JPS63197893A - Layered type heat exchanger - Google Patents

Layered type heat exchanger

Info

Publication number
JPS63197893A
JPS63197893A JP3011687A JP3011687A JPS63197893A JP S63197893 A JPS63197893 A JP S63197893A JP 3011687 A JP3011687 A JP 3011687A JP 3011687 A JP3011687 A JP 3011687A JP S63197893 A JPS63197893 A JP S63197893A
Authority
JP
Japan
Prior art keywords
heat exchanger
group
thermal conducting
conducting pipes
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3011687A
Other languages
Japanese (ja)
Inventor
Ken Yamamoto
憲 山本
Shigenobu Fukumi
重信 福見
Shigeo Ito
茂雄 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP3011687A priority Critical patent/JPS63197893A/en
Publication of JPS63197893A publication Critical patent/JPS63197893A/en
Pending legal-status Critical Current

Links

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To restrict a reduction in the efficiency of heat exchanging operation as much as possible by a method wherein a group of thermal conducting pipes positioned at the inlet of a heat exchanging fluid and a group of thermal conducting pipes are arranged in a zig-zag form above both groups of thermal conducting pipes are connected in series alternatively. CONSTITUTION:All the thermal conducting pipes in a group 1A of thermal conducting pipes are always kept with heat exchanging fluid (a) which do not perform heat exchanging operation yet and which have a high heat exchanging performance. In turn, the thermal conducting pipes belonging to a group 1B of the thermal conducting pipes show a small degree of heat exchanging operation through the thermal conducting pipes of the group 1A of the thermal conducting pipes position upstream as compared with those positioned downstream of the series of flow passages. That is to say, they come into contact with the more fresh heat exchanging fluid (a), each of a plurality of thermal conducting pipes 1A and 1B may perform the maximum heat exchanging work and then the heat exchanging performance of all the layered type heat exchanger is drastic improved. Since one of a group 1A of the thermal conducting pipes and one of a group 1B of the thermal conducting pipes are alternatively connected, the distribution of temperature in a forward and rearward flowing direction in the heat exchanging fluid (a) is made uniform and then a high efficiency can be attained.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、例えば自vJ重用空調装置に組込んで用いる
ための」ンデンサの如き積層型熱交換器に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a stacked heat exchanger such as a heat exchanger for use by being incorporated into, for example, a VJ heavy-duty air conditioner.

[従来の技術] 第3図と第4図に、従来の上記コンテン4ノの構造を例
示した。この」ンデンリは、所定の間隔を隔てて対置さ
れ、冷媒の出入口ポートとしての役目を果たす一組のタ
ンク部11と12との間に、冷媒流路(ロ)となる複数
本の偏平な伝熱管1A群、および1B群を、冷却風(イ
)の通過路となる熱交換用空隙Aを介在させた状態のも
とに、冷却+filの流入側と流出側の2列に分けて並
行に掛【ブ渡し、タンク部に連結さゼて成り立っている
。6は熱交換用空隙Aに装着させた伝熱面積増大用フィ
ンである。
[Prior Art] FIGS. 3 and 4 illustrate the structure of the above-mentioned conventional content. This refrigerant has a plurality of flat transmission lines that form a refrigerant flow path (b) between a pair of tank parts 11 and 12 that are placed opposite each other at a predetermined interval and serve as refrigerant inlet and outlet ports. The heat tubes 1A group and 1B group are divided into two rows on the inflow side and outflow side for cooling +fil and placed in parallel with a heat exchange gap A interposed as a passage for cooling air (a). It consists of a hanging part and a tank part connected to it. 6 is a fin for increasing the heat transfer area attached to the heat exchange gap A.

このコンデンυの作動は、空調装置(図示略)の圧縮機
から吐出された高温・高圧の気相冷媒が、冷媒入口バイ
ブ14を経て入口タンク部12に流入した後、分散され
て各伝熱管1Aおよび1B内をたどり出口タンク部13
に向かう間に、送風機(図示略)によって吹きつけられ
る冷風(イ)によって冷却液化される。
The operation of the condenser υ is such that high-temperature, high-pressure gas phase refrigerant discharged from the compressor of an air conditioner (not shown) flows into the inlet tank section 12 via the refrigerant inlet vibrator 14, and is then dispersed into each heat transfer tube. Follow the inside of 1A and 1B and exit tank section 13
During the process, it is cooled and liquefied by cold air (A) blown by a blower (not shown).

