JP2008514031A - 高出力iii族発光ダイオード - Google Patents

高出力iii族発光ダイオード Download PDF

Info

Publication number
JP2008514031A
JP2008514031A JP2007533557A JP2007533557A JP2008514031A JP 2008514031 A JP2008514031 A JP 2008514031A JP 2007533557 A JP2007533557 A JP 2007533557A JP 2007533557 A JP2007533557 A JP 2007533557A JP 2008514031 A JP2008514031 A JP 2008514031A
Authority
JP
Japan
Prior art keywords
light emitting
emitting diode
nanometers
dominant wavelength
diode according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007533557A
Other languages
English (en)
Inventor
エドモンド,ジョン・アダム
バーグマン,マイケル・ジョン
エマーソン,デーヴィッド・トッド
ハーベラーン,ケヴィン・ワード
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wolfspeed Inc
Original Assignee
Cree Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=35613743&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2008514031(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US10/951,042 external-priority patent/US7259402B2/en
Priority claimed from US11/037,965 external-priority patent/US8513686B2/en
Priority claimed from US11/082,470 external-priority patent/US8174037B2/en
Application filed by Cree Inc filed Critical Cree Inc
Publication of JP2008514031A publication Critical patent/JP2008514031A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen
    • H01L33/325Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen characterised by the doping materials

Abstract

炭化珪素基板と、この基板上にIII窒化物材料系で形成された発光構造とを含む発光ダイオードを開示する。このダイオードは、100,000平方ミクロン未満の面積を有し、390及び540ナノメートルの間のその主波長において、20ミリアンペアの電流で少なくとも29ミリワットの放射束を有する。

Description

本発明は、発光ダイオード(「LED」)に関し、特に、炭化珪素基板上においてIII族窒化物アクティブ構造で形成された発光ダイオードに関する。
導電性炭化珪素基板を用い、III族窒化物材料系を基本とした発光ダイオードの出力が、近年著しい向上を示している。これらには、単位面積当たりの明度が高い発光ダイオードが含まれる。
発光ダイオード(LED)は、順方向にバイアスすると光子を放出するpn接合部間半導体ダイオードである。つまり、発光ダイオードは、半導体材料における電子の移動に基づいて光を生成する。したがって、LEDは蒸気も燐光体も不要である(しかし、これらと共に用いることはできる)。これらは、殆どの半導体系デバイスの望ましい特性を共有しており、その中には、高効率(その発光は殆ど又は全く熱を含まない)、高信頼性、及び超寿命が含まれる。例えば、典型的なLEDの平均稼働時間は、約100,000及び1,000,000時間の間であり、これは、LEDの半減期は控えめでも50,000時間程度であることを意味する。
