JPH08145503A - Heat exchanger - Google Patents
Heat exchangerInfo
- Publication number
- JPH08145503A JPH08145503A JP29092794A JP29092794A JPH08145503A JP H08145503 A JPH08145503 A JP H08145503A JP 29092794 A JP29092794 A JP 29092794A JP 29092794 A JP29092794 A JP 29092794A JP H08145503 A JPH08145503 A JP H08145503A
- Authority
- JP
- Japan
- Prior art keywords
- tube
- heat transfer
- heat exchanger
- partition member
- transfer tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/0066—Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
- F28D7/0083—Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids with units having particular arrangement relative to a supplementary heat exchange medium, e.g. with interleaved units or with adjacent units arranged in common flow of supplementary heat exchange medium
- F28D7/0091—Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids with units having particular arrangement relative to a supplementary heat exchange medium, e.g. with interleaved units or with adjacent units arranged in common flow of supplementary heat exchange medium the supplementary medium flowing in series through the units
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/0066—Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/16—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
- F28D7/1607—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with particular pattern of flow of the heat exchange media, e.g. change of flow direction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2265/00—Safety or protection arrangements; Arrangements for preventing malfunction
- F28F2265/16—Safety or protection arrangements; Arrangements for preventing malfunction for preventing leakage
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2265/00—Safety or protection arrangements; Arrangements for preventing malfunction
- F28F2265/26—Safety or protection arrangements; Arrangements for preventing malfunction for allowing differential expansion between elements
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Details Of Heat-Exchange And Heat-Transfer (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は熱交換器に関し、特に冷
凍装置のシェルアンドチューブ式熱交換器に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger, and more particularly to a shell-and-tube heat exchanger for refrigeration equipment.
【0002】[0002]
【従来の技術】従来の水冷式冷凍装置のシェルアンドチ
ューブ式凝縮用熱交換器は、特開平4−116358号
公報に示すように、複数の独立した冷凍サイクルにおい
て、排熱するための冷却水の流路を共通化させるため、
外形寸法の制約上、長手方向に短く、円周方向に太くし
た複数個の凝縮器を直列に組合わせて製作されている。
この形の凝縮器において、複数個の凝縮器を直列に組合
わせる際、冷却水通路を区分する仕切部材を有する中間
フランジを配置する必要があった。2. Description of the Related Art As shown in Japanese Patent Laid-Open No. 4-116358, a conventional shell-and-tube condenser heat exchanger for a water-cooled refrigerating apparatus is a cooling water for discharging heat in a plurality of independent refrigerating cycles. In order to share the flow path of
Due to the limitation of the external dimensions, it is manufactured by combining a plurality of condensers that are short in the longitudinal direction and thick in the circumferential direction in series.
In this type of condenser, when assembling a plurality of condensers in series, it was necessary to arrange an intermediate flange having a partition member for partitioning the cooling water passage.
【0003】[0003]
【発明が解決しようとする課題】前述の従来技術では、
中間フランジを厚くして、管板の外形寸法を凝縮用熱交
換器と同じにできる構造であれば管板の歪みはほとんど
発生しないが、長手方向の寸法制約上、伝熱管をできる
だけ長くして、中間フランジ厚さを最小にする構造とす
ると、中間フランジを接続する側の管板の外形寸法は、
凝縮用熱交換器胴部外径より大きくして、凝縮用熱交換
器胴部外径寸法以上の円周部でボルト締めをする構造と
なる。In the above-mentioned prior art,
As long as the intermediate flange is thick and the outer dimensions of the tube sheet are the same as those of the heat exchanger for condensation, there is almost no distortion of the tube sheet, but due to dimensional restrictions in the longitudinal direction, the heat transfer tube should be as long as possible. If the structure that minimizes the thickness of the intermediate flange is adopted, the external dimensions of the tube sheet on the side connecting the intermediate flange are
The structure is such that the outer diameter of the condensing heat exchanger body is made larger, and the bolts are tightened at the circumferential portion having the outer diameter of the condensing heat exchanger body or more.
