JP2007271197A - Absorption type refrigerating device - Google Patents

Absorption type refrigerating device Download PDF

Info

Publication number
JP2007271197A
JP2007271197A JP2006098933A JP2006098933A JP2007271197A JP 2007271197 A JP2007271197 A JP 2007271197A JP 2006098933 A JP2006098933 A JP 2006098933A JP 2006098933 A JP2006098933 A JP 2006098933A JP 2007271197 A JP2007271197 A JP 2007271197A
Authority
JP
Japan
Prior art keywords
solution
heat exchanger
generator
absorber
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006098933A
Other languages
Japanese (ja)
Inventor
Mitsushi Kawai
満嗣 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2006098933A priority Critical patent/JP2007271197A/en
Publication of JP2007271197A publication Critical patent/JP2007271197A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact absorption type refrigerating device of low costs. <P>SOLUTION: In this absorption type refrigerating device comprising a generator, a solution heat exchanger, a condenser, an evaporator and an absorber, the generator is disposed on an upper portion of one sheet, the solution heat exchanger is disposed on its lower portion, and further the evaporator and the absorber are disposed on a lower portion of the solution heat exchanger, so that the numbers of sheets of plates necessary on the basis of the quantity of exchanged heat in the generator, the quantity of exchanged heat between thick solution flowing out from the generator and dilute solution flowing into the generator, and the quantity of exchanged heat in the evaporator and the absorber, decided on the basis of the absorption refrigerating cycle, are agreed with each other, and the plurality of plates are integrally stacked, thus the device can be miniaturized as a whole. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本願発明は、吸収式冷凍装置の構造に関するものである。   The present invention relates to the structure of an absorption refrigeration apparatus.

従来の吸収式冷凍装置においては、吸収サイクルを構成する熱交換器として、よりコンパクト化のために、各々単独でプレート式の熱交換器とするための提案や、またプレート式で蒸発器と吸収器とを組み合わせ一体化したもの、もしくはこれらに更に過冷却器を組み合わせて一体化したものなどが提案されている(特許文献1〜3参照)。   In the conventional absorption refrigeration system, as a heat exchanger constituting the absorption cycle, a proposal to make each plate heat exchanger independently for further compaction, and a plate type evaporator and absorption The thing which combined and united with the device, or the thing which combined these with the supercooler further, etc. are proposed (refer patent documents 1-3).

特開平10−82594号公報Japanese Patent Laid-Open No. 10-82594 特開2001−153582号公報JP 2001-153582 A 特開平10−232066号公報JP-A-10-232066

しかし、吸収サイクルを構成する熱交換器は、上記のもの以外に発生器や溶液熱交換器があり、小型の吸収式冷凍機や、排熱(温水)利用の単効用機などにおいては、これら熱交換器の各々を単独でプレート化して組み合わせて見ても、コンパクト化や低コスト化には限界がある。   However, in addition to the heat exchangers that make up the absorption cycle, there are generators and solution heat exchangers. In small absorption refrigerators and single-effect machines that use exhaust heat (hot water), these Even if each of the heat exchangers is made into a plate and combined, there is a limit to downsizing and cost reduction.

以上の問題を解決するためには、例えば上記吸収式の冷凍サイクルを構成する各熱交換器を一体化し、全体として1枚又は2枚のプレート型の熱交換器構造とすれば、小型機等での、さらなるコンパクト化、低コスト化が可能となる。   In order to solve the above problems, for example, if each heat exchanger constituting the absorption refrigeration cycle is integrated to form a single or two plate heat exchanger structure as a whole, a small machine or the like Therefore, further downsizing and cost reduction are possible.

しかし、そのためには、プレート1枚又は2枚で、発生器および溶液熱交換器部分や、吸収器および蒸発器部分を構成する必要があり、各々のプレート枚数を同じにしたり、プレート間の間隔(ピッチ)を工夫する必要が生じる。   However, in order to do so, it is necessary to configure the generator and the solution heat exchanger part, the absorber and the evaporator part with one or two plates, and the same number of plates or the distance between the plates. It is necessary to devise (pitch).

本願発明は、このような問題を解決するためになされたもので、上述のような各熱交換器を一体型のものとするために、プレート部における発生器の交換熱量と溶液熱交換器の交換熱量、また蒸発器と吸収器の交換熱量が合うように、各々の伝熱面積を適切に形成することによって、全体としてプレートの枚数を同じにした吸収式冷凍装置を提供することを目的とするものである。   The present invention has been made to solve such a problem, and in order to make each of the heat exchangers as described above integral, the exchange heat amount of the generator in the plate portion and the solution heat exchanger An object of the present invention is to provide an absorption refrigeration apparatus in which the number of plates is the same as a whole by appropriately forming each heat transfer area so that the exchange heat amount and the exchange heat amount of the evaporator and the absorber are matched. To do.

本願発明は、上記の目的を達成するために、次のような課題解決手段を備えて構成されている。   In order to achieve the above object, the present invention is configured with the following problem solving means.

(1) 第1の課題解決手段
この発明の第1の課題解決手段は、発生器、溶液熱交換器、凝縮器、蒸発器、吸収器を備えてなる吸収式冷凍装置であって、その吸収冷凍サイクルから決定される発生器における交換熱量と、該発生器より流出する濃溶液と発生器に流入する希溶液との交換熱量、および蒸発器、吸収器での交換熱量とから、必要となるプレートの枚数が一致するように、1枚のプレートの上部に発生器、その下部に溶液熱交換器を各々形成する一方、同溶液熱交換器の下部に蒸発器と吸収器を形成し、同プレートを複数枚積層一体化したことを特徴としている。
(1) First Problem Solving Means The first problem solving means of the present invention is an absorption refrigeration apparatus comprising a generator, a solution heat exchanger, a condenser, an evaporator, and an absorber, and its absorption Necessary from the amount of exchange heat in the generator determined from the refrigeration cycle, the amount of exchange heat between the concentrated solution flowing out of the generator and the dilute solution flowing into the generator, and the amount of exchange heat in the evaporator and absorber In order to match the number of plates, a generator is formed at the top of one plate and a solution heat exchanger is formed at the bottom thereof, while an evaporator and an absorber are formed at the bottom of the solution heat exchanger. It is characterized by stacking and integrating multiple plates.

このような構成によると、発生器および溶液熱交換器、吸収器および蒸発器等を各々のプレートの間隔を合わせ、かつ枚数が同じになるように、各熱交換器のプレート部の伝熱面積を適切に設定することにより、比較的簡単に複数枚のプレートを積層一体化して、各熱交換器部を1枚のプレート型構造に一体形成することができる。   According to such a configuration, the heat transfer area of the plate portion of each heat exchanger is such that the generator, the solution heat exchanger, the absorber, the evaporator, etc. are aligned at the same interval and the number of plates is the same. By appropriately setting the above, a plurality of plates can be laminated and integrated relatively easily, and each heat exchanger section can be integrally formed in one plate type structure.

その結果、例えば、間接(溶液分離冷却)空冷方式を採用することで、全体としてプレート型熱交換器と凝縮器と空冷冷却器との合計3ケの熱交換器だけで、コンパクトかつ低コストに吸収冷凍サイクルを形成することが可能となり、信頼性が大きく向上する。   As a result, for example, by adopting an indirect (solution separation cooling) air cooling system, a total of only three heat exchangers including a plate heat exchanger, a condenser, and an air cooling cooler can be compact and low cost. An absorption refrigeration cycle can be formed, and reliability is greatly improved.

また、必要に応じ空冷の凝縮器と空冷の溶液冷却熱交換器を1ケに重ねることで、2ケの熱交換器とすることもでき、部品点数が大きく削減される。   In addition, if necessary, an air-cooled condenser and an air-cooled solution-cooled heat exchanger can be overlapped with each other to form two heat exchangers, and the number of parts can be greatly reduced.

(2) 第2の課題解決手段
この発明の第2の課題解決手段は、発生器、溶液熱交換器、凝縮器、蒸発器、吸収器を備えてなる吸収式冷凍装置であって、その吸収冷凍サイクルから決定される発生器における交換熱量と、該発生器より流出する濃溶液と発生器に流入する希溶液との交換熱量、および蒸発器、吸収器での交換熱量とから、必要となるプレートの枚数が一致するように、1枚のプレートの上部に発生器、その下部に溶液熱交換器、さらに同溶液熱交換器の下部に蒸発器を形成する一方、もう1枚のプレートには上部に発生器、その下部に溶液熱交換器、さらに同溶液熱交換器の下部に吸収器を形成し、それら各プレートを各々平行に配置した状態で複数枚積層一体化したことを特徴としている。
(2) Second Problem Solving Means The second problem solving means of the present invention is an absorption refrigeration apparatus comprising a generator, a solution heat exchanger, a condenser, an evaporator, and an absorber, and its absorption Necessary from the amount of exchange heat in the generator determined from the refrigeration cycle, the amount of exchange heat between the concentrated solution flowing out of the generator and the dilute solution flowing into the generator, and the amount of exchange heat in the evaporator and absorber In order to match the number of plates, a generator is formed at the top of one plate, a solution heat exchanger at the bottom, and an evaporator at the bottom of the solution heat exchanger, while the other plate has A generator is formed in the upper part, a solution heat exchanger is formed in the lower part, and an absorber is formed in the lower part of the same solution heat exchanger. .

このような構成によると、発生器および溶液熱交換器、吸収器および蒸発器を形成するに際し、それぞれ1枚のプレートを各々のプレートの間隔を合わせ、かつ枚数が同じになるように、各熱交換器のプレート部の伝熱面積を適切に設定することにより、比較的簡単に複数枚のプレートを積層一体化して、各熱交換器部を1個のプレート型構造に形成することができる。   According to such a configuration, when forming the generator, the solution heat exchanger, the absorber, and the evaporator, each of the heat plates is arranged so that the number of plates is the same and the number of the plates is the same. By appropriately setting the heat transfer area of the plate portion of the exchanger, a plurality of plates can be laminated and integrated relatively easily, and each heat exchanger portion can be formed into one plate-type structure.

