JPH10122687A - Air cooled absorption type refrigerator - Google Patents

Air cooled absorption type refrigerator

Info

Publication number
JPH10122687A
JPH10122687A JP8272513A JP27251396A JPH10122687A JP H10122687 A JPH10122687 A JP H10122687A JP 8272513 A JP8272513 A JP 8272513A JP 27251396 A JP27251396 A JP 27251396A JP H10122687 A JPH10122687 A JP H10122687A
Authority
JP
Japan
Prior art keywords
absorber
air
condenser
evaporator
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8272513A
Other languages
Japanese (ja)
Inventor
Shiro Yakushiji
史朗 薬師寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP8272513A priority Critical patent/JPH10122687A/en
Publication of JPH10122687A publication Critical patent/JPH10122687A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the air cooling capacity and the absorption capacity, and miniaturize the whole of a device by a method wherein a heat exchange area between a condenser of which the thermal load is large, and an absorbent condenser air cooling unit, is expanded so as to be sufficiently large, and a temperature difference to an air stream is made sufficiently large. SOLUTION: A condenser 9, an absorber 14, and an absorbent cooler 15 are respectively constituted of an air cooling structure, and an evaporator 11 and the absorber 14 which are integrated, are made the center, and the flat plate-form condenser 9, the hook-shape absorbent cooler 15, and non-air-cooled units such as a high temperature regenerator 5 and a low temperature solution heat-exchanger 4, are provided around the evaporator 11 and the absorber 14. Then, a heat exchange area between the condenser 9 of which the thermal load amount is large, and air of an air cooling unit of the absorbent condenser 15, is expanded so as to be sufficiently large, and a temperature difference to an air steam is made sufficiently large as well. As a result, this refrigerating device is made compact, and respective air cooling efficiencies and absorption capacities of the condenser 9, the absorber 14 and the absorbent cooler 15 can be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本願発明は、凝縮器部分で生
じる凝縮熱や吸収器部分で生じる吸収熱を空気流によっ
て冷却放熱させるようにした空冷吸収式冷凍装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air-cooled absorption refrigeration system in which the heat of condensation generated in a condenser and the heat of absorption generated in an absorber are cooled and radiated by an air flow.

【0002】[0002]

【従来の技術】一般に空冷吸収式冷凍装置の凝縮器部分
では冷媒蒸気の凝縮に伴う凝縮熱が生じ、また吸収器部
分では、蒸発器から供給される冷媒蒸気の吸収によって
吸収熱が生じ、これらの除去を行うことが必要となる。
2. Description of the Related Art Generally, in a condenser portion of an air-cooled absorption refrigeration system, heat of condensation is generated due to condensation of refrigerant vapor, and in an absorber portion, absorption heat is generated by absorption of refrigerant vapor supplied from an evaporator. Must be removed.

【0003】そのため、従来から一般に水冷式又は空冷
式の冷却手段が設けられるようになっているが、水冷式
の冷却手段を設けたものでは冷却効率は高いものの、水
源および冷却塔を必要とするなどシステムが複雑、大型
化し、コストが高くなる欠点を有している。
For this reason, conventionally, a water-cooling type or an air-cooling type cooling means is generally provided, but a water-cooling type cooling means is provided with a high cooling efficiency but requires a water source and a cooling tower. For example, the system has a disadvantage that the system is complicated, large, and the cost is high.

【0004】このような事情から、最近では空冷式の凝
縮器、吸収器、吸収液冷却器構造が色々提案されるよう
になっている。
[0004] Under such circumstances, recently, various structures of an air-cooled condenser, an absorber, and an absorption liquid cooler have been proposed.

【0005】そして、それらの殆んどのものが、例えば
特開平2−192533号公報、特開平3−10516
9号公報等に示されるように、凝縮器、吸収器、吸収液
冷却器各々の器体部を伝熱管構造に形成するとともに該
伝熱管構造の器体部の外周部に放熱フィンを設けること
によって所謂クロスフィン型の空冷熱交換器構造に形成
し、ファン等の通風手段による空気流によって空気冷却
するように構成されている
[0005] Most of them are disclosed in, for example, JP-A-2-192533 and JP-A-3-105516.
As shown in Japanese Patent Publication No. 9 and the like, the body part of each of the condenser, the absorber, and the absorbing liquid cooler is formed in a heat transfer tube structure, and a radiation fin is provided on an outer peripheral portion of the body part of the heat transfer tube structure. To form a so-called cross-fin type air-cooled heat exchanger structure, and is configured to cool the air by an air flow by a ventilation means such as a fan.

【0006】[0006]

【発明が解決しようとする課題】しかし、上記従来の構
成の場合、単に空冷構造の凝縮器、吸収器、吸収液冷却
器などを空気流上流側から下流側に並設するようにした
にすぎず、それら各空冷部における空気流との有効な温
度差の確保や、空気流に対する各部の熱負荷量に応じた
熱交換面積の確保、それらを有効に実現した上での各部
レイアウトのコンパクト化などのファクターについて十
分な検討がなされておらず、空冷性能、吸収性能の向上
には限界があるとともに装置全体のコンパクトが図られ
ていない課題がある。
However, in the case of the above-mentioned conventional structure, a condenser, an absorber, an absorbing liquid cooler and the like having an air-cooled structure are simply arranged side by side from the upstream side to the downstream side of the air flow. In addition, the effective temperature difference with the airflow in each air-cooling section is ensured, the heat exchange area according to the heat load of each part with respect to the airflow is ensured, and the layout of each part is made compact by realizing them effectively. Factors such as these have not been adequately studied, and there is a limit to the improvement of air cooling performance and absorption performance, and there is a problem that the overall device is not compact.

【0007】[0007]

【課題を解決するための手段】本願発明は、上記従来の
課題を解決することを目的としてなされたものであっ
て、次のような課題解決手段を備えて構成されている。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and has the following means for solving the problems.

【0008】すなわち、本願発明の空冷吸収式冷凍装置
は、例えば図1〜図4に示すように、冷媒蒸気を凝縮す
る凝縮器9と、該凝縮器9で凝縮された冷媒液を蒸発さ
せる蒸発器11と、吸収液に対して上記蒸発器11で蒸
発された冷媒蒸気を吸収させる吸収器14と、該吸収器
14に供給される吸収液を冷却する吸収液冷却器15と
を備えてなる空冷吸収式冷凍装置において、上記凝縮器
9、吸収器14、吸収液冷却器15の各々を空冷構造に
形成するとともに、上記蒸発器11および吸収器14を
囲んで外周囲に凝縮器9、吸収液冷却器15とを設けた
構成となっている。
That is, as shown in FIGS. 1 to 4, for example, the air-cooled absorption refrigeration apparatus of the present invention includes a condenser 9 for condensing refrigerant vapor and an evaporator for evaporating the refrigerant liquid condensed in the condenser 9. An absorber 11, an absorber 14 for absorbing the refrigerant vapor evaporated by the evaporator 11 with respect to the absorbent, and an absorbent cooler 15 for cooling the absorbent supplied to the absorber 14. In the air-cooled absorption refrigeration apparatus, each of the condenser 9, the absorber 14, and the absorbent cooler 15 is formed in an air-cooled structure, and the condenser 9, the absorber 9, and the absorber 9 are surrounded around the evaporator 11 and the absorber 14. The liquid cooler 15 is provided.

【0009】すでに述べたように、凝縮器9、吸収器1
4、吸収液熱交換器15等の冷却を必要とする部分を空
冷構造にすると、従来の水冷構造の場合に比べると、相
対的にシステム構成は簡単で全体としてもコンパクトに
なる。
As described above, the condenser 9 and the absorber 1
4. If the parts requiring cooling, such as the absorbent heat exchanger 15, have an air-cooled structure, the system configuration is relatively simple and compact as a whole as compared with the conventional water-cooled structure.