[発明が解決しようとする問題点] 上記の如き構造を備えた従来のコンデンサでは、図中に
矢印で示し冷却風の上流側に配置されている伝熱管1A
内をたどる高温冷媒は、冷却風との間に充分な温度差が
保たれているために、有効に冷やされる。しかし下流側
に位置する伝熱管1B内をたどる冷媒は、上流側伝熱管
1A群に触れることによって加温された風と熱交換を行
うことになり、冷媒と冷却風との温度差が縮小されるの
で、効率的な冷却作用を営むことができない。つまりト
流側伝熱管は不十分にしか活用されていない。
[Problems to be Solved by the Invention] In the conventional condenser having the above-described structure, the heat transfer tube 1A shown by the arrow in the figure and arranged on the upstream side of the cooling air
The high-temperature refrigerant flowing inside is effectively cooled because a sufficient temperature difference is maintained between it and the cooling air. However, the refrigerant that travels inside the heat transfer tubes 1B located on the downstream side exchanges heat with the heated wind by coming into contact with the upstream heat transfer tubes 1A group, and the temperature difference between the refrigerant and the cooling air is reduced. Therefore, it is not possible to perform an efficient cooling effect. In other words, the heat exchanger tubes on the downstream side are not fully utilized.

本発明は熱交換用流体の流入側と流出側に分かれて複数
列に亘って配設した伝熱管を組込んだ構造を有する積層
型熱交換器において、上jホの如き理由による熱交換効
率の低下を極力少なくすることのできる構造を備えた積
層型熱交換器を提供することを目的とする。
The present invention provides a stacked heat exchanger having a structure incorporating heat transfer tubes arranged in multiple rows on an inflow side and an outflow side of a heat exchange fluid. It is an object of the present invention to provide a laminated heat exchanger having a structure that can minimize the decrease in .

[問題点を解決するための手段] 上記の目的を達成するために本発明による積層型熱交換
器は、複数本の伝熱管を、熱交換用空隙を介在させた並
列状態の6とに、封管させた1組の被熱交換流体の出入
口タンク部の間に架け渡して連結させた構造を備え、熱
交換用流体が、前記伝熱管の管軸方向と交差する方向の
もとに、前記熱交換用空隙を通過するように構成した積
層壁熱交換器において、前記複数の伝熱管は、前記熱交
換用流体の流入側に位置する第1の伝熱管群と、流出側
に位置する第2の伝熱管群とを、これらの各管群の横断
面方向の配置が千鳥状をなすように配設すると共に、前
記1絹の出入口タンク部は、前記被熱交換流体が、前記
伝熱管群のうちの1つと、前記第2の伝熱管l!fのう
ちの1つとを、交Hに通過することができると共に、前
記複数本の伝熱管を直列状に連結したに相当する流体流
路が形成される構造を備える構成を採用した。
[Means for Solving the Problems] In order to achieve the above object, the stacked heat exchanger according to the present invention includes a plurality of heat exchanger tubes arranged in parallel with heat exchange gaps interposed therebetween. It has a structure in which a pair of sealed tubes are bridged and connected between the inlet and outlet tank portions of the fluid to be heat exchanged, and the heat exchange fluid is directed in a direction intersecting the tube axis direction of the heat exchanger tube, In the laminated wall heat exchanger configured to pass through the heat exchange gap, the plurality of heat transfer tubes include a first heat transfer tube group located on the inflow side of the heat exchange fluid and a first heat transfer tube group located on the outflow side of the heat exchange fluid. The second heat exchanger tube group is arranged such that the arrangement of each tube group in the cross-sectional direction is staggered, and the first silk inlet/outlet tank portion is arranged so that the heat exchange fluid is transferred to the second heat exchanger tube group. one of the heat tube groups and the second heat exchanger tube l! A structure is adopted in which one of the heat transfer tubes f can pass through the heat exchanger H in an alternating current H, and a fluid flow path corresponding to the plurality of heat transfer tubes connected in series is formed.

[作用および発明の効果] 上記の構成を備えた積層型熱交換器では、複数本の伝熱
管は、第1の伝熱管群のうちの1つと、第2の伝熱管群
の1つとが流体の出入口タンク部を介して−・組となっ
て連結されている。そしてこのような−組の伝熱管群は
、流体の出入口タンク部を介して直列的に−・連の流路
が形成されるような接続状態にある。
[Operation and Effects of the Invention] In the stacked heat exchanger having the above configuration, one of the first heat exchanger tube group and one of the second heat exchanger tube group are in a fluid state. They are connected in pairs through the inlet and outlet tank sections. The sets of heat transfer tubes are connected in such a way that a serial flow path is formed through the fluid inlet/outlet tank section.

