JPH10300260A - Absorption water cooler-heater - Google Patents

Absorption water cooler-heater

Info

Publication number
JPH10300260A
JPH10300260A JP9107666A JP10766697A JPH10300260A JP H10300260 A JPH10300260 A JP H10300260A JP 9107666 A JP9107666 A JP 9107666A JP 10766697 A JP10766697 A JP 10766697A JP H10300260 A JPH10300260 A JP H10300260A
Authority
JP
Japan
Prior art keywords
heat exchanger
heat transfer
bag
plate
panels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9107666A
Other languages
Japanese (ja)
Inventor
Hironobu Kawamura
浩伸 川村
Tomihisa Ouchi
富久 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9107666A priority Critical patent/JPH10300260A/en
Publication of JPH10300260A publication Critical patent/JPH10300260A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an absorption water cooler-heater using plate heat exchangers which enable substantial miniaturization of heat exchanger elements and enable easy alteration of a design even in the case of series construction according to refrigerating capacities. SOLUTION: A low-temperature regenerator 2, a condenser 3, an evaporator 4 and an absorber 5 constituting an absorption water cooler-heater are equipped respectively with first plate heat exchangers 2a, 3a, 4a and 5a provided with a plurality of bag-shaped panels in juxtaposition and the direction of juxtaposition of the panels is made identical. Besides, a low-temperature solution heat exchanger 6 and a high-temperature solution heat exchanger 7 are equipped with second plate heat exchangers 6a and 7a constructed by stacking a plurality of heat transfer plates alternately, and the direction of stacking thereof is made identical with the direction of juxtaposition of the panels of the first plate heat exchangers.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、吸収冷温水機に係
り、吸収冷温水機の各要素の熱交換器をプレート式にす
ることによって小型化を図るとともに、特に冷凍能力が
異なった場合に設計変更が容易にできるようにしたプレ
ート熱交換器を用いた吸収冷温水機に関し、例えば、空
気調和装置等に利用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption chiller / heater, in which the heat exchanger of each element of the absorption chiller / heater is made of a plate type to reduce the size thereof. An absorption chiller / heater using a plate heat exchanger whose design can be easily changed is used for, for example, an air conditioner.

【0002】[0002]

【従来の技術】従来の吸収冷温水機における蒸発器、吸
収器、凝縮器、低温再生器の各熱交換器には、一般に複
数本の管が搭載されていた。熱交換器の小型化を図るた
めには、管外伝熱面の濡れ性を良くし、あるいは表面積
を増大する必要があり、このため、管外表面に伝熱フィ
ンなど伝熱手段を形成した加工管を採用することにより
伝熱性能の向上を図っていた。また、冷凍能力が異なっ
た機種では、管の長さや本数を変えることで対応してい
た。
2. Description of the Related Art Generally, a plurality of tubes are mounted on each heat exchanger of an evaporator, an absorber, a condenser, and a low-temperature regenerator in a conventional absorption chiller / heater. In order to reduce the size of the heat exchanger, it is necessary to improve the wettability of the heat transfer surface outside the tube or to increase the surface area. The heat transfer performance was improved by using tubes. In addition, models with different refrigeration capacities responded by changing the length and number of tubes.

【0003】また、例えば特開平6−42837号公報
記載の技術では、吸収冷温水機の小型化を目的として、
蒸発器と吸収器に、それぞれ薄板の連続折り曲げ加工し
た蛇腹フィンとシールプレートから構成された熱交換器
を搭載し、蒸発器の蛇腹フィンの山部と吸収器の蛇腹フ
ィンの山部とが対峙して配置されたものが知られてい
る。
[0003] For example, in the technique described in Japanese Patent Application Laid-Open No. 6-42837, the size of an absorption chiller / heater is reduced.
The evaporator and the absorber are equipped with a heat exchanger consisting of a bellows fin and a seal plate that are continuously bent from a thin plate.The peak of the bellows fin of the evaporator and the peak of the bellows fin of the absorber face each other. What is arranged is known.

【0004】[0004]

【発明が解決しようとする課題】上記従来の管方式の熱
交換器を搭載した吸収冷温水機では、小型化に限界があ
り、大幅な小型化を図るためには、他の方式の熱交換器
を搭載する必要がある。特に、吸収冷温水機を冷凍能力
別にシリーズ構成しようとする場合に、熱交換器が管方
式では、管の長さを変える場合には、熱交換器が搭載さ
れる缶体の大きさとともに機種ごとの管を揃える必要が
あり、管の本数を変える場合には1機種で数機種対応す
るようにすると無駄なスペースが生じ小型化にはならな
いという問題があった。
The absorption chiller / heater equipped with the above-mentioned conventional tube-type heat exchanger has a limit in miniaturization, and in order to achieve a significant miniaturization, it is necessary to use another type of heat exchanger. It is necessary to mount a vessel. In particular, when the absorption chiller / heater is to be configured in series according to refrigeration capacity, if the heat exchanger is a tube system, if the length of the tube is changed, the model will be the same as the size of the can body on which the heat exchanger is mounted. When the number of pipes is changed, if one model is used for several models, there is a problem that a space is wasted and the size cannot be reduced.

【0005】また、管の長さや本数を変えることによ
り、冷凍能力の異なる機種ごとに蒸発器、吸収器、凝縮
器、低温再生器内を流れる媒体の圧力損失が異なってし
まう。したがって、冷凍能力の異なる機種をそれぞれ設
計する場合には、許容できる圧力損失を考慮しながら、
必要な伝熱面に対する管の本数および長さや管を支持す
る管板等の変更が必要となり、設計変更が困難となると
いう問題があった。
Further, by changing the length and number of tubes, the pressure loss of the medium flowing in the evaporator, the absorber, the condenser, and the low-temperature regenerator differs for each model having different refrigeration capacity. Therefore, when designing each model with different refrigeration capacity, while considering the allowable pressure loss,
It is necessary to change the number and length of the tubes with respect to the required heat transfer surface, the tube plate for supporting the tubes, and the like, which causes a problem that the design change becomes difficult.

【0006】一方、上記特開平6−42837号公報記
載の技術では、薄板を連続折り曲げした蛇腹フィンを伝
熱面としており、冷凍能力別にシリーズ構成する場合に
は、熱交換器が搭載される缶体の大きさとともに各機種
に対応して蛇腹フィンの大きさあるいはフィン数を変え
る必要が生じる。さらに、本構造においては、各蛇腹フ
ィンとシールプレートに囲まれた内側を、循環水を、各
フィンごとに一様に流すことは困難であり、蛇腹フィン
の大きさやフィン数が変わった場合には、循環水の圧力
損失も変わってしまう。このような場合も、冷凍能力の
異なる機種をそれぞれ設計する場合には、許容できる圧
力損失を考慮しながら、必要な伝熱面に対する蛇腹フィ
ンの大きさやフィン数等を変更する必要があり、設計変
更が困難となるという問題があった。
On the other hand, according to the technique described in Japanese Patent Application Laid-Open No. 6-42837, a bellows fin formed by continuously bending a thin plate is used as a heat transfer surface. It is necessary to change the size of the bellows fins or the number of fins corresponding to each model together with the size of the body. Furthermore, in this structure, it is difficult to make the circulating water flow uniformly for each fin inside the inside surrounded by each bellows fin and the seal plate. In this case, the pressure loss of the circulating water changes. Even in such a case, when designing models having different refrigeration capacities, it is necessary to change the size of the bellows fins and the number of fins with respect to the necessary heat transfer surface while considering the allowable pressure loss. There was a problem that the change was difficult.