【0004】これにより、中間フランジ側の管板は外形
寸法がより大きくなるので、伝熱管を拡管固定する際
に、この管板にはより大きな歪みが発生することにな
る。このとき、従来の中間フランジの仕切部材が円周部
と同じ平面上にあるため、中間フランジの円周部と管板
が密着せず、冷却水通水時に水漏れが発生する問題があ
った。このため、管板と中間フランジの間に挿入するパ
ッキンの厚さを必要以上にする、あるいは水漏れ発見
後、中間フランジの仕切部材を歪み量に合わせて削る追
加工をする必要があった。As a result, the tube flange on the side of the intermediate flange has a larger outer dimension, so that when the heat transfer tube is expanded and fixed, a larger strain is generated in this tube sheet. At this time, since the partition member of the conventional intermediate flange is on the same plane as the circumferential portion, the circumferential portion of the intermediate flange and the tube sheet do not adhere to each other, and there is a problem that water leakage occurs when cooling water is passed. . For this reason, it is necessary to increase the thickness of the packing inserted between the tube sheet and the intermediate flange more than necessary, or to perform additional work to grind the partition member of the intermediate flange according to the amount of strain after water leakage is detected.
【0005】また、蒸発用熱交換器において、複数の冷
凍サイクルを一体化したものでは、それらのサイクルを
仕切る仕切部や冷媒側入口部、出口部を区分する仕切部
を設ける必要があった。この仕切部を有する冷媒室では
同様に蒸発用熱交換器胴部外径寸法以上の円周部でボル
ト締めをする構造となる。これにより、仕切部を有する
冷媒室側の管板は外径寸法がより大きくなるので、伝熱
管を拡管固定する際に、この管板にはより大きな歪みが
発生することになる。このとき、従来の仕切部を有する
冷媒室が円周部と同じ平面上にあるため、冷媒室の円周
部と管板が密着せず、円周部より冷媒漏れが発生する問
題があった。このため、管板の板厚を必要以上に厚く取
り歪み発生を防止していた。Further, in the heat exchanger for evaporation, in which a plurality of refrigeration cycles are integrated, it is necessary to provide a partition part for partitioning these cycles and a partition part for partitioning the refrigerant side inlet part and the outlet part. Similarly, in the refrigerant chamber having this partition portion, the structure is such that bolts are tightened at the circumferential portion having the outer diameter of the heat exchanger body portion for evaporation or more. As a result, the tube sheet on the refrigerant chamber side having the partition portion has a larger outer diameter dimension, and thus, when the heat transfer tube is expanded and fixed, a larger strain is generated in the tube sheet. At this time, since the refrigerant chamber having the conventional partitioning portion is on the same plane as the circumferential portion, there is a problem that the circumferential portion of the refrigerant chamber and the tube plate do not adhere to each other and the refrigerant leaks from the circumferential portion. . For this reason, the tube sheet is made thicker than necessary to prevent distortion.
【0006】本発明の目的は、パッキンまたは管板の厚
さを大としなくとも、仕切部の水漏れまたは冷媒漏れが
なく、水漏れまたは冷媒漏れ発生後の仕切部材の追加切
削作業を不要とした熱交換器を得ることにある。An object of the present invention is to prevent water leakage or refrigerant leakage in the partition portion without increasing the thickness of the packing or the tube sheet, thus eliminating the need for additional cutting work of the partition member after water leakage or refrigerant leakage occurs. To obtain a heat exchanger.
【0007】[0007]
【課題を解決するための手段】上述の本発明の目的は、
伝熱管内流体の流れ方向が互いに逆になっている複数の
グループに分けられている伝熱管群と、この伝熱管群の
両端に設けられ前記伝熱管群を貫通させて拡管固定する
管板と、前記伝熱管群と前記管板を内蔵する筒状の胴部
とを有するシェルアンドチューブ型熱交換器を筒状の中
間フランジで直列に連結して中間フランジの内部に前記
管群の一端が開口する構成とし、かつ前記中間フランジ
内部を流体の流れ方向ごとに通路を区分するように前記
管板間に取付けられた仕切部材を有する熱交換器におい
て、前記仕切部材は該仕切部材が取り付けられる部分の
管板が伝熱管を拡管固定する際に生ずる歪み量に応じた
形状に構成したことによって達成される。The above-mentioned object of the present invention is as follows.