具体的には、LEDが放出する光の周波数は、材料における許容エネルギ・レベル間のエネルギ差、即ち、バンドギャップと呼ばれている特性に基づく(一方、周波数は、周知の物理法則にしたがって波長及び色に直接関係する)。バンドギャップは、半導体材料及びそのドーピングの基礎的な固有性(property)である。このため、シリコン(Si、バンドギャップは1.12電子ボルト(eV))は、スペクトルの赤外線部分(しかし、可視ではない)にエネルギ遷移を有する。シリコン系ダイオードは、したがって、人の目に対する可視性が重要でないか、又は特別に望まれない低コスト・センサのような品目に用いられる。ガリウム砒素(バンドギャップは1.42eV)に形成されたLED、又は最も広く用いられているシリコン系砒化アルミニウム・ガリウム(AlGaAs)に形成されたLEDは、スペクトルの可視部分で発光するが、赤外線や赤色及び黄色光を生成するような低い周波数帯である。
一方、緑、青、及び紫外線(UV)の光子は、可視スペクトル以内(及びこれを超える)高い周波数の色(E=hv)を表すので、これらは、バンドギャップが少なくとも約2.2eVのLEDでなければ生成できない。このような材料は、ダイアモンド(5.47eV)、炭化珪素(2.99eV)、及びGaN(3.4eV)のようなIII族窒化物を含む。緑、青、又は紫外線光自体を生成することに加えて、バンドギャップが広いLEDを赤色LED及び緑色LEDと組み合わせて、白色を生成することができ、燐光体と組み合わせ、青色光又はUV光あるいは双方によって励起させると白色光を生成することができる。
様々な理由のために、III族窒化物化合物(即ち、周期表のIII族)、特に、GaN、AlGaN、InGaN、及びAlInGaNは、特に、スペクトルの紫外線(UV)から緑色部分までにおいて発光するLEDに有用である。1つの利点は、これらは「直接」バンドギャップ材料であることであり、これが意味するのは、電子遷移がバンドギャップを横切って発生すると、エネルギの多くが光として放出されるということである。それに比べて、「間接」材料(炭化珪素のような)は、そのエネルギを部分的に光(光子)として放出し、主に振動エネルギ(光子)として放出する。このように、III族窒化物は、間接遷移材料に対して効率上で有利である。III族窒化物のことを、ここではIII族窒化物材料系とも呼ぶことにする。
別の利点として、三元及び四元III族材料(例えば、AlGaN、InGaN、AlInGaN)は、含まれるIII族元素の原子分率によって変化することをあげることができる。つまり、発光の波長(色)は、三元又は四元窒化物における各III族元素の原子分率を制御することにより、(制限範囲内で)自由に選ぶことができる。
しかしながら、広バンドギャップ半導体は、以前から、ガリウム砒素又は燐化ガリウム(GaP)よりも、生産及び加工が困難であった。その結果、UV発光LEDは、GaP系LEDよりも市場への登場が遅れている。例えば、炭化珪素は、物理的に非常に硬質であり、溶解相がなく、エピタキシャル又は昇華成長のためには高温が必要となる(約1500〜2000℃程度)。III族窒化物は、その融点において、比較的高い窒素蒸気圧を有し、このため溶融物から成長することが同様に困難又は不可能である。加えて、p型窒化ガリウム(及びその他のIII族窒化物)を得ることが困難であることが、長年にわたってダイオードの生産に対する障壁となっていた。このため、青色LED及び白色発光LEDが市販されるようになったのは、GaP系及びGaAs系LEDの対応する市販よりも最近のことである。
比較及びその他の関連目的のために言及すれば、照明は通常その出力で定量化されている。典型的な測定単位の1つにルーメンがあり、1カンデラ(cd)強度の均一点光源によって単位立体角で放出された光に等しい光束の単位と定義されている。一方、カンデラは、国際単位系における光強度の基本単位であり、周波数540×1012の単色光線を放出する光源の所与の方向における光強度に等しく、その方向に単位立体角当たり1/683の放射強度を有する。