【0007】本発明は、上記従来技術の問題点を解決す
るためになされたもので、その目的は、吸収冷温水機を
構成する各種熱交換器要素の大幅な小型化を図ることが
でき、かつ、冷凍能力別にシリーズ構成する場合でも容
易に設計変更の可能なプレート熱交換器を用いた吸収冷
温水機を提供することにある。
The present invention has been made to solve the above-mentioned problems of the prior art, and an object of the present invention is to greatly reduce the size of various heat exchanger elements constituting an absorption chiller / heater, Another object of the present invention is to provide an absorption chiller / heater using a plate heat exchanger whose design can be easily changed even when a series configuration is made for each refrigeration capacity.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る吸収冷温水機の第一の構成は、少なく
とも、高温再生器、低温再生器、凝縮器、蒸発器、吸収
器、高温溶液熱交換器、低温溶液熱交換器を作動的に配
管で接続してなる吸収冷温水機において、低温再生器、
凝縮器、蒸発器、吸収器の少なくとも2つは、互いに向
かい合う伝熱面の内側に密閉された空間を形成する袋状
のパネルを、隣接する袋状のパネルの伝熱面と所定の隙
間が形成される状態で複数個並設し、前記複数の袋状の
パネル間には該袋状のパネルの内側空間を連通する流通
路を設けて第一媒体を流通させ、前記複数の袋状のパネ
ルの外部空間には第二媒体を流通させるように構成し、
前記互いに向かい合う伝熱面は、前記袋状のパネルの内
側で乱流を発生させる伝熱促進面を形成したプレート熱
交換器からなり、少なくとも2つの前記プレート熱交換
器は、当該プレート熱交換器を構成するパネルが、いず
れも同一方向に並設されているものである。
In order to achieve the above object, a first configuration of an absorption chiller / heater according to the present invention comprises at least a high-temperature regenerator, a low-temperature regenerator, a condenser, an evaporator, and an absorber. , A high-temperature solution heat exchanger, an absorption chiller-heater in which a low-temperature solution heat exchanger is operatively connected by piping,
At least two of the condenser, the evaporator, and the absorber form a bag-shaped panel forming a sealed space inside the heat transfer surface facing each other, and a predetermined gap is formed between the heat transfer surface of the adjacent bag-shaped panel. A plurality of the bag-shaped panels are arranged side by side in the formed state, and a flow path communicating the inner space of the bag-shaped panels is provided between the plurality of the bag-shaped panels to allow the first medium to flow, and the plurality of the bag-shaped panels are formed. The second medium is circulated in the outer space of the panel,
The heat transfer surfaces facing each other include a plate heat exchanger having a heat transfer promotion surface that generates turbulence inside the bag-shaped panel, and at least two of the plate heat exchangers are the plate heat exchangers. Are all arranged side by side in the same direction.

【0009】また、本発明に係る吸収冷温水機の第二の
構成は、少なくとも、高温再生器、低温再生器、凝縮
器、蒸発器、吸収器、高温溶液熱交換器、低温溶液熱交
換器を作動的に配管で接続してなる吸収冷温水機におい
て、低温再生器、凝縮器、蒸発器、吸収器の少なくとも
2つは、互いに向かい合う伝熱面の内側に密閉された空
間を形成する袋状のパネルを、隣接する袋状のパネルの
伝熱面と所定の隙間が形成される状態で複数個並設し、
前記複数の袋状のパネル間には該袋状のパネルの内側空
間を連通する流通路を設けて第一媒体を流通させ、前記
複数の袋状のパネルの外部空間には第二媒体を流通させ
るように構成し、前記互いに向かい合う伝熱面は、前記
袋状のパネルの内側で乱流を発生させる伝熱促進面を形
成した第一のプレート熱交換器からなり、高温溶液熱交
換器,低温溶液熱交換器の少なくとも1つは、複数の媒
体流通管を貫通し複数枚の伝熱プレートを積層するもの
で、前記伝熱プレートの伝熱面は、凹部と凸部が連続し
た曲がり畝を多数形成したものであり、互いに隣接する
伝熱プレートの曲がり畝は、それぞれ曲がりの向きが逆
になるように積層されて流路を形成し、積層した前記複
数枚の伝熱プレートごとに第一媒体と第二媒体とを交互
に流通させるようにした第二のプレート熱交換器からな
り、少なくとも2つの前記第一のプレート熱交換器は、
当該プレート熱交換器を構成するパネルが、いずれも同
一方向に並設されているとともに、前記第二のプレート
熱交換器を構成する伝熱プレートを、前記第一のプレー
ト熱交換器のパネルの並設方向と同一方向に積層される
ように配置したものである。
The second configuration of the absorption chiller / heater according to the present invention comprises at least a high-temperature regenerator, a low-temperature regenerator, a condenser, an evaporator, an absorber, a high-temperature solution heat exchanger, and a low-temperature solution heat exchanger. Chiller, condenser, evaporator, and absorber, wherein at least two of the low-temperature regenerator, the condenser, the evaporator, and the absorber form a sealed space inside the heat transfer surface facing each other. Plural panels are arranged side by side in a state where a predetermined gap is formed with the heat transfer surface of the adjacent bag-shaped panel,
A flow path communicating the inner space of the bag-shaped panel is provided between the plurality of bag-shaped panels to allow the first medium to flow, and the second medium is flown to the outer space of the plurality of bag-shaped panels. The heat transfer surfaces facing each other comprise a first plate heat exchanger having a heat transfer promotion surface for generating turbulence inside the bag-shaped panel, and a high-temperature solution heat exchanger, At least one of the low-temperature solution heat exchangers penetrates a plurality of medium flow tubes and stacks a plurality of heat transfer plates, and a heat transfer surface of the heat transfer plate has a curved ridge in which concave portions and convex portions are continuous. The curved ridges of the heat transfer plates adjacent to each other are stacked so that the directions of the bends are respectively opposite to each other to form a flow path, and a plurality of heat transfer plates are formed for each of the stacked heat transfer plates. So that one medium and the second medium are alternately distributed Is the result from the second plate heat exchanger, at least two of said first plate heat exchanger,
The panels constituting the plate heat exchanger are all arranged side by side in the same direction, and the heat transfer plates constituting the second plate heat exchanger are replaced with the panels of the first plate heat exchanger. They are arranged so as to be stacked in the same direction as the juxtaposition direction.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態を図1
ないし図10を参照して説明する。まず、図10のサイ
クル系統図により吸収冷温水機の構成と動作について説
明する。図10は、一般的な吸収冷温水機のサイクル系
統図である。図中の矢印は、冷水、冷却水、溶液、冷媒
等の流れの方向を示す。一般的な吸収冷温水機は、高温
再生器101、低温再生器102、凝縮器103、蒸発
器104、吸収器105、低温溶液熱交換器106、高
温溶液熱交換器107の7つの熱交換器要素と吸収溶液
を循環するための溶液ポンプ108とこれらを結ぶ配管
から構成されている。
FIG. 1 is a block diagram showing an embodiment of the present invention.
This will be described with reference to FIG. First, the configuration and operation of the absorption chiller / heater will be described with reference to the cycle system diagram of FIG. FIG. 10 is a cycle diagram of a general absorption chiller / heater. The arrows in the figure indicate the direction of flow of cold water, cooling water, solution, refrigerant, and the like. The general absorption chiller / heater has seven heat exchangers, a high temperature regenerator 101, a low temperature regenerator 102, a condenser 103, an evaporator 104, an absorber 105, a low temperature solution heat exchanger 106, and a high temperature solution heat exchanger 107. It is composed of a solution pump 108 for circulating the element and the absorbing solution, and a pipe connecting them.

【0011】冷房運転の動作について説明する。冷房運
転時には、外部熱源により加熱された高温再生器101
の溶液を濃縮して発生した冷媒蒸気は、低温再生器10
2内の熱交換器102aに導かれて低温再生器102の
溶液を加熱濃縮し冷媒蒸気を発生させて凝縮液化し凝縮
器103に流入する。低温再生器102で発生した冷媒
蒸気は凝縮器103に導かれ熱交換器103a内に通水
される冷却水で冷却されて凝縮液化し、高温再生器10
1からの冷媒とともに蒸発器104に送られる。蒸発器
104の液冷媒は、蒸発器104内の熱交換器104a
に散布され、熱交換器104a内を流れる冷水と熱交換
して蒸発気化し、吸収器105に流入する。その際の蒸
発潜熱により冷房作用を発揮する。
The operation of the cooling operation will be described. During the cooling operation, the high-temperature regenerator 101 heated by the external heat source
The refrigerant vapor generated by concentrating the solution of
The solution in the low-temperature regenerator 102 is heated and concentrated by being guided to the heat exchanger 102 a in 2, generates refrigerant vapor, condenses and liquefies, and flows into the condenser 103. The refrigerant vapor generated in the low-temperature regenerator 102 is guided to the condenser 103, cooled by the cooling water passed through the heat exchanger 103a, and condensed and liquefied.
The refrigerant is sent to the evaporator 104 together with the refrigerant from No. 1. The liquid refrigerant in the evaporator 104 is supplied to the heat exchanger 104a in the evaporator 104.
And heat exchange with cold water flowing in the heat exchanger 104 a to evaporate and flow into the absorber 105. The cooling effect is exerted by the latent heat of evaporation at that time.