その結果、例えば、間接(溶液分離冷却)空冷方式を採用することで、全体として1個のプレート型熱交換器と凝縮器と空冷の溶液冷却熱交換器との合計3ケの熱交換器だけで、コンパクトかつ低コストに吸収冷凍サイクルを形成することが可能となり、信頼性が大きく向上する。   As a result, for example, by adopting an indirect (solution separation cooling) air cooling system, only a total of three heat exchangers, one plate type heat exchanger, a condenser, and an air cooling solution cooling heat exchanger, are used. Thus, the absorption refrigeration cycle can be formed in a compact and low-cost manner, and the reliability is greatly improved.

また、必要に応じ空冷の凝縮器と空冷の溶液冷却熱交換器を1ケに重ねることで、2ケの熱交換器とすることもでき、部品点数が大きく削減される。   In addition, if necessary, an air-cooled condenser and an air-cooled solution-cooled heat exchanger can be overlapped with each other to form two heat exchangers, and the number of parts can be greatly reduced.

また、このような構成によると蒸発器と吸収器を別のプレートで形成できるので、それらの間の遮熱性が高くなる。   Moreover, according to such a structure, since an evaporator and an absorber can be formed with another plate, the heat-shielding property between them becomes high.

(3) 第3の課題解決手段
この発明の第3の課題解決手段は、上記第1又は第2の課題解決手段の構成において、希溶液は発生器のプレート部を液膜状態で流下し、同プレート部の内部を流れる加熱流体により加熱、濃縮されて冷媒蒸気を発生する一方、冷媒蒸気を発生して濃くなった濃溶液は下部の溶液熱交換器で発生器に流入する希溶液で冷却された後に吸収器に流入し、吸収器のプレート部を液膜状態で流下する際に蒸発器で蒸発した冷媒蒸気を吸収するとともに、同冷媒蒸気吸収時に発生する吸収熱は同プレート部の内部を流れる冷却流体により取り去られるように構成されていることを特徴としている。
(3) Third Problem Solving Means According to a third problem solving means of the present invention, in the configuration of the first or second problem solving means, the dilute solution flows down the plate portion of the generator in a liquid film state, The refrigerant solution is heated and concentrated by the heating fluid that flows inside the plate part to generate refrigerant vapor, while the concentrated solution that has become concentrated due to the generation of refrigerant vapor is cooled by the dilute solution flowing into the generator in the lower solution heat exchanger. The refrigerant vapor that flows into the absorber after being absorbed and flows down the plate portion of the absorber in a liquid film state absorbs the refrigerant vapor evaporated by the evaporator, and the absorption heat generated during absorption of the refrigerant vapor is absorbed inside the plate portion. It is comprised so that it may be removed by the cooling fluid which flows through.

このような構成によると、発生器から吸収器に到るまで、自然流下により液膜状態で溶液を流すことができ、高性能の再生および熱交換、蒸発および吸収作用と省エネ効果の高い高効率な運転が可能となる。   According to such a configuration, it is possible to flow the solution in a liquid film state by natural flow from the generator to the absorber, high efficiency with high performance regeneration and heat exchange, evaporation and absorption action and high energy saving effect. Driving becomes possible.

また、吸収器における吸収熱は、吸収器のプレート部内を流れる被冷却流体により効率良く取り去られる。   Further, the absorbed heat in the absorber is efficiently removed by the fluid to be cooled flowing in the plate portion of the absorber.

(4) 第4の課題解決手段
この発明の第4の課題解決手段は、上記第1又は第2の課題解決手段の構成において、希溶液は発生器のプレート部を液膜状態で流下し、同プレート部の内部を流れる加熱液体により加熱、濃縮されて冷媒蒸気を発生する一方、冷媒蒸気を発生して濃くなった濃溶液は下部の溶液熱交換器で発生器に流入する希溶液で冷却された後に別途空冷溶液熱交換器によって過冷却された希溶液と混合されて吸収器に流入し、同吸収器のプレート部を流下する際に蒸発器で蒸発した冷媒蒸気を吸収するように構成されていることを特徴としている。
(4) Fourth Problem Solving Means According to a fourth problem solving means of the present invention, in the configuration of the first or second problem solving means, the dilute solution flows down the plate portion of the generator in a liquid film state, While the refrigerant liquid is heated and concentrated by the heated liquid flowing inside the plate section to generate refrigerant vapor, the concentrated solution generated by generating refrigerant vapor is cooled by the dilute solution flowing into the generator in the lower solution heat exchanger. After that, it is mixed with the dilute solution supercooled separately by the air-cooled solution heat exchanger, flows into the absorber, and absorbs the refrigerant vapor evaporated by the evaporator when flowing down the plate part of the absorber It is characterized by being.

このような構成によると、発生器から吸収器に到るまで、自然流下により広面積の液膜状態で溶液を流すことができ、高性能の再生および熱交換、蒸発および吸収作用と省エネ効果の高い高効率な運転が可能となる。   According to such a configuration, from the generator to the absorber, it is possible to flow the solution in a large area liquid film state by natural flow, high performance regeneration and heat exchange, evaporation and absorption action and energy saving effect Highly efficient operation is possible.

また、吸収器における吸収熱は、別途設けた空冷溶液熱交換器により吸収液が過冷却されて、効率良く取り去られる。   Further, the absorption heat in the absorber is efficiently removed by supercooling the absorption liquid by a separately provided air-cooled solution heat exchanger.

したがって、吸収器自体の構造が、冷却部のない簡単な平面プレートで済み、より小型、低コスト化に適したものとなる。   Therefore, the structure of the absorber itself may be a simple flat plate without a cooling part, and is suitable for further miniaturization and cost reduction.

(5) 第5の課題解決手段
この発明の第5の課題解決手段は、上記第1又は第2の課題解決手段の構成において、希溶液は発生器のプレート部を液膜状態で流下し、同プレート部の内部を流れる加熱液体により加熱、濃縮されて冷媒蒸気を発生する一方、冷媒蒸気を発生して濃くなった濃溶液は下部の溶液熱交換器で発生器に流入する希溶液で冷却された後に別途空冷溶液熱交換器に流入する希溶液と混合され、同混合された濃溶液と希溶液が空冷溶液熱交換器によって過冷却された後に吸収器に流入し、同吸収器のプレート部を流下する際に蒸発器で蒸発した冷媒蒸気を吸収するように構成されていることを特徴としている。
(5) Fifth Problem Solving Means According to a fifth problem solving means of the present invention, in the configuration of the first or second problem solving means, the dilute solution flows down the plate portion of the generator in a liquid film state, While the refrigerant liquid is heated and concentrated by the heated liquid flowing inside the plate section to generate refrigerant vapor, the concentrated solution generated by generating refrigerant vapor is cooled by the dilute solution flowing into the generator in the lower solution heat exchanger. Is mixed with a dilute solution that separately flows into an air-cooled solution heat exchanger, and the mixed concentrated solution and dilute solution are supercooled by an air-cooled solution heat exchanger and then flow into the absorber, and the plate of the absorber It is configured to absorb the refrigerant vapor evaporated by the evaporator when flowing down the section.

このような構成によると、発生器から吸収器に到るまで、自然流下により広面積の液膜状態で溶液を流すことができ、高性能の再生および熱交換、蒸発および吸収作用と省エネ効果の高い高効率な運転が可能となる。   According to such a configuration, from the generator to the absorber, it is possible to flow the solution in a large area liquid film state by natural flow, high performance regeneration and heat exchange, evaporation and absorption action and energy saving effect Highly efficient operation is possible.

また、同構成では、冷媒蒸気を発生して濃くなった濃溶液は下部の溶液熱交換器で発生器に流入する希溶液で冷却された後に、別途設けた空冷溶液熱交換器に流入する前に希溶液と混合され、同混合された濃溶液と希溶液が空冷溶液熱交換器を通して過冷却された後に吸収器に流入し、同吸収器のプレート部を流下するようになっている。   Further, in this configuration, the concentrated solution generated by generating the refrigerant vapor is cooled with a dilute solution flowing into the generator in the lower solution heat exchanger, and then flows into the separately provided air-cooled solution heat exchanger. The concentrated solution and the diluted solution, which are mixed with each other, are supercooled through an air-cooled solution heat exchanger and then flow into the absorber and flow down the plate portion of the absorber.

したがって、より吸収液の過冷却度が高くなり、より吸収能力が向上する。   Therefore, the degree of supercooling of the absorbing liquid becomes higher, and the absorbing capacity is further improved.

(6) 第6の課題解決手段
この発明の第6の課題解決手段は、上記第1,第2,第3,第4又は第5の課題解決手段の構成において、発生器および吸収器の各プレート部の上部には、それぞれ溶液が均等にプレート部に分配されるように溶液分配装置を組み込んであり、また溶液熱交換器には、冷媒蒸気を発生して濃くなった濃溶液が満液状態で流出するように、同濃溶液の流出口を溶液熱交換器の上部に位置させて設けたことを特徴としている。
(6) Sixth Problem Solving Means Sixth problem solving means of the present invention is the configuration of the first, second, third, fourth, or fifth problem solving means, wherein each of the generator and the absorber. A solution distributor is incorporated in the upper part of the plate part so that the solution is evenly distributed to the plate part, and the solution heat exchanger is filled with a concentrated solution that has been concentrated by generating refrigerant vapor. The outlet of the concentrated solution is provided in the upper part of the solution heat exchanger so as to flow out in a state.

このような構成によると、発生器および吸収器の各プレート部における溶液の液膜化と拡散性が向上し、液面の均一度が高くなる。また、溶液熱交換器部分に濃溶液溜りが形成されて、希溶液との熱交換性能が向上する。   According to such a configuration, the liquid film and the diffusibility of the solution in each plate portion of the generator and the absorber are improved, and the uniformity of the liquid level is increased. Further, a concentrated solution pool is formed in the solution heat exchanger portion, and the heat exchange performance with the dilute solution is improved.