第1の伝熱管群を構成する伝熱管のすべては、未だ熱交
換を行・)でいない新鮮で熱交換能力の高い熱交換用流
体と常に接触が保たれている。
All of the heat exchanger tubes constituting the first heat exchanger tube group are always kept in contact with a fresh heat exchange fluid with a high heat exchange capacity that has not yet undergone heat exchange.

一方第2の伝熱管群に属する伝熱管は、上記の一連の流
路の下流側に位置するものほど、その内部をたどる被熱
交換流体の温度は、熱交換用流体の温度に接近するので
、つまり熱交換の度合が進行しているので、更に熱交換
を進めるためには、被熱交換流体と熱交換用流体の温度
差を極力大きく保たせる必“桿がある。
On the other hand, as the heat exchanger tubes belonging to the second heat exchanger tube group are located on the downstream side of the above-mentioned series of flow paths, the temperature of the heat exchange fluid that follows the inside of the tubes approaches the temperature of the heat exchange fluid. That is, since the degree of heat exchange is progressing, in order to further advance heat exchange, it is necessary to maintain the temperature difference between the heat exchange fluid and the heat exchange fluid as large as possible.

従って第1の伝熱管群に属する伝熱管のうちで、上記の
−・連の流路の下流側に位置するもの程、管内をたどる
被熱交換流体はより良く熱交換されていて、熱交換用流
体の温度に近づいている必要がある。
Therefore, among the heat exchanger tubes belonging to the first heat exchanger tube group, the more downstream the heat exchanger tubes are located in the above-mentioned series of flow paths, the better the heat exchange is performed with the fluid to be heat exchanged that follows the inside of the tubes. temperature should be close to that of the operating fluid.

本発明の構成によれば、このような必要条件がほぼ満足
されるので、第2の伝熱管群に属する伝熱管は、一連の
流路の下流側に位置するものほど、その上流側に位置す
る第1の伝熱管による熱交換を受ける度合がより少ない
、いわばより新鮮な熱交換用流体に触れることができ、
複数本の伝熱管の各々のすべてが、それぞれ最大限の熱
交換仕事を果たすことができて、積層型熱交換器全体と
しての熱交換能力が大巾に高められる。
According to the configuration of the present invention, such necessary conditions are almost satisfied, so that the heat exchanger tubes belonging to the second heat exchanger tube group are located on the downstream side of the series of flow paths, the more the heat exchanger tubes are located on the upstream side. The heat exchange fluid is exposed to a fresher heat exchange fluid that undergoes less heat exchange by the first heat exchanger tube, so to speak.
Each of the plurality of heat exchanger tubes can perform the maximum heat exchange work, and the heat exchange capacity of the stacked heat exchanger as a whole is greatly increased.

また第1の伝熱管群のうちの1つと、第2の伝熱管6Y
のうちの1つとが交互に連結される配管溝道を与えたこ
とによって、熱交換用流体の流れ方向における、前後間
の温度分布をより均等化させる効果が生じて、熱交換効
率がより高められる。
Also, one of the first heat exchanger tube group and the second heat exchanger tube 6Y
By providing piping grooves that are alternately connected to one of the pipes, the effect of making the temperature distribution between the front and back parts more even in the flow direction of the heat exchange fluid is created, and the heat exchange efficiency is further increased. It will be done.

更に各偏平管相互は、その横断面方向の配置が千鳥状を
なしているので、熱交換用空隙に流路の絞り効果が生じ
て熱交換用流体の流速が高まり、併せて迷路形成効果が
生じることによっても熱交換性能は向上する。
Furthermore, since the flat tubes are arranged in a staggered manner in the cross-sectional direction, a flow channel constriction effect occurs in the heat exchange gap, increasing the flow velocity of the heat exchange fluid, and also creating a labyrinth formation effect. The heat exchange performance is also improved by the occurrence of heat exchange.

[実施例] 以下に図に示す実施例に基づいて本発明の構成を具体的
に説明する。
[Example] The configuration of the present invention will be specifically described below based on an example shown in the drawings.