【0012】吸収器105では、高温再生器101およ
び低温再生器102で濃縮された濃溶液が吸収器105
内の熱交換器105aに散布され、熱交換器105a内
を流れる冷却水で冷却されて蒸発器104からの冷媒蒸
気を吸収して希溶液を生成する。吸収器105の希溶液
は溶液ポンプ108により低温溶液熱交換器106を経
由して2分され、一方は低温再生器102に供給され、
他方はさらに高温溶液熱交換器107を経由して高温再
生器101に供給される。以上のようにして冷房サイク
ルが構成される。
In the absorber 105, the concentrated solution concentrated in the high-temperature regenerator 101 and the low-temperature regenerator 102 is supplied to the absorber 105.
It is sprayed to the heat exchanger 105a inside, is cooled by the cooling water flowing in the heat exchanger 105a, absorbs the refrigerant vapor from the evaporator 104, and generates a dilute solution. The dilute solution in the absorber 105 is divided into two by a solution pump 108 via a low-temperature solution heat exchanger 106, and one is supplied to a low-temperature regenerator 102,
The other is further supplied to the high temperature regenerator 101 via the high temperature solution heat exchanger 107. The cooling cycle is configured as described above.

【0013】次に、暖房運転の動作を、冷房運転との違
いについて説明する。暖房運転時には、冷却水を吸収器
105および凝縮器103に通水しない。このため、凝
縮器103において低温再生器102から導かれた冷媒
蒸気は凝縮液化せず高温のまま蒸発器104に送られ
る。また、冷暖切替弁110を開くことにより、高温再
生器101から高温の溶液と冷媒蒸気が直接吸収器10
5に導かれる。この冷媒蒸気は吸収器105では冷却さ
れず、蒸発器104に送られ、凝縮器103からの冷媒
蒸気とともに、蒸発器104内の熱交換器104a内を
流れる温水を加熱する。以上のように暖房サイクルが構
成される。
Next, the difference between the heating operation and the cooling operation will be described. During the heating operation, the cooling water is not passed through the absorber 105 and the condenser 103. Therefore, the refrigerant vapor guided from the low-temperature regenerator 102 in the condenser 103 is sent to the evaporator 104 at a high temperature without being condensed and liquefied. Further, by opening the cooling / heating switching valve 110, the high-temperature solution and the refrigerant vapor are directly supplied from the high-temperature regenerator 101 to the absorber 10
It is led to 5. This refrigerant vapor is not cooled by the absorber 105, but is sent to the evaporator 104, and together with the refrigerant vapor from the condenser 103, heats the hot water flowing in the heat exchanger 104a in the evaporator 104. The heating cycle is configured as described above.

【0014】上記の動作を行う吸収冷温水機における、
低温再生器、凝縮器、蒸発器、吸収器等の熱交換器要素
に採用するプレート熱交換器について、図1および図2
を参照して説明する。図1は、本発明の一実施形態に係
るプレート熱交換器を構成するパネルの説明図で、
(a)は平面図、(b)は、(a)のA−A断面図、図
2は、本発明の一実施形態に係るプレート熱交換器の構
成を示す側面図である。
In the absorption chiller / heater performing the above operation,
FIG. 1 and FIG. 2 show plate heat exchangers used for heat exchanger elements such as a low-temperature regenerator, a condenser, an evaporator, and an absorber.
This will be described with reference to FIG. Drawing 1 is an explanatory view of a panel which constitutes a plate heat exchanger concerning one embodiment of the present invention,
(A) is a plan view, (b) is an AA cross-sectional view of (a), and FIG. 2 is a side view showing a configuration of a plate heat exchanger according to an embodiment of the present invention.

【0015】図1,2において、21は、互いに向かい
合う伝熱面の内側に密閉された空間を形成する袋状のパ
ネル、22は、向かい合う伝熱面を袋状のパネルに形成
するための接合部を構成する縁部、23は、パネル21
の正面(図1(a))から見て左下に設けた流入開口
部、24は、パネル21の正面(図1(a))から見て
右上に設けた流出開口部、25(25a,25b,25
cの総称)は、伝熱面に形成された畝で、この畝25
は、図1(a)に向かって横方向に凹部と凸部が連続し
たもので、図1(a)に向かって縦方向に蛇行して設け
られている。26は、流入開口部23に対接して設けた
第一媒体の流入側配管、27は、流出開口部24に対接
して設けた第一媒体の流出側配管、28は、流入開口部
23に連通している流入側ヘッダ、29は、流出開口部
24に連通している流出側ヘッダである。
In FIGS. 1 and 2, reference numeral 21 denotes a bag-like panel forming a sealed space inside the heat transfer surfaces facing each other, and 22 denotes a joint for forming the heat transfer surfaces facing each other into a bag-like panel. The edge forming part, 23 is a panel 21
The inflow opening 24 provided at the lower left when viewed from the front (FIG. 1 (a)) is the outflow opening 25 provided at the upper right as viewed from the front of the panel 21 (FIG. 1 (a)). , 25
c) is a ridge formed on the heat transfer surface.
In FIG. 1A, a concave portion and a convex portion are continuous in the horizontal direction toward FIG. 1A, and are provided meandering in the vertical direction toward FIG. 26 is an inflow pipe of the first medium provided in contact with the inflow opening 23, 27 is an outflow pipe of the first medium provided in contact with the outflow opening 24, and 28 is an inflow opening of the first medium. The inflow header 29 that is in communication is the outflow header that is in communication with the outflow opening 24.

【0016】上記の畝25の実施形態を、図1(a)
(b)を参照してさらに詳しく説明する。例えば、図1
(a)(b)に示すように、表面の畝の凹部25a(実
線で示す)と裏面の凹部25b(破線で示す)とがパネ
ル21の内側において、各点25cで接するように縦方
向に蛇行した畝25を形成する。パネル21は、該パネ
ル21の内側において、主に縁部22と伝熱面の内側で
接している各点25cで、例えばロー付けや溶接により
接合されることで袋状のパネルとなる。
FIG. 1A shows an embodiment of the ridge 25 described above.
This will be described in more detail with reference to FIG. For example, FIG.
(A) As shown in (b), the concave portion 25a (shown by a solid line) on the front surface and the concave portion 25b (shown by a broken line) on the back surface are vertically aligned so that they contact each other at points 25c inside the panel 21. A meandering ridge 25 is formed. The panel 21 is formed into a bag-like panel by being joined by, for example, brazing or welding at each point 25c inside the panel 21 that mainly contacts the edge 22 on the inside of the heat transfer surface.