(7) 第7の課題解決手段
この発明の第7の課題解決手段は、上記第1,第2,第3,第4,第5又は第6の課題解決手段の構成において、上部の発生器から下部の溶液熱交換器に至る溶液の流下するプレート部間の間隔は略同じである一方、上部の発生器の加熱流体流通路の間隔と下部の溶液熱交換器の被加熱溶液流通路の間隔とはピッチが異なり、かつ蒸発器、吸収器の溶液流通路とはピッチが略同じであることを特徴としている。
(7) Seventh Problem Solving Means The seventh problem solving means of the present invention is the above generator in the first, second, third, fourth, fifth or sixth problem solving means. While the distance between the plate parts where the solution flows from the solution heat exchanger to the lower solution heat exchanger is substantially the same, the distance between the heated fluid flow path of the upper generator and the heated solution flow path of the lower solution heat exchanger The pitch is different from the interval, and the pitch is substantially the same as the solution flow path of the evaporator and the absorber.

このような構成によると、先ず前者の場合、1枚のプレート部の上方側と下方側に容易かつ省スペースで発生器部と溶液熱交換器部を形成することができる。また、後者の場合、溶液熱交換器部における希溶液流路と濃溶液流路との容積が等しくなり、希溶液と濃溶液との熱交換性能を最大レベルに確保することができる。その結果、より効率的な運転が可能となる。   According to such a configuration, first, in the former case, the generator part and the solution heat exchanger part can be formed easily and in a space-saving manner on the upper side and the lower side of one plate part. In the latter case, the volumes of the dilute solution flow path and the concentrated solution flow path in the solution heat exchanger section are equal, and the heat exchange performance between the dilute solution and the concentrated solution can be ensured to the maximum level. As a result, more efficient operation is possible.

(8) 第8の課題解決手段
この発明の第8の課題解決手段は、上記第1,第2,第3,第4,第5又は第6の課題解決手段の構成において、上部の発生器から下部の溶液熱交換器、蒸発器、吸収器までにおいて、上部から流下する溶液の通路と下部の溶液熱交換器に流れる被加熱溶液流通路の間隔と蒸発器、吸収器の溶液流通路とは略同じピッチであることを特徴としている。
(8) Eighth Problem Solving Means An eighth problem solving means of the present invention is the above generator in the first, second, third, fourth, fifth or sixth problem solving means. To the lower solution heat exchanger, evaporator and absorber, the distance between the solution passage flowing down from the upper portion and the heated solution flow passage flowing into the lower solution heat exchanger and the solution passage passage of the evaporator and absorber Are characterized by substantially the same pitch.

このような構成によると、1枚又は2のプレート部の上方側と下方側に各々容易かつ省スペースで発生器部と溶液熱交換器部、蒸発器と吸収器部を形成することができる。   According to such a configuration, the generator part, the solution heat exchanger part, the evaporator and the absorber part can be formed easily and in a space-saving manner on the upper side and the lower side of the one or two plate parts, respectively.

また、熱交換器各部における流路の容積が等しくなり、熱交換性能を最大レベルに確保することができる。その結果、より効率的な運転が可能となる。   Moreover, the volume of the flow path in each part of the heat exchanger becomes equal, and the heat exchange performance can be secured at the maximum level. As a result, more efficient operation is possible.

また、それぞれの通路の形成が容易となる。   Moreover, formation of each channel | path becomes easy.

以上の結果、本願発明によると、吸収式冷凍装置を低コスト、かつコンパクトに提供することが可能となる。   As a result, according to the present invention, the absorption refrigeration apparatus can be provided at low cost and in a compact manner.

(最良の実施の形態1)
先ず図1及び図2は、本願発明の最良の実施の形態1に係る吸収式冷凍装置の構成を示している。
(Best Embodiment 1)
First, FIG.1 and FIG.2 has shown the structure of the absorption refrigeration apparatus based on the best Embodiment 1 of this invention.

この実施の形態のものは、発生器、溶液熱交換器、蒸発器、吸収器等の各熱交換器を可能な限り一体型のものとするために、1枚のプレートのプレート部における発生器の交換熱量と溶液熱交換器の交換熱量、また蒸発器、吸収器での交換熱量が合うように各々の伝熱面積を適切に設定することによって、必要とするプレートの枚数を同じにしたことを特徴としている。   In this embodiment, in order to make each heat exchanger such as a generator, a solution heat exchanger, an evaporator, and an absorber as integral as possible, the generator in the plate portion of one plate The number of plates required was made the same by appropriately setting each heat transfer area so that the exchange heat quantity of the solution and the exchange heat quantity of the solution heat exchanger, and the exchange heat quantity in the evaporator and absorber were matched. It is characterized by.

すなわち、この実施の形態の吸収式冷凍装置では、例えば発生器1、溶液熱交換器2、凝縮器、蒸発器3、吸収器4等を備えた臭化リチウム単効用型吸収式冷凍装置において(吸収液として臭化リチウム水溶液が採用され、また冷媒として水が採用されている)、空冷凝縮器を除く装置全体を一体型のものとするために、図1に示すように、一枚のプレートPにおける発生器1の交換熱量と溶液熱交換器2の交換熱量、また蒸発器3、吸収器4での熱量がうまく合うように、各々の伝熱面積を適切に設定し、それらを図2のように積層することによって、最終的に重合一体化される複数枚のプレートP,P・・・の枚数が同じ枚数となるように構成している(図2では下部側の蒸発器3と吸収器4を省略して示しているが、前後方向に略同様の構成となっている)。   That is, in the absorption refrigeration apparatus of this embodiment, for example, in a lithium bromide single-effect absorption refrigeration apparatus including a generator 1, a solution heat exchanger 2, a condenser, an evaporator 3, an absorber 4, and the like ( In order to make the entire apparatus excluding the air-cooled condenser as an integral type, an aqueous solution of lithium bromide is adopted as the absorbing liquid and water is adopted as the refrigerant, as shown in FIG. The heat transfer areas of the generator 1 and the solution heat exchanger 2 in P and the heat amounts in the evaporator 3 and the absorber 4 are set appropriately so that the heat transfer areas of the generator 1 and the solution heat exchanger 2 match each other. Are stacked so that the number of plates P, P,... Finally superposed and integrated becomes the same number (in FIG. 2, the lower evaporator 3 and Although the absorber 4 is omitted, it is substantially the same in the front-rear direction. And it has a configuration).

そして、その場合において、上記発生器1のプレート部(熱交部)1a,1a・・・間の間隔と溶液熱交換器2のプレート部(熱交部)2a,2a・・・との間の間隔、蒸発器3、吸収器4の間隔が同一となるようにプレート間隔を決めることで、完全に一体のプレートで発生器1、溶液熱交換器2、蒸発器3、吸収器4を製作することができる。   And in that case, between the space | interval between the plate parts (heat exchange part) 1a, 1a ... of the said generator 1, and the plate part (heat exchange part) 2a, 2a ... of the solution heat exchanger 2. The generator 1, the solution heat exchanger 2, the evaporator 3, and the absorber 4 are manufactured by a completely integrated plate by determining the plate interval so that the intervals of the evaporator 3 and the absorber 3 are the same. can do.

なお、図1中の符号1cは発生器1への温水流入口、1dは同温水の流出口、2cは溶液熱交換器2への希溶液の流入口、2dは同希溶液の流出口、2eは溶液熱交換器2から吸収器4側への濃溶液の流出口、3cは図示しない凝縮器から蒸発器3への凝縮冷媒(水)の流入口、4cは上記溶液熱交換器2から吸収器4への濃溶液の流入口である。   1 is a hot water inlet to the generator 1, 1d is an outlet of the same hot water, 2c is an inlet of a dilute solution to the solution heat exchanger 2, 2d is an outlet of the dilute solution, 2e is the outlet of the concentrated solution from the solution heat exchanger 2 to the absorber 4 side, 3c is the inlet of the condensed refrigerant (water) from the condenser (not shown) to the evaporator 3, and 4c is from the solution heat exchanger 2. This is the inlet of the concentrated solution to the absorber 4.

そして、それらの各々の間に図示矢印のような流路および連絡配管を設けて、上部の上記発生器1からの濃溶液が下部側の上記溶液熱交換器2部分へ自然流下するように配置する。さらに同溶液熱交換器2の下部に吸収器4、蒸発器3を並設することで、上記溶液熱交換器2を出た濃溶液を吸収器4へ自然流下方式で流入させ、そのプレート部4a表面に液膜状態で流すことができるようにしている。   Then, between each of them, a flow path as shown in the figure and a connecting pipe are provided so that the concentrated solution from the generator 1 on the upper side naturally flows down to the solution heat exchanger 2 portion on the lower side. To do. Furthermore, by arranging the absorber 4 and the evaporator 3 in parallel at the lower part of the solution heat exchanger 2, the concentrated solution exiting the solution heat exchanger 2 is allowed to flow into the absorber 4 by a natural flow method, and its plate portion It is made to flow on the surface of 4a in a liquid film state.

一方、吸収器4のプレート部4aには、並設された蒸発器3から冷媒蒸気が導入されるようになっており、同液膜状態の濃溶液に冷媒蒸気である水蒸気を効率良く吸収させる。また、蒸発器3には、図示しない凝縮器を介して凝縮された発生器1からの冷媒液が供給され、そのプレート部3a部分で、内部の冷媒通路3bを流れる冷媒により蒸発せしめられる。   On the other hand, the refrigerant vapor is introduced into the plate portion 4a of the absorber 4 from the evaporator 3 arranged in parallel, and the water vapor as the refrigerant vapor is efficiently absorbed into the concentrated solution in the same liquid film state. . The evaporator 3 is supplied with the refrigerant liquid from the generator 1 condensed via a condenser (not shown), and is evaporated by the refrigerant flowing through the internal refrigerant passage 3b at the plate portion 3a.

このような構成によると、吸収式の冷凍サイクルを構成する各熱交換器を相互に一体化し、全体として1枚のプレート構造の熱交換器とすることができるので、小型機等での、さらなるコンパクト化、低コスト化が可能となる。   According to such a configuration, the heat exchangers constituting the absorption refrigeration cycle can be integrated with each other to form a single plate structure heat exchanger as a whole. It is possible to reduce the size and cost.

このような構成によると、発生器、溶液熱交換器、吸収器、蒸発器等を各々のプレートの間隔を合わせ、かつ枚数が同じになるように、各熱交換器のプレート部(熱交部)の伝熱面積を設定することにより、比較的簡単に複数枚のプレートを一体化することができる。   According to such a configuration, the plate part (heat exchange part) of each heat exchanger is arranged so that the number of generators, solution heat exchangers, absorbers, evaporators, etc. are equal to each other and the number of plates is the same. ), The plurality of plates can be integrated relatively easily.