第1図は本発明による積層型熱交換器の・一実施例とし
ての、自動重用空調装置に用いるためのコンデン勺の部
分破断斜視図である。
FIG. 1 is a partially cutaway perspective view of a condensing rack for use in an automatic heavy-duty air conditioner as an embodiment of the laminated heat exchanger according to the present invention.

コンデンサの概略の構造は、被熱交換流体としての高温
・高圧気相冷媒の入口タンク部Bと、出口タンク部Cと
を所定間隔をへだてて対置し、複数本の伝熱管群りを、
熱交換用空隙Aを介在させた並列状態のもとに、これら
両タンク部BとCの間に掛は渡し連結させて構成されて
いる。
The general structure of the condenser consists of an inlet tank part B for a high-temperature, high-pressure gas phase refrigerant as a heat exchange fluid and an outlet tank part C placed opposite each other with a predetermined distance apart, and a group of a plurality of heat transfer tubes.
A hook is connected between these two tank parts B and C in a parallel state with a heat exchange gap A interposed therebetween.

ここで人口タンク部および出口タンク部の名称は、便宜
的に付したもので、現実には両タンク部には冷媒の人口
と出口が共存する。
The names of the artificial tank part and the outlet tank part are given here for convenience, and in reality, the refrigerant population and the outlet coexist in both tank parts.

伝熱管群りは、熱伝導率の高いアルミニウムや銅などで
作られて、円パイプを押しつぶしたような偏平な横断面
形状を備えた直管体をなしている。
The heat exchanger tube group is made of aluminum or copper, which has high thermal conductivity, and is a straight tube with a flat cross-sectional shape that resembles a crushed circular pipe.

これらの管群は、熱交換用流体としての冷風(イ)の通
過路となる熱交換用空隙Aへの、流入側に位置する第1
の伝熱管1A群と、流出側に位置する第2の伝熱管1B
群と分けて、第1図に示されている如く、各管群の横断
面方向の配列が千鳥状をなすように配置されている。
These tube groups are connected to the first tube located on the inflow side to the heat exchange gap A, which serves as a passage for the cold air (a) as the heat exchange fluid.
a group of heat exchanger tubes 1A, and a second heat exchanger tube 1B located on the outflow side.
As shown in FIG. 1, each group of tubes is arranged in a staggered arrangement in the cross-sectional direction.

入口タンク部Bと出口タンク部Cとは、左右対称的な形
状のもとに、同一の構造と寸法が5えられている。入口
タンク部Bは、伝熱管群1Aおよび1Bへの連通大群4
Aを上記の千鳥状配列のもとに設けたベースプレート4
と、伝熱管1A群のうちの1つの伝熱管と、伝熱管1B
群のうちの1つの伝熱管とを、交互に直列状に連結させ
て一連の冷媒流路(ロ)を形成させるための、伝熱管連
結部2八群を突設したタンクプレート2の貼り合わせに
よって構成されている。
The inlet tank part B and the outlet tank part C have a laterally symmetrical shape and have the same structure and dimensions. The inlet tank part B has a large group 4 that communicates with the heat exchanger tube groups 1A and 1B.
A base plate 4 in which A is provided in the above staggered arrangement.
, one heat exchanger tube of the heat exchanger tube 1A group, and heat exchanger tube 1B
Bonding of tank plate 2 with eight groups of heat transfer tube connecting portions 2 protruding from one group of heat transfer tubes to form a series of refrigerant flow paths (b) by connecting heat transfer tubes in one group alternately in series. It is made up of.

伝熱管1Aおよび1Bのそれぞれの一方の管端は、連結
穴4A個所を封鎖するようにしてベースプレート4に当
接され、ろう付けしてベースプレート4に固定される。
One end of each of the heat exchanger tubes 1A and 1B is brought into contact with the base plate 4 so as to close the connection hole 4A, and is fixed to the base plate 4 by brazing.

他方の管端も同様である。The same goes for the other tube end.

ベースプレート4とタンクプレート2とはいずれもアル
ミニウム板などの金属板からなり、2字形を崩した如き
形状を備える伝熱管連結部2Aは、タンクプレート2を
プレス加工して形成されている。
Both the base plate 4 and the tank plate 2 are made of a metal plate such as an aluminum plate, and the heat exchanger tube connecting portion 2A having a shape that resembles a broken 2-shape is formed by pressing the tank plate 2.