【0010】しかし、一方冷却効率は劣り、吸収性能の
向上が不十分となる。したがって、可及的に冷却効率を
向上させて吸収性能を高めようとすると、上記凝縮器
9、吸収器14、吸収液冷却器15各部における熱負荷
量を考慮した上で、供給される空気流との温度差を可能
な限り大きく取ることができるような送風系路上のレイ
アウトにすることが必要となる。しかも、それがコンパ
クト化の要請に反しないだけでなく、むしろ積極的にコ
ンパクト化の要請にも対応できるものであることが望ま
しい。
However, on the other hand, the cooling efficiency is inferior, and the improvement of the absorption performance is insufficient. Therefore, in order to improve the absorption efficiency by improving the cooling efficiency as much as possible, the air flow to be supplied is considered in consideration of the heat load in each part of the condenser 9, the absorber 14, and the absorbing liquid cooler 15. It is necessary to make the layout on the ventilation system path such that the temperature difference between the two can be as large as possible. In addition, it is desirable that this not only does not contradict the demand for compactness, but rather can actively respond to the demand for compactness.

【0011】上記のように、凝縮器9、吸収器14、吸
収液冷却器15の各々を例えば伝熱器体9a,14a,
15aと該伝熱器体9a,14a,15aの外周に設け
られた放熱フィン9b,14b,15bとを備えた空冷
構造に形成するとともに、蒸発器11および吸収器14
を中心として、その周囲を囲むように凝縮器9と吸収液
冷却器15とを設けると、熱負荷量の大きい凝縮器9お
よび吸収液冷却器15の空冷部の空気との熱交換面積を
周囲の制約なく十分に大きく拡大することができるよう
になるとともに各々を空気流送風系路の最上流側に位置
させることができるようになることから、空気流との温
度差も十分に大きく取ることができる。その結果、空冷
性能、空冷効率が向上し、吸収器14部分では吸収作用
を中心とした機能が実現できれば良くなるので冷媒蒸気
吸収性能も高くなる。
As described above, each of the condenser 9, the absorber 14, and the absorbing liquid cooler 15 is connected to, for example, the heat transfer bodies 9a, 14a,
15a and a heat-radiating fin 9b, 14b, 15b provided on the outer periphery of the heat transfer body 9a, 14a, 15a.
When the condenser 9 and the absorption liquid cooler 15 are provided so as to surround the periphery thereof, the heat exchange area between the air of the condenser 9 and the air cooling part of the absorption liquid cooler 15 having a large heat load is set to the periphery. The temperature difference from the air flow must be sufficiently large because the air flow can be enlarged sufficiently without restriction and can be positioned at the most upstream side of the air flow blowing system. Can be. As a result, the air-cooling performance and air-cooling efficiency are improved, and the function of the absorber 14 can be realized if the function centering on the absorption function can be realized.

【0012】しかも、蒸発器11および吸収器14はそ
れらに囲まれた内側の空き空間を有効に利用して設けら
れているので、装置全体の構造も極めてコンパクトにな
り、配管距離も短かくて済む。
In addition, since the evaporator 11 and the absorber 14 are provided by effectively utilizing the inner empty space surrounded by the evaporator 11 and the absorber 14, the structure of the entire apparatus is extremely compact, and the piping distance is short. I'm done.

【0013】また、空冷用の空気流を形成し、空冷構造
となった凝縮器9、吸収器14、吸収液冷却器15の各
々を空気流によって冷却するファン10は、略装置中央
部の蒸発器11および吸収器14の上方に設けられてい
るので、1台のファンを各部に共用することができ、複
数台のファンが不要となる分だけコンパクト化に寄与す
ることになる。
A fan 10, which forms an air flow for air cooling and cools each of the condenser 9, absorber 14, and absorption liquid cooler 15 having an air cooling structure by the air flow, has an evaporator substantially at the center of the apparatus. Since it is provided above the vessel 11 and the absorber 14, one fan can be shared for each part, which contributes to downsizing by eliminating the need for a plurality of fans.

【0014】また、以上の構成において、例えば吸収器
14の伝熱器体14aを円筒体に形成し、蒸発器11を
吸収器14中に一体に組込むか、又は同吸収器14の伝
熱器体(14a)をドーナツ状の二重壁円筒体に形成
し、蒸発器11が吸収器14中に一体に組込むように構
成すると、蒸発器が吸収器内で全面的に連通する結果、
吸収器内での冷媒蒸気圧損が発生せず、吸収能力(吸収
効率)が大きく向上する。また、その結果、吸収器出口
部での圧力を蒸発器圧力に等しく保つことができるよう
になる。
In the above construction, for example, the heat transfer body 14a of the absorber 14 is formed in a cylindrical body, and the evaporator 11 is integrated into the absorber 14 or the heat transfer body of the absorber 14 is integrated. When the body (14a) is formed in a donut-shaped double-walled cylindrical body and the evaporator 11 is integrally incorporated in the absorber 14, the evaporator communicates entirely in the absorber.
No refrigerant vapor pressure loss occurs in the absorber, and the absorption capacity (absorption efficiency) is greatly improved. As a result, the pressure at the outlet of the absorber can be kept equal to the evaporator pressure.

【0015】また、装置自体のコンパクト化にもつなが
る。
[0015] Further, the device itself can be made compact.

【0016】また、以上の構成において、例えば高温再
生器1、低温再生器7等のその他のユニットをも、凝縮
器9、吸収液冷却器15に連接して蒸発器11および吸
収器14を囲む状態に設けるようにすると、それらと上
記凝縮器9、吸収器14、吸収液冷却器15との配管の
接続が容易になるとともに、装置全体をコンパクトに形
成することができる。
In the above configuration, other units such as the high-temperature regenerator 1 and the low-temperature regenerator 7 are also connected to the condenser 9 and the absorption liquid cooler 15 to surround the evaporator 11 and the absorber 14. When provided in such a state, the connection between the condenser 9, the absorber 14, and the absorption liquid cooler 15 can be facilitated, and the entire apparatus can be formed compact.

【0017】また、上記のように吸収器14の伝熱器体
14aをドーナツ状の二重壁円筒体に形成した構成の場
合、上記高温再生器1、低温再生器7等のその他のユニ
ットを、当該吸収器14の伝熱器体14aの内側空間に
設けることが可能となり、よりコンパクト化が図られ
る。
In the case where the heat transfer body 14a of the absorber 14 is formed as a donut-shaped double-walled cylindrical body as described above, other units such as the high-temperature regenerator 1 and the low-temperature regenerator 7 are used. , Can be provided in the space inside the heat transfer body 14a of the absorber 14, and the size can be further reduced.

【0018】[0018]

【発明の効果】以上の結果、本願発明の空冷吸収式冷凍
装置によると、コンパクトでありながら凝縮器、吸収
器、吸収液冷却器各々の空冷効率が高く、吸収性能の高
い空冷吸収式冷凍装置を提供することができる。
As described above, according to the air-cooled absorption refrigeration apparatus of the present invention, the air-cooled absorption refrigeration apparatus having a high air-cooling efficiency of each of the condenser, the absorber and the absorption liquid cooler and having a high absorption performance while being compact. Can be provided.

【0019】[0019]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施の形態1)図1および図2は、本願発明の実施の
形態1に係る空冷吸収式冷凍装置の構成を示している。
(Embodiment 1) FIGS. 1 and 2 show the configuration of an air-cooled absorption refrigeration apparatus according to Embodiment 1 of the present invention.

【0020】本実施の形態では、吸収液として例えば臭
化リチウム溶液(LiBr溶液)、冷媒として水(H2
O)が採用されている。
In the present embodiment, for example, a lithium bromide solution (LiBr solution) is used as the absorbing solution, and water (H 2
O) is adopted.

【0021】図中、先ず符号1は下方側に加熱容器3
を、上方側に気液分離器6を備えた高温再生器である。
該高温再生器1の加熱容器3の底部には、ガスバーナ等
の加熱源2が設けられている。そして、後述する低温溶
液熱交換器4および高温溶液熱交換器5を介して順次可
及的に熱回収され、可能な限り昇温されて加熱容器3内
に供給されてくる吸収作用完了後の臭化リチウム希溶液
lを例えば600〜700mHgの圧力下で加熱沸騰さ
せて、上記上方側の気液分離器6で冷媒蒸気a(例えば
160℃)と臭化リチウム濃溶液b(例えば160℃)
とに分離再生するようになっている。
In the drawing, reference numeral 1 denotes a heating vessel 3 at a lower side.
Is a high-temperature regenerator provided with a gas-liquid separator 6 on the upper side.
At the bottom of the heating vessel 3 of the high-temperature regenerator 1, a heating source 2 such as a gas burner is provided. Then, heat is recovered as much as possible sequentially through a low-temperature solution heat exchanger 4 and a high-temperature solution heat exchanger 5 to be described later, and after completion of the absorption operation, the temperature is raised as much as possible and supplied into the heating vessel 3. The dilute lithium bromide solution 1 is heated and boiled under a pressure of, for example, 600 to 700 mHg, and refrigerant vapor a (for example, 160 ° C.) and lithium bromide concentrated solution b (for example, 160 ° C.) are formed in the upper gas-liquid separator 6.
And separate playback.