ルーメンを測定単位として用いると、1200〜1800ルーメンの強度は、白熱電球に典型的であり、1000〜6000ルーメン(状況によって異なる)は、自然の白昼光において典型的である。しかしながら、発光ダイオードは強度が遥かに小さく、例えば、約10〜100ルーメン程度である。理由の1つに、そのサイズが小さいことがあげられる。このため、単一(又は小集団)のLEDに適した用途は、以前より、照明(読むためのランプ)ではなく、指示(例えば、ハンドヘルド計算機のレジスタ)に重点が置かれていた。青色LED及び対応する白色発光デバイスが利用可能となって、照明の目的のためのこのようなLEDの市場入手可能性が広がったが、所望の出力を得るためには、数個(又はそれ以上)のLEDを纏めているのが一般的である。
LEDは、その典型的なサイズ及び構造のために、ルーメン以外の単位で出力を測定する場合が多い。加えて、LEDの出力は、供給される電流にも左右され、一方供給される電流はダイオード間に印加される電位差によって左右される。このため、LEDの出力は、その放射束(R)と呼ばれることが多く、標準的な20ミリアンペア(mA)の駆動電流におけるミリワット(mW)単位で表される。
特に、青色LEDは、増々消費者用電子デバイス、特に小型ディスプレイに含まれる頻度が高くなってきている。広く普及している例には、コンピュータ画面、パーソナル・ディジタル・アシスタント(「PDA」)、及びセルラ・フォンが含まれる。一方、これらの小型デバイスのために、サイズ(「フットプリント」)を縮小したLEDが求められている。しかしながら、このようなLEDであっても、低順方向電圧(V)及び高光出力で動作しなければならないことに変わりはない。あいにく今日まで、III族窒化物デバイスのサイズを縮小すると、その順方向電圧が増大し、その放射束が減少する傾向があった。
先に注記したように、’965出願に開示したLEDは、小さいサイズでありながら、明度向上(先に記した標準的なパラメータを用いる)及び順方向電圧低下において、著しい改善が見られる。
小型で比較的薄いLEDは、(セルラ・フォンのディスプレイのような)小型デバイスには有利であるが、LEDをそれらよりも大きなデバイスに組み込むには、別の課題がある。例えば、デバイスが大きい程、用いる小型ダイオードの数が増えるためにエネルギ変換が低下し、電力消費が増大する。これにより、製造業者が購入し、組み立て、維持する構成部品の数も増える可能性がある。構成部品が小さくその数が増える程、重量、サイズ、及び必要な電気接続の数も増える可能性がある。統計的に、構成部品が小さくその数が増える程、それらに含まれる欠陥の絶対数も多くなり、製造業者は、所与の信頼性を維持する又は高めるために、在庫量を増やして維持しなければならない場合もある。
一例として、オシロスコープ、テレビジョン、及びコンピュータ・モニタのような電子視覚ディスプレイは、過去においては陰極線管(「CRT」)が基本であった。しかしながら、近年、「フラット・パネル」ディスプレイとして分類される種々の技術における進歩によって、多くの目的のための陰極線管、特にテレビジョンやパーソナル・コンピュータ用モニタのような民生用の陰極線管が急速に姿を消している。
加えて、これら及び他の技術が、消費者又はその他の個人的使用のためのディスプレイの一層の大型化に拍車をかけている。その例には、プラズマ系及び液晶(「LCD」)テレビジョン画面が含まれ、従来の技術と比較すると、画面が非常に大きくなっている。即ち、46インチのフラット・パネル・テレビジョンが21インチのCRT系テレビジョンに取って代わっている。
即ち、液晶ディスプレイは、液晶の配向を変化させる、したがって、しかるべき電気的制御を用いて、その外観を変化させることによって動作する。しかしながら、液晶は光を放出しないので、テレビジョンのようなLCDディスプレイには、何らかの追加光源によって、バック・ライトを当てなければならない。競争力のある価格で大量の「RGB」(赤、緑、及び青)又は白色発光ダイオードが入手可能になったことにより、このような適したバック・ライト光源が提供されるようになった。
しかしながら、大型ディスプレイは、大量の発光ダイオードを必要とする。一方、個々のダイオードは、物理的に支持され、機能的に電子回路に組み込まれなければならない。更に、発光ダイオードは、白熱照明と比較すれば高効率であるが、それでもなお有限量のエネルギを熱として発生する。このため、数百又は数千個の発光ダイオードを大きな製品に組み込むと、これに対応して、特に室内で使用する場合、かなりの量又は危険な量の熱さえも発生し、別の技術的課題が生ずる。