上下方向に配列されている伝熱管連結部2Aの上端個所
とFcM個所には、上記の−・連の冷媒流路(ロ)の入
口ボートと出口ボートとをそれぞれ構成する、冷媒入口
バイブ継手1と冷媒出口バイブ継手8とがそれぞれ設け
られている。10と9は冷媒の出入ロバイブである。
At the upper end and FcM of the heat exchanger tube connecting portions 2A arranged in the vertical direction, there are refrigerant inlet vibe joints 1 that respectively constitute the inlet boat and the outlet boat of the above-mentioned series of refrigerant flow paths (b). and a refrigerant outlet vibe joint 8 are provided, respectively. Reference numerals 10 and 9 are refrigerant inlet/outlet levers.

出口タンク部Cは、入口タンク部Bと同様にベースプレ
ート5とタンクプレート3とをろう付は接合して作成さ
れている。伝熱管1Aには、その嘔平方向巾にほぼ等し
い巾をもったひれ状フィン1Cが、伝熱管1Aの押出成
形時に同時的に、管の偏平方向に向けて図示の如く突設
させである。
Similarly to the inlet tank part B, the outlet tank part C is made by joining the base plate 5 and the tank plate 3 by brazing. On the heat exchanger tube 1A, a fin 1C having a width approximately equal to the width in the flat direction of the heat exchanger tube 1A is provided to protrude in the flat direction of the tube as shown in the figure, simultaneously when the heat exchanger tube 1A is extruded. .

伝熱管1Bにも同様にしてひれ状フィン1Dが設けられ
ている。
Similarly, fins 1D are provided on the heat exchanger tube 1B.

熱交換用空隙A群には、それぞれ薄いアルミニウム板を
屈曲加重して作られた、熱交換面積増大用のコルゲート
フィン6が、各伝熱管1Aまたは1Bと、ひれ状フィン
1Cまたは1Dとの間に挟み込ませるようにして装着さ
れ、ろう付けにより固定されている。
In the heat exchange gap A group, corrugated fins 6 for increasing the heat exchange area, each made by bending and loading a thin aluminum plate, are provided between each heat exchanger tube 1A or 1B and the fin-like fin 1C or 1D. It is attached by being sandwiched between the two and fixed by brazing.

次に上記のコンデンサの作動を説明する。図示を省いた
空調装置の圧縮機から吐出された高温・高圧の気相冷媒
は、冷媒入口バイブ9から入口タンク部Bの最上段に位
置する伝熱管1Bに流入し、出口タンク部Cに向かつて
流路(ロ)をたどる間に、図示しない送+inから吹き
付けられる冷風(イ)と熱交換して冷却される。
Next, the operation of the above capacitor will be explained. High-temperature, high-pressure gas phase refrigerant discharged from a compressor of an air conditioner (not shown) flows from the refrigerant inlet vibe 9 into the heat transfer tube 1B located at the top of the inlet tank section B, and is directed toward the outlet tank section C. While following the flow path (b), it is cooled by exchanging heat with the cold air (a) blown from a feeder (not shown).

出口タンク部C1,:Iした冷媒は、このタンク部に設
けられている前記の連結部2Aと同様な伝熱管連結部(
図中ではかくれて見えない)に流入することによって、
最上段に位置する伝熱管1Aに向けて【Jターンさせら
れる。
The refrigerant in the outlet tank portion C1,:I is transferred to a heat exchanger tube connecting portion (similar to the aforementioned connecting portion 2A provided in this tank portion).
(not visible in the diagram),
A [J-turn is made toward the heat exchanger tube 1A located at the top stage.

伝熱l121Aには新鮮な冷風(イ)が吹き付けられて
いるので、この管内をたどる冷媒は充分に効率的に冷部
される。伝熱管1Aの他端に達した冷媒は、入口タンク
部Bの最上段の伝熱管連結部2゛ A内で再びUターン
し、最上段から2番目の伝熱管1Bに移り、この管内を
たどる間に、冷風流人側に位置する伝熱管IAと熱交換
して暖められることにより幾分冷却能力の低下した冷1
!!lによって冷却される。
Since fresh cold air (A) is blown onto the heat transfer pipe 1121A, the refrigerant flowing inside this pipe is sufficiently efficiently cooled. The refrigerant that has reached the other end of the heat exchanger tube 1A makes a U-turn again in the uppermost heat exchanger tube connecting section 2'A of the inlet tank part B, moves to the second heat exchanger tube 1B from the uppermost stage, and traces inside this tube. In the meantime, the cooling capacity of the cold 1 has decreased somewhat due to heat exchange with the heat exchanger tube IA located on the side of the cold air flower.
! ! It is cooled by l.