また、吸収器の冷却方式として、吸収器に流入する吸収溶液を空冷冷却器(空冷溶液熱交換器)にて過冷却した溶液の顕熱で取り去るだけの間接(溶液分離冷却)空冷方式を採用することで、全体として空冷凝縮器と空冷冷却器(空冷溶液熱交換器)との合計3ケの熱交換器だけで吸収冷凍サイクルを形成することが可能となる。   In addition, as an absorber cooling method, an indirect (solution separation cooling) air cooling method is adopted in which the absorbing solution flowing into the absorber is removed by sensible heat of the supercooled solution in the air cooling cooler (air cooling solution heat exchanger). By doing so, it is possible to form an absorption refrigeration cycle only with a total of three heat exchangers including an air-cooled condenser and an air-cooled cooler (air-cooled solution heat exchanger) as a whole.

また、その場合、空冷の凝縮器と空冷冷却器(空冷溶液熱交換器)を1ケに重ねるようにすると、全体として2ケの熱交換器とすることもでき、部品点数が大きく削減される。   In this case, if the air-cooled condenser and the air-cooled cooler (air-cooled solution heat exchanger) are stacked in one, it is possible to make two heat exchangers as a whole, and the number of parts is greatly reduced. .

これらの結果、全体として、少なくとも3ケもしくは2ケの熱交換器により構成することが可能であり、装置全体の低コスト化、コンパクト化が可能となり、信頼性が大きく向上する。   As a result, as a whole, the heat exchanger can be configured with at least three or two heat exchangers, and the overall cost of the apparatus can be reduced and the size can be reduced, thereby greatly improving the reliability.

なお、以上の構成において、例えば図2に示すように、上部の発生器1から下部の溶液熱交換器2に至る濃溶液の流下するプレート部1a,1a・・・間の間隔は略同じである一方、上部の発生器1の加熱流体流通路1b,1b・・・の間隔と下部の溶液熱交換器2の被加熱溶液流通路2b,2b・・・の間隔とはピッチが異なり、かつ蒸発器3、吸収器4の溶液流通路3b,3b・・・、4b,4b・・・(断面は図示省略)とはピッチが略同じとなっている。   In the above configuration, for example, as shown in FIG. 2, the interval between the plate portions 1a, 1a... Where the concentrated solution flows from the upper generator 1 to the lower solution heat exchanger 2 is substantially the same. On the other hand, the pitch of the interval between the heated fluid flow passages 1b, 1b... Of the upper generator 1 and the interval of the heated solution flow passages 2b, 2b. The pitches are substantially the same as the solution flow paths 3b, 3b... 4b, 4b.

このような構成によると、先ず前者の場合、1枚のプレートPの上方側と下方側に容易かつ省スペースで発生器1部分と溶液熱交換器2部分を形成することができる。また、後者の場合、溶液熱交換器2部分における希溶液流路と濃溶液流路等との容積が等しくなり、希溶液と濃溶液との熱交換性能を最大レベルに確保することができる。   According to such a configuration, first, in the former case, the generator 1 part and the solution heat exchanger 2 part can be formed easily and in a space-saving manner on the upper side and the lower side of one plate P. In the latter case, the volumes of the dilute solution flow path and the concentrated solution flow path in the solution heat exchanger 2 are equal, and the heat exchange performance between the dilute solution and the concentrated solution can be ensured to the maximum level.

また、上部の発生器1から下部の溶液熱交換器2、蒸発器3、吸収器4までにおいて、上部から流下する濃溶液の通路と下部の溶液熱交換器2に流れる被加熱溶液流通路の間隔と蒸発器3、吸収器4の溶液流通路とは略同じピッチとなっている。   Further, in the range from the upper generator 1 to the lower solution heat exchanger 2, the evaporator 3, and the absorber 4, a concentrated solution passage flowing from the upper portion and a heated solution flow passage flowing to the lower solution heat exchanger 2 are provided. The interval and the solution flow path of the evaporator 3 and the absorber 4 have substantially the same pitch.

このような構成によると、1枚又は2のプレート部の上方側と下方側に各々容易かつ省スペースで発生器1と溶液熱交換器2、蒸発器3と吸収器4を形成することができる。   According to such a configuration, the generator 1, the solution heat exchanger 2, the evaporator 3, and the absorber 4 can be formed easily and in a space-saving manner on the upper side and the lower side of one or two plate portions, respectively. .

また、熱交換器各部における流路の容積が等しくなり、熱交換性能を最大レベルに確保することができる。その結果、より効率的な運転が可能となる。   Moreover, the volume of the flow path in each part of the heat exchanger becomes equal, and the heat exchange performance can be secured at the maximum level. As a result, more efficient operation is possible.

また、それぞれの通路の形成が容易となる。   Moreover, formation of each channel | path becomes easy.

(変形例)
なお、図3および図4は、上記本願発明の最良の実施の形態1の吸収式冷凍装置の変形例の構成を示している。
(Modification)
3 and 4 show the configuration of a modification of the absorption refrigeration apparatus according to the first embodiment of the present invention.

この構成では、上述した同一寸法の複数枚のプレートP,P・・・を1枚のプレート構造に積層して構成した吸収式冷凍装置の下部における蒸発器3と吸収器4について、蒸発器3を形成するプレートPと吸収器4を形成するプレートPとを、例えば図3、図4のように、それぞれ別のプレートの下部に形成し(発生器1および溶液熱交換器2部分は同一)、積層方向に区分して並設することにより、相互の遮熱機能を確実にしたことを特徴とするものである。   In this configuration, the evaporator 3 and the absorber 4 in the lower part of the absorption refrigeration apparatus configured by laminating the plurality of plates P, P,. The plate P forming the absorber and the plate P forming the absorber 4 are respectively formed in the lower part of different plates as shown in FIGS. 3 and 4 (the generator 1 and the solution heat exchanger 2 are the same). In addition, the heat shielding function of each other is ensured by partitioning in parallel in the stacking direction.

図1および図2のように同一のプレートPの下部の幅方向に蒸発器3と吸収器4の伝熱プレート部3a,4aを形成するようにした場合、それらの間にスリットS(図1参照)を入れることにより遮熱作用を実現することができるが、それらが1枚の板でつながっている以上、遮熱性能には限界がある。   When the heat transfer plate portions 3a and 4a of the evaporator 3 and the absorber 4 are formed in the width direction below the same plate P as shown in FIGS. 1 and 2, the slit S (see FIG. 1) is formed between them. However, as long as they are connected by a single plate, there is a limit to the heat shielding performance.

ところが、図3、図4のように、それぞれを別のプレートに形成して、別の位置で積層(並設)一体化するようにすると、そのような問題も解消される。また、伝熱面積設定の自由度も高くなる。   However, as shown in FIG. 3 and FIG. 4, if each of them is formed on a separate plate and laminated (aligned) and integrated at different positions, such a problem is solved. In addition, the degree of freedom in setting the heat transfer area is increased.

その他の構成は、図1および図2のものと同一である。   Other configurations are the same as those in FIGS. 1 and 2.

(最良の実施の形態2)
次に図5および図6は、より具体的に構成した本願発明の最良の実施の形態2に係る吸収式冷凍装置の構成を示している。
(Best Mode 2)
Next, FIG. 5 and FIG. 6 show the configuration of the absorption refrigeration apparatus according to the second embodiment of the present invention that is more specifically configured.

この実施の形態の吸収式冷凍装置でも、基本的には、その吸収冷凍サイクルから決定される発生器1における交換熱量と、該発生器1より流出する濃溶液と該発生器1に流入する希溶液との交換熱量、および蒸発器3、吸収器4での交換熱量とから、必要となる複数枚のプレートP,P・・・の枚数が一致するように構成されるが、この実施の形態では、その場合において、全ての熱交換器部分を完全に1枚のプレート上に形成するもので、1枚のプレートPの上部側に発生器1、その下部に溶液熱交換器2を形成し、さらに同溶液熱交換器2下部のプレート部に各々分配トレイ3g,3g・・・、4g,4g・・・を介して蒸発器3と吸収器4を幅方向に並べて形成し、それらプレートP,P・・・を図示のように複数枚積層一体化して構成されている。   Also in the absorption refrigeration apparatus of this embodiment, basically, the amount of exchange heat in the generator 1 determined from the absorption refrigeration cycle, the concentrated solution flowing out from the generator 1, and the rare heat flowing into the generator 1 The required number of plates P, P... Is made to coincide with the amount of heat exchanged with the solution and the amount of heat exchanged in the evaporator 3 and the absorber 4. Then, in that case, all the heat exchanger parts are completely formed on one plate, and the generator 1 is formed on the upper side of one plate P, and the solution heat exchanger 2 is formed on the lower side thereof. Further, the evaporator 3 and the absorber 4 are formed side by side in the width direction through the distribution trays 3g, 3g... 4g, 4g. , P ... are stacked and integrated as shown. It is.

そして、同構成の場合、吸収器4(希溶液流出口4f)から溶液熱交換器2(希溶液流入口2c,流出口2d)を介して供給される希溶液は、発生器1のプレート部1a,1a・・・の表面を上方から下方に液膜状態で流下し、当該プレート部1a,1a・・・内の加熱流体通路1b,1b・・・を流れる温水等の加熱流体により、加熱、濃縮されて冷媒蒸気を発生し、同冷媒蒸気を図示しない凝縮器に供給して凝縮した後、さらに蒸発器3に供給する。一方、同冷媒蒸気の発生により濃縮された吸収濃溶液は、下部の溶液熱交換器2のプレート部2a,2a・・・で内側の希溶液通路2b,2b・・・を通して発生器1に流入する希溶液で冷却されて温度が低下した後、吸収器4に流入する。   In the case of the same configuration, the diluted solution supplied from the absorber 4 (dilute solution outlet 4f) via the solution heat exchanger 2 (dilute solution inlet 2c, outlet 2d) is the plate portion of the generator 1. The surface of 1a, 1a ... flows down from above in a liquid film state and heated by a heating fluid such as hot water flowing through the heating fluid passages 1b, 1b ... in the plate portions 1a, 1a ... Then, the refrigerant vapor is concentrated to generate a refrigerant vapor, and the refrigerant vapor is supplied to a condenser (not shown) to be condensed, and further supplied to the evaporator 3. On the other hand, the concentrated absorption solution concentrated by the generation of the refrigerant vapor flows into the generator 1 through the inner dilute solution passages 2b, 2b ... in the plate portions 2a, 2a ... of the lower solution heat exchanger 2. After cooling with a dilute solution, the temperature drops and then flows into the absorber 4.