複雑性及び熱の双方が典型的な問題であり、LEDを組み込む電子機器(大型フラット・パネル・ディスプレイを含む)を設計し使用する際には、これらの問題に取り組まなければならないので、発光ダイオードの効率を向上させて出力を増大させる必要性が増々高まり、それに対応する便益が望まれている。この要望には、燐光体を組み込むことにより、又は青色発光ダイオードを赤色及び緑色LEDと組み合わせることにより、白色光を青色発光ダイオードから生成する発光ダイオードに対する要求も含まれる。
したがって、III族窒化物炭化珪素材料系において形成される小型LEDの出力を連続的に高めることが求められている。
一態様において、本発明は、炭化珪素単結晶基板と、単結晶基板上にIII族窒化物材料系で形成された発光構造とを備えた発光ダイオードであり、このダイオードは100,000平方ミクロンよりも広い面積を有し、多くの例では、少なくとも1辺の長さが400ミクロンである。このダイオードは、390及び540ナノメートルの間にあるその主波長において、20アンペアの電流で少なくとも29ミリワットの放射束を有する。
別の態様では、本発明は、量子化効率と、炭化珪素単結晶基板と、単結晶基板上にIII族窒化物材料系で形成された発光構造とを備えた発光ダイオードであり、この発光ダイオードは少なくとも100,000平方ミクロンの面積を有し、多くの例では、少なくとも1辺の長さが400ミクロンである。このダイオードは、390及び540ナノメートルの間にあるその主波長において、20アンペアの電流で50パーセントよりも高い外部量子化効率を有する。
更に別の態様では、本発明は、炭化珪素単結晶基板と、単結晶基板上にIII族窒化物材料系で形成された発光構造とを備えた発光ダイオードであり、この発光ダイオードは少なくとも100,000平方ミクロンの面積を有し、多くの例では、少なくとも1辺の長さが400ミクロンである。このダイオードは、450及び460ナノメートルの間のその主波長において、少なくとも50パーセントの光パワー効率を有する。
本発明の前述のならびにその他の目的及び利点、更にこれらを遂行する方法は、添付図面と関連付けた以下の詳細な説明を根拠として、一層明確となろう。
本発明は、III族窒化物材料系、多くの場合炭化珪素(SiC)基板上に形成される発光ダイオードである。具体的には、そして最新世代の発光ダイオードと比較して、本発明によるダイオードは、以下の論述及び図面から明らかなように、面積が100,000平方ミクロンよりも大きく、発光ダイオードの主波長が390及び540ナノメートルの間にある場合に、20ミリアンペア電流で少なくとも29ミリワットの放射束というような固有性を有する。
即ち、このサイズのダイオードは、通常、少なくとも一辺の長さが少なくとも400ミクロンであり、一例のダイオードは、各辺が420ミクロンの正方形を形成する。
青色周波数では、ダイオードは、450及び460ナノメートルの間にある主波長において、20ミリアンペアの電流で少なくとも29ミリワットの放射束を有する。
緑色周波数では、ダイオードは、530及び540ナノメートルの間にある主波長において、少なくとも12ミリワットの放射束を有する。
本発明の発光ダイオードの性能を添付図面に示す。これらの図面は、この詳細な説明と合わせて、発光ダイオードについて最大限明確、端的、かつ正確な説明を当業者に提示する。
図1は、本発明の性能特性を有し、全体的に20で示す発光ダイオードの断面図である。ダイオード20は、透明炭化珪素基板21を含み、好ましくは、単結晶であり、3C、4H、6H、及び15Rプロトタイプの炭化珪素から選択されたプロトタイプを有している。本発明に関しては、4Hが好ましいことが多い。図1は、ダイオード20を「フリップ・チップ」配向(即ち、アクティブ層を基板の下側にして用いるように実装されている)で示しているので、基板21が、ダイオード20の底部ではなく最上部にある。この配向では、SiC基板はLEDの主要放出面となる。勿論、発光ダイオードは、最終使用において、多数の異なる位置及び配向で配置できることは言うまでもない。したがって、ダイオード20の要素に関して、「最上部」及び「底部」という用語は相対的であり、構造的な意味で全体的にデバイスの配向を示すものとする。加えて、他の「上に」ある層について言及する場合、直接その層に接触しておらずその上方にある層も含むことができる。この意味は、文脈からも明白であろう。
