pump which sprays the liquid refrigerant of the low temperature side evaporator, and the lower part of a high temperature side evaporator is shown.

また、他の従来技術として、特開2000−227262号公報(特許文献2)に示された吸収式冷凍機がある。   As another conventional technique, there is an absorption refrigerator disclosed in Japanese Patent Laid-Open No. 2000-227262 (Patent Document 2).

この特許文献2では、2組の蒸発器と吸収器を有し、低温側蒸発器,低温側吸収器,高温側蒸発器,高温側吸収器の順に隣り合わせて同一の缶体で構成し、高温側蒸発器と低温側吸収器とは蛇腹状の伝熱面を介して隣り合っており、高温側蒸発器の伝熱面の近傍に液冷媒を散布する液冷媒散布手段を、低温側吸収器の伝熱面の近傍に溶液を散布する溶液散布手段をそれぞれ配設し、液冷媒散布手段を溶液散布手段よりも上方に位置させている。   In this patent document 2, it has two sets of evaporators and absorbers, and is composed of the same can body next to each other in the order of a low temperature side evaporator, a low temperature side absorber, a high temperature side evaporator, and a high temperature side absorber. The side evaporator and the low temperature side absorber are adjacent to each other via a bellows-shaped heat transfer surface, and a liquid refrigerant spraying means for spraying liquid refrigerant in the vicinity of the heat transfer surface of the high temperature side evaporator is provided with a low temperature side absorber. Solution spraying means for spraying the solution is disposed in the vicinity of the heat transfer surface, and the liquid refrigerant spraying means is positioned above the solution spraying means.

特開平7−139844号公報JP-A-7-139844 特開2000−227262号公報JP 2000-227262 A

特許文献1では、低温側吸収器から高温側蒸発器への熱輸送に、ヒートパイプによる熱輸送あるいは液冷媒の顕熱による熱輸送を行っているために、熱交換温度差が大きくなり、その分サイクルの汲み上げ温度差が小さくなるという問題があった。   In Patent Document 1, heat transfer from the low-temperature side absorber to the high-temperature side evaporator is performed by heat transport using a heat pipe or sensible heat of a liquid refrigerant, so that the heat exchange temperature difference becomes large. There was a problem that the difference in pumping temperature of the minute cycle was reduced.

他方、前記特許文献2では、高温側蒸発器と低温側吸収器は伝熱面を介して隣接しており、低温側吸収器の吸収熱を高温側蒸発器に直接伝える構成となっており、特許文献1に比較して熱交換温度差を小さくでき、その分サイクルの汲み上げ温度差を大きくすることができる。   On the other hand, in Patent Document 2, the high temperature side evaporator and the low temperature side absorber are adjacent to each other through the heat transfer surface, and the absorption heat of the low temperature side absorber is directly transmitted to the high temperature side evaporator. Compared with Patent Document 1, the heat exchange temperature difference can be reduced, and the pumping temperature difference of the cycle can be increased accordingly.

しかし、この特許文献2では、高温側蒸発器から高温側吸収器への蒸気の流動抵抗については配慮がなされていない。即ち、高温側蒸発器の表面から発生する蒸気は上昇しようとするが、散布装置があるため上方への蒸気の抜けが悪く流動抵抗が大きくなる。この抵抗が大きいと、高温側吸収器での蒸気の吸収効率が悪くなり、高温側吸収器と高温側蒸発器との温度差を大きくなり、その分サイクルの汲み上げ温度差が小さくなるという問題があった。   However, in Patent Document 2, no consideration is given to the flow resistance of steam from the high temperature side evaporator to the high temperature side absorber. That is, the steam generated from the surface of the high-temperature side evaporator tends to rise. However, since there is a spraying device, the upward steam escape is poor and the flow resistance increases. If this resistance is large, the absorption efficiency of the vapor in the high-temperature side absorber will deteriorate, the temperature difference between the high-temperature side absorber and the high-temperature side evaporator will increase, and the pumping temperature difference in the cycle will decrease accordingly. there were.

また、特許文献2では、低温蒸発器と高温吸収器に水平配置された複数の伝熱管を管板に拡管固定する構成について具体的に記載されていない。複数の伝熱管を管板に拡管固定する場合には、伝熱管の拡管部での漏れを防止することが重要である。   Patent Document 2 does not specifically describe a configuration in which a plurality of heat transfer tubes arranged horizontally in a low-temperature evaporator and a high-temperature absorber are expanded and fixed to a tube plate. When expanding and fixing a plurality of heat transfer tubes to the tube plate, it is important to prevent leakage at the expanded portion of the heat transfer tubes.

なお、特許文献2では、蛇腹状の伝熱面からなる低温吸収器と高温蒸発器を配置している複雑な構造であるため、製作が面倒になるという課題もある。   In addition, in patent document 2, since it is the complicated structure which has arrange | positioned the low temperature absorber which consists of a bellows-shaped heat-transfer surface, and a high temperature evaporator, there also exists a subject that manufacture becomes troublesome.

本発明の目的は、汲み上げ温度差を大きくできると共に、伝熱管の拡管部の漏れを防止できる吸収式冷凍機を得ることにある。   An object of the present invention is to obtain an absorption refrigerator that can increase the pumping temperature difference and prevent leakage of the expanded portion of the heat transfer tube.