吸収器4のプレート部4a,4a・・・では、濃溶液は液膜状態で流下する際に、蒸発器3内に供給され、同蒸発器3のプレート部3a,3a・・・内の冷却流体通路3b,3b・・・(冷水流入口3d、流出口3e)内を流れる冷水により蒸発した凝縮器からの冷媒蒸気を吸収するとともに、発生する吸収熱は吸収器4のプレート部4a,4a・・・内の冷却流体通路4b,4b・・・(流入口4d、流出口4e)を流れる冷却水で取り去られ、下部の希溶液流出口4fより流出され、再び上記溶液熱交換器2の希溶液流入口2cに供給される。   In the plate portions 4a, 4a,... Of the absorber 4, the concentrated solution is supplied into the evaporator 3 when flowing down in a liquid film state, and the inside of the plate portions 3a, 3a,. While absorbing the refrigerant vapor from the condenser evaporated by the cold water flowing in the fluid passages 3b, 3b... (Cold water inlet 3d, outlet 3e), the generated heat is absorbed by the plate portions 4a, 4a of the absorber 4. ... the cooling fluid passages 4b, 4b ... (inlet 4d, outlet 4e) are removed by the cooling water flowing out from the lower dilute solution outlet 4f, and again the solution heat exchanger 2 To the dilute solution inlet 2c.

なお、図5中の上記以外の符号2dは溶液熱交換器2からの希溶液流出口であり、同希溶液流出口2dは発生器1のプレート部1a,1a・・・上部の希溶液分配トレイ(図示省略)に連絡されている。   5, reference numeral 2d other than the above is a dilute solution outlet from the solution heat exchanger 2, and the dilute solution outlet 2d is a dilute solution distribution on the plate portions 1a, 1a,. It is in contact with a tray (not shown).

また2eは上記溶液熱交換器2からの濃溶液流出口であり、該濃溶液流出口2eは、図示のように濃溶液が満液状態で流出するように、上記溶液熱交換器2の略最上部に位置させて設けられている。   2e is a concentrated solution outlet from the solution heat exchanger 2, and the concentrated solution outlet 2e is an abbreviation of the solution heat exchanger 2 so that the concentrated solution flows out in a full state as shown in the figure. It is provided at the top.

その結果、上記溶液熱交換器2部分には濃溶液溜りが形成されて、上記吸収器4から供給される希溶液との熱交換性能が向上する。   As a result, a concentrated solution pool is formed in the solution heat exchanger 2 portion, and the heat exchange performance with the dilute solution supplied from the absorber 4 is improved.

このような構成によっても、上記最良の実施の形態1の構成のものと全く同様の作用を実現できることはもちろん、発生器1および溶液熱交換器2側と蒸発器3および吸収器4側とが分配トレイ3g,3g・・・、4g,4g・・・を介して熱的に上下に分離されるため、それらの間の遮熱性が完全となる。   Even with such a configuration, it is possible to realize exactly the same operation as that of the configuration of the best embodiment 1, and the generator 1 and the solution heat exchanger 2 side, and the evaporator 3 and the absorber 4 side are connected. Since the heat is vertically separated through the distribution trays 3g, 3g,..., 4g, 4g,.

なお、分配トレイ3g,3g・・・、4g,4g・・・相互の間は、それぞれ図5、図6のように液密に当接され、上方側溶液熱交換器2からの濃溶液が、蒸発器3、吸収器4に侵入しないようにしている。   The distribution trays 3g, 3g,..., 4g, 4g,... Are in liquid-tight contact with each other as shown in FIGS. , So as not to enter the evaporator 3 and the absorber 4.

(最良の実施の形態3)
次に図7および図8は、本願発明の最良の実施の形態3に係る間接(溶液分離冷却)空冷方式を採用した吸収式冷凍装置の構成を示している。
(Best Mode 3)
Next, FIG. 7 and FIG. 8 show the configuration of an absorption refrigeration apparatus employing an indirect (solution separation cooling) air cooling system according to the third preferred embodiment of the present invention.

この実施の形態では、例えば図7、図8に示すように、上記最良の実施の形態2の構成における吸収器4のプレート部4a,4a・・・を冷却流体通路4b,4b・・・のない単なる平面プレート41,41・・・とし、吸収器4で発生する吸収熱の冷却は同吸収器4とは別の空冷冷却器(空冷溶液熱交換器)15で過冷却する間接(溶液分離冷却)空冷方式を採用したことを特徴とするものである。   In this embodiment, as shown in FIGS. 7 and 8, for example, the plate portions 4a, 4a,... Of the absorber 4 in the configuration of the best embodiment 2 are replaced with cooling fluid passages 4b, 4b,. It is not a simple flat plate 41, 41..., And the absorption heat generated in the absorber 4 is cooled indirectly by an air cooling cooler (air cooling solution heat exchanger) 15 separate from the absorber 4 (solution separation). Cooling) It is characterized by adopting an air cooling system.

なお、図7の図面上の表現では、上部の発生器1および溶液熱交換器2部分を省略して示しているが、同部分も上記実施の形態2の場合と同様に、例えば図8のように、各プレートP,P・・・が積層一体化されて上端側発生器1部分まで連続する1枚板構造のものにより構成されている。   In the expression on the drawing of FIG. 7, the upper generator 1 and the solution heat exchanger 2 are omitted, but the same parts are also shown in FIG. As described above, each plate P, P... Is constituted by a single-plate structure in which the plates are laminated and integrated and continue to the upper end side generator 1 portion.

このような構成の場合、希溶液は、図8の回路から理解されるように、吸収器4の希溶液流出口4fから溶液ポンプ11により、第1の希溶液供給路12a、第1の希溶液流入口2c、溶液熱交換器2、希溶液流出口2d、第2の希溶液供給路12bを介して、発生器1のプレート部1a,1a・・・上部の希溶液分配トレイ1g内に第2の希溶液流入口1fより流入せしめられる。   In such a configuration, as is understood from the circuit of FIG. 8, the dilute solution is supplied from the dilute solution outlet 4 f of the absorber 4 by the solution pump 11 to the first dilute solution supply path 12 a and the first dilute solution. In the dilute solution distribution tray 1g at the top of the plate portions 1a, 1a,... Of the generator 1 through the solution inlet 2c, the solution heat exchanger 2, the dilute solution outlet 2d, and the second dilute solution supply path 12b. It flows in from the second dilute solution inlet 1f.

そして、その後、発生器1のプレート部1a,1a・・・の表面を均一な液膜状態で流下し、当該プレート部1a,1a・・・内の加熱流体通路(温水流入口1c、温水流出口1d)1b,1b・・・を流れる温水等加熱流体により、加熱されて冷媒蒸気を発生し、濃縮される。   Then, the surface of the plate portions 1a, 1a,... Of the generator 1 flows down in a uniform liquid film state, and a heating fluid passage (hot water inlet 1c, hot water flow in the plate portions 1a, 1a,. The outlet 1d) is heated by a heating fluid such as warm water flowing through 1b, 1b,... To generate refrigerant vapor and is concentrated.

発生した冷媒蒸気は冷媒蒸気流出口1hから流出し、冷媒蒸気供給路13を介して空冷凝縮器9に供給されて凝縮される。該空冷凝縮器9で凝縮された凝縮冷媒は、冷媒流入口3c、冷媒分配トレイ3gを介して蒸発器3内に供給され、同蒸発器3のプレート部3a,3a・・・内の冷却流体通路3b(冷媒流入口3d、冷媒流出口3e),3b・・・内を流れる冷媒により蒸発せしめられて、冷媒蒸気を発生する。   The generated refrigerant vapor flows out of the refrigerant vapor outlet 1h and is supplied to the air-cooled condenser 9 through the refrigerant vapor supply path 13 to be condensed. The condensed refrigerant condensed in the air-cooled condenser 9 is supplied into the evaporator 3 through the refrigerant inlet 3c and the refrigerant distribution tray 3g, and the cooling fluid in the plate portions 3a, 3a,. The refrigerant flowing in the passages 3b (refrigerant inlet 3d, refrigerant outlet 3e), 3b... Is evaporated to generate refrigerant vapor.

一方、発生器1で濃縮された濃溶液は、下部側の溶液熱交換器2で上記発生器1に流入する温度の低い希溶液により冷却されて温度が低下し、同溶液熱交換器2の濃溶液流出口2eから、濃溶液供給流路12cを介して吸収器4のプレート部4aの濃溶液分配トレイ4g内に濃溶液流入口4cを介して流入せしめられる。   On the other hand, the concentrated solution concentrated in the generator 1 is cooled by the low-temperature dilute solution flowing into the generator 1 in the lower solution heat exchanger 2 and the temperature is lowered. The concentrated solution outlet 2e is allowed to flow into the concentrated solution distribution tray 4g of the plate portion 4a of the absorber 4 via the concentrated solution supply channel 12c via the concentrated solution inlet 4c.

この実施の形態の場合、該濃溶液分配トレイ4gには、別途希溶液循環路12d中に設けた空冷冷却器(空冷溶液熱交換器)15により過冷却された希溶液が供給されるようになっており、上記濃溶液は該濃溶液分配トレイ4g内で同空冷冷却器(空冷溶液熱交換器)15により過冷却された希溶液と混合されて吸収器4に流入する。吸収器4の複数枚のプレート部4a,4a・・・では、一例として、その表面にパンチング孔やディンプル、メッシュ等の液膜拡散手段が設けられていて、液膜化とともに液滴化が可能となっている。   In this embodiment, the concentrated solution distribution tray 4g is supplied with a dilute solution supercooled by an air cooling cooler (air cooling solution heat exchanger) 15 separately provided in the dilute solution circulation path 12d. The concentrated solution is mixed with the diluted solution supercooled by the same air-cooled cooler (air-cooled solution heat exchanger) 15 in the concentrated solution distribution tray 4 g and flows into the absorber 4. As an example, a plurality of plate portions 4a, 4a,... Of the absorber 4 are provided with liquid film diffusing means such as punching holes, dimples, and meshes on the surface thereof, and can be formed into droplets together with liquid film formation. It has become.