【0017】次に、図2を参照してパネル21を構成要
素としたプレート熱交換器20の構造について説明す
る。パネル21は、吸収冷温水機の冷凍能力に合わせて
複数個並設される。それぞれのパネル21同士は、パネ
ル21に設けた流入開口部23では流入側ヘッダ28に
より連通され、パネル1に設けられた流出開口部24で
は流出側ヘッダ29により連通される。隣接するパネル
21同士には一定間隔の隙間が設けられプレート熱交換
器20の周囲空間と連通されている。また、プレート熱
交換器20の両端に位置する一方のパネル21の片面に
限り、流入開口部23と流出開口部24は設けず(図示
せず)、もう一方のパネル21の片面は流入開口部23
には流入側配管26が接続され、流出開口部24には流
出側配管27が接続される。
Next, the structure of the plate heat exchanger 20 including the panel 21 as a component will be described with reference to FIG. A plurality of panels 21 are juxtaposed in accordance with the refrigerating capacity of the absorption chiller / heater. The panels 21 communicate with each other by an inflow header 28 at an inflow opening 23 provided in the panel 21, and communicate with an outflow header 29 at an outflow opening 24 provided in the panel 1. Adjacent panels 21 are provided with gaps at regular intervals and communicate with the surrounding space of the plate heat exchanger 20. Also, only one surface of one panel 21 located at both ends of the plate heat exchanger 20 is not provided with the inflow opening 23 and the outflow opening 24 (not shown), and one surface of the other panel 21 is provided with the inflow opening. 23
Is connected to the inflow side pipe 26, and the outflow opening 24 is connected to the outflow side pipe 27.

【0018】上記のように、プレート熱交換器20を構
成する袋状のパネル21を並設するので、各パネル21
内側を流れる第一媒体、例えば冷水等の圧力損失を同一
にできることから、同一寸法のパネル21であれば並設
される数が増減しても、プレート熱交換器20に接続さ
れる配管や冷水および冷却水を循環させるための循環ポ
ンプ等の選定にともなう設計が容易となる。
As described above, the bag-shaped panels 21 constituting the plate heat exchanger 20 are arranged side by side.
Since the pressure loss of the first medium flowing inside, for example, cold water, can be made the same, even if the number of panels 21 of the same size increases or decreases, the piping connected to the plate heat exchanger 20 or the cold water Also, the design along with the selection of a circulation pump or the like for circulating the cooling water becomes easy.

【0019】また、袋状のパネル21は、パネル21内
側容積を管方式の内側容積よりも大幅に低減できるとと
もに、パネル21の伝熱面において図1(a)に示すよ
うに両側の畝の凹部25a,25bがパネル21の内側
で図1(b)に示すように接合した各点25cを、パネ
ル21の内側を流れる冷水等の流れ方向に対して互い違
いに配置することにより、パネル21の内外の圧力差に
耐えるとともに激しい乱流を発生させることができる。
したがって、従来の管方式よりも単位面積当たりの伝熱
性能を向上させることができることから、管方式よりも
大幅な小型化を図ることができる。
Further, the bag-shaped panel 21 can significantly reduce the inner volume of the panel 21 compared to the inner volume of the tube system, and also has the ridges on both sides on the heat transfer surface of the panel 21 as shown in FIG. As shown in FIG. 1B, the points 25c where the recesses 25a and 25b are joined inside the panel 21 as shown in FIG. 1B are alternately arranged with respect to the flow direction of cold water or the like flowing inside the panel 21. It can withstand the pressure difference between the inside and outside and generate strong turbulence.
Therefore, since the heat transfer performance per unit area can be improved as compared with the conventional tube system, the size can be significantly reduced as compared with the tube system.

【0020】なお、図1に示すパネル21の伝熱面の畝
25の形状は、パネル21内側で激しい乱流を発生でき
る形状であればこれに限定されるものではなく、畝25
の蛇行する数や角度,向きは、変更した場合でも上記と
同様の効果を得ることができる。また、例えば伝熱面が
平行平板で内側にフィン等の伝熱促進部材を設けた場合
でも、上記と同様の効果を得ることができる。
The shape of the ridge 25 on the heat transfer surface of the panel 21 shown in FIG. 1 is not limited to this as long as it can generate severe turbulence inside the panel 21.
Even if the number, angle, and direction of meandering are changed, the same effects as described above can be obtained. Further, for example, even when the heat transfer surface is a parallel plate and a heat transfer promoting member such as a fin is provided inside, the same effect as described above can be obtained.

【0021】次に、吸収冷温水機における、高温溶液熱
交換器、低温溶液熱交換器の熱交換器要素に採用する第
二のプレート熱交換器について、図3ないし図5を参照
して説明する。図3は、本発明の一実施形態に係る伝熱
プレートの正面図、図4は、図3の伝熱プレートを積層
して構成した熱交換器の斜視図、図5は、図4の熱交換
器における媒体の流れを示す分解説明図である。
Next, the second plate heat exchanger employed in the heat exchanger elements of the high-temperature solution heat exchanger and the low-temperature solution heat exchanger in the absorption chiller / heater will be described with reference to FIGS. I do. FIG. 3 is a front view of a heat transfer plate according to an embodiment of the present invention, FIG. 4 is a perspective view of a heat exchanger formed by stacking the heat transfer plates of FIG. 3, and FIG. FIG. 3 is an exploded explanatory view showing a flow of a medium in the exchanger.

【0022】第二のプレート熱交換器では、図3(a)
に示す伝熱プレート30と図3(b)に示す伝熱プレー
ト36とが交互に密接して積層される。伝熱プレート3
0,36の伝熱面には、それぞれ図3に向かって縦方向
に凹部と凸部が連続した畝31,37がくの字型に成形
されている。そして、畝31と畝37のくの字の向きは
図3(a)(b)に示すように互いに逆になるように、
伝熱プレート30と伝熱プレート36とが交互に積層さ
れるものである。
In the second plate heat exchanger, FIG.
The heat transfer plates 30 shown in FIG. 3 and the heat transfer plates 36 shown in FIG. Heat transfer plate 3
On the heat transfer surfaces 0 and 36, ridges 31 and 37 in which concave portions and convex portions are continuous in the vertical direction toward FIG. Then, as shown in FIGS. 3 (a) and 3 (b), the directions of the ridges 31 and 37 in the shape of a square are opposite to each other.
The heat transfer plates 30 and the heat transfer plates 36 are alternately stacked.

【0023】また、高温溶液熱交換器と低温溶液熱交換
器内を流れる第一,第二の2つの媒体がそれぞれ流入し
流出するための開口部32,33,34,35を伝熱プ
レート30に設け、開口部38,39,40,41を伝
熱プレート36に設けている。さらに、伝熱面には、図
3に向かって縦方向に凹部と凸部が連続した畝31,3
7が、例えばくの字形に成形され、畝31と畝37のく
の字の向きは逆になるように配置される。
The openings 32, 33, 34, and 35 through which the first and second media flowing in the high-temperature solution heat exchanger and the low-temperature solution heat exchanger flow in and out of the heat transfer plate 30 respectively. , And the openings 38, 39, 40, 41 are provided in the heat transfer plate 36. Further, on the heat transfer surface, ridges 31 and 3 in which concave portions and convex portions are continuous in the vertical direction toward FIG.
7 is formed in, for example, a U-shape, and the ridges 31 and 37 are arranged so that the directions of the U-shape are reversed.

【0024】次に、図4および図5を参照して、図3の
伝熱プレートを用いた熱交換器の構造と該熱交換器内を
流れる2つの媒体の流路について説明する。図4に示す
熱交換器は、図3に示した伝熱プレート30と伝熱プレ
ート36とを交互に積層した熱交換器45が缶体42内
に納められている。熱交換器45内を流れる第一媒体a
は、缶体42に設けた一方の配管接合部(図示せず)か
ら流入し配管接合部44から流出する。第二媒体bは、
缶体42に設けた配管接合部43から流入しもう一方の
配管接合部(図示せず)から流出する。
Next, the structure of the heat exchanger using the heat transfer plate of FIG. 3 and the flow path of the two media flowing in the heat exchanger will be described with reference to FIGS. In the heat exchanger shown in FIG. 4, a heat exchanger 45 in which the heat transfer plates 30 and the heat transfer plates 36 shown in FIG. First medium a flowing in heat exchanger 45
Flows from one pipe joint (not shown) provided in the can body 42 and flows out from the pipe joint 44. The second medium b is
It flows in from a pipe joint 43 provided on the can body 42 and flows out from the other pipe joint (not shown).