タンク部Cにたどり着いた冷媒は、上記同様に(ノター
ンして最上段から2番目の伝熱管1Aに移り、再び新鮮
な冷風(イ)に触れることによって充分に冷却される。
The refrigerant that has reached the tank portion C, as described above, makes a no-turn and moves to the second heat exchanger tube 1A from the top, and is sufficiently cooled by being exposed to fresh cold air (a) again.

以下同様にして冷風の流入側に位置する第1の伝熱管I
AIJの1つと、流出側に位置する伝熱管I B BY
の1つとを交互に通過しながら、最上段に位置して冷媒
出口バイブ10に連らなる伝熱管1Aに向かう。
Similarly, the first heat exchanger tube I located on the cold air inflow side
One of the AIJ and the heat exchanger tube IBBY located on the outflow side
The heat exchanger tube 1A is located at the top stage and is connected to the refrigerant outlet vibrator 10, while alternately passing through one of the refrigerant tubes 1A.

熱交換器において熱交換効率を高めるための最重要条件
は、被熱交換流体(冷媒)と熱交換用流体く冷風)との
温度差を極力大きく保つことである。冷媒は冷媒流路(
ロ)の入口部分では高温であるが、伝熱管IAおよび1
B群内を次々に通過することによって熱交換が准み、出
口部に近づく頃には、冷風との温度差がかなり縮まって
いる。
The most important condition for increasing heat exchange efficiency in a heat exchanger is to keep the temperature difference between the fluid to be heat exchanged (refrigerant) and the heat exchange fluid (chilled air) as large as possible. The refrigerant flows through the refrigerant flow path (
(b) Although the temperature is high at the inlet part of heat exchanger tubes IA and 1,
As the air passes through Group B one after another, heat exchange becomes uniform, and by the time it approaches the outlet, the temperature difference between it and the cold air has narrowed considerably.

従って熱交換用冷媒流路(ロ)の終端部近くでも、冷媒
を新鮮で昇温1ノでいない冷風に触れさせることは、熱
交換器の性能を最大限に発揮させるために極めて重要と
なるが、この実施例の」ンデンリはそのような要求を1
分に満たすに足る構造を備えていることになる。
Therefore, it is extremely important to expose the refrigerant to fresh, cold air that does not raise the temperature even near the end of the heat exchange refrigerant flow path (b) in order to maximize the performance of the heat exchanger. However, in this embodiment, "Ndenri" has such a request as 1
This means that the structure is sufficient to meet the demand.

また冷風(イ)が通過する熱交換領域全体を一連のUタ
ーン状冷媒流路(ロ)によって埋めつくす構成が採られ
たことによって、この全領域に回って冷媒の温度分布状
態がより均等化する効果が生じて、熱交換域全域がほぼ
−・様に熱交換仕事を果すことになり、冷風の保有冷熱
を最大限に利用することができる。
In addition, by adopting a configuration in which the entire heat exchange area through which the cold air (a) passes is filled with a series of U-turn refrigerant channels (b), the temperature distribution of the refrigerant becomes more even throughout this area. As a result, the entire heat exchange area performs the heat exchange work in a manner similar to that of the heat exchange area, and the cold energy retained in the cold air can be utilized to the maximum.

しかし第3図および第4図に示した従来のコンデンサで
は、熱交換領域の前方域と後方域とでは冷媒温度に明確
な差異が生じて、コンデンサ全体としての熱交換効率を
充分に高めることができない。
However, in the conventional condensers shown in Figures 3 and 4, there is a clear difference in refrigerant temperature between the front and rear areas of the heat exchange area, making it impossible to sufficiently increase the heat exchange efficiency of the entire condenser. Can not.

第2図は本発明の第2実施例としての、上記実施例と同
様な」ンデンサを示した部分分解斜視図である。
FIG. 2 is a partially exploded perspective view showing a capacitor similar to the above embodiment as a second embodiment of the present invention.