前述の目的を達成するために、本発明では、低温蒸発器、低温吸収器、高温蒸発器、高温吸収器、再生器、凝縮器、溶液熱交換器、冷媒ポンプ及び溶液循環ポンプを溶液配管及び冷媒配管で接続して溶液・冷媒循環回路を構成し、前記低温吸収器の吸収熱を前記高温蒸発器の蒸発潜熱で冷却する吸収式冷凍機において、前記低温蒸発器、前記低温吸収器、前記高温蒸発器及び前記高温吸収器を一つの缶体で構成し、複数の伝熱管が水平配置された前記低温蒸発器と前記高温吸収器の間に、複数の伝熱管が垂直配置された前記低温吸収器と前記高温蒸発器を配置し、前記垂直配置された複数の伝熱管の外側を前記低温吸収器として前記低温蒸発器に連通させ、前記垂直配置された複数の伝熱管の側を前記高温蒸発器として前記高温吸収器に連通させ、前記複数の垂直な伝熱管の上部から各伝熱管内に冷媒液を供給するように構成し、第一の管板を2枚用いて前記低温蒸発器、前記低温吸収器、前記高温蒸発器及び前記高温吸収器にまたがる缶体両側面を形成し、前記低温蒸発器の複数の伝熱管の両端及び前記高温吸収器の複数の伝熱管の両端を前記2枚の第一の管板に拡管固定したことにある。 In order to achieve the above object, the present invention provides a low temperature evaporator, a low temperature absorber, a high temperature evaporator, a high temperature absorber, a regenerator, a condenser, a solution heat exchanger, a refrigerant pump, and a solution circulation pump as a solution pipe and In an absorption refrigeration machine connected with a refrigerant pipe to form a solution / refrigerant circulation circuit and cooling the absorption heat of the low temperature absorber with the latent heat of evaporation of the high temperature evaporator, the low temperature evaporator, the low temperature absorber, The low temperature where the high temperature evaporator and the high temperature absorber are constituted by one can, and the plurality of heat transfer tubes are vertically arranged between the low temperature evaporator and the high temperature absorber where the plurality of heat transfer tubes are horizontally arranged. the absorber and the high temperature evaporator disposed, said cold evaporator is communicated to said inner side of a plurality of heat transfer tubes said vertically arranged outside the plurality of heat transfer tubes said vertically arranged as the cold absorber Connected to the high-temperature absorber as a high-temperature evaporator The refrigerant liquid is supplied into each heat transfer tube from the upper part of the plurality of vertical heat transfer tubes, and the low-temperature evaporator, the low-temperature absorber, and the high-temperature evaporation are formed using two first tube plates. And both ends of the plurality of heat transfer tubes of the low-temperature evaporator and both ends of the plurality of heat transfer tubes of the high-temperature absorber are formed on the two first tube plates. It is in expanding and fixing.

係る本発明のより好ましい具体的な構成例は次の通りである。
(1)前記第一の管板の板厚を前記缶体を構成する外壁の板厚より厚くしたこと。
(2)前記高温蒸発器及び前記低温吸収器を内外に形成する前記複数の伝熱管の両端を第二の管板に拡管固定し、前記第二の管板の両端を前記第一の管板の内面に溶接固定したこと。
(3)前記第の管板の板厚を前記缶体を構成する外壁の板厚より厚くして前記第一の管板と同じ厚さにした。
A more preferable specific configuration example of the present invention is as follows.
(1) The thickness of the first tube sheet is made thicker than the thickness of the outer wall constituting the can body.
(2) Both ends of the plurality of heat transfer tubes forming the high temperature evaporator and the low temperature absorber are expanded and fixed to a second tube plate, and both ends of the second tube plate are connected to the first tube plate. It was welded and fixed to the inner surface.
(3) The plate thickness of the second tube plate is made thicker than the plate thickness of the outer wall that constitutes the can body so as to be the same thickness as the first tube plate.

本発明によれば、低温吸収器と高温蒸発器の間の熱交換温度差を小さくするとともに、高温蒸発器から高温吸収器までの蒸気流動抵抗を小さくすることができ、汲み上げ温度差を大きくでき、しかも、缶体の変形を防止して拡管部でのシール性を向上でき、拡管部での漏れを防止することができる。   According to the present invention, the heat exchange temperature difference between the low temperature absorber and the high temperature evaporator can be reduced, the steam flow resistance from the high temperature evaporator to the high temperature absorber can be reduced, and the pumping temperature difference can be increased. In addition, deformation of the can body can be prevented to improve the sealing performance at the tube expansion portion, and leakage at the tube expansion portion can be prevented.

以下、本発明の一実施例に係る吸収式冷凍機を図1から図5面を用いて説明する。   Hereinafter, an absorption refrigerator according to an embodiment of the present invention will be described with reference to FIGS. 1 to 5.

図1は本発明の係る吸収式冷凍機のサイクル系統図である。吸収式冷凍機は、再生器1、凝縮器4、高温吸収器6、高温蒸発器14、低温吸収器11、低温蒸発器17、溶液熱交換器25、26、溶液ポンプ22、23、24、冷媒ポンプ20、21などを備えている。ここで、冷媒は水で、溶液は蒸発した水を吸収する臭化リチウム水溶液である。   FIG. 1 is a cycle system diagram of an absorption refrigerator according to the present invention. The absorption refrigerator includes a regenerator 1, a condenser 4, a high temperature absorber 6, a high temperature evaporator 14, a low temperature absorber 11, a low temperature evaporator 17, a solution heat exchanger 25 and 26, a solution pump 22, 23, 24, Refrigerant pumps 20 and 21 are provided. Here, the refrigerant is water, and the solution is an aqueous lithium bromide solution that absorbs evaporated water.

再生器1内には、伝熱管3が備えられ、その伝熱管3の上方に溶液散布装置2が配置されている。凝縮器4の内部には伝熱管5が備えられている。再生器1と凝縮器4とは蒸気通路29を介して接続されている。再生器1の底部は、溶液ポンプ24及び溶液熱交換器26を介して、高温吸収器6の上部に設けられた溶液散布装置7と配管で接続されている。   A heat transfer tube 3 is provided in the regenerator 1, and a solution spraying device 2 is disposed above the heat transfer tube 3. A heat transfer tube 5 is provided inside the condenser 4. The regenerator 1 and the condenser 4 are connected via a steam passage 29. The bottom of the regenerator 1 is connected to the solution spraying device 7 provided on the upper portion of the high-temperature absorber 6 through a pipe via a solution pump 24 and a solution heat exchanger 26.