ダイオードは、少なくとも1つ、そして好ましくは数層の、発光(「アクティブ」)部を形成する層を含む。これらの層は、III族窒化物材料系から選択される。図1には、n型層21及びp型層22の2つの層が示されている。これら導電型が相補的な層は、電流がダイオードを通過する機会を与え、その結果得られる電子及び正孔の結合により、放出光子が発生する。図1には2つのIII族窒化物層のみを示すが、他の文脈では、超格子構造や多重量子ウェルを含む追加の層を用いることができることは言うまでもない。具体的には、SiC基板からIII族発光層への結晶及び電子の遷移を行わせるために、バッファ層が含まれることが多い。
このような構造は当技術分野では周知であり、必要以上の実験を行わなくても、本発明の文脈において実用可能である。
また、図1に示す実施形態は、ミラー層24も含み、これは通常、銀(Ag)又は銀/プラチナ(Ag/Pt)合金で形成されている。銀系の層は、アクティブ層22、23に電気コンタクトも設ける。バリア層25は、通常、チタン・タングステン(TiW)合金、又はプラチナ、又は双方、又は窒化チタン・タングステン(TiWN)で形成され、望ましくない銀のマイグレーションや、デバイスの他の部分との反応を防止するために、銀系層24を包囲する。
通常、はんだ層26がバリア層25に接着しているが、ダイオードの製造方法によっては、それだけに限られるのではない。これら及び他の構造的な特徴が、先に本願にも含まれるとした’042及び’965特許出願に明記されている。金属又は導電性半導体層27が物理的支持を形成し、背面オーミック・コンタクト30によって構造が完成する。そして、上面オーミック・コンタクト28と共に、ダイオード20を通過する電流を注入するための最大電流経路(full current path)を設ける。
代替実施形態では、金属又は半導体支持層27を、はんだ層26と共に、又ははんだ層26を残して、取り除くことができる。このような実施形態では、背面コンタクト30をミラー層24及びバリア層25に寄せて配置することになる。
図1に示すように、アクティブ層は、通常、III族窒化物であり、窒化ガリウム(GaN)、窒化インジウム・ガリウム(InGaN)、窒化アルミニウム・ガリウム(AlGaN)、及び窒化アルミニウム・インジウム・ガリウム(AlInGaN)が適している。当業者には分かるであろうが、III族窒化物は、三元及び四元結合におけるIII族元素の原子分率を変更することによって、主波長を変化させる機会を与える。当技術分野では周知であるが、これらの化学式は、更に正確には、AlInGa1−x−yNと表すことができ、ここでx及びyは0から1の間の値を取ることができ、0及び1のいずれも含み、x+yは常に1以下でなければならないという制約がある。
本発明によるダイオードは、100,000平方ミクロンよりも広い面積を有する。その例には、限定ではなく、少なくとも1辺の長さが少なくとも400ミクロンであり、その幾何学的形状が正方形又は長方形のダイオードが含まれる。
また、本発明によるダイオードはレンズ状表面を組み込むこともできる。
図2は、本発明によるダイオードについて、ミリワット(mW)単位の放射束をナノメートル(nm)単位の主周波数に対して比較するグラフである。他のダイオードに対するデータ点には、菱形を用いてプロットし(下側の曲線)、本発明による大きめのダイオードには、正方形を用いてプロットしている(上側の曲線)。
図2〜図6の全てにおいて、それぞれのダイオードを動作させ、20ミリアンペア(mA)電流で評価した。これに関して、ダイオードが大きい程、いずれの電流においても(20ミリアンペアの標準的仕様電流を含む)電流密度が低くなる。当業者には分かるであろうが、電流密度が低い程、発光層から生成される光出力は高くなるのが通常である。加えて、順方向電圧は、チップ面積が大きくなる程、いずれの電圧においても低下する。例えば、本発明によるダイオードが実証した順方向電圧は2.9ボルトという低さであり、一方’965出願によるダイオードでは3.1ボルトである。0.2Vの低下は小さいように感じられるかもしれないが、数百又は数千ものダイオードを、液晶ディスプレイ画面のような大きな製品に組み込む場合、壁内プラグ効率(wall plug efficiency)における累積利得が重要となる。このように、本発明によるダイオードは、現行のダイオードと同等の電力レベルを用いても、これらよりも高い表示明度性能を提供する。あるいは、現行のダイオードよりも少ない電力及び高い効率で、それと同等の輝度性能を提供し、これが望まれる又は必要とされる場合もある。