【0022】また符号7は低温再生器であり、上記気液
分離器6で分離再生された冷媒蒸気aと、同じく上記気
液分離器6で分離再生された後、さらに高温溶液熱交換
器5部分で低温溶液熱交換器4を通して若干昇温された
上記吸収作用完了後の臭化リチウム希溶液k(例えば9
0℃)と熱交換されて相当に温度が低下した臭化リチウ
ム濃溶液c(例えば95℃)とを相互に熱交換させるこ
とによって上記冷媒蒸気aを凝縮させるとともに該熱交
換時に生じた上記臭化リチウム濃溶液c中の蒸発水分d
(例えば98℃)を取り出すようになっている。
Reference numeral 7 denotes a low-temperature regenerator, and the refrigerant vapor a separated and regenerated by the gas-liquid separator 6 and the high-temperature solution heat exchanger 5 separated and regenerated by the gas-liquid separator 6. The lithium bromide dilute solution k (for example, 9) after the completion of the absorption operation, the temperature of which has been raised slightly through the low-temperature solution heat exchanger 4
0 ° C.) and a lithium bromide concentrated solution c (for example, 95 ° C.) having a considerably lowered temperature due to heat exchange, thereby condensing the refrigerant vapor a and causing the odor generated during the heat exchange. Evaporated moisture d in concentrated lithium chloride solution c
(For example, 98 ° C.).

【0023】さらに符号9は凝縮器であり、内部に冷媒
蒸気が流れる管状の伝熱器体9aの外周に多数枚の放熱
フィン9b,9b・・・を設けたクロスフィン形の空冷
構造に形成されている。該凝縮器9は、上記低温再生器
7で凝縮した冷媒液eと上記臭化リチウム濃溶液c中の
蒸発水分dとを合わせて導入し、例えば60mmHg程
度の圧力下で送風ファン10からの冷却風によって冷却
することにより液相状態の冷媒(水)h(例えば41
℃)に凝縮させるようになっている。
Reference numeral 9 denotes a condenser, which is formed in a cross-fin type air cooling structure in which a plurality of radiating fins 9b, 9b,... Are provided on the outer periphery of a tubular heat transfer body 9a through which refrigerant vapor flows. Have been. The condenser 9 introduces together the refrigerant liquid e condensed by the low-temperature regenerator 7 and the evaporated water d in the lithium bromide concentrated solution c, and cools the refrigerant from the blower fan 10 under a pressure of, for example, about 60 mmHg. The refrigerant (water) h (for example, 41) in a liquid state is cooled by wind.
° C).

【0024】さらに、符号11は蒸発器であり、内部を
冷水が通る蒸発コイル12を中心として構成されてい
る。該蒸発器12は、その蒸発コイル12部分を後述す
る吸収器14の伝熱器体14a中に上方から挿入しエリ
ミネータ11aで囲うことによって吸収器14と一体に
構成されており、吸収器14内の冷媒蒸気吸収作用によ
って生じる負圧を有効に利用することにより、例えば5
〜6mmHg程度の低圧状態を確実に維持し、同低圧下
で上記凝縮器9で凝縮された冷媒水hを、例えば冷水循
環式の蒸発コイル12上に散水して約5℃蒸発させ、蒸
発コイル12内に供給される例えば12℃の冷水を7℃
に冷却して図示しない空調用熱交換器に供給するように
なっている。
Reference numeral 11 denotes an evaporator, which is formed around an evaporator coil 12 through which cold water passes. The evaporator 12 is integrally formed with the evaporator 12 by inserting the evaporator coil 12 from above into a heat transfer body 14a of an absorber 14 and surrounding the eliminator 11a. By effectively utilizing the negative pressure generated by the refrigerant vapor absorbing action of
A low-pressure state of about 6 mmHg is reliably maintained, and the refrigerant water h condensed in the condenser 9 under the low pressure is sprayed onto, for example, a cooling water circulation type evaporation coil 12 to evaporate about 5 ° C. For example, cold water of 12 ° C. supplied into 12 is cooled to 7 ° C.
And supplies it to an air conditioning heat exchanger (not shown).

【0025】そして、符号14が吸収器であり、該吸収
器14は相当に大径の円筒体よりなる伝熱器体14aの
外周に多数枚の放熱フィン14b,14b・・・を設け
て構成されており、その上部空間21周縁部両側の散液
部には溶液ガイド13a,13bが設けられている。
Reference numeral 14 denotes an absorber, which is constructed by providing a large number of radiating fins 14b, 14b,... Solution guides 13a and 13b are provided on the liquid spraying parts on both sides of the peripheral portion of the upper space 21.

【0026】該吸収器14は、上記低温再生器7からの
臭化リチウム濃溶液f(例えば95℃)を低温溶液熱交
換器4を介して空冷吸収器14からの臭化リチウム希溶
液j(例えば40℃)と熱交換して所定温度以下に低温
化した臭化リチウム濃溶液i(例えば50℃)と、下部
側液留め部22からの冷媒蒸気吸収後の臭化リチウム希
溶液jをそれぞれ上記溶液ガイド部13a,13b内側
に導入し、溶液ガイド13a,13bの斜面を利用して
伝熱器体14aの内壁面に寄せて液膜状態で流下させ
る。上記液留め部22から導入される希溶液jは溶液ポ
ンプ16により管状の伝熱器体15aの外周に放熱フィ
ン15b,15b・・・を設けたクロスフィン形空冷構
造の吸収液冷却器15を介設した吸収液循環路30を通
して過冷却した後に導入される。
The absorber 14 converts the lithium bromide concentrated solution f (for example, 95 ° C.) from the low-temperature regenerator 7 through the low-temperature solution heat exchanger 4 into the lithium bromide dilute solution j (from the air-cooled absorber 14). (For example, 40 ° C.) and a lithium bromide concentrated solution i (for example, 50 ° C.) cooled to a predetermined temperature or lower by heat exchange with a lithium bromide dilute solution j after absorbing refrigerant vapor from the lower liquid retaining portion 22. It is introduced into the inside of the solution guides 13a and 13b, and is brought down to the inner wall surface of the heat transfer body 14a using the slopes of the solution guides 13a and 13b to flow down in a liquid film state. The dilute solution j introduced from the liquid retaining portion 22 is moved by the solution pump 16 to the absorption liquid cooler 15 having a cross-fin type air cooling structure provided with radiation fins 15b on the outer periphery of the tubular heat transfer body 15a. It is introduced after being supercooled through the interposed absorbent circulation circuit 30.

【0027】そして、上述のように各溶液ガイド13
a,13bを介して上記伝熱器体14aの内壁面を伝わ
って上方から下方に液膜状態で流下する濃溶液および過
冷却状態の希溶液は、該流下状態において上記エリミネ
ータ13を介して半径方向に均等に拡散された上記蒸発
器11からの冷媒蒸気(水蒸気)を効率良く吸収する。
この時、上記冷媒蒸気の吸収に伴って生じる吸収熱の一
部は、上記伝熱器体14aの外周部に設けられている多
数枚の放熱フィン14b,14b・・・を介して外部に
放熱され、送風ファン17による冷却風により効率良く
冷却される。これにより、吸収器部分での吸収能力の低
下が可及的に防止されるようになっている。
Then, as described above, each solution guide 13
The concentrated solution and the dilute solution in the supercooled state which flow down from above to below in the form of a liquid film along the inner wall surface of the heat transfer body 14a via the a and 13b have a radius through the eliminator 13 in the flowing down state. The refrigerant vapor (water vapor) from the evaporator 11 diffused uniformly in the direction is efficiently absorbed.
At this time, part of the absorbed heat generated due to the absorption of the refrigerant vapor is radiated to the outside through a large number of radiation fins 14b provided on the outer peripheral portion of the heat transfer body 14a. Then, the cooling air is efficiently cooled by the cooling air from the blower fan 17. As a result, a reduction in the absorption capacity at the absorber portion is prevented as much as possible.