低温蒸発器17、低温吸収器11、高温蒸発器14及び高温吸収器6は、一つの缶体で構成されている。また、高温蒸発器14及び低温吸収器11は一体型蒸発吸収器10で構成され、低温蒸発器17と高温吸収器6との間に配置されている。高温吸収器6と一体型蒸発吸収器10との間にはエリミネータ9が設けられ、低温蒸発器17と一体型蒸発吸収器10との間にはエリミネータ13が設けられている。一体型蒸発吸収器10は、隔壁30により、高温蒸発器側空間14aと低温吸収器側空間11aとに区画されている。隔壁30は、その上部及び下部に水平に延びる第二の管板52、53を有している。   The low temperature evaporator 17, the low temperature absorber 11, the high temperature evaporator 14, and the high temperature absorber 6 are configured as one can. Further, the high temperature evaporator 14 and the low temperature absorber 11 are constituted by the integrated evaporation absorber 10 and are disposed between the low temperature evaporator 17 and the high temperature absorber 6. An eliminator 9 is provided between the high-temperature absorber 6 and the integrated evaporation absorber 10, and an eliminator 13 is provided between the low-temperature evaporator 17 and the integrated evaporation absorber 10. The integrated evaporator 10 is partitioned by a partition wall 30 into a high temperature evaporator side space 14a and a low temperature absorber side space 11a. The partition wall 30 has second tube plates 52 and 53 extending horizontally at the upper and lower portions thereof.

高温吸収器6の内部にはほぼ水平に配置された複数の伝熱管8が配置され、高温吸収器6の下部には溶液タンク33が設けられている。溶液タンク33の底部は、溶液ポンプ23、溶液熱交換器25及び配管を介して、低温吸収器5の上部に設けられた溶液散布装置12と接続されている。   A plurality of heat transfer tubes 8 arranged substantially horizontally are arranged inside the high temperature absorber 6, and a solution tank 33 is provided below the high temperature absorber 6. The bottom of the solution tank 33 is connected to the solution spraying device 12 provided on the upper part of the low-temperature absorber 5 through the solution pump 23, the solution heat exchanger 25, and piping.

高温蒸発器14は、ほぼ垂直に配置された複数の伝熱管16の管内に構成されている。伝熱管16の上部は、冷媒散布装置15に開口され、高温蒸発器側空間14a、エリミネータ9を介して高温吸収器6に接続されている。伝熱管16の下部は高温蒸発器側空間14aに開口され、エリミネータ9を介して高温吸収器6に接続されている。高温蒸発器14の下部には冷媒タンク34が設けられている。冷媒タンク34は、絞り28及び配管を介して、凝縮器4の底部と接続されている。冷媒タンク34の底部は、連通管27を介して低温蒸発器17の底部と接続されるとともに、冷媒ポンプ21及び配管を介して高温蒸発器14の上部に設けられた冷媒散布装置15に接続されている。   The high-temperature evaporator 14 is configured in a plurality of heat transfer tubes 16 arranged substantially vertically. The upper part of the heat transfer tube 16 is opened to the refrigerant spraying device 15 and connected to the high temperature absorber 6 via the high temperature evaporator side space 14 a and the eliminator 9. A lower portion of the heat transfer tube 16 is opened to the high temperature evaporator side space 14 a and is connected to the high temperature absorber 6 through the eliminator 9. A refrigerant tank 34 is provided below the high-temperature evaporator 14. The refrigerant tank 34 is connected to the bottom of the condenser 4 through the throttle 28 and piping. The bottom of the refrigerant tank 34 is connected to the bottom of the low-temperature evaporator 17 through the communication pipe 27, and is connected to the refrigerant distribution device 15 provided on the top of the high-temperature evaporator 14 through the refrigerant pump 21 and piping. ing.

低温吸収器11は伝熱管16の管外に構成されている。低温吸収器11の上部には、伝熱管16が貫通され、伝熱管16のまわりから伝熱管16の外面に溶液を供給する溶液散布装置12が備えられている。低温吸収器11の下部には溶液タンク35が設けられている。溶液タンク35の底部は、溶液ポンプ22、溶液熱交換器25、26及び配管を介して、高温再生器1の上部に設けられた溶液散布装置2に接続されている。   The low-temperature absorber 11 is configured outside the heat transfer tube 16. In the upper part of the low-temperature absorber 11, there is provided a solution spraying device 12 that penetrates the heat transfer tube 16 and supplies a solution from around the heat transfer tube 16 to the outer surface of the heat transfer tube 16. A solution tank 35 is provided below the low-temperature absorber 11. The bottom of the solution tank 35 is connected to the solution spraying device 2 provided at the top of the high-temperature regenerator 1 via the solution pump 22, the solution heat exchangers 25 and 26, and piping.

低温蒸発器17の内部には水平配置された複数の伝熱管19が備えられており、上部には冷媒散布装置18が配置されており、エリミネータ13を介して低温吸収器11と接続している。低温蒸発器17の下部には冷媒タンク36が設けられている。冷媒タンク36の底部は、前記したように連通管27を介して高温蒸発器14と接続されるとともに、冷媒ポンプ20及び配管を介して低温蒸発器17の上部に設けられた冷媒散布装置18に接続されている。   A plurality of horizontally arranged heat transfer tubes 19 are provided inside the low-temperature evaporator 17, and a refrigerant spraying device 18 is arranged at the top, and is connected to the low-temperature absorber 11 via the eliminator 13. . A refrigerant tank 36 is provided below the low-temperature evaporator 17. As described above, the bottom of the refrigerant tank 36 is connected to the high-temperature evaporator 14 via the communication pipe 27, and is connected to the refrigerant spraying device 18 provided on the top of the low-temperature evaporator 17 via the refrigerant pump 20 and the pipe. It is connected.

このように構成した吸収式冷凍機の動作は以下の通りである。   The operation of the absorption refrigerator configured as described above is as follows.

再生器1において溶液散布装置2から散布された溶液は、伝熱管3上で管内を流れる加熱媒体と熱交換して冷媒蒸気を発生する。冷媒蒸気を発生して濃縮された溶液は、溶液ポンプ24により溶液熱交換器26に送られ、低温吸収器11からの溶液と熱交換して冷却され、高温吸収器6の溶液散布装置7に送られる。   The solution sprayed from the solution spraying device 2 in the regenerator 1 exchanges heat with the heating medium flowing in the pipe on the heat transfer pipe 3 to generate refrigerant vapor. The concentrated solution generated by generating the refrigerant vapor is sent to the solution heat exchanger 26 by the solution pump 24, cooled by exchanging heat with the solution from the low temperature absorber 11, and supplied to the solution spraying device 7 of the high temperature absorber 6. Sent.