【0025】図5は、熱交換器45内の第一媒体aと第
二媒体bの流路を示すもので、第一媒体aは流入方向に
対して伝熱プレート30の開口部32と伝熱プレート3
6の間に流路を形成し、第二媒体bは流入方向に対して
伝熱プレート36と伝熱プレート30の間に流路を形成
することで、第一媒体aと第二媒体bが伝熱プレート3
0と伝熱プレート36とを介して熱交換を行うものであ
る。
FIG. 5 shows the flow path of the first medium a and the second medium b in the heat exchanger 45. The first medium a is transferred to the opening 32 of the heat transfer plate 30 in the inflow direction. Heat plate 3
6, the second medium b forms a flow path between the heat transfer plate 36 and the heat transfer plate 30 in the inflow direction, so that the first medium a and the second medium b Heat transfer plate 3
Heat exchange is performed via the heat transfer plate 36 and the heat transfer plate 36.

【0026】なお、図3に示す伝熱プレート30,36
の伝熱面の形状はこれに限定されるものではなく、畝3
1,37が図1の畝25のように蛇行した場合や、図1
の畝25の蛇行する数や角度,向きは変更した場合でも
とくに問題はない。
The heat transfer plates 30, 36 shown in FIG.
The shape of the heat transfer surface is not limited to this.
1 and 37 meander like the ridge 25 in FIG.
There is no particular problem even if the number, angle, and direction of the meandering ridge 25 are changed.

【0027】上記のプレート熱交換器を採用した吸収冷
温水機の構成を図6を参照して説明する。図6は、本発
明の一実施形態に係るプレート熱交換器を採用した吸収
冷温水機の系統図である。図6に示す吸収冷温水機で
は、低温再生器、凝縮器,蒸発器,吸収器の熱交換器要
素に図2に示すプレート熱交換器20を装備し、高温溶
液熱交換器、低温溶液熱交換器内に図3に示す伝熱プレ
ート31,36を交互に積層したプレート熱交換器を装
備している。
The construction of an absorption chiller / heater employing the above plate heat exchanger will be described with reference to FIG. FIG. 6 is a system diagram of an absorption chiller / heater employing a plate heat exchanger according to an embodiment of the present invention. In the absorption chiller / heater shown in FIG. 6, the plate heat exchanger 20 shown in FIG. 2 is provided in the heat exchanger elements of the low temperature regenerator, condenser, evaporator and absorber, and the high temperature solution heat exchanger and the low temperature solution heat are used. The exchanger is provided with a plate heat exchanger in which heat transfer plates 31 and 36 shown in FIG. 3 are alternately stacked.

【0028】図6に示す吸収冷温水機は、高温再生器
1、低温再生器2、凝縮器3、蒸発器4、吸収器5、低
温溶液熱交換器6、高温溶液熱交換器7、溶液ポンプ
8、エリミネータ9、冷暖切替弁10からなり、冷房運
転および暖房運転の動作については先に図10に示した
吸収冷温水機のサイクル系統と基本的に同じである。図
6に示すように、低温再生器2,凝縮器3,蒸発器4,
吸収器5の各熱交換器要素に、それぞれ図2に示した如
きプレート熱交換器2a,3a,4a,5a(以下第一
のプレート熱交換器という)を装備し、高温溶液熱交換
器7,低温溶液熱交換器6については、図3に示した如
き伝熱プレート30,36を交互に積層したプレート熱
交換器7a,6a(以下第二のプレート熱交換器とい
う)を装備することで、それぞれが大幅な小型化が実現
できる。
The absorption chiller / heater shown in FIG. 6 includes a high-temperature regenerator 1, a low-temperature regenerator 2, a condenser 3, an evaporator 4, an absorber 5, a low-temperature solution heat exchanger 6, a high-temperature solution heat exchanger 7, a solution It comprises a pump 8, an eliminator 9, and a cooling / heating switching valve 10, and the operation of the cooling operation and the heating operation is basically the same as the cycle system of the absorption chiller / heater shown in FIG. As shown in FIG. 6, low temperature regenerator 2, condenser 3, evaporator 4,
Each heat exchanger element of the absorber 5 is equipped with a plate heat exchanger 2a, 3a, 4a, 5a (hereinafter referred to as a first plate heat exchanger) as shown in FIG. The low-temperature solution heat exchanger 6 is provided with plate heat exchangers 7a and 6a (hereinafter referred to as a second plate heat exchanger) in which heat transfer plates 30 and 36 are alternately stacked as shown in FIG. , Each of which can realize significant miniaturization.

【0029】次に図7および図8を参照して、図6に示
す低温再生器2、凝縮器3、蒸発器4、吸収器5に採用
される第一のプレート熱交換器、および高温溶液熱交換
器7、低温溶液熱交換器6に採用される第二のプレート
熱交換器の配置方法の一実施形態について説明する。図
7は、本実施形態におけるプレート熱交換器を構成する
パネルの並設方向および伝熱プレートの積層方向を示す
説明図、図8は、図7を上から見た平面図である。
Next, referring to FIGS. 7 and 8, the first plate heat exchanger employed in the low-temperature regenerator 2, the condenser 3, the evaporator 4, the absorber 5 shown in FIG. An embodiment of a method of arranging the second plate heat exchanger employed in the heat exchanger 7 and the low-temperature solution heat exchanger 6 will be described. FIG. 7 is an explanatory view showing the direction in which the panels constituting the plate heat exchanger in this embodiment are arranged side by side and the direction in which the heat transfer plates are stacked. FIG. 8 is a plan view of FIG. 7 as viewed from above.

【0030】これら図7,図8は各機器の存在する缶体
内を透視して示した説明図である。吸収冷温水機には、
缶体50,51,52が構成され、上部の缶体50に
は、図6に示す凝縮器3のプレート熱交換器3aと低温
再生器2のプレート熱交換器2aが搭載され、中間部の
缶体51には、図6に示す蒸発器4のプレート熱交換器
4aと吸収器5のプレート熱交換器5aが搭載され、さ
らに下部の缶体52には、高温溶液熱交換器7のプレー
ト熱交換器7aと低温溶液熱交換器6のプレート熱交換
器6aが搭載されている。
FIGS. 7 and 8 are explanatory views showing a transparent view of the inside of a can in which each device is located. Absorption chiller / heater
The can bodies 50, 51, and 52 are formed, and the plate heat exchanger 3a of the condenser 3 and the plate heat exchanger 2a of the low-temperature regenerator 2 shown in FIG. The plate heat exchanger 4a of the evaporator 4 and the plate heat exchanger 5a of the absorber 5 shown in FIG. 6 are mounted on the can 51, and the plate 52 of the high-temperature solution heat exchanger 7 is further mounted on the lower can 52. The heat exchanger 7a and the plate heat exchanger 6a of the low-temperature solution heat exchanger 6 are mounted.

【0031】図7および図8に示すように、缶体50内
のプレート熱交換器3a,2a、缶体51内のプレート
熱交換器4a,5a、缶体52内のプレート熱交換器7
a,6aは各プレート熱交換器を構成する図1のパネル
21の並設される方向と、図3の伝熱プレート30,3
6の積層される方向を同一方向に配置する。これによ
り、吸収冷温水機を冷凍能力別にシリーズ構成した場合
に、缶体50,51においては、例えばパネル21の1
枚の冷凍能力を3.5kWとすると、冷凍能力が350
kWで100個、175kWで50個とパネル21の数
を増減することでシリーズ構成が可能となり、パネル2
1の数にあわせて各缶体50,51の特に並設される方
向の寸法の変更により吸収冷温水機を構成することがで
きる。
As shown in FIGS. 7 and 8, the plate heat exchangers 3a and 2a in the can body 50, the plate heat exchangers 4a and 5a in the can body 51, and the plate heat exchanger 7 in the can body 52 are provided.
a, 6a are the directions in which the panels 21 of FIG. 1 constituting each plate heat exchanger are arranged side by side, and the heat transfer plates 30, 3 of FIG.
6 are arranged in the same direction. Thereby, when the absorption chiller / heater is configured in series according to the refrigerating capacity, the cans 50 and 51 have, for example, one of the panels 21.
Assuming that the refrigerating capacity of each piece is 3.5 kW, the refrigerating capacity is 350
By increasing or decreasing the number of panels 21 to 100 units at kW and 50 units at 175 kW, a series configuration becomes possible.
The absorption chiller / heater can be configured by changing the dimensions of the can bodies 50 and 51, particularly in the direction in which they are juxtaposed, in accordance with the number of units.