第1実施例と異なる点は、入口および出口タンク部13
およびCの構造にある。入口タンク部Bは、伝熱管1A
群および1B群の各群のうち、上下方向に隣接して位置
する2本の伝熱管を連通させるための伝熱管連結部2B
群を、ベースプレート4にろう付は接合させた構成を備
えている。また出口タンク部Cは、伝熱管1A群および
1B群にそれぞれ属する伝熱管のうち、上下および左右
方向に互いに隣接して位置する4本の伝熱管の、各々の
一方の管端を互いに連通させるための、並行四辺形に類
する形状を備えた伝熱管連結部2C群を、ベースプレー
ト5にろう付は接合して構成されている。両連結部2B
および2Cは、金属板をプレス成形して作られている。
The difference from the first embodiment is that the inlet and outlet tank sections 13
and in the structure of C. Inlet tank part B is heat exchanger tube 1A
A heat exchanger tube connecting portion 2B for connecting two heat exchanger tubes located adjacent to each other in the vertical direction among each group of the group and the group 1B.
The group is connected to the base plate 4 by brazing. In addition, the outlet tank portion C connects one tube end of each of the four heat transfer tubes located adjacent to each other in the vertical and horizontal directions among the heat transfer tubes belonging to the heat transfer tube 1A group and the heat transfer tube group 1B, respectively. A group of heat exchanger tube connecting portions 2C each having a parallelogram-like shape are joined to the base plate 5 by brazing. Both connecting parts 2B
and 2C are made by press-molding a metal plate.

冷媒の出入口タンク部BおよびCにこのような構造を与
えたことによって、出ロタンク部B内には図中に矢印で
示されているように、4本の伝熱管相互間を交錯する複
雑な連通路が生じる。そのために第1の伝熱管1A群と
第2の伝熱管18群との間を交互に行き交いながら、冷
媒流路(ロ)をその人口側から出口側に向かう冷媒の流
路はかなり錯雑化し、前述の冷媒温度分布の均等化効果
は更に一段と高められる。なお冷媒の出入口タンク部B
およびCに設けるべき伝熱管連結部2Bと2Gの取付は
位置関係は、逆転させてらよいし、各伝熱@連結部の形
状や構造、あるいは幾本の伝熱管を相互連通させるかは
、必要に応じて適宜に選定すればよい3゜ 本発明による熱交換器の構成は、上記のコンデンサに限
られることなく、同種の構造を備える他の様々な熱交換
器についても適用できる。
By giving such a structure to the refrigerant inlet/outlet tank parts B and C, there is a complex structure in the outlet tank part B that intersects between the four heat transfer tubes, as shown by the arrows in the figure. A communication path is created. For this reason, the flow path of the refrigerant that travels between the first heat exchanger tube 1A group and the second heat exchanger tube 18 group and goes from the population side to the outlet side of the refrigerant flow path (b) becomes considerably complicated. The effect of equalizing the refrigerant temperature distribution described above is further enhanced. In addition, refrigerant inlet/outlet tank part B
The positional relationship between the heat transfer tube connecting parts 2B and 2G to be installed in the heat transfer tubes 2B and 2G may be reversed. The structure of the heat exchanger according to the present invention is not limited to the above-mentioned condenser, but can be applied to various other heat exchangers having the same type of structure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図と第2図は、それぞれ自動小用空調装置に組込ん
で用いるための、部分的に設計仕様の異なる第1実施例
コンデンサの部分破断斜視図と、第2実施例」ンデンサ
の部分分解斜視図である。。 第3図と第4図は、従来の」ンデンリの1例を示した、
それぞれ正面図と部分破断斜視図である。
Figures 1 and 2 are a partially cutaway perspective view of a first embodiment capacitor with partially different design specifications, and a portion of a second embodiment capacitor, which is used by incorporating it into an automatic small air conditioner. It is an exploded perspective view. . Figures 3 and 4 show an example of a conventional 'Ndenri.
They are a front view and a partially cutaway perspective view, respectively.

Claims (1)