A heat transfer tube group divided into a plurality of groups in which the flow directions of the fluid in the heat transfer tube are opposite to each other, and a tube plate provided at both ends of the heat transfer tube group for penetrating the heat transfer tube group and expanding and fixing the tube. , A shell-and-tube heat exchanger having the heat transfer tube group and a tubular body containing the tube sheet is connected in series with a tubular intermediate flange so that one end of the tube group is inside the intermediate flange. A heat exchanger having a partition member mounted between the tube plates so as to divide the passage inside the intermediate flange for each flow direction of the fluid, and the partition member is mounted to the partition member. This is achieved by forming a part of the tube plate in a shape corresponding to the amount of strain generated when the heat transfer tube is expanded and fixed.
【0008】また、伝熱管内流体の流れ方向が互いに逆
になっている複数のグループに分けられている伝熱管群
と、この伝熱管群の両端に設けられ前記伝熱管群を貫通
させて拡管固定する管板と、前記伝熱管群と前記管板を
内蔵する筒状の胴部とを有するシェルアンドチューブ型
熱交換器の両側に筒状のフランジを連結して前記伝熱管
内流体の出入口とする構成とし、かつ前記フランジ内部
を流体の流れ方向ごとに通路を区分するように前記管板
に取付けられた仕切部材を有する熱交換器において、前
記仕切部材は該仕切部材が取り付けられる部分の管板が
伝熱管を拡管固定する際に生ずる歪み量に応じた形状に
構成したことによっても達成される。Further, a heat transfer tube group which is divided into a plurality of groups in which the flow directions of the fluid in the heat transfer tube are opposite to each other, and a tube which is provided at both ends of the heat transfer tube group and penetrates through the heat transfer tube group Inlet / outlet of fluid in the heat transfer tube by connecting tubular flanges on both sides of a shell-and-tube heat exchanger having a tube plate to be fixed and a tube body containing the heat transfer tube group and the tube plate In the heat exchanger having a partition member attached to the tube sheet so as to divide the passage inside the flange for each fluid flow direction, the partition member is a portion to which the partition member is attached. This can also be achieved by forming the tube plate into a shape corresponding to the amount of strain generated when the heat transfer tube is expanded and fixed.
【0009】[0009]
【作用】本発明によれば、流体の流れ方向ごとに通路を
区分するように取り付けられた仕切部材に、伝熱管を管
板に拡管固定する際に生じる管板の歪み量の決定要素で
ある、管板の厚さ、径、材質及び拡管加工順序を固定し
て実験的に求められた歪み量に応じた形状、あるいは歪
み量から算出される形状をあらかじめ加工する。これに
より、伝熱管を管板に拡管固定する際に生じる管板の歪
みが、仕切部材に吸収されて、仕切部材と管板の密着度
が向上する。したがって、仕切部材からの水漏れまたは
冷媒漏れがなくなり、管板と仕切部材の間に挿入するパ
ッキンの厚さが必要最小限でよく、また水漏れまたは冷
媒漏れ発見後行っていた仕切部材を削る追加工が解消さ
れる。According to the present invention, it is a determining factor of the amount of distortion of the tube sheet that is generated when the heat transfer tube is expanded and fixed to the partition member, which is attached so as to divide the passage for each fluid flow direction. The tube sheet thickness, diameter, material, and tube expansion processing order are fixed, and a shape corresponding to the experimentally obtained strain amount or a shape calculated from the strain amount is processed in advance. As a result, the distortion of the tube sheet that occurs when the heat transfer tube is expanded and fixed to the tube sheet is absorbed by the partition member, and the degree of adhesion between the partition member and the tube sheet is improved. Therefore, the water leakage or the refrigerant leakage from the partition member is eliminated, the thickness of the packing inserted between the tube sheet and the partition member may be the minimum necessary, and the partition member, which was used after the water leakage or the refrigerant leakage was found, is scraped off. Additional work is eliminated.
【0010】また歪み防止のため管板の厚さを必要以上
に厚くする必要もない。Further, it is not necessary to increase the thickness of the tube sheet more than necessary in order to prevent distortion.
【0011】[0011]
【実施例】以下、本発明の一実施例を説明する。図1は
冷凍装置の系統図である。その構成は、圧縮機1、凝縮
用熱交換器2、膨張弁3、蒸発用熱交換器4からなる冷
凍サイクルである。複数個の独立した冷凍サイクルを有
する冷凍装置において、排熱するための冷却水の流路を
共通化するため、凝縮用熱交換器2は図2に示す構造と
なっている。EXAMPLE An example of the present invention will be described below. FIG. 1 is a system diagram of a refrigeration system. The configuration is a refrigeration cycle including a compressor 1, a condensing heat exchanger 2, an expansion valve 3, and an evaporating heat exchanger 4. In the refrigerating apparatus having a plurality of independent refrigerating cycles, the condensing heat exchanger 2 has the structure shown in FIG. 2 in order to share the flow path of the cooling water for exhausting heat.