【0028】そして、この場合、上記送風ファン17
は、上記蒸発器11および吸収器14の上方に設けら
れ、図示のように配設された凝縮器9および吸収液冷却
器15から吸収器14を介して上方に吹き抜けるような
送風系路を形成しており、該送風系路から見て吸収器1
4よりも空気流上流側に位置するように吸収液熱交換器
15が設けられている。そして、それにより、吸収液循
環路30を介して吸収器14に供給される上記臭化リチ
ウム希溶液jの過冷却効率が十分に高くなるように構成
されている。
In this case, the blower fan 17
Is formed above the evaporator 11 and the absorber 14, and forms a ventilation system passage that blows upward through the absorber 14 from the condenser 9 and the absorbing liquid cooler 15 arranged as shown in the figure. And the absorber 1
Absorbent liquid heat exchanger 15 is provided so as to be located on the upstream side of the air flow from the position 4. Thus, the supercooling efficiency of the dilute lithium bromide solution j supplied to the absorber 14 via the absorbent circulation circuit 30 is sufficiently increased.

【0029】以上のようにして吸収液冷却器15と吸収
器14を通って、吸収熱を放出した臭化リチウム希溶液
jの一部は、上記溶液ポンプ16を介して、臭化リチウ
ム希溶液戻し通路31の低温溶液熱交換器4、高温溶液
熱交換器5で低温、高温各再生器7,1からの高温の臭
化リチウム濃溶液と順次熱交換されて例えば90℃,1
40℃と次第に温度が高められた後に、再び上記高温再
生器1の加熱容器3に戻されて加熱沸騰され、再生され
る。
As described above, a part of the lithium bromide dilute solution j that has released the heat of absorption through the absorbent cooler 15 and the absorber 14 is passed through the solution pump 16 to the lithium bromide dilute solution j. The low-temperature solution heat exchanger 4 and the high-temperature solution heat exchanger 5 in the return passage 31 are sequentially heat-exchanged with the high-temperature lithium bromide concentrated solution from the low-temperature and high-temperature regenerators 7 and 1, for example, at 90 ° C., 1
After the temperature is gradually increased to 40 ° C., it is returned to the heating vessel 3 of the high-temperature regenerator 1 again, heated and boiled, and regenerated.

【0030】そして、本実施の形態の空冷吸収式冷凍装
置では、以上のように低温再生器7からの冷媒蒸気gを
凝縮する凝縮器9と、該凝縮器9で凝縮された冷媒液h
を蒸発させる蒸発器11と、溶液ポンプ16により吸収
液循環路30を介して循環状態で供給される臭化リチウ
ム希溶液jおよび低温溶液熱交換器4から供給される臭
化リチウム濃溶液iに対して上記蒸発器11で蒸発され
た冷媒蒸気を吸収させる吸収器14と、該吸収器14に
循環状態で供給される臭化リチウム希溶液jを冷却する
吸収液冷却器15と、高温再生器1、低温再生器7、高
温溶液熱交換器5、低温溶液熱交換器4等の特に冷却を
要しないユニットとを備えてなる空冷吸収式冷凍装置に
おいて、例えば図2に示すように、上記凝縮器9、吸収
器14、吸収液冷却器15の各々を上述のように伝熱器
体と放熱フィンを有する空冷ユニット構造に形成する一
方、図1に示すように上記蒸発器11および吸収器14
を中心とし、それらの四方を囲んで外周囲に凝縮器9、
吸収液冷却器15、高温再生器1、低温再生器7等のユ
ニットを全体として方形状に連接配置して冷凍装置を構
成している。
In the air-cooled absorption refrigeration system of the present embodiment, the condenser 9 for condensing the refrigerant vapor g from the low-temperature regenerator 7 as described above, and the refrigerant liquid h condensed by the condenser 9
Evaporator 11, and a lithium bromide dilute solution j supplied in a circulating state via an absorbent circulation circuit 30 by a solution pump 16 and a lithium bromide concentrated solution i supplied from a low-temperature solution heat exchanger 4. On the other hand, an absorber 14 for absorbing the refrigerant vapor evaporated by the evaporator 11, an absorber cooler 15 for cooling the lithium bromide dilute solution j supplied to the absorber 14 in a circulating state, and a high-temperature regenerator 1. In an air-cooled absorption refrigeration system including units that do not particularly require cooling, such as a low-temperature regenerator 7, a high-temperature solution heat exchanger 5, and a low-temperature solution heat exchanger 4, for example, as shown in FIG. Each of the vessel 9, the absorber 14, and the absorbent cooler 15 is formed into an air-cooled unit structure having a heat transfer body and a radiation fin as described above, while the evaporator 11 and the absorber 14 are formed as shown in FIG.
Around the four sides of the condenser 9 around the outside,
A refrigeration apparatus is configured by connecting and connecting units such as the absorbent cooler 15, the high-temperature regenerator 1, and the low-temperature regenerator 7 in a rectangular shape as a whole.

【0031】ところで、可及的に冷却効率を向上させて
吸収性能を高めようとすると、上記凝縮器9、吸収器1
4、吸収液冷却器15各部における熱負荷量を考慮した
上で、供給される空気流との温度差を可能な限り大きく
取ることができるような送風系路上のレイアウトにする
ことが必要となる。しかも、それがコンパクト化の要請
に反しないだけでなく、むしろ積極的にコンパクト化の
要請にも対応できるものであることが望ましい。
By the way, in order to improve the cooling efficiency as much as possible to enhance the absorption performance, the condenser 9 and the absorber 1 are required.
4. In consideration of the heat load in each part of the absorption liquid cooler 15, it is necessary to provide a layout on a ventilation path so that the temperature difference from the supplied air flow can be as large as possible. . In addition, it is desirable that this not only does not contradict the demand for compactness, but rather can actively respond to the demand for compactness.

【0032】上記のように、凝縮器9、吸収器14、吸
収液冷却器15の各々を上述のような空冷構造に形成す
るとともに一体化された蒸発器11および吸収器14を
中心とし、その周囲を囲むように、平板状の凝縮器9
と、鉤状の吸収液冷却器15と、高温再生器5および低
温溶液熱交換器4等の非空冷ユニットとを設けた構成に
すると、熱負荷量の大きい凝縮器9および吸収液冷却器
15の空冷部の空気との熱交換面積を、図示のように周
囲の制約なく十分に大きく拡大することができるように
なるとともに、それらの各々を共に空気流送風系路の最
上流側に位置させることができるようになることから、
何れにあっても空気流との温度差も十分に大きく取るこ
とができる。その結果、空冷性能、空冷効率が向上し、
吸収器14部分では吸収作用を中心とした機能が実現で
きれば良くなるので冷媒蒸気吸収性能も高くなる。
As described above, each of the condenser 9, the absorber 14, and the absorption liquid cooler 15 is formed into the above-described air-cooled structure, and the evaporator 11 and the absorber 14 are integrated with each other. A flat condenser 9 surrounding the periphery.
And a non-air cooling unit such as a high-temperature regenerator 5 and a low-temperature solution heat exchanger 4 provided with a hook-shaped absorption liquid cooler 15 and a condenser 9 and absorption liquid cooler 15 with a large heat load. The heat exchange area with the air in the air cooling section can be enlarged sufficiently without restriction of the surroundings as shown in the figure, and each of them is located on the most upstream side of the air flow blowing system. From being able to do
In any case, the temperature difference from the air flow can be made sufficiently large. As a result, air cooling performance and air cooling efficiency are improved,
In the absorber 14 portion, it is sufficient if a function centering on the absorption function can be realized, so that the refrigerant vapor absorption performance also increases.

【0033】しかも、蒸発器11および吸収器14はそ
れらに囲まれた内側の空き空間を有効に利用して設けら
れているので、装置全体の構造も極めてコンパクトにな
り、配管距離も短かくて済む。
Further, since the evaporator 11 and the absorber 14 are provided by effectively utilizing the inner empty space surrounded by the evaporator 11 and the absorber 14, the structure of the entire apparatus becomes extremely compact and the piping distance is short. I'm done.