高温吸収器6において溶液散布装置7から散布された溶液は、伝熱管8上で高温蒸発器14からの冷媒蒸気を吸収し、冷媒吸収により発生した吸収熱は伝熱管8内を流れる冷却水により冷却される。冷媒蒸気を吸収して濃度が薄くなった溶液は、高温吸収器6の下部の溶液タンク33に一旦溜められて、溶液ポンプ23により溶液熱交換器25に送られる。溶液熱交換器25で低温吸収器11からの溶液と熱交換して冷却され、低温吸収器11の溶液散布装置12に送られる。   The solution sprayed from the solution spraying device 7 in the high-temperature absorber 6 absorbs the refrigerant vapor from the high-temperature evaporator 14 on the heat transfer tube 8, and the absorption heat generated by the refrigerant absorption is caused by the cooling water flowing in the heat transfer tube 8. To be cooled. The solution whose concentration is reduced by absorbing the refrigerant vapor is temporarily stored in the solution tank 33 below the high-temperature absorber 6, and sent to the solution heat exchanger 25 by the solution pump 23. The solution heat exchanger 25 is cooled by exchanging heat with the solution from the low-temperature absorber 11 and sent to the solution spraying device 12 of the low-temperature absorber 11.

低温吸収器11において溶液散布装置12から伝熱管16の外面に供給された溶液は、垂直な伝熱管16の外面に流下され、その流下する間に低温蒸発器17からの冷媒蒸気を吸収する。冷媒吸収により発生した吸収熱は、伝熱管16の内面を流下する冷媒により冷却される。冷媒蒸気を吸収して濃度がさらに薄くなった溶液は、低温吸収器11の下部の溶液タンク35に一旦溜められて、溶液ポンプ22により溶液熱交換器25に送られる。溶液熱交換器25で高温吸収器6からの溶液と熱交換して温度上昇した溶液は、溶液熱交換器26で再生器1からの溶液と熱交換してさらに温度上昇した後に、再生器1の溶液散布装置2に送られる。   The solution supplied from the solution spraying device 12 to the outer surface of the heat transfer tube 16 in the low-temperature absorber 11 flows down to the outer surface of the vertical heat transfer tube 16 and absorbs the refrigerant vapor from the low-temperature evaporator 17 while flowing down. The absorbed heat generated by the refrigerant absorption is cooled by the refrigerant flowing down the inner surface of the heat transfer tube 16. The solution whose concentration is further reduced by absorbing the refrigerant vapor is temporarily stored in the solution tank 35 below the low-temperature absorber 11 and sent to the solution heat exchanger 25 by the solution pump 22. The solution whose temperature has been increased by exchanging heat with the solution from the high-temperature absorber 6 in the solution heat exchanger 25 is further heated by exchanging heat with the solution from the regenerator 1 in the solution heat exchanger 26, and then the regenerator 1. To the solution spraying device 2.

一方、再生器1で発生した冷媒蒸気は、蒸気通路29を通って凝縮器4に送られ、伝熱管5の表面で凝縮液化する。この時の凝縮熱は伝熱管5内を流れる冷却水で冷却される。凝縮液化した冷媒は、凝縮器4の底部から絞り28を通って、高温蒸発器14の下部の冷媒タンク34に一旦溜められる。   On the other hand, the refrigerant vapor generated in the regenerator 1 is sent to the condenser 4 through the vapor passage 29 and is condensed and liquefied on the surface of the heat transfer tube 5. The condensation heat at this time is cooled by the cooling water flowing in the heat transfer tube 5. The condensed and liquefied refrigerant passes through the throttle 28 from the bottom of the condenser 4 and is temporarily stored in the refrigerant tank 34 below the high-temperature evaporator 14.

冷媒タンク34に溜められた液冷媒は、連通管27で低温蒸発器17に送られるとともに、冷媒ポンプ21により高温蒸発器14上部の冷媒散布装置15に送られる。冷媒散布装置15に送られた液冷媒は、伝熱管16の上部の開口部から管内壁に沿って液膜となって流下し、管外を流下する溶液からの吸収熱を受けて蒸発する。蒸発した冷媒蒸気は、伝熱管16の管内壁に沿って流下する冷媒液膜の内側を通って、伝熱管16の上下の開口部から高温蒸発器側空間14aへ流出され、さらにはエリミネータ9を通って高温吸収器3へ送られる。伝熱管16の内面で蒸発しきれなかった液冷媒は、高温蒸発器14の下部の冷媒タンク34に溜められる。   The liquid refrigerant stored in the refrigerant tank 34 is sent to the low-temperature evaporator 17 through the communication pipe 27 and also sent to the refrigerant spraying device 15 above the high-temperature evaporator 14 by the refrigerant pump 21. The liquid refrigerant sent to the refrigerant spraying device 15 flows down as a liquid film from the upper opening of the heat transfer tube 16 along the inner wall of the tube, and evaporates by receiving heat absorbed from the solution flowing down the tube. The evaporated refrigerant vapor passes through the inside of the refrigerant liquid film flowing down along the inner wall of the heat transfer tube 16 and flows out from the upper and lower openings of the heat transfer tube 16 to the high-temperature evaporator side space 14a. It is sent to the high temperature absorber 3 through. The liquid refrigerant that could not be evaporated on the inner surface of the heat transfer tube 16 is stored in the refrigerant tank 34 below the high-temperature evaporator 14.