【0012】圧縮機1で圧縮された高温高圧のガス冷媒
は冷媒入口11より凝縮用熱交換器胴部5a,5bに流
入する。このガス冷媒は凝縮用熱交換器胴部5a,5b
内に配列された複数の伝熱管7と熱交換し、凝縮し滴下
する。滴下した液冷媒は冷媒出口12から排出された
後、図1に示された膨張弁3を通り、蒸発用熱交換器4
へ流入し圧縮機1へ戻る。この冷凍サイクルを複数個独
立させた冷凍装置の場合、冷凍サイクルと同じ数だけの
凝縮用熱交換器が必要となる。このとき、排熱するため
の冷却水の流路を共通化させる場合では、冷却水通路を
区分する仕切部材15を有する中間フランジ9を介して
複数個の凝縮用熱交換器を接続する。The high-temperature and high-pressure gas refrigerant compressed by the compressor 1 flows from the refrigerant inlet 11 into the condensing heat exchanger bodies 5a and 5b. This gas refrigerant is used for condensing heat exchanger bodies 5a and 5b.
Heat is exchanged with the plurality of heat transfer tubes 7 arranged inside, condensed, and dropped. The dropped liquid refrigerant passes through the expansion valve 3 shown in FIG. 1 after being discharged from the refrigerant outlet 12, and then passes through the evaporation heat exchanger 4
And returns to the compressor 1. In the case of a refrigerating apparatus having a plurality of independent refrigeration cycles, the same number of condenser heat exchangers as the refrigeration cycles are required. At this time, when the cooling water flow path for exhausting heat is shared, a plurality of condensing heat exchangers are connected via an intermediate flange 9 having a partition member 15 for partitioning the cooling water passage.
【0013】この中間フランジ9の構造を図3に示す。
ガス冷媒の凝縮の際に必要となる冷却水は、冷却水出入
口側フランジ10の冷却水入口13から流入し、凝縮用
熱交換器胴部5b内の伝熱管7の管内を通り、中間フラ
ンジ9を通り凝縮用熱交換器5aへ流入し、冷却水折り
返しフランジ8で折り返し、再び凝縮用熱交換器5a、
中間フランジ9、凝縮用熱交換器5bを通り、冷却水出
口14から流出する。凝縮用熱交換器5a,5b内の伝
熱管7は、管板6に拡管加工により固定される。このと
き、伝熱管には拡管加工による伸びが生じ、その伸びに
より生じる反力が、管板6に圧力となって作用し管板6
に歪みが発生する。ここで、管板6に発生する歪み量
は、管板の厚さ、径、材質、及び拡管加工順序により決
定されるが、ここでは、図4に示すような歪みが発生し
たとする。The structure of the intermediate flange 9 is shown in FIG.
Cooling water necessary for condensing the gas refrigerant flows in from the cooling water inlet 13 of the cooling water inlet / outlet side flange 10, passes through the inside of the heat transfer tube 7 in the condensing heat exchanger body portion 5b, and reaches the intermediate flange 9 Flow into the condensing heat exchanger 5a, and are turned back at the cooling water turning back flange 8, and again the condensing heat exchanger 5a,
It passes through the intermediate flange 9 and the condensing heat exchanger 5b and flows out from the cooling water outlet 14. The heat transfer tubes 7 in the heat exchangers 5a and 5b for condensing are fixed to the tube plate 6 by expanding. At this time, expansion occurs in the heat transfer tube due to the tube expansion process, and the reaction force generated by the expansion acts as pressure on the tube sheet 6 to act.
Distortion occurs. Here, the amount of strain that occurs in the tube sheet 6 is determined by the thickness, diameter, material, and expansion order of the tube sheet, but here it is assumed that the strain as shown in FIG. 4 has occurred.