そして、その広いプレート面上を液滴状態および液膜状態で流下する際に、蒸発器3で蒸発した冷媒蒸気を効率良く吸収して希溶液となり、再び吸収器4下部の希溶液流出口4fより流出される。   Then, when flowing down on the wide plate surface in a droplet state and a liquid film state, the refrigerant vapor evaporated by the evaporator 3 is efficiently absorbed to become a dilute solution, and again the dilute solution outlet 4f below the absorber 4. More leaked.

このような構成によっても、上述の場合同様、吸収式の冷凍サイクルを構成する各熱交換器を一体化し、全体として1枚のプレート型構造の熱交換器とすることができるので、小型機等での、さらなるコンパクト化、低コスト化が可能となる。   Even in such a configuration, as in the case described above, the heat exchangers constituting the absorption refrigeration cycle can be integrated into a single plate type heat exchanger as a whole. Therefore, further downsizing and cost reduction are possible.

従来の一般的な空冷吸収式冷凍装置の吸収器は、吸収器を多数の伝熱フィンを備えた複数本の伝熱管と吸収溶液分配トレイとから構成し、溶液循環路に設けた冷媒循環ポンプを介して吸収器の伝熱管内の冷媒通路に吸収溶液(濃溶液)を流し、同溶液通路部分で蒸発器側からの冷媒蒸気を吸収させながら、吸収溶液を伝熱管外周のファンの冷却風により冷却される空冷フィンで冷却する直接空冷方式であり、吸収器では、冷媒蒸気の吸収と吸収溶液の冷却とを同時に行うための気液界面の拡大が重要であるため、小型化への制約が大きい。   The absorber of a conventional general air-cooled absorption refrigeration apparatus is composed of a plurality of heat transfer tubes having a large number of heat transfer fins and an absorbing solution distribution tray, and a refrigerant circulation pump provided in the solution circulation path The absorbent solution (concentrated solution) is allowed to flow through the refrigerant passage in the heat transfer tube of the absorber through the refrigerant, and the refrigerant solution from the evaporator side is absorbed in the solution passage portion, while the absorption solution is cooled by the fan cooling air around the heat transfer tube This is a direct air-cooling method that uses air-cooled fins that are cooled by air.In the absorber, it is important to expand the gas-liquid interface to simultaneously absorb the refrigerant vapor and cool the absorbing solution. Is big.

例えば、吸収溶液分配トレイを含めた上下吸収器ヘッダー部分でのスペース、蒸気圧損考慮のための大口径管の使用、冷媒蒸気の流速制限に起因して蒸発器との連絡管が太くなる等である。   For example, the space in the header section of the upper and lower absorbers including the absorbent solution distribution tray, the use of a large-diameter pipe for consideration of vapor pressure loss, and the connection pipe with the evaporator becoming thick due to the restriction of the flow rate of the refrigerant vapor is there.

また、コスト的にも、溶接による接続箇所があるため、小型機では特に割高となる。   Moreover, since there exists a connection location by welding also in terms of cost, it is particularly expensive in a small machine.

これに対して、例えば図8に示すように、溶液ポンプ11により希溶液循環路12dを介して吸収器4内に流入する希溶液を伝熱管15a,15a・・・、伝熱フィン15b,15b・・・、ファンF等よりなる空冷冷却器(空冷溶液熱交換器)15によって過冷却することにより、吸収器4内では単に冷媒蒸気のみを吸収させ、吸収時に発生する吸収熱は同過冷却された吸収溶液の顕熱で取り去るだけの間接(溶液分離冷却)空冷方式にすると、同方式では、冷却手段が不要となるだけ吸収器4部分が小型化されるので、小型の吸収式冷凍装置では特に有利となる。   On the other hand, for example, as shown in FIG. 8, the dilute solution flowing into the absorber 4 through the dilute solution circulation path 12d by the solution pump 11 is transferred to the heat transfer tubes 15a, 15a..., The heat transfer fins 15b, 15b. ... By supercooling with an air cooling cooler (air cooling solution heat exchanger) 15 comprising a fan F or the like, only the refrigerant vapor is absorbed in the absorber 4, and the absorbed heat generated during absorption is supercooled. If the indirect (solution separation cooling) air cooling method is used, in which the absorbed solution is removed by sensible heat, the absorber 4 is reduced in size so that no cooling means is required. Then, it becomes especially advantageous.

そこで、上述のように、最良の実施の形態1のものと同様の全体として1枚のプレート構造の吸収式冷凍装置において、そのような間接(溶液分離冷却)空冷方式を採用し、上記吸収器4のプレート部4aに過冷却後の吸収溶液を液膜状態(および液滴状態)で流すことにより、冷媒蒸気の吸収を促進させるようにすると、図8のように空冷凝縮器9と空冷冷却器(空冷溶液熱交換器)15の合計3ケの熱交換器だけで吸収式冷凍サイクルを形成することができ、高効率でコンパクト、かつ低コストな吸収式冷凍装置を実現することが可能となる。   Therefore, as described above, in the absorption refrigeration apparatus having a single plate structure as a whole as in the best embodiment 1, such an indirect (solution separation cooling) air cooling system is adopted, and the absorber If the absorption solution of the refrigerant vapor is promoted by flowing the supercooled absorption solution in the liquid film state (and droplet state) through the plate portion 4a of FIG. 4, the air cooling condenser 9 and the air cooling cooling as shown in FIG. The absorption refrigeration cycle can be formed with only a total of three heat exchangers (air-cooled solution heat exchangers) 15, and it is possible to realize an absorption refrigeration apparatus that is highly efficient, compact, and low in cost. Become.

この場合、例えば図8に示す空冷凝縮器9と空冷冷却器(空冷溶液熱交換器)15を1ケに重ねることにより1つの熱交換器構成にすると、全体として2ケの熱交換器構造にすることもでき、そのようにすると、さらに部品点数が大きく削減される。   In this case, for example, when one air-cooling condenser 9 and an air-cooling cooler (air-cooling solution heat exchanger) 15 shown in FIG. In this case, the number of parts is further greatly reduced.

なお、図8の構成では、上述の実施の形態1,2のものと同様に構成された蒸発器3のプレート部3a,3a・・・の上部にも冷媒分配トレイ3gが設けられており、同冷媒分配トレイ3gに対して冷媒流入口3cを介して上述した空冷凝縮器9からの凝縮冷媒が供給されるようになっている。   In the configuration of FIG. 8, a refrigerant distribution tray 3g is also provided above the plate portions 3a, 3a,... Of the evaporator 3 configured in the same manner as in the first and second embodiments. The condensed refrigerant from the above-described air-cooled condenser 9 is supplied to the refrigerant distribution tray 3g through the refrigerant inlet 3c.

また、この実施の形態の場合、同蒸発器3内のプレート部3a,3a・・・内の冷媒通路3b,3b・・・には、上述の冷水に変えて例えばR407C等の冷媒が使用されている。   In the case of this embodiment, a refrigerant such as R407C is used in the refrigerant passages 3b, 3b... In the plate portions 3a, 3a. ing.

(変形例)
なお、以上の実施の形態では、図8に示すように、吸収器4に供給される吸収液を空冷冷却器(空冷溶液熱交換器)15を通して過冷却するに際し、空冷冷却器(空冷溶液熱交換器)15で過冷却した後の希溶液を吸収液分配トレイ4g内で溶液熱交換器2側からの濃溶液と混合するようにしたが、これは例えば上記溶液熱交換器2からの濃溶液と吸収器4からの希溶液とを予じめ混合し、同混合液を上記同様の空冷冷却器(空冷溶液熱交換器)15に供給して過冷却するようにしてもよい。
(Modification)
In the above embodiment, as shown in FIG. 8, when the cooling liquid supplied to the absorber 4 is supercooled through the air cooling cooler (air cooling solution heat exchanger) 15, the air cooling cooler (air cooling solution heat) is used. The dilute solution after being supercooled by the exchanger 15 is mixed with the concentrated solution from the solution heat exchanger 2 side in the absorption liquid distribution tray 4 g. The solution and the dilute solution from the absorber 4 may be mixed in advance, and the mixed solution may be supplied to the same air-cooled cooler (air-cooled solution heat exchanger) 15 and supercooled.

このような構成によると、より吸収液の過冷却度が高くなり、より吸収器4の吸収能力が向上する。   According to such a configuration, the degree of supercooling of the absorption liquid is further increased, and the absorption capacity of the absorber 4 is further improved.

一方、前者の場合、相対的に空冷冷却器(空冷溶液熱交換器)15内を流れる溶液流量が少なくて済むので、その分同熱交換器が小さくて済むメリットがある。   On the other hand, in the former case, since the flow rate of the solution flowing in the air-cooled cooler (air-cooled solution heat exchanger) 15 is relatively small, there is an advantage that the heat exchanger can be made smaller correspondingly.

(その他の実施の形態)
以上の実施の形態では、吸収液として臭化リチウム、冷媒として水を採用した単効用吸収式冷凍装置(水冷/間接空冷)を例として説明したが、本願発明は、さらに2重効用等多重効用型吸収式冷凍装置の場合にも同様に適用することができる。
(Other embodiments)
In the above embodiment, a single effect absorption refrigeration apparatus (water cooling / indirect air cooling) employing lithium bromide as an absorbing liquid and water as a refrigerant has been described as an example. However, the present invention further includes multiple effects such as double effects. The same applies to the case of the mold absorption refrigeration apparatus.

その場合、例えば上述の溶液熱交換器2を低温用溶液熱交換器として構成することが可能である。   In that case, for example, the above-described solution heat exchanger 2 can be configured as a low-temperature solution heat exchanger.