【0032】また、缶体52においても、冷凍能力別に
シリーズ構成した場合に伝熱プレート30,36の枚数
を増減することでシリーズ構成が可能となり、伝熱プレ
ート30,36の枚数にあわせて缶体52の特に積層さ
れる方向の寸法を変更すれば吸収冷温水機を構成するこ
とができるので、冷凍能力別による設計変更が容易にな
る。
Further, also in the can body 52, if the number of the heat transfer plates 30 and 36 is increased or decreased when the series is configured according to the refrigerating capacity, a series configuration can be realized. By changing the size of the body 52, particularly in the direction in which the bodies 52 are stacked, the absorption chiller / heater can be configured, so that the design can be easily changed depending on the refrigeration capacity.

【0033】図9は、冷凍能力の異なる吸収冷温水機を
2台設置した場合の冷温水と冷却水の配管系統図であ
る。すなわち、図9は、冷凍能力の異なる吸収冷温水機
を2台設置した場合、吸収冷温水機から利用側までの冷
温水配管系統、および吸収冷温水機からの冷却水配管系
統を示すもので、本発明の効果を説明する一実施形態で
ある。
FIG. 9 is a piping diagram of cold and hot water and cooling water when two absorption chiller / heaters having different refrigeration capacities are installed. That is, FIG. 9 shows a cooling / heating water piping system from the absorption cooling / heating water heater to the use side and a cooling water piping system from the absorption cooling / heating water heater when two absorption cooling / water heating machines having different refrigeration capacities are installed. This is an embodiment for explaining the effects of the present invention.

【0034】図9に示す実施形態は、冷凍能力の異なる
吸収冷温水機60,61、冷温水配管系統の吸収冷温水
機60の開閉弁62,64と、吸収冷温水機61の開閉
弁63,65と、冷温水循環ポンプ66、冷却水配管系
統の吸収冷温水機60の開閉弁67,69と、吸収冷温
水機61の開閉弁68,70と、冷却水循環ポンプ7
2、およびクーリングタワー71から構成されている。
The embodiment shown in FIG. 9 shows the absorption chiller / heaters 60 and 61 having different refrigerating capacities, the opening / closing valves 62 and 64 of the absorption chiller / heater 60 in the chilled / hot water piping system, and the opening / closing valve 63 of the absorption chiller / heater 61. , 65, a chilled / hot water circulation pump 66, on / off valves 67, 69 of an absorption chiller / heater 60 in a cooling water piping system, on / off valves 68, 70 of an absorption chiller / heater 61, and a cooling water circulation pump 7.
2 and a cooling tower 71.

【0035】図9に示すように、冷凍能力が異なる吸収
冷温水機60,61を2台設置した場合、従来の管方式
では管の長さや本数が異なるため、吸収冷温水機60,
61の冷温水側と冷却水側の圧力損失が異なることか
ら、例えば冷温水側の開閉弁64,65、冷却水側の開
閉弁69,70を全開とし、冷温水側の開閉弁62,6
3、冷却水側の開閉弁67,68で流量調整をせず全開
のまま据え付けると、吸収冷温水機61の方が圧力損失
が大きい場合に、定格流量に対して吸収冷温水機61で
は流量が過小となることによる能力不足となり、吸収冷
温水機60では流量が過大となることにより管の腐食が
促進される問題があつた。したがって、据え付け時に
は、冷温水側の開閉弁62,63、冷却水側の開閉弁6
7,68で必ず流量調整をしなければならなかった。
As shown in FIG. 9, when two absorption chiller / heaters 60 and 61 having different refrigerating capacities are installed, the length and number of the tubes are different in the conventional pipe system.
Since the pressure loss of the cold / hot water side and the cooling water side of 61 is different, for example, the open / close valves 64 and 65 of the cold / hot water side and the open / close valves 69 and 70 of the cool water side are fully opened, and the open / close valves 62 and 6 of the cold / hot water side.
3. If the cooling chiller / heater 61 is installed fully open without adjusting the flow rate at the cooling water side on-off valves 67 and 68, the absorption chiller / heater 61 has a larger flow rate than the rated flow when the pressure loss is larger. If the flow rate is too small, the capacity becomes insufficient, and the absorption chiller / heater 60 has a problem that the flow rate is too large and the corrosion of the pipe is promoted. Therefore, at the time of installation, the on-off valves 62 and 63 on the cold / hot water side and the on-off valves 6 on the cooling water side
At 7,68, the flow rate had to be adjusted without fail.

【0036】そこで、吸収冷温水機60,61に、図2
に示すプレート熱交換器20を、図6に示すサイクルフ
ロー図のように構成することによって、蒸発器4におけ
る冷温水配管分と、吸収器5および凝縮器3における冷
却水配管分を除けば、吸収冷温水機60,61の冷温水
側の圧力損失、冷却水側の圧力損失をそれぞれ同じする
ことができる。したがって、冷温水側の開閉弁62,6
3,64,65、冷却水側の開閉弁67,68,69,
70の据え付け時に、吸収冷温水機60,61の流入
側,流出側ともに流量調整を行わず全開のまま据え付け
ても、圧力損失がほぼ同等であるから、従来の管方式の
ときの如く定格流量に対して過小,過大になるような問
題が起こらない。
Therefore, the absorption chiller / heater 60, 61 is provided in FIG.
The plate heat exchanger 20 shown in FIG. 6 is configured as shown in the cycle flow diagram of FIG. 6, except for the cold and hot water piping in the evaporator 4 and the cooling water piping in the absorber 5 and the condenser 3. The pressure loss on the cold / hot water side and the pressure loss on the cooling water side of the absorption chiller / heater 60, 61 can be made the same. Therefore, the on-off valves 62, 6 on the cold / hot water side
3, 64, 65, on-off valves 67, 68, 69, on the cooling water side
Even if the inlet and outlet sides of the absorption water heaters 60 and 61 are not fully adjusted at the time of installation, and the pressure loss is almost the same even when installed without opening, the rated flow rate is the same as that of the conventional pipe system. There is no problem that is too small or too large.

【0037】上記の各実施形態によれば、低温再生器
2,凝縮器3,蒸発器4,吸収器5に袋状のパネル21
を複数個並設したプレート熱交換器2a,3a,4a,
5aを搭載し、また、低温溶液熱交換器6,高温溶液熱
交換器7に伝熱プレート30,36を交互に複数枚並設
したプレート熱交換器6a,7aを搭載し、それぞれの
並設方向を同一にすることにより、吸収冷温水機の小型
化を図るとともに、冷凍能力別にシリーズ構成した場
合、冷凍能力別にパネル21や伝熱プレート30,36
の積層する数を増減し、おもに並設方向の寸法を変更す
れば対応できるので、冷凍能力別による設計変更が容易
にできる。
According to the above embodiments, the low temperature regenerator 2, the condenser 3, the evaporator 4, the absorber 5, and the bag-like panel 21
Plate heat exchangers 2a, 3a, 4a,
5a, and plate heat exchangers 6a and 7a in which a plurality of heat transfer plates 30 and 36 are alternately arranged side by side in the low-temperature solution heat exchanger 6 and the high-temperature solution heat exchanger 7, respectively. By making the directions the same, it is possible to reduce the size of the absorption chiller / heater, and when a series configuration is made for each refrigeration capacity, the panel 21 and the heat transfer plates 30, 36 are set for each refrigeration capacity.
This can be achieved by increasing or decreasing the number of layers to be stacked and mainly changing the dimension in the juxtaposition direction, so that the design can be easily changed depending on the refrigeration capacity.