【0014】本発明においては、図5に示すように、中
間フランジの冷却水通路を区分する仕切部材15が、二
等辺三角形と接するようにあらかじめプレス加工するこ
とにより、歪みが中間フランジの仕切部材15に吸収さ
れることになる。この二等辺三角形は、底辺を凝縮用熱
交換器胴部の内径Dとし、底辺の両側の角度をθ(θ=
arc tan(2σmax/D))とする。ここでσmaxは、管板
の厚さ、径、材質、及び拡管加工順序を固定して、実験
的に求められた歪み量の最大値である。In the present invention, as shown in FIG. 5, the partition member 15 for partitioning the cooling water passage of the intermediate flange is pre-pressed so as to come into contact with the isosceles triangle. 15 will be absorbed. In this isosceles triangle, the bottom is the inner diameter D of the condensing heat exchanger body, and the angles on both sides of the bottom are θ (θ =
arc tan (2σmax / D)). Here, σmax is the maximum value of the strain amount experimentally obtained by fixing the thickness, the diameter, the material of the tube sheet, and the tube expansion processing order.
【0015】また、図6に示すように、実験的に求めら
れた歪み量の最大値σmaxと凝縮用熱交換器胴部の内径
Dから算出される半径R(R=a/2sinθ, a2=σma
x2+D2/4, θ=arc tan(2σmax/D))なる円弧と
接するように、中間フランジの仕切部材15にあらかじ
めプレス加工することにより、歪みが中間フランジの仕
切部材15に吸収されることになる。Further, as shown in FIG. 6, a radius R (R = a / 2sin θ, a 2 calculated from the experimentally obtained maximum value σmax of strain amount and the inner diameter D of the body of the heat exchanger for condensation is used. = σma
x 2 + D 2/4, θ = arc tan in contact with (2σmax / D)) becomes an arc, by pre-pressing the intermediate flange of the partition member 15, the strain is absorbed by the partition member 15 of the intermediate flange Will be.
【0016】したがって、中間フランジ9の冷却水通路
を区分する仕切部材15に伝熱管7を管板6に拡管固定
する際に生じる管板6の歪みを考慮した形状をあらかじ
め加工することにより、中間フランジ9の円周部と管板
6の密着度が向上し、冷却水通水時に発生しやすかった
中間フランジ円周部からの水漏れが解消され、品質向上
の効果が得られる。さらに、パッキンの厚さの適正化に
よる材料費低減、及び水漏れ発見後の追加工解消による
加工時間短縮によって原価低減の効果も発生する。ま
た、仕切部材15に管板6の歪みを考慮した形状をあら
かじめ加工した中間フランジは、凝縮用熱交換器間の接
続に限らず凝縮用熱交換器と冷却水出入口フランジの接
続に用いても同様の効果が得られる。Therefore, the partition member 15 for partitioning the cooling water passage of the intermediate flange 9 is preliminarily processed to have a shape in consideration of the distortion of the tube sheet 6 generated when the heat transfer tube 7 is expanded and fixed to the tube sheet 6. Adhesion between the circumferential portion of the flange 9 and the tube sheet 6 is improved, water leak from the circumferential portion of the intermediate flange, which was likely to occur when cooling water is passed, is eliminated, and the effect of quality improvement is obtained. Further, the cost of the material is reduced by optimizing the thickness of the packing, and the cost is reduced by shortening the processing time by eliminating the additional work after the water leak is discovered. Further, the intermediate flange in which the partition member 15 is preliminarily processed into a shape in consideration of the distortion of the tube sheet 6 is not limited to the connection between the condensing heat exchangers, and may be used for the connection between the condensing heat exchanger and the cooling water inlet / outlet flange. The same effect can be obtained.
【0017】膨張弁3を通った冷媒は、蒸発用熱交換器
4に入る。この蒸発用熱交換器の構造を図7に示す。こ
の蒸発用熱交換器の作用は、前述の凝縮用熱交換器とで
は、冷却水通路部が蒸発用冷媒通路部となり、冷媒通路
部が冷水通路部と逆になるが、熱交換器としての加工順
序、伝熱管固定、管板の板厚、および形状は同一となる
ので同様の効果が得られる。The refrigerant having passed through the expansion valve 3 enters the heat exchanger 4 for evaporation. The structure of this evaporation heat exchanger is shown in FIG. The function of this heat exchanger for evaporation is that, with the heat exchanger for condensation described above, the cooling water passage portion becomes the evaporation refrigerant passage portion, and the refrigerant passage portion is the reverse of the cold water passage portion, but as a heat exchanger, Since the processing order, heat transfer tube fixing, tube plate thickness, and shape are the same, similar effects can be obtained.