本願発明の最良の実施の形態1に係る吸収式冷凍装置の構成を示す図である。It is a figure which shows the structure of the absorption refrigeration apparatus which concerns on best Embodiment 1 of this invention. 同装置の要部の縦断面図(下部は省略)である。It is a longitudinal cross-sectional view (lower part is abbreviate | omitted) of the principal part of the apparatus. 同装置の変形例に係る蒸発器設置側プレート部の図である。It is a figure of the evaporator installation side plate part which concerns on the modification of the apparatus. 同装置の同変形例に係る吸収器設置側プレート部の図である。It is a figure of the absorber installation side plate part which concerns on the same modification of the apparatus. 本願発明の最良の実施の形態2に係る吸収式冷凍装置の構成を示す一部切欠斜視図である。It is a partially notched perspective view which shows the structure of the absorption refrigeration apparatus which concerns on best Embodiment 2 of this invention. 同装置を上下方向に切断分解した分解斜視図である。FIG. 本願発明の最良の実施の形態3に係る吸収式冷凍装置の蒸発器および吸収器部分の構成を示す一部切欠斜視図である。It is a partially notched perspective view which shows the structure of the evaporator and absorber part of the absorption refrigeration apparatus which concerns on best Embodiment 3 of this invention. 同装置の全体的な構成を示す図である。It is a figure which shows the whole structure of the apparatus.

符号の説明Explanation of symbols

1は発生器、2は溶液熱交換器、3は蒸発器、4は吸収器、15は空冷冷却器(空冷溶液熱交換器)である。   1 is a generator, 2 is a solution heat exchanger, 3 is an evaporator, 4 is an absorber, and 15 is an air-cooled cooler (air-cooled solution heat exchanger).

Claims (8)

発生器、溶液熱交換器、凝縮器、蒸発器、吸収器を備えてなる吸収式冷凍装置であって、その吸収冷凍サイクルから決定される発生器における交換熱量と、該発生器より流出する濃溶液と発生器に流入する希溶液との交換熱量、および蒸発器、吸収器での交換熱量とから、必要となるプレートの枚数が一致するように、1枚のプレートの上部に発生器、その下部に溶液熱交換器を各々形成する一方、同溶液熱交換器の下部に蒸発器と吸収器を形成し、同プレートを複数枚積層一体化したことを特徴とする吸収式冷凍装置。   An absorption refrigeration apparatus comprising a generator, a solution heat exchanger, a condenser, an evaporator, and an absorber, the amount of exchange heat in the generator determined from the absorption refrigeration cycle, and the concentration flowing out of the generator From the amount of exchange heat between the solution and the dilute solution flowing into the generator, and the amount of exchange heat in the evaporator and absorber, the generator is placed on the top of one plate so that the required number of plates matches. An absorption refrigeration apparatus, wherein a solution heat exchanger is formed at a lower portion, an evaporator and an absorber are formed at a lower portion of the solution heat exchanger, and a plurality of the plates are laminated and integrated. 発生器、溶液熱交換器、凝縮器、蒸発器、吸収器を備えてなる吸収式冷凍装置であって、その吸収冷凍サイクルから決定される発生器における交換熱量と、該発生器より流出する濃溶液と発生器に流入する希溶液との交換熱量、および蒸発器、吸収器での交換熱量とから、必要となるプレートの枚数が一致するように、1枚のプレートの上部に発生器、その下部に溶液熱交換器、さらに同溶液熱交換器の下部に蒸発器を形成する一方、もう1枚のプレートには上部に発生器、その下部に溶液熱交換器、さらに同溶液熱交換器の下部に吸収器を形成し、それら各プレートを各々平行に配置した状態で複数枚積層一体化したことを特徴とする吸収式冷凍装置。   An absorption refrigeration apparatus comprising a generator, a solution heat exchanger, a condenser, an evaporator, and an absorber, the amount of exchange heat in the generator determined from the absorption refrigeration cycle, and the concentration flowing out of the generator From the amount of exchange heat between the solution and the dilute solution flowing into the generator, and the amount of exchange heat in the evaporator and absorber, the generator is placed on the top of one plate so that the required number of plates matches. A solution heat exchanger is formed at the bottom, and an evaporator is formed at the bottom of the solution heat exchanger. On the other plate, the generator is formed at the top, the solution heat exchanger at the bottom, and the solution heat exchanger. An absorption refrigeration apparatus characterized in that an absorber is formed in the lower part, and a plurality of these plates are laminated and integrated in a state of being arranged in parallel. 希溶液は発生器のプレート部を液膜状態で流下し、同プレート部の内部を流れる加熱流体により加熱、濃縮されて冷媒蒸気を発生する一方、冷媒蒸気を発生して濃くなった濃溶液は下部の溶液熱交換器で発生器に流入する希溶液で冷却された後に吸収器に流入し、吸収器のプレート部を液膜状態で流下する際に蒸発器で蒸発した冷媒蒸気を吸収するとともに、同冷媒蒸気吸収時に発生する吸収熱は同プレート部の内部を流れる冷却流体により取り去られるように構成されていることを特徴とする請求項1又は2記載の吸収式冷凍装置。   The dilute solution flows down the plate part of the generator in a liquid film state, and is heated and concentrated by the heating fluid flowing inside the plate part to generate refrigerant vapor, while the concentrated solution that has become thicker by generating refrigerant vapor is After cooling with a dilute solution flowing into the generator in the lower solution heat exchanger, it flows into the absorber and absorbs the refrigerant vapor evaporated by the evaporator when flowing down the plate portion of the absorber in a liquid film state The absorption refrigeration apparatus according to claim 1 or 2, wherein the absorption heat generated at the time of absorption of the refrigerant vapor is removed by a cooling fluid flowing inside the plate portion. 希溶液は発生器のプレート部を液膜状態で流下し、同プレート部の内部を流れる加熱液体により加熱、濃縮されて冷媒蒸気を発生する一方、冷媒蒸気を発生して濃くなった濃溶液は下部の溶液熱交換器で発生器に流入する希溶液で冷却された後に別途空冷溶液熱交換器によって過冷却された希溶液と混合されて吸収器に流入し、同吸収器のプレート部を流下する際に蒸発器で蒸発した冷媒蒸気を吸収するように構成されていることを特徴とする請求項1又は2記載の吸収式冷凍装置。   The dilute solution flows down the plate part of the generator in a liquid film state, and is heated and concentrated by the heated liquid flowing inside the plate part to generate refrigerant vapor, while the concentrated solution that has become thicker by generating refrigerant vapor is After cooling with the dilute solution flowing into the generator in the lower solution heat exchanger, it is mixed with the dilute solution that is separately supercooled by the air-cooled solution heat exchanger and flows into the absorber, and flows down the plate part of the absorber The absorption refrigeration apparatus according to claim 1 or 2, wherein the absorption refrigeration apparatus is configured to absorb the refrigerant vapor evaporated by the evaporator. 希溶液は発生器のプレート部を液膜状態で流下し、同プレート部の内部を流れる加熱液体により加熱、濃縮されて冷媒蒸気を発生する一方、冷媒蒸気を発生して濃くなった濃溶液は下部の溶液熱交換器で発生器に流入する希溶液で冷却された後に別途空冷溶液熱交換器に流入する希溶液と混合され、同混合された濃溶液と希溶液が空冷溶液熱交換器によって過冷却された後に吸収器に流入し、同吸収器のプレート部を流下する際に蒸発器で蒸発した冷媒蒸気を吸収するように構成されていることを特徴とする請求項1又は2記載の吸収式冷凍装置。   The dilute solution flows down the plate part of the generator in a liquid film state, and is heated and concentrated by the heated liquid flowing inside the plate part to generate refrigerant vapor, while the concentrated solution that has become thicker by generating refrigerant vapor is After cooling with the dilute solution flowing into the generator in the lower solution heat exchanger, it is mixed with the dilute solution flowing separately into the air-cooled solution heat exchanger, and the mixed concentrated solution and dilute solution are mixed by the air-cooled solution heat exchanger. 3. The refrigerant according to claim 1, wherein the refrigerant vapor is introduced into the absorber after being supercooled, and absorbs the refrigerant vapor evaporated by the evaporator when flowing down the plate portion of the absorber. Absorption refrigeration equipment. 発生器および吸収器の各プレート部の上部には、それぞれ溶液が均等にプレート部に分配されるように溶液分配装置を組み込んであり、また溶液熱交換器には、冷媒蒸気を発生して濃くなった濃溶液が満液状態で流出するように、同濃溶液の流出口を溶液熱交換器の上部に位置させて設けたことを特徴とする請求項1,2,3,4又は5記載の吸収式冷凍装置。   A solution distribution device is incorporated in the upper part of each plate part of the generator and the absorber so that the solution is evenly distributed to the plate part, and the solution heat exchanger generates a refrigerant vapor and is concentrated. 6. The outlet of the concentrated solution is provided at the upper part of the solution heat exchanger so that the concentrated solution flows out in a full state. Absorption refrigeration equipment. 上部の発生器から下部の溶液熱交換器に至る溶液の流下するプレート部間の間隔は略同じである一方、上部の発生器の加熱流体流通路の間隔と下部の溶液熱交換器の被加熱溶液流通路の間隔とはピッチが異なり、かつ蒸発器、吸収器の溶液流通路とはピッチが略同じであることを特徴とする請求項1,2,3,4,5又は6記載の吸収式冷凍装置。   While the distance between the plate parts where the solution flows from the upper generator to the lower solution heat exchanger is substantially the same, the distance between the heating fluid flow path of the upper generator and the heated part of the lower solution heat exchanger The absorption according to claim 1, 2, 3, 4, 5 or 6, wherein the pitch is different from the interval of the solution flow passages and the pitch is substantially the same as the solution flow passages of the evaporator and the absorber. Type refrigeration equipment. 上部の発生器から下部の溶液熱交換器、蒸発器、吸収器までにおいて、上部から流下する溶液の通路と下部の溶液熱交換器に流れる被加熱溶液流通路の間隔と蒸発器、吸収器の溶液流通路とは略同じピッチであることを特徴とする請求項1,2,3,4,5又は6記載の吸収式冷凍装置。   From the upper generator to the lower solution heat exchanger, evaporator and absorber, the distance between the solution passage flowing down from the upper portion and the heated solution flow passage flowing into the lower solution heat exchanger and the evaporator and absorber The absorption refrigeration apparatus according to claim 1, 2, 3, 4, 5 or 6, wherein the pitch is substantially the same as the solution flow passage.
JP2006098933A 2006-03-31 2006-03-31 Absorption type refrigerating device Pending JP2007271197A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006098933A JP2007271197A (en) 2006-03-31 2006-03-31 Absorption type refrigerating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006098933A JP2007271197A (en) 2006-03-31 2006-03-31 Absorption type refrigerating device