【0038】なお、上記の各実施形態においては、低温
再生器2,凝縮器3,蒸発器4,吸収器5の全てにパネ
ル21を複数個並設した第一のプレート熱交換器を装備
し、低温溶液熱交換器6,高温溶液熱交換器7の両者に
伝熱プレート30,36を交互に複数枚積層した第二の
プレート熱交換器を装備した例を説明したが、低温再生
器2,凝縮器3,蒸発器4,吸収器5のいずれか一つに
第一のプレート熱交換器を装備し、低温溶液熱交換器
6,高温溶液熱交換器7のいずれか一つに第二のプレー
ト熱交換器を装備してもそれ相応の効果があることは言
うまでもない。
In each of the above embodiments, the low-temperature regenerator 2, condenser 3, evaporator 4, and absorber 5 are all provided with the first plate heat exchanger having a plurality of panels 21 arranged in parallel. And the low-temperature solution heat exchanger 6 and the high-temperature solution heat exchanger 7 are each provided with a second plate heat exchanger in which a plurality of heat transfer plates 30 and 36 are alternately stacked. , Condenser 3, evaporator 4, absorber 5 is equipped with a first plate heat exchanger, and low-temperature solution heat exchanger 6, high-temperature solution heat exchanger 7 is equipped with a second plate heat exchanger. Needless to say, even if the plate heat exchanger of the above is equipped, there is a corresponding effect.

【0039】[0039]

【発明の効果】以上詳細に説明したように、本発明によ
れば、吸収冷温水機を構成する各種熱交換器要素の大幅
な小型化を図ることができ、かつ、冷凍能力別にシリー
ズ構成する場合でも容易に設計変更の可能なプレート熱
交換器を用いた吸収冷温水機を提供することができる。
As described in detail above, according to the present invention, it is possible to greatly reduce the size of various heat exchanger elements constituting the absorption chiller / heater, and to form a series for each refrigeration capacity. An absorption chiller / heater using a plate heat exchanger whose design can be easily changed even in such a case can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係るプレート熱交換器を
構成するパネルの説明図である。
FIG. 1 is an explanatory diagram of a panel constituting a plate heat exchanger according to an embodiment of the present invention.

【図2】本発明の一実施形態に係るプレート熱交換器の
構成を示す側面図である。
FIG. 2 is a side view showing a configuration of a plate heat exchanger according to one embodiment of the present invention.

【図3】本発明の一実施形態に係る伝熱プレートの正面
図である。
FIG. 3 is a front view of a heat transfer plate according to one embodiment of the present invention.

【図4】図3の伝熱プレートを積層して構成した熱交換
器の斜視図である。
FIG. 4 is a perspective view of a heat exchanger configured by laminating the heat transfer plates of FIG. 3;

【図5】図4の熱交換器における媒体の流れを示す分解
説明図である。
FIG. 5 is an exploded explanatory view showing a flow of a medium in the heat exchanger of FIG.

【図6】本発明の一実施形態に係るプレート熱交換器を
採用した吸収冷温水機の系統図である。
FIG. 6 is a system diagram of an absorption chiller / heater employing a plate heat exchanger according to an embodiment of the present invention.

【図7】本実施形態におけるプレート熱交換器を構成す
るパネルの並設方向および伝熱プレートの積層方向を示
す説明図である。
FIG. 7 is an explanatory diagram showing a direction in which panels constituting the plate heat exchanger according to the present embodiment are arranged side by side and a direction in which heat transfer plates are stacked.

【図8】図7を上から見た平面図である。FIG. 8 is a plan view of FIG. 7 as viewed from above.

【図9】冷凍能力の異なる吸収冷温水機を2台設置した
場合の冷温水と冷却水の配管系統図である。
FIG. 9 is a piping diagram of cold and hot water and cooling water when two absorption chiller / heaters having different refrigeration capacities are installed.

【図10】一般的な吸収冷温水機のサイクル系統図であ
る。
FIG. 10 is a cycle system diagram of a general absorption chiller / heater.

【符号の説明】[Explanation of symbols]

1…高温再生機、2…低温再生機、2a…低温熱交換器
のプレート熱交換器、3…凝縮器、3a…凝縮器のプレ
ート熱交換器、4…蒸発器、4a…蒸発器のプレート熱
交換器、5…吸収器、5a…吸収器のプレート熱交換
器、6…低温溶液熱交換器、6a…低温溶液熱交換器の
プレート熱交換器、7…高温溶液熱交換器、7a…高温
溶液熱交換器のプレート熱交換器、20…プレート熱交
換器、21…パネル、25…畝、28…流入側ヘッダ、
29…流出側ヘッダ、30,36…伝熱プレート、3
1,37…畝、32,33,34,35,38,39,
40,41…開口部、43,44…配管接合部、42,
50,51,52…缶体、62,63,64,65…冷
温水側の開閉弁、67,68,69,70…冷却水側の
開閉弁。
DESCRIPTION OF SYMBOLS 1 ... High temperature regenerator, 2 ... Low temperature regenerator, 2a ... Plate heat exchanger of low temperature heat exchanger, 3 ... Condenser, 3a ... Condenser plate heat exchanger, 4 ... Evaporator, 4a ... Evaporator plate Heat exchanger, 5 ... absorber, 5a ... absorber plate heat exchanger, 6 ... low temperature solution heat exchanger, 6a ... low temperature solution heat exchanger plate heat exchanger, 7 ... high temperature solution heat exchanger, 7a ... Plate heat exchanger of high-temperature solution heat exchanger, 20: plate heat exchanger, 21: panel, 25: ridge, 28: inflow side header,
29: Outflow side header, 30, 36: Heat transfer plate, 3
1, 37 ... ridge, 32, 33, 34, 35, 38, 39,
40, 41 ... opening, 43, 44 ... pipe joint, 42,
50, 51, 52: Can body, 62, 63, 64, 65: On / off valve on the cold / hot water side, 67, 68, 69, 70: On / off valve on the cooling water side.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも、高温再生器、低温再生器、
凝縮器、蒸発器、吸収器、高温溶液熱交換器、低温溶液
熱交換器を作動的に配管で接続してなる吸収冷温水機に
おいて、 低温再生器、凝縮器、蒸発器、吸収器の少なくとも2つ
は、 互いに向かい合う伝熱面の内側に密閉された空間を形成
する袋状のパネルを、隣接する袋状のパネルの伝熱面と
所定の隙間が形成される状態で複数個並設し、前記複数
の袋状のパネル間には該袋状のパネルの内側空間を連通
する流通路を設けて第一媒体を流通させ、前記複数の袋
状のパネルの外部空間には第二媒体を流通させるように
構成し、前記互いに向かい合う伝熱面は、前記袋状のパ
ネルの内側で乱流を発生させる伝熱促進面を形成したプ
レート熱交換器からなり、 少なくとも2つの前記プレート熱交換器は、当該プレー
ト熱交換器を構成するパネルが、いずれも同一方向に並
設されていることを特徴とする吸収冷温水機。
1. At least a high-temperature regenerator, a low-temperature regenerator,
In an absorption chiller / heater in which a condenser, an evaporator, an absorber, a high-temperature solution heat exchanger, and a low-temperature solution heat exchanger are operatively connected by piping, at least one of a low-temperature regenerator, condenser, evaporator, and absorber In the two, a plurality of bag-shaped panels forming a sealed space inside the heat transfer surfaces facing each other are arranged side by side in such a manner that a predetermined gap is formed between the heat transfer surfaces of the adjacent bag-shaped panels. A flow path communicating the inner space of the bag-shaped panel is provided between the plurality of bag-shaped panels to allow the first medium to flow, and the second medium is passed through the outer space of the plurality of bag-shaped panels. Wherein the heat transfer surfaces facing each other comprise a plate heat exchanger having a heat transfer promotion surface for generating a turbulent flow inside the bag-shaped panel; and at least two of the plate heat exchangers. Is the panel that constitutes the plate heat exchanger Both the absorption chiller which is characterized in that it is arranged in the same direction.
【請求項2】 少なくとも、高温再生器、低温再生器、
凝縮器、蒸発器、吸収器、高温溶液熱交換器、低温溶液
熱交換器を作動的に配管で接続してなる吸収冷温水機に
おいて、 低温再生器、凝縮器、蒸発器、吸収器の少なくとも2つ
は、互いに向かい合う伝熱面の内側に密閉された空間を
形成する袋状のパネルを、隣接する袋状のパネルの伝熱
面と所定の隙間が形成される状態で複数個並設し、前記
複数の袋状のパネル間には該袋状のパネルの内側空間を
連通する流通路を設けて第一媒体を流通させ、前記複数
の袋状のパネルの外部空間には第二媒体を流通させるよ
うに構成し、前記互いに向かい合う伝熱面は、前記袋状
のパネルの内側で乱流を発生させる伝熱促進面を形成し
た第一のプレート熱交換器からなり、 高温溶液熱交換器,低温溶液熱交換器の少なくとも1つ
は、複数の媒体流通管を貫通し複数枚の伝熱プレートを
積層するもので、前記伝熱プレートの伝熱面は、凹部と
凸部が連続した曲がり畝を多数形成したものであり、互
いに隣接する伝熱プレートの曲がり畝は、それぞれ曲が
りの向きが逆になるように積層されて流路を形成し、積
層した前記複数枚の伝熱プレートごとに第一媒体と第二
媒体とを交互に流通させるようにした第二のプレート熱
交換器からなり、 少なくとも2つの前記第一のプレート熱交換器は、当該
プレート熱交換器を構成するパネルが、いずれも同一方
向に並設されているとともに、 前記第二のプレート熱交換器を構成する伝熱プレート
を、前記第一のプレート熱交換器のパネルの並設方向と
同一方向に積層されるように配置したことを特徴とする
吸収冷温水機。
2. At least a high-temperature regenerator, a low-temperature regenerator,
In an absorption chiller / heater in which a condenser, an evaporator, an absorber, a high-temperature solution heat exchanger, and a low-temperature solution heat exchanger are operatively connected by piping, at least one of a low-temperature regenerator, condenser, evaporator, and absorber In the two, a plurality of bag-like panels forming a sealed space inside the heat transfer surfaces facing each other are arranged side by side in such a manner that a predetermined gap is formed between the heat transfer surfaces of the adjacent bag-like panels. A flow path communicating the inner space of the bag-shaped panel is provided between the plurality of bag-shaped panels to allow the first medium to flow, and the second medium is passed through the outer space of the plurality of bag-shaped panels. The heat transfer surfaces facing each other are constituted by a first plate heat exchanger having a heat transfer promoting surface for generating a turbulent flow inside the bag-shaped panel. , At least one of the low-temperature solution heat exchangers includes a plurality of medium flow pipes. A plurality of heat transfer plates are laminated, and the heat transfer surface of the heat transfer plate is formed by forming a large number of curved ridges in which a concave portion and a convex portion are continuous. A second channel in which the first medium and the second medium are alternately circulated for each of the plurality of stacked heat transfer plates, the channels being stacked so that the directions of the bends are respectively reversed. At least two of the first plate heat exchangers, wherein the panels constituting the plate heat exchangers are all arranged side by side in the same direction, and the second plate heat exchange An absorption chiller / heater, wherein the heat transfer plates constituting the heat exchanger are arranged so as to be stacked in the same direction as the direction in which the panels of the first plate heat exchanger are juxtaposed.
JP9107666A 1997-04-24 1997-04-24 Absorption water cooler-heater Pending JPH10300260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9107666A JPH10300260A (en) 1997-04-24 1997-04-24 Absorption water cooler-heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9107666A JPH10300260A (en) 1997-04-24 1997-04-24 Absorption water cooler-heater