上述したように、一体型蒸発吸収器10を構成する、複数の伝熱管16上部から伝熱管16内に冷媒液を供給する構成としたので、伝熱管16内の二相流が圧力損失の大きいボイド流やスラグ流にならず、管内断面周囲に冷媒の流下液膜が形成され、その内側を冷媒蒸気が流れる環状流となる。従って、圧力損失が小さくなり、流れ方向の圧力分布と蒸発温度の変化が小さくなり、伝熱管全体が有効に働くことによって伝熱面積を小型化できる。   As described above, since the refrigerant liquid is supplied into the heat transfer tube 16 from the top of the plurality of heat transfer tubes 16 constituting the integrated evaporation absorber 10, the two-phase flow in the heat transfer tube 16 has a large pressure loss. Instead of a void flow or a slag flow, a falling liquid film of the refrigerant is formed around the cross section in the pipe, and an annular flow in which the refrigerant vapor flows inside thereof. Accordingly, the pressure loss is reduced, the pressure distribution in the flow direction and the change in the evaporation temperature are reduced, and the entire heat transfer tube works effectively, whereby the heat transfer area can be reduced.

また、連通管27を通って高温蒸発器14から低温蒸発器17に送られた液冷媒は、冷媒ポンプ20により低温蒸発器17上部の冷媒散布装置18に送られる。冷媒散布装置18の液冷媒は伝熱管19に散布され、伝熱管19内を流れる冷水から熱を奪って蒸発し、エリミネータ13を通って低温吸収器11に送られる。伝熱管19上で蒸発しきれなかった液冷媒は低温蒸発器17の下部の冷媒タンク36に溜められる。   The liquid refrigerant sent from the high-temperature evaporator 14 to the low-temperature evaporator 17 through the communication pipe 27 is sent to the refrigerant spraying device 18 above the low-temperature evaporator 17 by the refrigerant pump 20. The liquid refrigerant of the refrigerant spraying device 18 is sprayed on the heat transfer tube 19, takes heat from the cold water flowing in the heat transfer tube 19, evaporates, and is sent to the low-temperature absorber 11 through the eliminator 13. The liquid refrigerant that could not be evaporated on the heat transfer tube 19 is stored in the refrigerant tank 36 below the low-temperature evaporator 17.

以上説明したように、本実施例の吸収式冷凍機においては、垂直に設置した複数の伝熱管16の外面で冷媒蒸気を溶液に吸収し、その吸収熱を伝熱管16の内面を流下する液冷媒の蒸発潜熱で直接冷却するようにしているので、低温吸収器11と高温蒸発器14の間の熱交換温度差を小さくすることができる。これとともに、高温蒸発器14の圧力が低温蒸発器17の圧力よりも高く、高温蒸発器14と低温蒸発器17の底部が連通管27を介して連通しているので、高温蒸発器14の下部の冷媒タンク35に溜められる液冷媒の液面高さは低温蒸発器17の下部の冷媒タンク36に溜められる液冷媒の液面高さよりも低い状態で運転される。   As described above, in the absorption refrigerator of the present embodiment, the refrigerant vapor is absorbed into the solution by the outer surfaces of the plurality of heat transfer tubes 16 installed vertically, and the absorbed heat flows down the inner surface of the heat transfer tubes 16. Since direct cooling is performed by the latent heat of vaporization of the refrigerant, the heat exchange temperature difference between the low temperature absorber 11 and the high temperature evaporator 14 can be reduced. At the same time, the pressure of the high temperature evaporator 14 is higher than the pressure of the low temperature evaporator 17, and the bottom of the high temperature evaporator 14 and the low temperature evaporator 17 communicate with each other via the communication pipe 27. The liquid refrigerant stored in the refrigerant tank 35 is operated at a level lower than the liquid refrigerant stored in the refrigerant tank 36 below the low-temperature evaporator 17.

これにより冷媒タンク34と溶液タンク33との間の仕切りの高さは、冷媒タンク36と溶液タンク35との間の仕切りの高さよりも低くできるので、高温蒸発器14と高温吸収器6との蒸気通路(エリミネータ9)の流路面積を広くすることができ、冷媒蒸気の流動抵抗を小さくできる。この抵抗の減少により冷媒蒸気の高温吸収器6での吸収効率が高まり、高温吸収器6と高温蒸発器14の間の温度落差を大きくすることができ、低温蒸発器17から高温吸収器6までの汲み上げ温度差を大きくすることができる。   Thereby, the height of the partition between the refrigerant tank 34 and the solution tank 33 can be made lower than the height of the partition between the refrigerant tank 36 and the solution tank 35, so that the high temperature evaporator 14 and the high temperature absorber 6 The flow passage area of the vapor passage (eliminator 9) can be increased, and the flow resistance of the refrigerant vapor can be reduced. This resistance reduction increases the absorption efficiency of the refrigerant vapor in the high-temperature absorber 6, can increase the temperature drop between the high-temperature absorber 6 and the high-temperature evaporator 14, and from the low-temperature evaporator 17 to the high-temperature absorber 6. The difference in pumping temperature can be increased.

また、高温蒸発器14の伝熱管16の上部の開口と下部の開口の両方から冷媒蒸気を導いて、高温吸収器6に送るようにしたので、冷媒蒸気の流動抵抗を小さくすることができる。これにより、高温吸収器6と高温蒸発器14との間の温度落差を大きくすることができ、低温蒸発器17から高温吸収器6までの汲み上げ温度差を大きくすることができる。逆に、汲み上げ温度差が同等であれば、各蒸発器、吸収器の伝熱面積を小さくして、小型で低コストな吸収式冷凍機を提供することができる。   Further, since the refrigerant vapor is guided from both the upper opening and the lower opening of the heat transfer tube 16 of the high-temperature evaporator 14 and sent to the high-temperature absorber 6, the flow resistance of the refrigerant vapor can be reduced. Thereby, the temperature drop between the high temperature absorber 6 and the high temperature evaporator 14 can be increased, and the pumping temperature difference from the low temperature evaporator 17 to the high temperature absorber 6 can be increased. On the contrary, if the pumping temperature difference is equal, the heat transfer area of each evaporator and absorber can be reduced, and a small and low-cost absorption refrigerator can be provided.