【0034】また、空冷用の空気流を形成するファン1
0は、中央部の蒸発器11および吸収器14の上方に設
けられているので、1台のファンを各空冷部に共用する
ことができ、複数台のファンが不要となる分だけコンパ
クト化に寄与することになる。
A fan 1 for forming an air flow for air cooling
0 is provided above the evaporator 11 and the absorber 14 in the central part, so that one fan can be used in common for each air-cooling unit, and the number of fans is reduced, so that the size is reduced. Will contribute.

【0035】さらに、蒸発器11は円筒形の吸収器14
内に一体に組込まれていて、蒸発器11が吸収器14内
で全面的に連通する結果、吸収器14内での冷媒蒸気圧
損が発生せず、吸収能力(吸収効率)が大きく向上す
る。また、その結果、吸収器出口部での圧力を蒸発器圧
力に等しく保つことができるようになる。
Further, the evaporator 11 is a cylindrical absorber 14
As a result, the evaporator 11 communicates entirely within the absorber 14, and as a result, the refrigerant vapor pressure loss does not occur in the absorber 14, and the absorption capacity (absorption efficiency) is greatly improved. As a result, the pressure at the outlet of the absorber can be kept equal to the evaporator pressure.

【0036】それらの結果、上記本願発明の実施の形態
1に係る空冷吸収式冷凍装置によると、コンパクトであ
りながら凝縮器、吸収器、吸収液冷却器各々の空冷効率
が高く、吸収性能の高い空冷吸収式冷凍装置を提供する
ことができる。
As a result, according to the air-cooled absorption refrigeration apparatus according to the first embodiment of the present invention, each of the condenser, the absorber, and the absorption liquid cooler has high air-cooling efficiency and high absorption performance while being compact. An air-cooled absorption refrigeration apparatus can be provided.

【0037】(実施の形態2)図3および図4は、本願
発明の実施の形態2に係る空冷吸収式冷凍装置の構成を
示している。
(Embodiment 2) FIGS. 3 and 4 show the configuration of an air-cooled absorption refrigeration apparatus according to Embodiment 2 of the present invention.

【0038】本実施の形態では、吸収液として例えば臭
化リチウム溶液(LiBr溶液)、冷媒として水(H2
O)が採用されている。
In this embodiment, for example, a lithium bromide solution (LiBr solution) is used as the absorbing liquid, and water (H 2
O) is adopted.

【0039】図中、先ず符号1は下方側に加熱容器3
を、上方側に気液分離器6を備えた高温再生器である。
該高温再生器1の加熱容器3の底部には、ガスバーナ等
の加熱源2が設けられている。そして、後述する低温溶
液熱交換器4および高温溶液熱交換器5を介して順次可
及的に熱回収され、可能な限り昇温されて加熱容器3内
に供給されてくる吸収作用完了後の臭化リチウム希溶液
lを例えば600〜700mHgの圧力下で加熱沸騰さ
せて、上記上方側の気液分離器6で冷媒蒸気a(例えば
160℃)と臭化リチウム濃溶液b(例えば160℃)
とに分離再生するようになっている。
In the figure, reference numeral 1 denotes a heating vessel 3 on the lower side.
Is a high-temperature regenerator provided with a gas-liquid separator 6 on the upper side.
At the bottom of the heating vessel 3 of the high-temperature regenerator 1, a heating source 2 such as a gas burner is provided. Then, heat is recovered as much as possible sequentially through a low-temperature solution heat exchanger 4 and a high-temperature solution heat exchanger 5 to be described later, and after completion of the absorption operation, the temperature is raised as much as possible and supplied into the heating vessel 3. The dilute lithium bromide solution 1 is heated and boiled under a pressure of, for example, 600 to 700 mHg, and refrigerant vapor a (for example, 160 ° C.) and lithium bromide concentrated solution b (for example, 160 ° C.) are formed in the upper gas-liquid separator 6.
And separate playback.

【0040】また符号7は低温再生器であり、上記気液
分離器6で分離再生された冷媒蒸気aと、同じく上記気
液分離器6で分離再生された後、さらに高温溶液熱交換
器5部分で低温溶液熱交換器4を通して若干昇温された
上記吸収作用完了後の臭化リチウム希溶液k(例えば9
0℃)と熱交換されて相当に温度が低下した臭化リチウ
ム濃溶液c(例えば95℃)とを相互に熱交換させるこ
とによって上記冷媒蒸気aを凝縮させるとともに該熱交
換時に生じた上記臭化リチウム濃溶液c中の蒸発水分d
(例えば98℃)を取り出すようになっている。
Reference numeral 7 denotes a low-temperature regenerator. The refrigerant vapor a is separated and regenerated in the gas-liquid separator 6 and the refrigerant vapor a is also separated and regenerated in the gas-liquid separator 6 and then the high-temperature solution heat exchanger 5 The lithium bromide dilute solution k (for example, 9) after the completion of the absorption operation, the temperature of which has been raised slightly through the low-temperature solution heat exchanger 4
0 ° C.) and a lithium bromide concentrated solution c (for example, 95 ° C.) having a considerably lowered temperature due to heat exchange, thereby condensing the refrigerant vapor a and causing the odor generated during the heat exchange. Evaporated moisture d in concentrated lithium chloride solution c
(For example, 98 ° C.).

【0041】さらに符号9は凝縮器であり、内部に冷媒
蒸気が流れる管状の伝熱器体9aの外周に多数枚の放熱
フィン9b,9b・・・を設けたクロスフィン形の空冷
構造に形成されている。該凝縮器9は、上記低温再生器
7で凝縮した冷媒液eと上記臭化リチウム濃溶液c中の
蒸発水分dとを合わせて導入し、例えば60mmHg程
度の圧力下で送風ファン10からの冷却風によって冷却
することにより液相状態の冷媒(水)h(例えば41
℃)に凝縮させるようになっている。
Further, reference numeral 9 denotes a condenser, which is formed in a cross-fin type air cooling structure in which a plurality of radiating fins 9b, 9b... Are provided on the outer periphery of a tubular heat transfer body 9a through which refrigerant vapor flows. Have been. The condenser 9 introduces together the refrigerant liquid e condensed by the low-temperature regenerator 7 and the evaporated water d in the lithium bromide concentrated solution c, and cools the refrigerant from the blower fan 10 under a pressure of, for example, about 60 mmHg. The refrigerant (water) h (for example, 41) in a liquid state is cooled by wind.
° C).

【0042】さらに、符号11は蒸発器であり、内部を
冷水が通る蒸発コイル12を中心として構成されてい
る。該蒸発器12は、その蒸発コイル12部分を後述す
るドーナツ状二重壁構造の円筒体よりなる吸収器14の
伝熱器体14a中上方から挿入し吸収器14と一体に構
成されており、吸収器14内の冷媒蒸気吸収作用によっ
て生じる負圧を有効に利用することにより、例えば5〜
6mmHg程度の低圧状態を確実に維持し、同低圧下で
上記凝縮器9で凝縮された冷媒水hを、例えば冷水循環
式の蒸発コイル12上に散水して約5℃で蒸発させ、蒸
発コイル12内に供給される例えば12℃の冷水を7℃
に冷却して図示しない空調用熱交換器に供給するように
なっている。
Reference numeral 11 denotes an evaporator, which is formed around an evaporator coil 12 through which cold water passes. The evaporator 12 is integrally formed with the evaporator coil 12 by inserting a part of the evaporator coil 12 from above into a heat transfer body 14a of an absorber 14 having a donut-shaped double-walled cylindrical body, which will be described later. By effectively utilizing the negative pressure generated by the refrigerant vapor absorbing action in the absorber 14, for example,
A low pressure state of about 6 mmHg is surely maintained, and the refrigerant water h condensed in the condenser 9 under the low pressure is sprinkled onto, for example, a cooling water circulation type evaporating coil 12 to evaporate at about 5 ° C. For example, cold water of 12 ° C. supplied into 12 is cooled to 7 ° C.
And supplies it to an air conditioning heat exchanger (not shown).