これに関して、図2は、本発明によるダイオードを3つ示しており、これらは約450ナノメートル(即ち、主周波数が453〜456nmの青色)の波長で発光し、約29〜31ミリワットの放射束を生成する。これは(垂直な点線)、いくらか小さめなダイオード(「XT300」、約90,000平方ミクロン)に対する約25〜26ミリワットの出力に相当する。即ち、小型化したチップ・サイズにおいても、本発明は放射束で約14パーセントの増大を表している。
放射束(例えば、図2)を測定するには、分光計に取り付けた積分球内にT1-3/4型の封入ランプを配置する。可視光LEDには、Labsphere Omni LTS分光計が測定デバイスの一例である。放射束は電力(ワット)の単位で測定する。他の比較要因、例えば、外部量子化効率、電力効率、及び明度補強は、全てこれら放射束測定値を根拠にしている。
緑色波長(図2における540nm付近)では、各データ点において約2〜3ミリワットの改善があり、XT300ダイオードと比較して約25パーセントの増加を表す。図2に示すように、ダイオードの放射束は、主波長が520及び540nmの間では少なくとも12mW、524及び535のnmの間では13mW、そして524及び527nmの間では15mWとなる。
図3は、同様の比較データを外部量子化効率で表した場合を示す。図3は、XT300からのデータ点を菱形でプロットし、本発明にしたがって改良したダイオードのデータ点を正方形で示す。この場合も約450ナノメートル(青色)の波長において、外部量子化効率は、約47パーセントから少なくとも約54パーセントに増加する。比較増で表すと、これは、約15パーセントの間の増加を表し、図2に示す放射束の増加と一致する。
更に、図3は、緑色波長(540nm付近)では、絶対的な増加が約5又は6パーセントであることを示し、これは、XT300ダイオードを根拠にして論ずると、約25パーセントの比較増を表す。
背景及び図3に関する更なる説明として、緑色LEDは青色LEDよりも速く飽和する。ここでは「飽和」とは、電流が増加しても、もはやLEDの出力が(外部量子化効率又は放射束のいずれで表現しても)増加しない観察点を言う。この結果、電流密度が低い程、緑色LEDでは大きな肯定的な効果が得られる。具体的には、任意の電流においても(例えば、LEDを指定するために用いられる通常の20ミリアンペア)、電流密度はチップ・サイズの関数となる。つまり、面積が広いLEDほど、20ミリアンペア(又はその他のいずれかの所与の電流)における電流密度は比例して低下する。これが意味するのは、本発明による緑色LEDは、サイズが大きい場合の飽和点が、面積が小さい緑色LEDと比較して、高くなるということである。これを図5に示す。
図4は、面積が小さいダイオード(正方形で示す)及び本発明によるダイオード(菱形で示す)について、光パワー効率(ここで用いる場合、印加されるミリワット単位の電力毎の、ミリワットの光出力)をグラフにして示す。これらも、ナノメートルを単位とした主波長に対してプロットしている。図4に示すように、光パワー効率の絶対増加は、比較用ダイオードに対する40パーセントから、本発明によるダイオードに対する50〜54パーセントとなっている。この10パーセントの絶対的増加は、2つのダイオード間における20パーセントの相対的増加を表す。
緑色波長に対する効率は、なお一層際立っている。図4に示すように、効率の絶対的増加も同様に約10パーセントであるが、緑色波長において光パワー効率が低いこと(20パーセント未満)を考えると、この10パーセントの絶対的増加は、本発明によるダイオードと面積が小さいダイオードとの間では、55パーセントの相対的増加を表す。
図5は、本発明によるダイオードを含む、ダイオードのチップ・サイズに対する明度向上(任意単位)を比較するためのグラフである。比較するダイオードのチップ・サイズは1辺300ミクロンに限定される訳ではないが、1辺300ミクロンのサイズは、特に本発明によるダイオードに関しては、比較の目的に適している。チップ・サイズを根拠とした向上を示すことに加えて、青色周波数(約460ナノメートル)で発光するダイオードを、菱形及び下側の線を用いてプロットし、緑色周波数(約530ナノメートル)において発光するダイオードを、白い正方形及び上側の線を用いてプロットしている。