次に、図2から図5を参照しながら、低温蒸発器17、低温吸収器11と高温蒸発器14とからなる一体型蒸発吸収器10、高温吸収器6の構成について説明する。   Next, the configuration of the low-temperature evaporator 17, the low-temperature absorber 11 and the high-temperature evaporator 14 and the integrated evaporator 10 and the high-temperature absorber 6 will be described with reference to FIGS.

図2は、図1に示す低温蒸発器17、低温吸収器11と高温蒸発器14とからなる一体型蒸発吸収器10、高温吸収器6を構成する缶体60の側面図である。   FIG. 2 is a side view of the can 60 constituting the low-temperature evaporator 17, the low-temperature absorber 11 and the high-temperature evaporator 14, and the integral-type evaporation absorber 10 and the high-temperature absorber 6 shown in FIG. 1.

缶外壁61は、複数の鋼板部材を溶接して角型筒状に形成され、前後面が開口されている。第一の管板50、51は、低温蒸発器17及び高温吸収器6内に水平配置される複数の伝熱管19、8を拡管固定するための鋼板部材であり、缶外壁61の前後の開口を塞ぐように缶外壁61に溶接されている。第一の管板50、51は、缶外壁61より厚い一枚の部材で形成されている。ヘッダ54、55は、高温吸収器6の伝熱管8を流れる冷却水を分配するためのものであり、伝熱管8の両端開口部を覆うように第一の管板50、51の外側に溶接されている。   The can outer wall 61 is formed in a square cylindrical shape by welding a plurality of steel plate members, and the front and rear surfaces are opened. The first tube plates 50, 51 are steel plate members for expanding and fixing the plurality of heat transfer tubes 19, 8 arranged horizontally in the low temperature evaporator 17 and the high temperature absorber 6. Is welded to the outer wall 61 of the can. The first tube sheets 50 and 51 are formed of a single member thicker than the can outer wall 61. The headers 54 and 55 are for distributing cooling water flowing through the heat transfer tubes 8 of the high-temperature absorber 6, and are welded to the outside of the first tube plates 50 and 51 so as to cover both end openings of the heat transfer tubes 8. Has been.

図3は図2のA−A断面図である。第二の管板52、53は、一体型蒸発吸収器10を構成する垂直に配置された複数の伝熱管16を拡管固定するための鋼板部材であり、上下に対向して配置されて水平に延びている。なお、第二の管板52、53は、前述したように隔壁30の一部を構成している。   3 is a cross-sectional view taken along the line AA in FIG. The second tube plates 52 and 53 are steel plate members for expanding and fixing the plurality of vertically arranged heat transfer tubes 16 constituting the integrated evaporation absorber 10, and are disposed so as to face each other vertically. It extends. The second tube sheets 52 and 53 constitute a part of the partition wall 30 as described above.

図4は図3のB−B断面図である。ヘッダ56、57は、低温蒸発器17の伝熱管19内を流れる冷水を分配するためのものであり、伝熱管8の両端開口部を覆うように第一の管板50、51の外側に溶接されている。第二の管板52、53は、缶外壁61より厚い一枚の部材で形成され、第一の管板50、51の板厚とほぼ同じ板厚で形成されている。   4 is a cross-sectional view taken along line BB in FIG. The headers 56 and 57 are for distributing cold water flowing in the heat transfer tube 19 of the low-temperature evaporator 17, and are welded to the outside of the first tube plates 50 and 51 so as to cover the openings at both ends of the heat transfer tube 8. Has been. The second tube plates 52 and 53 are formed by a single member thicker than the outer wall 61 of the can, and are formed to have substantially the same thickness as that of the first tube plates 50 and 51.

低温蒸発器17、一体型蒸発吸収器10、高温吸収器6は、図3及び図4に示すように一つの缶体60で形成されている。低温蒸発器17と高温吸収器6との間に一体型蒸発吸収器10を配置して、低温蒸発器17の伝熱管19及び高温吸収器6の伝熱管8の両端に図5に示す第一の管板50、51を配置するとともに、第一の管板50と51との間の外周を缶外壁61で構成している。   The low-temperature evaporator 17, the integrated evaporator 10, and the high-temperature absorber 6 are formed of a single can body 60 as shown in FIGS. 3 and 4. The integrated evaporator 10 is disposed between the low temperature evaporator 17 and the high temperature absorber 6, and the first shown in FIG. 5 is disposed at both ends of the heat transfer tube 19 of the low temperature evaporator 17 and the heat transfer tube 8 of the high temperature absorber 6. Tube plates 50 and 51 are arranged, and the outer periphery between the first tube plates 50 and 51 is constituted by a can outer wall 61.

このように、低温蒸発器17の伝熱管19及び高温吸収器6の伝熱管8を拡管固定するための第一の管板50、51を、図3から図5に示すように一体型蒸発吸収器10をまたがって一枚の鋼板部材で形成しているので、部品点数及び溶接箇所を最小限に抑えることができる。これにより、第一の管板50、51の溶接による缶体の変形を防止することができ、第一の管板50、51への伝熱管19、8の挿入がスムーズにできるので、拡管部でのシール性が向上でき、拡管部での漏れを防止することができる。   As described above, the first tube plates 50 and 51 for expanding and fixing the heat transfer tube 19 of the low-temperature evaporator 17 and the heat transfer tube 8 of the high-temperature absorber 6 are integrated and absorbed as shown in FIGS. Since the steel plate member is formed across the vessel 10, the number of parts and the welding location can be minimized. As a result, deformation of the can body due to welding of the first tube plates 50 and 51 can be prevented, and the heat transfer tubes 19 and 8 can be smoothly inserted into the first tube plates 50 and 51. Can improve the sealing performance and prevent leakage at the expanded portion.