【0043】そして、符号14が吸収器であり、該吸収
器14は相当に大径のドーナツ状二重壁構造の円筒体よ
りなる伝熱器体14aの外周に多数枚の放熱フィン14
b,14b・・・を設けて構成されており、その上部空
間21周縁部両側の散液部には溶液ガイド13,13が
設けられている。
Reference numeral 14 denotes an absorber, and the absorber 14 has a large number of heat dissipating fins 14 on the outer periphery of a heat transfer body 14a formed of a cylindrical body having a donut-shaped double-walled structure having a considerably large diameter.
, 14b... are provided, and solution guides 13, 13 are provided in the liquid spraying portions on both sides of the peripheral edge of the upper space 21.

【0044】該吸収器14は、上記低温再生器7からの
臭化リチウム濃溶液f(例えば95℃)を低温溶液熱交
換器4を介して空冷吸収器14からの臭化リチウム希溶
液j(例えば40℃)と熱交換して所定温度以下に低温
化した臭化リチウム濃溶液i(例えば50℃)を下部側
液留め部22に導入する一方、同液留め部22からの冷
媒蒸気吸収後の臭化リチウム希溶液jを上記溶液ガイド
部13,13内側に導入し、溶液ガイド13,13の斜
面を利用して伝熱器体14aの両内壁面に寄せて液膜状
態で流下させる。上記液留め部22から導入される希溶
液jは溶液ポンプ16により管状の伝熱器体15aの外
周に放熱フィン15b,15b・・・を設けて構成した
クロスフィン形空冷構造の吸収液冷却器15を介設した
吸収液循環路30を通して過冷却した後に導入される。
The absorber 14 converts the lithium bromide concentrated solution f (for example, 95 ° C.) from the low-temperature regenerator 7 through the low-temperature solution heat exchanger 4 into the lithium bromide dilute solution j (from the air-cooled absorber 14). (For example, 40 ° C.), a lithium bromide concentrated solution i (for example, 50 ° C.) whose temperature has been lowered to a predetermined temperature or less is introduced into the lower liquid retaining portion 22, while the refrigerant vapor is absorbed from the liquid retaining portion 22. Of the lithium bromide dilute solution j is introduced into the inside of the solution guides 13, 13 and is brought down to both inner wall surfaces of the heat transfer body 14a using the slopes of the solution guides 13, 13 to flow down in a liquid film state. The dilute solution j introduced from the liquid retaining portion 22 is a cross-fin type air-cooled absorption liquid cooler having a heat radiating fin 15b provided on the outer periphery of a tubular heat transfer body 15a by a solution pump 16. It is introduced after being supercooled through the absorbent circulation circuit 30 interposed therebetween.

【0045】そして、上述のように溶液ガイド13,1
3を介して上記伝熱器体14aの両内壁面を伝わって上
方から下方に液膜状態で流下する過冷却状態の希溶液
は、該流下状態において上記半径方向両側に均等に拡散
された上記蒸発器11からの冷媒蒸気(水蒸気)を効率
良く吸収する。この時、上記冷媒蒸気の吸収に伴って生
じる吸収熱の一部は、上記伝熱器体14aの外周部に設
けられている多数枚の放熱フィン14b,14b・・・
を介して外部に放熱され、送風ファン10による冷却風
により効率良く冷却される。これにより、吸収器部分で
の吸収能力の低下が可及的に防止されるようになってい
る。
Then, as described above, the solution guides 13, 1
The dilute solution in a supercooled state that flows down from above in a liquid film state through both inner wall surfaces of the heat transfer body 14a through 3 is uniformly diffused to both sides in the radial direction in the flow down state. The refrigerant vapor (water vapor) from the evaporator 11 is efficiently absorbed. At this time, a part of the heat absorbed due to the absorption of the refrigerant vapor is divided into a large number of radiating fins 14b provided on the outer peripheral portion of the heat transfer body 14a.
The heat is radiated to the outside via the cooling fan and is efficiently cooled by the cooling air from the blower fan 10. As a result, a reduction in the absorption capacity at the absorber portion is prevented as much as possible.

【0046】そして、この場合、上記送風ファン17
は、上記蒸発器11および吸収器14の上方に設けら
れ、図示のように配設された凝縮器9および吸収液冷却
器15から吸収器14を介して上方に吹き抜けるような
送風系路を形成しており、該送風系路から見て吸収器1
4よりも空気流上流側に位置するように吸収液熱交換器
15が設けられている。そして、それにより、吸収液循
環路30を介して吸収器14に供給される臭化リチウム
希溶液jの過冷却効率が十分に高くなるように構成され
ている。
In this case, the blower fan 17
Is formed above the evaporator 11 and the absorber 14, and forms a ventilation system passage that blows upward through the absorber 14 from the condenser 9 and the absorbing liquid cooler 15 arranged as shown in the figure. And the absorber 1
Absorbent liquid heat exchanger 15 is provided so as to be located on the upstream side of the air flow from the position 4. Thus, the supercooling efficiency of the lithium bromide dilute solution j supplied to the absorber 14 via the absorbent circulation circuit 30 is sufficiently increased.

【0047】以上のようにして吸収液冷却器15と吸収
器14を通って、吸収熱を放出した臭化リチウム希溶液
jの一部は、上記溶液ポンプ16を介して、臭化リチウ
ム希溶液戻し通路31の低温溶液熱交換器4、高温溶液
熱交換器5で低温、高温各再生器7,1からの高温の臭
化リチウム濃溶液と順次熱交換されて例えば90℃,1
40℃と次第に温度が高められた後に、再び上記高温再
生器1の加熱容器3に戻されて加熱沸騰され、再生され
る。
As described above, a part of the dilute lithium bromide solution j that has released the heat of absorption through the absorption liquid cooler 15 and the absorber 14 is passed through the solution pump 16 to the dilute lithium bromide solution. The low-temperature solution heat exchanger 4 and the high-temperature solution heat exchanger 5 in the return passage 31 are sequentially heat-exchanged with the high-temperature lithium bromide concentrated solution from the low-temperature and high-temperature regenerators 7 and 1, for example, at 90 ° C., 1
After the temperature is gradually increased to 40 ° C., it is returned to the heating vessel 3 of the high-temperature regenerator 1 again, heated and boiled, and regenerated.

【0048】そして、本実施の形態の空冷吸収式冷凍装
置では、以上のように低温再生器7からの冷媒蒸気gを
凝縮する凝縮器9と、該凝縮器9で凝縮された冷媒液h
を蒸発させる蒸発器11と、溶液ポンプ16により吸収
液循環路30を介して循環状態で供給される臭化リチウ
ム希溶液jおよび低温溶液熱交換器4から供給される臭
化リチウム濃溶液iに対して上記蒸発器11で蒸発され
た冷媒蒸気を吸収させる吸収器14と、該吸収器14に
循環状態で供給される臭化リチウム希溶液jを冷却する
吸収液冷却器15と、高温再生器1、低温再生器7、高
温溶液熱交換器5、低温溶液熱交換器4等の特に冷却を
要しないユニットとを備えてなる空冷吸収式冷凍装置に
おいて、例えば図4に示すように上記凝縮器9、吸収器
14、吸収液冷却器15の各々を上述のように伝熱器体
と放熱フィンを有する空冷ユニット構造に形成する一
方、図3に示すように一体構造となった上記蒸発器11
および吸収器14を中心とし、それらの四方を囲んで外
周囲に平板状の凝縮器9、コ字状の吸収液冷却器15を
全体として方形状に連接配置するとともに、吸収器14
の伝熱器体14aの内側の空間部を利用して上記一体構
造の高温再生器1および低温再生器7等のユニットを組
入れて構成している。
In the air-cooled absorption refrigeration system of the present embodiment, the condenser 9 for condensing the refrigerant vapor g from the low-temperature regenerator 7 as described above, and the refrigerant liquid h condensed by the condenser 9
Evaporator 11, and a lithium bromide dilute solution j supplied in a circulating state via an absorbent circulation circuit 30 by a solution pump 16 and a lithium bromide concentrated solution i supplied from a low-temperature solution heat exchanger 4. On the other hand, an absorber 14 for absorbing the refrigerant vapor evaporated by the evaporator 11, an absorber cooler 15 for cooling the lithium bromide dilute solution j supplied to the absorber 14 in a circulating state, and a high-temperature regenerator 1. An air-cooled absorption refrigeration system including a low-temperature regenerator 7, a high-temperature solution heat exchanger 5, a low-temperature solution heat exchanger 4, and other units that do not particularly require cooling, for example, as shown in FIG. 9, the absorber 14 and the absorption liquid cooler 15 are each formed into an air cooling unit structure having a heat transfer body and a radiation fin as described above, while the evaporator 11 having an integrated structure as shown in FIG.
The flat plate-shaped condenser 9 and the U-shaped absorption liquid cooler 15 are connected and arranged in a rectangular shape around the four sides around the absorber and the absorber 14 as a whole.
The unit such as the high-temperature regenerator 1 and the low-temperature regenerator 7 having the above-mentioned integrated structure is incorporated by utilizing the space inside the heat transfer body 14a.