【0018】[0018]
【発明の効果】本発明によれば、流体の流れ方向ごとに
通路を区分するように取付られた仕切部材に、伝熱管を
管板に拡管固定する際に生じる管板の歪み量の決定要素
である、管板の厚さ、径、材質及び拡管加工順序を固定
して実験的に求められた歪み量に応じた形状、あるいは
歪み量から算出される形状をあらかじめ加工する。これ
により、伝熱管を管板に拡管固定する際に生じる管板の
歪みが、仕切部材に吸収されて、仕切部材と管板との密
着度が向上する。したがって、仕切部からの水漏れまた
は冷媒漏れがなくなり、管板と仕切部材の間に挿入する
パッキンの厚さが必要最小限でよく、また水漏れまたは
冷媒漏れ発見後行っていた仕切部材を削る追加工が解消
される。これにより、仕切部からの水漏れまたは冷媒漏
れ解消による品質向上の効果が発生する。According to the present invention, the determinant of the amount of distortion of the tube sheet that is generated when the heat transfer tube is expanded and fixed to the partition member, which is installed so as to divide the passage for each fluid flow direction. That is, the thickness, diameter, material, and tube expansion processing order of the tube sheet are fixed, and a shape corresponding to the strain amount experimentally obtained or a shape calculated from the strain amount is processed in advance. As a result, the distortion of the tube sheet that occurs when the heat transfer tube is expanded and fixed to the tube sheet is absorbed by the partition member, and the degree of adhesion between the partition member and the tube sheet is improved. Therefore, there is no water leakage or refrigerant leakage from the partition part, the thickness of the packing inserted between the tube sheet and the partition member may be the minimum necessary, and the partition member that was used after the water leakage or refrigerant leakage was found is scraped off. Additional work is eliminated. As a result, an effect of quality improvement is produced by eliminating water leakage or refrigerant leakage from the partition section.
【図1】本発明を実施する冷凍装置の一例を示す系統図
である。FIG. 1 is a system diagram showing an example of a refrigerating apparatus for carrying out the present invention.
【図2】本発明の一実施例の熱交換器の縦断面図であ
る。FIG. 2 is a vertical sectional view of a heat exchanger according to an embodiment of the present invention.
【図3】本発明の一実施例の熱交換器の中間フランジの
横断面図である。FIG. 3 is a cross-sectional view of the intermediate flange of the heat exchanger according to the embodiment of the present invention.
【図4】本発明の一実施例の熱交換器の管板の断面図で
ある。FIG. 4 is a cross-sectional view of the tube sheet of the heat exchanger according to the embodiment of the present invention.
【図5】本発明の一実施例の熱交換器の仕切部材の断面
図である。FIG. 5 is a sectional view of a partition member of the heat exchanger according to the embodiment of the present invention.
【図6】本発明の別の実施例の熱交換器の仕切部材の断
面図である。FIG. 6 is a sectional view of a partition member of a heat exchanger according to another embodiment of the present invention.
【図7】本発明の別の実施例の熱交換器の縦断面図であ
る。FIG. 7 is a vertical sectional view of a heat exchanger according to another embodiment of the present invention.
1…圧縮機、2…凝縮用熱交換器、3…膨張弁、4…蒸
発用熱交換器、5a,5b…凝縮用熱交換器胴部、6…
管板、7…伝熱管、8…冷却水折り返し側フランジ、9
…中間フランジ、10…冷却水出入口側フランジ、11
…冷媒入口、12…冷媒出口、13…冷却水入口、14
…冷却水出口、15…仕切部材、16…蒸発用熱交換器
胴部、17…冷媒折り返し側フランジ、18…冷媒出入
口側フランジ、19…冷水入口、20…冷水出口、21
…冷媒通路を区分する仕切部。1 ... Compressor, 2 ... Condensing heat exchanger, 3 ... Expansion valve, 4 ... Evaporating heat exchanger, 5a, 5b ... Condensing heat exchanger body part, 6 ...