また、一体型蒸発吸収器10の伝熱管16の両端部が第二の管板52、53に拡管固定されるとともに、第二の管板52、53の長手方向の両端は、第一の管板50、51に溶接固定されている。したがって、外壁61より厚い鋼板部材の第二の管板52、53を溶接で固定する場合に、第二の管板52、53と同様に外壁61より厚い鋼板部材の第一の管板50、51に、第二の管板52、53の両端を溶接固定することができる。これにより、第二の管板52、53の溶接による変形を防止することができ、第二の管板52、53への伝熱管16の挿入がスムーズにできるので、拡管部でのシール性が向上でき、拡管部での漏れを防止することができる。   Further, both ends of the heat transfer tube 16 of the integrated evaporator 10 are expanded and fixed to the second tube plates 52 and 53, and both ends in the longitudinal direction of the second tube plates 52 and 53 are connected to the first tube. It is fixed to the plates 50 and 51 by welding. Therefore, when the second tube plates 52 and 53 of the steel plate member thicker than the outer wall 61 are fixed by welding, the first tube plate 50 of the steel plate member thicker than the outer wall 61 is fixed in the same manner as the second tube plates 52 and 53. 51, both ends of the second tube sheets 52 and 53 can be fixed by welding. Thereby, the deformation | transformation by welding of the 2nd tube plates 52 and 53 can be prevented, and since the insertion of the heat exchanger tube 16 to the 2nd tube plates 52 and 53 can be performed smoothly, the sealing performance in a pipe expansion part is possible. It is possible to improve and prevent leakage at the expanded portion.

なお、第一の管板50に伝熱管19、8を拡管固定するとともに、第一の管板50に他の缶外壁61の一部、第二の管板52、53を含む隔壁30などの一側を溶接固定し、これらの他側を第一の管板51に拡管固定及び溶接固定することにより、缶体60が形成される。   In addition, the heat transfer tubes 19 and 8 are expanded and fixed to the first tube plate 50, and a part of the other outer wall 61 of the first tube plate 50, the partition wall 30 including the second tube plates 52 and 53, etc. The can 60 is formed by fixing one side by welding and fixing the other side to the first tube plate 51 by expanding and fixing the first side.

本発明の一実施例に係る吸収式冷凍機のサイクルフローを示す図である。It is a figure which shows the cycle flow of the absorption refrigerator which concerns on one Example of this invention. 図1の吸収式冷凍機の缶体の側面図である。It is a side view of the can of the absorption refrigeration machine of FIG. 図2のA−A断面図である。It is AA sectional drawing of FIG. 図3のB−B断面図である。It is BB sectional drawing of FIG. 図2の第一の管板の正面図である。It is a front view of the 1st tube sheet of FIG.

符号の説明Explanation of symbols

1…再生器、2…溶液散布装置、3…伝熱管、4…凝縮器、5…伝熱管、6…高温吸収器、7…溶液散布装置、8…伝熱管、9…エリミネータ、10…一体型蒸発吸収器、11…低温吸収器、12…溶液散布装置、13…エリミネータ、14…高温蒸発器、15…冷媒散布装置、16…伝熱管、17…低温蒸発器、18…冷媒散布装置、19…伝熱管、20、21…冷媒ポンプ、22、23、24…溶液ポンプ、25、26…溶液熱交換器、27…連通管、28…絞り、29…蒸気通路、30…隔壁、33…溶液タンク、34…冷媒タンク、35…溶液タンク、36…冷媒タンク、50、51…第一の管板、52、53…第二の管板、60…缶体、61…缶外壁。   DESCRIPTION OF SYMBOLS 1 ... Regenerator, 2 ... Solution spraying device, 3 ... Heat transfer tube, 4 ... Condenser, 5 ... Heat transfer tube, 6 ... High temperature absorber, 7 ... Solution spraying device, 8 ... Heat transfer tube, 9 ... Eliminator, 10 ... One Body evaporative absorber, 11 ... low temperature absorber, 12 ... solution sprayer, 13 ... eliminator, 14 ... high temperature evaporator, 15 ... refrigerant spray device, 16 ... heat transfer tube, 17 ... low temperature evaporator, 18 ... refrigerant spray device, DESCRIPTION OF SYMBOLS 19 ... Heat-transfer tube, 20, 21 ... Refrigerant pump, 22, 23, 24 ... Solution pump, 25, 26 ... Solution heat exchanger, 27 ... Communication pipe, 28 ... Restriction, 29 ... Steam passage, 30 ... Septum, 33 ... Solution tank, 34 ... refrigerant tank, 35 ... solution tank, 36 ... refrigerant tank, 50, 51 ... first tube plate, 52, 53 ... second tube plate, 60 ... can body, 61 ... can outer wall.

Claims (4)