【0049】ところで、可及的に冷却効率を向上させて
吸収性能を高めようとすると、上記凝縮器9、吸収器1
4、吸収液冷却器15各部における熱負荷量を考慮した
上で、供給される空気流との温度差を可能な限り大きく
取ることができるような送風系路上のレイアウトにする
ことが必要となる。しかも、それがコンパクト化の要請
に反しないだけでなく、むしろ積極的にコンパクト化の
要請にも対応できるものであることが望ましい。
In order to improve the absorption performance by improving the cooling efficiency as much as possible, the condenser 9 and the absorber 1
4. In consideration of the heat load in each part of the absorption liquid cooler 15, it is necessary to provide a layout on a ventilation path so that the temperature difference from the supplied air flow can be as large as possible. . In addition, it is desirable that this not only does not contradict the demand for compactness, but rather can actively respond to the demand for compactness.

【0050】上記のように、凝縮器9、吸収器14、吸
収液冷却器15の各々を上述のような空冷構造に形成す
るとともに一体化された蒸発器11および吸収器14を
中心とし、その周囲を囲むように、平板状の凝縮器9
と、コ字状の吸収液冷却器15とを設けた構成にする
と、熱負荷量の大きい凝縮器9および吸収液冷却器15
の空冷部の空気との熱交換面積を、図示のように周囲の
制約なく十分に大きく拡大することができるようになる
とともに、それらの各々を共に空気流送風系路の最上流
側に位置させることができるようになることから、何れ
にあっても空気流との温度差を十分に大きく取ることが
できる。その結果、空冷性能、空冷効率が向上し、吸収
器14部分では吸収作用を中心とした機能が実現できれ
ば良くなるので冷媒蒸気吸収性能も高くなる。
As described above, each of the condenser 9, the absorber 14, and the absorption liquid cooler 15 is formed into the above-described air-cooled structure, and the evaporator 11 and the absorber 14 are integrated with each other. A flat condenser 9 surrounding the periphery.
And the U-shaped absorption liquid cooler 15, the condenser 9 and the absorption liquid cooler 15 with a large heat load are provided.
The heat exchange area with the air in the air cooling section can be enlarged sufficiently without restriction of the surroundings as shown in the figure, and each of them is located on the most upstream side of the air flow blowing system. Therefore, the temperature difference from the air flow can be made sufficiently large in any case. As a result, the air-cooling performance and air-cooling efficiency are improved, and the function of the absorber 14 can be realized if the function centering on the absorption function can be realized.

【0051】しかも、蒸発器11および吸収器14はそ
れらに囲まれた内側の空き空間を有効に利用して設けら
れ、かつ一体化されているとともに、さらに吸収器14
がドーナツ状の二重壁構造の円筒体により形成されてい
て、高温、低温各再生器1,7が当該吸収器14内側の
上下方向に延びる開放空間を利用して一体に組入れられ
るようになっているので、装置全体の構造も極めてコン
パクトになり、配管距離も短かくて済む。
Further, the evaporator 11 and the absorber 14 are provided by effectively utilizing the inner empty space surrounded by them, and are integrated with each other.
Is formed by a doughnut-shaped double-walled cylindrical body, and the regenerators 1 and 7 for high temperature and low temperature can be integrally incorporated by utilizing an open space extending in the vertical direction inside the absorber 14. Therefore, the structure of the entire apparatus becomes extremely compact, and the piping distance can be reduced.

【0052】また、空冷用の空気流を形成するファン1
0は、中央部の蒸発器11および吸収器14の上方に設
けられているので、1台のファンを各空冷部に共用する
ことができ、複数台のファンが不要となる分だけコンパ
クト化に寄与することになる。
A fan 1 for forming an air flow for air cooling
0 is provided above the evaporator 11 and the absorber 14 in the central part, so that one fan can be used in common for each air-cooling unit, and the number of fans is reduced, so that the size is reduced. Will contribute.

【0053】さらに、蒸発器11は、上記ドーナツ状二
重壁構造の円筒体よりなる吸収器14内に一体に組込ま
れていて、蒸発器11が吸収器14内で全面的に連通す
る結果、吸収器14内での冷媒蒸気圧損が発生せず、吸
収能力(吸収効率)が大きく向上する。また、その結
果、吸収器出口部での圧力を蒸発器圧力に等しく保つこ
とができ、吸収能力を大きく向上させることができるよ
うになる。
Further, the evaporator 11 is integrally incorporated in the absorber 14 formed of the above-mentioned donut-shaped double-walled cylindrical body, and as a result of the evaporator 11 being entirely connected in the absorber 14, No refrigerant vapor pressure loss occurs in the absorber 14, and the absorption capacity (absorption efficiency) is greatly improved. As a result, the pressure at the outlet of the absorber can be kept equal to the evaporator pressure, and the absorption capacity can be greatly improved.

【0054】それらの結果、上記本願発明の実施の形態
2に係る空冷吸収式冷凍装置によると、極めてコンパク
トでありながら凝縮器、吸収器、吸収液冷却器各々の空
冷効率が高く、かつ吸収性能の高い空冷吸収式冷凍装置
を提供することができる。
As a result, according to the air-cooled absorption refrigeration apparatus according to Embodiment 2 of the present invention, the air-cooling efficiency of each of the condenser, the absorber, and the absorption-liquid cooler is high, while being extremely compact, and the absorption performance is high. The air-cooled absorption refrigeration system with high refrigeration can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本願発明の実施の形態1に係る空冷吸収式冷凍
装置の構成を示すファン除去状態の平面図である。
FIG. 1 is a plan view showing a configuration of an air-cooling absorption refrigeration apparatus according to Embodiment 1 of the present invention, with a fan removed.

【図2】同装置の縦断面図である。FIG. 2 is a longitudinal sectional view of the same device.

【図3】本願発明の実施の形態2に係る空冷吸収式冷凍
装置の構成を示すファン除去状態の平面図である。
FIG. 3 is a plan view showing a configuration of an air-cooling absorption refrigeration apparatus according to Embodiment 2 of the present invention, with a fan removed.

【図4】同装置の縦断面図である。FIG. 4 is a longitudinal sectional view of the same device.

【符号の説明】[Explanation of symbols]