Publications (1)

Publication Number Publication Date
JPH10300260A true JPH10300260A (en) 1998-11-13

Family

ID=14464937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9107666A Pending JPH10300260A (en) 1997-04-24 1997-04-24 Absorption water cooler-heater

Country Status (1)

Country Link
JP (1) JPH10300260A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000022357A1 (en) * 1998-10-15 2000-04-20 Ebara Corporation Absorption refrigerating machine
WO2001038802A1 (en) * 1999-11-22 2001-05-31 Ebara Corporation Absorption refrigerating machine
JP2002277090A (en) * 2001-03-22 2002-09-25 Tokyo Gas Co Ltd Plate type heat exchanger for absorption refrigerator
JP2002277089A (en) * 2001-03-22 2002-09-25 Tokyo Gas Co Ltd Absorption refrigerator
WO2004113802A1 (en) * 2003-05-30 2004-12-29 Zae Bayern Bay. Zentrum Für Angewandte Energieforschung E.V. Container/heat exchanger for compact sorption refrigeration installation and heat pumps and sorption refrigeration installations with said container/heat exchanger
JP2007247956A (en) * 2006-03-15 2007-09-27 Daikin Ind Ltd Refrigerant generator for absorption refrigerating machine
JP2007271197A (en) * 2006-03-31 2007-10-18 Daikin Ind Ltd Absorption type refrigerating device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3910014B2 (en) * 1998-10-15 2007-04-25 荏原冷熱システム株式会社 Absorption refrigerator
US6442964B1 (en) 1998-10-15 2002-09-03 Ebara Corporation Absorption refrigerating machine
WO2000022357A1 (en) * 1998-10-15 2000-04-20 Ebara Corporation Absorption refrigerating machine
CN1295465C (en) * 1999-11-22 2007-01-17 株式会社荏原制作所 Absorption refrigerating machine
WO2001038802A1 (en) * 1999-11-22 2001-05-31 Ebara Corporation Absorption refrigerating machine
US6564572B1 (en) 1999-11-22 2003-05-20 Ebara Corporation Absorption refrigerator
EP1233239A1 (en) * 1999-11-22 2002-08-21 Ebara Corporation Absorption refrigerating machine
EP1233239A4 (en) * 1999-11-22 2009-12-02 Ebara Corp Absorption refrigerating machine
JP2002277090A (en) * 2001-03-22 2002-09-25 Tokyo Gas Co Ltd Plate type heat exchanger for absorption refrigerator
JP2002277089A (en) * 2001-03-22 2002-09-25 Tokyo Gas Co Ltd Absorption refrigerator
WO2004113802A1 (en) * 2003-05-30 2004-12-29 Zae Bayern Bay. Zentrum Für Angewandte Energieforschung E.V. Container/heat exchanger for compact sorption refrigeration installation and heat pumps and sorption refrigeration installations with said container/heat exchanger
JP2007247956A (en) * 2006-03-15 2007-09-27 Daikin Ind Ltd Refrigerant generator for absorption refrigerating machine
JP4720558B2 (en) * 2006-03-15 2011-07-13 ダイキン工業株式会社 Absorption refrigerator generator
JP2007271197A (en) * 2006-03-31 2007-10-18 Daikin Ind Ltd Absorption type refrigerating device

Similar Documents

Publication Publication Date Title
US4002201A (en) Multiple fluid stacked plate heat exchanger
JPH11287580A (en) Heat exchanger
WO2000022364A1 (en) Plate type heat exchanger
JP2023156295A5 (en)
JP2002130977A (en) Heat exchanger
EP1085286A1 (en) Plate type heat exchanger
JPH10300260A (en) Absorption water cooler-heater
JP3658677B2 (en) Plate heat exchanger and refrigeration system
JP3485731B2 (en) Absorption chiller / heater
JPH05215482A (en) Heat exchanger
JP2001304719A (en) Module type multi-channel flat pipe evaporator
CN113716011A (en) Auxiliary cooling system for pump for ship
JP3292663B2 (en) Plate heat exchanger
JP2001133172A (en) Heat exchanger and refrigeration air conditioner
WO2024002198A1 (en) Power battery heat exchanger, power battery system and electric vehicle
JPH02171591A (en) Laminated type heat exchanger
JP7259287B2 (en) Heat exchanger
KR100925097B1 (en) Water-cooled heat exchanger
JP3948265B2 (en) Heat exchanger
JP2513324Y2 (en) Heat exchanger
JP6601380B2 (en) Heat exchanger and air conditioner
KR100315627B1 (en) Absorption heating and cooling system having quick boiling function
JP2951649B2 (en) Absorption air conditioner
JPH08159687A (en) Heat exchanger
JPS63197893A (en) Layered type heat exchanger