Tube plate, 7 ... Heat transfer tube, 8 ... Cooling water folding side flange, 9
... Intermediate flange, 10 ... Cooling water inlet / outlet side flange, 11
... Refrigerant inlet, 12 ... Refrigerant outlet, 13 ... Cooling water inlet, 14
... cooling water outlet, 15 ... partitioning member, 16 ... evaporation heat exchanger body, 17 ... refrigerant return side flange, 18 ... refrigerant inlet / outlet side flange, 19 ... cooling water inlet, 20 ... cooling water outlet, 21
... A partition that divides the refrigerant passage.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 山下 徹治 静岡県清水市村松390番地 株式会社日立 製作所空調システム事業部内 (72)発明者 梶本 忠恒 静岡県清水市宮加三715 株式会社ケーイ ーコーポレーション内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tetsuji Yamashita 390 Muramatsu, Shimizu-shi, Shizuoka Hitachi Air Conditioning Systems Division (72) Inventor Tadanori Kajimoto 715 Miyakazo Shimizu, Shizuoka Kay Corporation Co., Ltd.
Claims (4)
ている複数のグループに分けられている伝熱管群と、こ
の伝熱管群の両端に設けられ前記伝熱管群を貫通させて
拡管固定する管板と、前記伝熱管群と前記管板を内蔵す
る筒状の胴部とを有するシェルアンドチューブ型熱交換
器を筒状の中間フランジで直列に連結して中間フランジ
の内部に前記管群の一端が開口する構成とし、かつ前記
中間フランジ内部を流体の流れ方向ごとに通路を区分す
るように前記管板間に取付けられた仕切部材を有する熱
交換器において、前記仕切部材は該仕切部材が取り付け
られる部分の管板が伝熱管を拡管固定する際に生ずる歪
み量に応じた形状に構成したことを特徴とする熱交換
器。1. A heat transfer tube group which is divided into a plurality of groups in which the flow directions of fluids in the heat transfer tube are opposite to each other, and a pipe which is provided at both ends of the heat transfer tube group and penetrates through the heat transfer tube group. A tube plate to be fixed, a shell-and-tube heat exchanger having a tubular body containing the heat transfer tube group and the tube plate is connected in series with a tubular intermediate flange, and the shell and tube type heat exchanger are connected to the inside of the intermediate flange. In a heat exchanger having a configuration in which one end of a tube group is opened, and the partition member is attached between the tube plates so as to divide a passage in the intermediate flange for each fluid flow direction, the partition member is A heat exchanger characterized in that a tube plate of a portion to which the partition member is attached is formed in a shape corresponding to a strain amount generated when the heat transfer tube is expanded and fixed.
ている複数のグループに分けられている伝熱管群と、こ
の伝熱管群の両端に設けられ前記伝熱管群を貫通させて
拡管固定する管板と、前記伝熱管群と前記管板を内蔵す
る筒状の胴部とを有するシェルアンドチューブ型熱交換
器の両側に筒状のフランジを連結して前記伝熱管内流体
の出入口とする構成とし、かつ前記フランジ内部を流体
の流れ方向ごとに通路を区分するように前記管板に取付
けられた仕切部材を有する熱交換器において、前記仕切
部材は該仕切部材が取り付けられる部分の管板が伝熱管
を拡管固定する際に生ずる歪み量に応じた形状に構成し
たことを特徴とする熱交換器。2. A heat transfer tube group which is divided into a plurality of groups in which the flow directions of the fluid in the heat transfer tube are opposite to each other, and a pipe which is provided at both ends of the heat transfer tube group and penetrates through the heat transfer tube group. Inlet / outlet of fluid in the heat transfer tube by connecting tubular flanges on both sides of a shell-and-tube heat exchanger having a tube plate to be fixed and a tube body containing the heat transfer tube group and the tube plate In the heat exchanger having a partition member attached to the tube sheet so as to divide the passage inside the flange for each fluid flow direction, the partition member is a portion to which the partition member is attached. A heat exchanger characterized in that the tube plate has a shape corresponding to the amount of strain generated when expanding and fixing the heat transfer tube.
大歪み量をσmax、前記胴部を円筒としたときの内径を
Dとするとき、前記仕切部材の前記管板と接する箇所
が、底辺D,及び底辺Dの両側の角度θ(θ=arc tan
(2σmax/D))であらわされる二等辺三角形の二等辺
に接するように加工されていることを特徴とする熱交換
器。3. The method according to claim 1, wherein when the maximum strain amount of the tube sheet is σmax and the inner diameter when the body is a cylinder is D, a portion of the partition member which is in contact with the tube sheet is: Angle D at the base D and both sides of the base D (θ = arc tan
(2σmax / D)) A heat exchanger characterized by being processed so as to be in contact with an isosceles triangle of an isosceles triangle.