【特許請求の範囲】  複数本の伝熱管を、熱交換用空隙を介在させた並列状
態のもとに、対置させた1組の被熱交換流体の出入口タ
ンク部の間に架け渡して連結させた構造を備え、熱交換
用流体が、前記伝熱管の管軸方向と交差する方向のもと
に、前記熱交換用空隙を通過するように構成した積層型
熱交換器において、 前記複数の伝熱管は、前記熱交換用流体の流入側に位置
する第1の伝熱管群と、流出側に位置する第2の伝熱管
群とを、これらの各管群の横断面方向の配置が千鳥状を
なすように配設すると共に、前記1組の出入口タンク部
は、前記被熱交換流体が、前記伝熱管群のうちの1つと
、前記第2の伝熱管群のうちの1つとを、交互に通過す
ることができると共に、前記複数本の伝熱管を直列状に
連結したに相当する流体流路が形成される構造を備える
ことを特徴とする積層型熱交換器。
[Scope of Claims] A plurality of heat exchanger tubes are connected in a parallel state with a heat exchange gap interposed between a pair of opposed inlet and outlet tank portions for a fluid to be heat exchanged. In the stacked heat exchanger, the stacked heat exchanger is configured such that the heat exchange fluid passes through the heat exchange gaps in a direction intersecting the tube axis direction of the heat exchange tubes. The heat exchanger tubes include a first heat exchanger tube group located on the inflow side of the heat exchange fluid and a second heat exchanger tube group located on the outflow side, such that the cross-sectional arrangement of each of these tube groups is staggered. The set of inlet/outlet tank portions are configured such that the fluid to be heat exchanged alternately flows between one of the heat exchanger tube groups and one of the second heat exchanger tube group. 1. A stacked heat exchanger characterized by having a structure in which a fluid flow path corresponding to the plurality of heat transfer tubes connected in series is formed.
JP3011687A 1987-02-12 1987-02-12 Layered type heat exchanger Pending JPS63197893A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3011687A JPS63197893A (en) 1987-02-12 1987-02-12 Layered type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3011687A JPS63197893A (en) 1987-02-12 1987-02-12 Layered type heat exchanger

Publications (1)

Publication Number Publication Date
JPS63197893A true JPS63197893A (en) 1988-08-16

Family

ID=12294811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3011687A Pending JPS63197893A (en) 1987-02-12 1987-02-12 Layered type heat exchanger

Country Status (1)

Country Link
JP (1) JPS63197893A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0314576U (en) * 1989-06-15 1991-02-14
CN101799253A (en) * 2010-03-18 2010-08-11 王子异 Heat exchanger with sealed cover plate structure
US20160377348A1 (en) * 2015-06-25 2016-12-29 Noritz Corporation Heat exchanger
WO2019142617A1 (en) * 2018-01-19 2019-07-25 ダイキン工業株式会社 Heat exchanger and air conditioning device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0314576U (en) * 1989-06-15 1991-02-14
CN101799253A (en) * 2010-03-18 2010-08-11 王子异 Heat exchanger with sealed cover plate structure
US20160377348A1 (en) * 2015-06-25 2016-12-29 Noritz Corporation Heat exchanger
US10175008B2 (en) * 2015-06-25 2019-01-08 Noritz Corporation Heat exchanger
WO2019142617A1 (en) * 2018-01-19 2019-07-25 ダイキン工業株式会社 Heat exchanger and air conditioning device
JP2019128041A (en) * 2018-01-19 2019-08-01 ダイキン工業株式会社 Heat exchanger and air conditioner
CN111602013A (en) * 2018-01-19 2020-08-28 大金工业株式会社 Heat exchanger and air conditioner
EP3742081A4 (en) * 2018-01-19 2021-10-06 Daikin Industries, Ltd. Heat exchanger and air conditioning device
US11499762B2 (en) 2018-01-19 2022-11-15 Daikin Industries, Ltd. Heat exchanger and air conditioner

Similar Documents

Publication Publication Date Title
US4002201A (en) Multiple fluid stacked plate heat exchanger
US6286590B1 (en) Heat exchanger with flat tubes of two columns
JPH0315117B2 (en)
JP2002071283A (en) Heat exchanger
JPS6193387A (en) Heat exchanger
JP3049386B2 (en) Combined heat exchanger
JPS63197893A (en) Layered type heat exchanger
JPH0854194A (en) Heat exchanger
JPH05248783A (en) Heat exchanger
JPS62131195A (en) Heat exchanger
JP2002181487A (en) Heat exchanger for air conditioner
JPH05215482A (en) Heat exchanger
JPS61114094A (en) Heat exchanger
JP4164146B2 (en) Heat exchanger and car air conditioner using the same
JPH0614782U (en) Heat exchanger
JPH03117887A (en) Heat exchanger
JP2570310Y2 (en) Heat exchanger
JPS61191889A (en) Heat exchanger
JP3054888U (en) Plate fin type heat exchanger
JPH02171591A (en) Laminated type heat exchanger
JPH0583838B2 (en)
JPH09229467A (en) Heat-exchanger
JPH0449494Y2 (en)
JPS63197887A (en) Heat exchanger
WO2024002198A1 (en) Power battery heat exchanger, power battery system and electric vehicle