低温蒸発器、低温吸収器、高温蒸発器、高温吸収器、再生器、凝縮器、溶液熱交換器、冷媒ポンプ及び溶液循環ポンプを溶液配管及び冷媒配管で接続して溶液・冷媒循環回路を構成し、
前記低温吸収器の吸収熱を前記高温蒸発器の蒸発潜熱で冷却する吸収式冷凍機において、
前記低温蒸発器、前記低温吸収器、前記高温蒸発器及び前記高温吸収器を一つの缶体で構成し、
複数の伝熱管が水平配置された前記低温蒸発器と前記高温吸収器の間に、複数の伝熱管が垂直配置された前記低温吸収器と前記高温蒸発器を配置し、
前記垂直配置された複数の伝熱管の外側を前記低温吸収器として前記低温蒸発器に連通させ、
前記垂直配置された複数の伝熱管の側を前記高温蒸発器として前記高温吸収器に連通させ、
前記複数の垂直な伝熱管の上部から各伝熱管内に冷媒液を供給するように構成し、
第一の管板を2枚用いて前記低温蒸発器、前記低温吸収器、前記高温蒸発器及び前記高温吸収器にまたがる缶体両側面を形成し、
前記低温蒸発器の複数の伝熱管の両端及び前記高温吸収器の複数の伝熱管の両端を前記2枚の第一の管板に拡管固定した
ことを特徴とする吸収式冷凍機。
Low temperature evaporator, low temperature absorber, high temperature evaporator, high temperature absorber, regenerator, condenser, solution heat exchanger, refrigerant pump and solution circulation pump are connected by solution piping and refrigerant piping to form a solution / refrigerant circulation circuit And
In the absorption refrigerator that cools the absorption heat of the low-temperature absorber with the latent heat of evaporation of the high-temperature evaporator,
The low-temperature evaporator, the low-temperature absorber, the high-temperature evaporator and the high-temperature absorber are composed of one can body,
Between the low-temperature evaporator and the high-temperature absorber in which a plurality of heat transfer tubes are arranged horizontally, the low-temperature absorber and the high-temperature evaporator in which a plurality of heat transfer tubes are arranged vertically,
The outside of the plurality of vertically arranged heat transfer tubes communicates with the low temperature evaporator as the low temperature absorber,
The inner side of the plurality of heat transfer tubes said vertically arranged to communicate with the said high temperature absorber as the hot evaporator,
The refrigerant liquid is configured to be supplied into each heat transfer tube from the upper part of the plurality of vertical heat transfer tubes,
Forming both sides of the can body spanning the low temperature evaporator, the low temperature absorber, the high temperature evaporator and the high temperature absorber using two first tube sheets,
An absorption refrigerator, wherein both ends of the plurality of heat transfer tubes of the low-temperature evaporator and both ends of the plurality of heat transfer tubes of the high-temperature absorber are expanded and fixed to the two first tube plates.
請求項1において、前記第一の管板の板厚を前記缶体を構成する外壁の板厚より厚くしたことを特徴とする吸収式冷凍機。   2. The absorption refrigerator according to claim 1, wherein a thickness of the first tube sheet is made thicker than a thickness of an outer wall constituting the can body. 請求項2において、前記高温蒸発器及び前記低温吸収器を内外に形成する前記複数の伝熱管の両端を第二の管板に拡管固定し、前記第二の管板の両端を前記第一の管板の内面に溶接固定したことを特徴とする吸収式冷凍機。   In Claim 2, the both ends of these heat exchanger tubes which form the high temperature evaporator and the low temperature absorber inside and outside are expanded and fixed to a second tube sheet, and both ends of the second tube sheet are fixed to the first tube sheet. Absorption type refrigerator characterized by being welded and fixed to the inner surface of the tube sheet. 請求項3において、前記第の管板の板厚を前記缶体を構成する外壁の板厚より厚くして前記第一の管板と同じ厚さにしたことを特徴とする吸収式冷凍機。 4. The absorption refrigerator according to claim 3, wherein the thickness of the second tube plate is made thicker than that of the outer wall constituting the can body to be the same thickness as the first tube plate. .
JP2008097135A 2008-04-03 2008-04-03 Absorption refrigerator Active JP4903743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008097135A JP4903743B2 (en) 2008-04-03 2008-04-03 Absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008097135A JP4903743B2 (en) 2008-04-03 2008-04-03 Absorption refrigerator

Publications (3)

Publication Number Publication Date
JP2009250485A JP2009250485A (en) 2009-10-29
JP2009250485A5 JP2009250485A5 (en) 2010-06-24
JP4903743B2 true JP4903743B2 (en) 2012-03-28

Family

ID=41311384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008097135A Active JP4903743B2 (en) 2008-04-03 2008-04-03 Absorption refrigerator

Country Status (1)

Country Link
JP (1) JP4903743B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110513916A (en) * 2019-09-25 2019-11-29 大连理工大学 Vertical double-drum type falling-film absorption type heat pump system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60103266A (en) * 1983-11-09 1985-06-07 三菱電機株式会社 Two step absorption type heat pump device
JPS616555A (en) * 1984-06-20 1986-01-13 株式会社日立製作所 Air-cooling absorption type water chiller
JPH05196315A (en) * 1992-01-21 1993-08-06 Yazaki Corp Absorption type heat pump
JP2628023B2 (en) * 1994-10-14 1997-07-09 矢崎総業株式会社 Absorption refrigerator
JPH08145503A (en) * 1994-11-25 1996-06-07 Hitachi Ltd Heat exchanger
JP3591356B2 (en) * 1999-02-03 2004-11-17 株式会社日立製作所 Absorption refrigerator and method of manufacturing the same
JP2001165530A (en) * 1999-12-06 2001-06-22 Furukawa Electric Co Ltd:The Absorbing device
JP2003222434A (en) * 2002-01-30 2003-08-08 Ebara Corp Regenerator for exhaust gas drive absorption water heater-chiller

Also Published As

Publication number Publication date
JP2009250485A (en) 2009-10-29

Similar Documents

Publication Publication Date Title
JP3932241B2 (en) Absorption refrigerator
JP3195100B2 (en) High-temperature regenerator of absorption chiller / heater and absorption chiller / heater
JP4701147B2 (en) 2-stage absorption refrigerator
CN1227492C (en) Main body of absorbing air-conditioner
CN101089520A (en) Falling-film heat exchanger of two use refrigeration heat pump
JP3445941B2 (en) Multi-stage evaporative absorption type absorption chiller / heater and large temperature difference air conditioning system equipped with the same
JP3789815B2 (en) High temperature regenerator and absorption chiller / heater equipped with the same
JP4903743B2 (en) Absorption refrigerator
JP4553741B2 (en) Absorption refrigerator
JP5055071B2 (en) Absorption refrigerator
JP5217264B2 (en) Waste heat driven absorption refrigeration system
KR20180122201A (en) Evaporative condensation of refrigeration equipment
US20140165627A1 (en) Method for chilling a building
JP3997594B2 (en) Air-cooled absorber
US3848430A (en) Absorption refrigeration machine with second stage generator
JP7080001B2 (en) Absorption chiller
CN116045542B (en) Double-tower refrigerating system and operation method thereof
JP5489143B2 (en) Two-stage absorption refrigerator and manufacturing method thereof
JP4266697B2 (en) Absorption refrigerator
US10527324B2 (en) Machine for air-cooled absorption
JP2004198087A (en) Absorption refrigerating device, and absorption refrigerating system
JP4720558B2 (en) Absorption refrigerator generator
JP2011007400A (en) Two-stage evaporation absorption type refrigerating machine
JP2014173810A (en) Air-cooling absorption type refrigerator
JPH10246533A (en) Air-cooled absorption freezing device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100506

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100506

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120105

R150 Certificate of patent or registration of utility model

Ref document number: 4903743

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250