大歪み量をσmax、前記胴部を円筒としたときの内径を
Dとするとき、前記仕切部材の前記管板と接する箇所
が、半径R(R=a/2sinθ, a2=σmax2+D2/4,
θ=arc tan(2σmax/D))であらわされる円弧に接す
るように加工されていることを特徴とする熱交換器。4. In claim 1 or 2, when the maximum strain amount of the tube sheet is σmax and the inner diameter when the body is cylindrical is D, the location of the partition member that contacts the tube sheet is: radius R (R = a / 2sinθ, a 2 = σmax 2 + D 2/4,
A heat exchanger characterized by being processed so as to contact an arc represented by θ = arc tan (2σmax / D)).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29092794A JPH08145503A (en) | 1994-11-25 | 1994-11-25 | Heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29092794A JPH08145503A (en) | 1994-11-25 | 1994-11-25 | Heat exchanger |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08145503A true JPH08145503A (en) | 1996-06-07 |
Family
ID=17762317
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29092794A Pending JPH08145503A (en) | 1994-11-25 | 1994-11-25 | Heat exchanger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08145503A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009250485A (en) * | 2008-04-03 | 2009-10-29 | Hitachi Appliances Inc | Absorption type refrigerating machine |
CN105180684A (en) * | 2015-09-30 | 2015-12-23 | 南京航空航天大学 | Multi-runner shell and tube heat exchanger and heat exchange method |
JP2018124019A (en) * | 2017-02-01 | 2018-08-09 | 株式会社Ihi | Heat exchanger and heat exchange system |
CN110274496A (en) * | 2019-06-24 | 2019-09-24 | 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) | Tube side tandem shell-and-tube heat exchanger for deep-sea self-recycle cooling system |
-
1994
- 1994-11-25 JP JP29092794A patent/JPH08145503A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009250485A (en) * | 2008-04-03 | 2009-10-29 | Hitachi Appliances Inc | Absorption type refrigerating machine |
CN105180684A (en) * | 2015-09-30 | 2015-12-23 | 南京航空航天大学 | Multi-runner shell and tube heat exchanger and heat exchange method |
JP2018124019A (en) * | 2017-02-01 | 2018-08-09 | 株式会社Ihi | Heat exchanger and heat exchange system |
CN110274496A (en) * | 2019-06-24 | 2019-09-24 | 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) | Tube side tandem shell-and-tube heat exchanger for deep-sea self-recycle cooling system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3585506B2 (en) | High efficiency evaporator | |
US4871014A (en) | Shell and tube heat exchanger | |
US5009262A (en) | Combination radiator and condenser apparatus for motor vehicle | |
US3818984A (en) | Heat exchanger | |
US6115919A (en) | Heat exchanger | |
JP3131774B2 (en) | Multi-flow condenser for vehicle air conditioner | |
US6044900A (en) | Heat exchanger with a receiver | |
US6119340A (en) | Heat exchanger member and baffle installation method therefor | |
US20100175863A1 (en) | Heat Exchange Insert For A Heat-Exchange Device | |
KR102043931B1 (en) | Device for heat transfer | |
JPH11316093A (en) | Liquid-cooled tow-phase heat exchanger | |
US5644842A (en) | Method of making profiled tube and shell heat exchangers | |
US5129144A (en) | Method of making a combination radiator and condenser apparatus for motor vehicle | |
US5042578A (en) | Heat exchanger | |
JPH08261602A (en) | Heat exchanger with cartridge for filter/drier | |
JPH08145503A (en) | Heat exchanger | |
US3734176A (en) | Heat exchanger assembly having a common fluid box | |
US20010027860A1 (en) | Heat exchanger having an improved pipe connecting structure | |
JP2018173190A (en) | Connection device for heat exchanger | |
CN1255614A (en) | Refrigerator | |
JPH04309766A (en) | Heat exchanger | |
CN215177124U (en) | Plate heat exchanger with multi-channel parallel coupling pipeline and heat exchange equipment | |
GB2377268A (en) | A heat exchanger with isolated cooling circuits | |
JP2003207230A (en) | Refrigerating cycle and method of determining volume of receiver of refrigerating cycle | |
WO1996020808A1 (en) | Tube and shell heat exchanger and method |