1は高温再生器、7は低温再生器、9は凝縮器、9aは
伝熱器体、9bは放熱フィン、10は送風ファン、11
は蒸発器、12は冷水循環式の蒸発コイル、14は吸収
器、14aは伝熱器体、14bは放熱フィン、15は吸
収液冷却器、15aは伝熱器体、15bは放熱フィン、
16は溶液ポンプである。
1 is a high temperature regenerator, 7 is a low temperature regenerator, 9 is a condenser, 9a is a heat transfer body, 9b is a radiation fin, 10 is a blower fan, 11
Is an evaporator, 12 is a cooling water circulation type evaporating coil, 14 is an absorber, 14a is a heat transfer body, 14b is a radiation fin, 15 is an absorption liquid cooler, 15a is a heat transfer body, 15b is a radiation fin,
16 is a solution pump.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 冷媒蒸気を凝縮する凝縮器(9)と、該
凝縮器(9)で凝縮された冷媒液を蒸発させる蒸発器
(11)と、吸収液に対して上記蒸発器(11)で蒸発
された冷媒蒸気を吸収させる吸収器(14)と、該吸収
器(14)に供給される吸収液を冷却する吸収液冷却器
(15)とを備えてなる空冷吸収式冷凍装置において、
上記凝縮器(9)、吸収器(14)、吸収液冷却器(1
5)の各々を空冷構造に形成するとともに、上記蒸発器
(11)および吸収器(14)を囲んで外周囲に凝縮器
(9)、吸収液冷却器(15)を設けたことを特徴とす
る空冷吸収式冷凍装置。
1. A condenser (9) for condensing refrigerant vapor, an evaporator (11) for evaporating the refrigerant liquid condensed in the condenser (9), and an evaporator (11) for absorbing liquid. An air-cooled absorption refrigeration system comprising: an absorber (14) for absorbing the refrigerant vapor evaporated in step (1); and an absorption liquid cooler (15) for cooling the absorption liquid supplied to the absorber (14).
The condenser (9), the absorber (14), and the absorption liquid cooler (1)
Each of 5) is formed in an air cooling structure, and a condenser (9) and an absorbing liquid cooler (15) are provided around the evaporator (11) and the absorber (14). Air-cooled absorption refrigeration system.
【請求項2】 空冷構造は、それぞれ伝熱器体(9
a),(14a),(15a)と該伝熱器体(9a),
(14a),(15a)の外周に設けられた放熱フィン
(9b),(14b),(15b)とを備えて形成され
ていることを特徴とする請求項1記載の空冷吸収式冷凍
装置。
2. The air-cooling structure comprises a heat transfer body (9).
a), (14a), (15a) and the heat transfer body (9a),
2. The air-cooled absorption refrigeration system according to claim 1, wherein the air-cooling absorption refrigeration system is provided with radiation fins (9b), (14b), and (15b) provided on the outer periphery of (14a) and (15a).
【請求項3】 凝縮器(9)、吸収器(14)、吸収液
冷却器(15)の各々を空気流によって冷却するファン
(10)を備え、該ファン(10)を吸収器(14)の
上方に設けたことを特徴とする請求項1又は2記載の空
冷吸収式冷凍装置。
3. A fan (10) for cooling each of the condenser (9), the absorber (14) and the absorbing liquid cooler (15) by an air flow, and the fan (10) is connected to the absorber (14). The air-cooled absorption refrigeration system according to claim 1 or 2, wherein the air-cooled absorption refrigeration system is provided above.
【請求項4】 吸収器(14)の伝熱器体(14a)が
円筒体に形成され、蒸発器(11)が吸収器(14)中
に一体に組込まれていることを特徴とする請求項1,2
又は3記載の空冷吸収式冷凍装置。
4. The heat transfer body (14a) of the absorber (14) is formed in a cylindrical body, and the evaporator (11) is integrated into the absorber (14). Terms 1, 2
Or the air-cooled absorption refrigeration apparatus according to 3.
【請求項5】 吸収器(14)の伝熱器体(14a)が
ドーナツ状の二重壁円筒体に形成され、蒸発器(11)
が吸収器(14)中に一体に組込まれていることを特徴
とする請求項1,2又は3記載の空冷吸収式冷凍装置。
5. The evaporator (11) wherein the heat transfer body (14a) of the absorber (14) is formed in a donut-shaped double-walled cylindrical body.
4. An air-cooled absorption refrigeration system according to claim 1, wherein said refrigeration unit is integrated into said absorber (14).
【請求項6】 高温再生器(1)、低温再生器(7)等
のその他のユニットが、凝縮器(9)、吸収液冷却器
(15)に連接して蒸発器(11)および吸収器(1
4)を囲む状態に設けられていることを特徴とする請求
項1,2,3又は4記載の空冷吸収式冷凍装置。
6. Other units such as a high-temperature regenerator (1) and a low-temperature regenerator (7) are connected to a condenser (9), an absorbent cooler (15) and an evaporator (11) and an absorber. (1
5. The air-cooling absorption refrigeration system according to claim 1, wherein the air-cooling absorption refrigeration system is provided so as to surround 4).
【請求項7】 高温再生器(1)、低温再生器(7)等
のその他のユニットが、吸収器(14)の内側に設けら
れていることを特徴とする請求項5記載の空冷吸収式冷
凍装置。
7. An air-cooled absorption system according to claim 5, wherein other units such as a high-temperature regenerator (1) and a low-temperature regenerator (7) are provided inside the absorber (14). Refrigeration equipment.
JP8272513A 1996-10-15 1996-10-15 Air cooled absorption type refrigerator Pending JPH10122687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8272513A JPH10122687A (en) 1996-10-15 1996-10-15 Air cooled absorption type refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8272513A JPH10122687A (en) 1996-10-15 1996-10-15 Air cooled absorption type refrigerator

Publications (1)

Publication Number Publication Date
JPH10122687A true JPH10122687A (en) 1998-05-15

Family

ID=17514956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8272513A Pending JPH10122687A (en) 1996-10-15 1996-10-15 Air cooled absorption type refrigerator

Country Status (1)

Country Link
JP (1) JPH10122687A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003071199A1 (en) * 2002-02-19 2003-08-28 Mitsui Zosen Plant Engineering Inc. Refrigerating method and refrigerating system utilizing gas hydrate
JP2007248024A (en) * 2006-03-20 2007-09-27 Daikin Ind Ltd Absorption-type refrigerating device
JP2007271197A (en) * 2006-03-31 2007-10-18 Daikin Ind Ltd Absorption type refrigerating device
JP2008232571A (en) * 2007-03-22 2008-10-02 Osaka Gas Co Ltd Absorption refrigerating machine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003071199A1 (en) * 2002-02-19 2003-08-28 Mitsui Zosen Plant Engineering Inc. Refrigerating method and refrigerating system utilizing gas hydrate
GB2402732A (en) * 2002-02-19 2004-12-15 Mitsui Zosen Plant Engineering Refrigerating method and refrigerating system utilizing gas hydrate
GB2402732B (en) * 2002-02-19 2005-11-30 Mitsui Zosen Plant Engineering Refrigerating method and refrigerating system utilizing gas hydrate
US8181469B2 (en) 2002-02-19 2012-05-22 Mitsui Zosen Plant Engineering Inc. Refrigerating method and refrigerating system utilizing gas hydrate
JP2007248024A (en) * 2006-03-20 2007-09-27 Daikin Ind Ltd Absorption-type refrigerating device
JP4715574B2 (en) * 2006-03-20 2011-07-06 ダイキン工業株式会社 Absorption refrigeration system
JP2007271197A (en) * 2006-03-31 2007-10-18 Daikin Ind Ltd Absorption type refrigerating device
JP2008232571A (en) * 2007-03-22 2008-10-02 Osaka Gas Co Ltd Absorption refrigerating machine

Similar Documents

Publication Publication Date Title
US7234309B2 (en) Method and apparatus for evaporative cooling of a cooling fluid
JPS58133593A (en) Heat exchanger with wound fin
JP6658885B2 (en) Cool storage heat exchanger
JPH10122687A (en) Air cooled absorption type refrigerator
US5802866A (en) Air-cooled absorption-type air conditioning apparatus
JPH1078265A (en) Air-cooled absorption air conditioner
JPS6273053A (en) Air-cooled absorption refrigerator
JP4821397B2 (en) Air-cooled absorption refrigeration equipment absorber
JPH10122686A (en) Air-cooled absorption refrigerating apparatus
JPH10122701A (en) Air-cooled absorption refrigerating unit
JPH10122702A (en) Air cooled absorption-refrigerator
JPH10122700A (en) Air-cooled absorption refrigerating apparatus
KR100327739B1 (en) Coolant pipe cooling system of airconditioner
JP4006821B2 (en) Condenser
JP2000105087A (en) Cooler
JPH01225868A (en) Double effect air-cooled absorbing type refrigerating machine
KR200148477Y1 (en) Tube of heat-exchanger using for reciprocating
JPH10122685A (en) Air cooled absorption type refrigerating device
JPH11248292A (en) Absorption refrigerating device
JP2520946B2 (en) Air-cooled absorption refrigerator
JP3742915B2 (en) Air-cooled absorption refrigeration system
JPS63176959A (en) Double effect air-cooling absorption type refrigerator
KR100300595B1 (en) Integrated Air Conditioner
JP2007278570A (en) Air-cooled absorption type refrigerating device
KR100395620B1 (en) Condenser for air conditioner