Publications (1)

Publication Number Publication Date
JP2007271197A true JP2007271197A (en) 2007-10-18

Family

ID=38674186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006098933A Pending JP2007271197A (en) 2006-03-31 2006-03-31 Absorption type refrigerating device

Country Status (1)

Country Link
JP (1) JP2007271197A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278570A (en) * 2006-04-05 2007-10-25 Daikin Ind Ltd Air-cooled absorption type refrigerating device
KR101080308B1 (en) 2011-05-24 2011-11-04 주식회사 성지공조기술 Generation and air-cooling type absorption refrigerating machine usihg the same
KR101090227B1 (en) * 2011-05-24 2011-12-06 주식회사 성지공조기술 Air-conditioner using absorption refrigerating machine
KR101090228B1 (en) * 2011-05-24 2011-12-06 주식회사 성지공조기술 Absorption refrigerating machine usihg the same
JP2012202564A (en) * 2011-03-23 2012-10-22 Osaka Gas Co Ltd Absorption refrigerator and method for manufacturing the same
JP2012202563A (en) * 2011-03-23 2012-10-22 Osaka Gas Co Ltd Heat exchanger and method of manufacturing the same
KR20160012404A (en) * 2014-07-24 2016-02-03 한온시스템 주식회사 Air conditioner system for vehicle
KR20160012397A (en) * 2014-07-24 2016-02-03 한온시스템 주식회사 Air conditioner system for vehicle
JP2017058119A (en) * 2015-09-18 2017-03-23 拓樹 中村 Heat exchanger device
CN106802018A (en) * 2015-11-26 2017-06-06 四川捷元科技有限公司 Absorption refrigeration unit
CN106802013A (en) * 2015-11-26 2017-06-06 四川捷元科技有限公司 Unit-combination type refrigeration matrix
CN106802016A (en) * 2015-11-26 2017-06-06 四川捷元科技有限公司 Absorption refrigeration unit current interface
WO2021014893A1 (en) * 2019-07-23 2021-01-28 株式会社デンソー Heat exchanger
JP2021018051A (en) * 2019-07-23 2021-02-15 株式会社デンソー Heat exchanger
JP2021018050A (en) * 2019-07-23 2021-02-15 株式会社デンソー Heat exchanger

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05312434A (en) * 1992-05-06 1993-11-22 Hitachi Ltd Low temperature regenerator of absorption water cooling/heating device
JPH0798163A (en) * 1993-09-30 1995-04-11 Hitachi Ltd Absorptive cold water or hot water machine
JPH09243279A (en) * 1996-03-04 1997-09-19 Matsushita Electric Ind Co Ltd Laminated heat exchanger for absorption type heat pump
JPH1082594A (en) * 1996-09-05 1998-03-31 Hitachi Ltd Plate type heat exchanger and absorption cooling-heating apparatus using the same
JPH10122687A (en) * 1996-10-15 1998-05-15 Daikin Ind Ltd Air cooled absorption type refrigerator
JPH10232066A (en) * 1997-02-19 1998-09-02 Toyo Radiator Co Ltd Evaporator, absorber, supercooler, etc., combined and integrated multiple disk type heat exchanger
JPH10300260A (en) * 1997-04-24 1998-11-13 Hitachi Ltd Absorption water cooler-heater
JPH11201585A (en) * 1998-01-14 1999-07-30 Tokyo Gas Co Ltd Absorption water chiller-heater
JP2001133184A (en) * 1999-11-01 2001-05-18 Ebara Corp Plate-type heat exchanger
JP2001153582A (en) * 1999-11-22 2001-06-08 Ebara Corp Film type plate heat exchanger
JP2001255036A (en) * 2000-03-13 2001-09-21 Rinnai Corp Absorption refrigerating machine
JP2002277089A (en) * 2001-03-22 2002-09-25 Tokyo Gas Co Ltd Absorption refrigerator

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05312434A (en) * 1992-05-06 1993-11-22 Hitachi Ltd Low temperature regenerator of absorption water cooling/heating device
JPH0798163A (en) * 1993-09-30 1995-04-11 Hitachi Ltd Absorptive cold water or hot water machine
JPH09243279A (en) * 1996-03-04 1997-09-19 Matsushita Electric Ind Co Ltd Laminated heat exchanger for absorption type heat pump
JPH1082594A (en) * 1996-09-05 1998-03-31 Hitachi Ltd Plate type heat exchanger and absorption cooling-heating apparatus using the same
JPH10122687A (en) * 1996-10-15 1998-05-15 Daikin Ind Ltd Air cooled absorption type refrigerator
JPH10232066A (en) * 1997-02-19 1998-09-02 Toyo Radiator Co Ltd Evaporator, absorber, supercooler, etc., combined and integrated multiple disk type heat exchanger
JPH10300260A (en) * 1997-04-24 1998-11-13 Hitachi Ltd Absorption water cooler-heater
JPH11201585A (en) * 1998-01-14 1999-07-30 Tokyo Gas Co Ltd Absorption water chiller-heater
JP2001133184A (en) * 1999-11-01 2001-05-18 Ebara Corp Plate-type heat exchanger
JP2001153582A (en) * 1999-11-22 2001-06-08 Ebara Corp Film type plate heat exchanger
JP2001255036A (en) * 2000-03-13 2001-09-21 Rinnai Corp Absorption refrigerating machine
JP2002277089A (en) * 2001-03-22 2002-09-25 Tokyo Gas Co Ltd Absorption refrigerator

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278570A (en) * 2006-04-05 2007-10-25 Daikin Ind Ltd Air-cooled absorption type refrigerating device
JP2012202564A (en) * 2011-03-23 2012-10-22 Osaka Gas Co Ltd Absorption refrigerator and method for manufacturing the same
JP2012202563A (en) * 2011-03-23 2012-10-22 Osaka Gas Co Ltd Heat exchanger and method of manufacturing the same
KR101080308B1 (en) 2011-05-24 2011-11-04 주식회사 성지공조기술 Generation and air-cooling type absorption refrigerating machine usihg the same
KR101090227B1 (en) * 2011-05-24 2011-12-06 주식회사 성지공조기술 Air-conditioner using absorption refrigerating machine
KR101090228B1 (en) * 2011-05-24 2011-12-06 주식회사 성지공조기술 Absorption refrigerating machine usihg the same
KR102131158B1 (en) * 2014-07-24 2020-07-08 한온시스템 주식회사 Air conditioner system for vehicle
KR20160012404A (en) * 2014-07-24 2016-02-03 한온시스템 주식회사 Air conditioner system for vehicle
KR20160012397A (en) * 2014-07-24 2016-02-03 한온시스템 주식회사 Air conditioner system for vehicle
KR102173383B1 (en) * 2014-07-24 2020-11-03 한온시스템 주식회사 Air conditioner system for vehicle
JP2017058119A (en) * 2015-09-18 2017-03-23 拓樹 中村 Heat exchanger device
CN106802013A (en) * 2015-11-26 2017-06-06 四川捷元科技有限公司 Unit-combination type refrigeration matrix
CN106802016A (en) * 2015-11-26 2017-06-06 四川捷元科技有限公司 Absorption refrigeration unit current interface
CN106802018A (en) * 2015-11-26 2017-06-06 四川捷元科技有限公司 Absorption refrigeration unit
CN106802013B (en) * 2015-11-26 2023-04-21 四川捷元科技有限公司 Unit combined refrigeration matrix
CN106802016B (en) * 2015-11-26 2023-04-21 四川捷元科技有限公司 Water flow interface of absorption refrigeration unit
CN106802018B (en) * 2015-11-26 2023-04-21 四川捷元科技有限公司 Absorption refrigeration unit
WO2021014893A1 (en) * 2019-07-23 2021-01-28 株式会社デンソー Heat exchanger
JP2021018051A (en) * 2019-07-23 2021-02-15 株式会社デンソー Heat exchanger
JP2021018050A (en) * 2019-07-23 2021-02-15 株式会社デンソー Heat exchanger
JP7188376B2 (en) 2019-07-23 2022-12-13 株式会社デンソー Heat exchanger
JP7207286B2 (en) 2019-07-23 2023-01-18 株式会社デンソー Heat exchanger

Similar Documents

Publication Publication Date Title
JP2007271197A (en) Absorption type refrigerating device
JP2010112670A (en) Evaporator with cold storage function
KR20030014640A (en) Absorption chiller-heater and generator for use in such absorption chiller-heater
JP4701147B2 (en) 2-stage absorption refrigerator
JP2007263515A (en) Evaporation/absorption unit for absorption refrigerating machine
JP5217264B2 (en) Waste heat driven absorption refrigeration system
JP2006162154A (en) Laminated plate type absorber, absorption heat pump and absorption refrigerator
JP4821397B2 (en) Air-cooled absorption refrigeration equipment absorber
JP3997594B2 (en) Air-cooled absorber
JP3208161B2 (en) Absorption / evaporator
JP6324129B2 (en) Absorption refrigerator
JP2004271027A (en) Integrated heat exchanger for double-utility absorption refrigerator
JP6805473B2 (en) Absorption chiller
JP4903743B2 (en) Absorption refrigerator
JP2002022309A (en) Absorption type refrigerating machine
JP2009068724A (en) Absorption refrigerator
JP2008304081A (en) Absorption type refrigerating device
WO2012067086A1 (en) Evaporator
JP2009002577A (en) Absorption type refrigerating device
JP2008304082A (en) Absorption type refrigerating device
JP2004197984A (en) Integrated multiple plate type heat exchanger
JPH1082594A (en) Plate type heat exchanger and absorption cooling-heating apparatus using the same
JP4720558B2 (en) Absorption refrigerator generator
JP2007278570A (en) Air-cooled absorption type refrigerating device
JP2974000B2 (en) Air-cooled absorption refrigeration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110329