また、図5は、300×300ナノメートル・チップの出力を用いて正規化されている。これにより、図5は、本発明による青色及び緑色発光LED双方が、著しく向上した比較出力を提供することを、明白に実証している。緑色発光ダイオードに対する結果の方が線形性が高いのは、結晶における緑色の吸収度が低いこと、及び広い面積によって電流密度が低下することという利点を反映している。これと比較して、青色LEDの性能は、電流密度が低いことを根拠とする高い吸収性及び少ない利点のために、上げ止まり消失する傾向がある。
また、図5は、本発明によるダイオードは、約100,000及び200,000平方ミクロンの間の面積において、その明度向上が最大の増加を呈することも示す。
図6は、本発明によるダイオードの発光効率(ワット当たりのルーメン)を、他のダイオード及びそれらの理論的最大値と比較して示すグラフである。
この明細書において他の箇所で注記したように、発光ダイオードの出力及び性能は、数個の関連するが同一ではないパラメータを用いることによって特徴付けることができる。図6にグラフで示す発光効率は、電気エネルギを光束に変換する際の発光ダイオードのエネルギ変換効率に等しい。LEDでは、電力(ワット単位)は、順方向電流及び順方向電圧の積である。発光効率は、したがって、ワット当たりのルーメンで表される。
人の目は、約410〜720nmの波長を有する光(「可視」スペクトル)に感応する。更に、可視スペクトル内において、目は異なる波長に応答するのが難しい。その結果、光束は、人の目の感度と等価の係数と乗算した放射束と関連があり、したがって放射束と同一ではない。
つまり、図6における実線は、人の目によって観察可能な理論的最大発光効率を示す。いずれの所与の波長においても、理論的最大値は図6のプロット上における「最高」点である。
比較の目的で、理論的最大値の半分と同等の発光効率を、一連の×から成るグラフで表す。これは、理論的最大値曲線よりも低い対応する曲線を形成する。
更に別の比較のために、図6は、燐化アルミニウム・インジウム・ガリウム(AlInGaP)発光ダイオードの発光効率曲線を、約570及び650nmの間の発光について一連の三角形でグラフに示す。
更にもう1つ別の比較のために、Osramからの(波長には関係ない効率に関する)「世界記録」の発光ダイオードを、約620nm、及び100ルーメン/ワットよりやや高いところに、円で示す。
本発明によるダイオードは、図6では菱形の点で示されている。これらは、450〜460nmの間の主波長において、15及び20ルーメン/ワットの発光効率を実証し、更に一層印象的なことに、520〜540ナノメートルの間の波長において100ルーメン/ワットよりも高い発光効率を実証している。
したがって、別の態様では、本発明は、450〜460nm間の主波長において、発光効率が約15ルーメン/ワットである、青色発光ダイオードである。
同様の態様では、本発明は、520〜540ナノメートルの間の主波長において、発光効率が100ルーメン/ワットよりも高い緑色発光ダイオードである。
当技術分野(そして本明細書)で用いる場合、「主波長」という用語は、発光ダイオードによって人間の目において生ずる色相の飽和の尺度を記述する。主波長を判定するには、基準光源の色座標、及び国際照明委員会(CIE)1931色度図におけるLEDの測定色度座標上で直線を引く。色度図の境界上における直線の交点が、主波長を示す。
ピーク波長は、最大スペクトル・パワーにおける波長である。ピーク波長は、実用的な目的では、重要性が低い場合がある。何故なら、2つの異なる発光ダイオードが同じピーク座標を有していても、色の認知度が異なる場合があるからである。
放射束は、放射パワーとも呼ばれ、放射場(radiation field)が放射エネルギを1つの領域から他の領域に伝達する速度(dθ/dt)である。先に注記したように、シータ(θ)を放射エネルギとすると、放射パワーの単位はワットである。
発光ダイオードのこれら及びその他の光学特性に関する適当な論述が、ニュー・ハンプシャー州North SuttonのLabsphere Inc.からのLabsphere Technical Guide, "The Radiometry of Light Emitting Diodes"に明記されている。
発光ダイオード及びそのパッケージに精通する者には分かるように、ダイオードを通過する注入電流によって発生する光子は、100%がダイオードの外部に漏出する。したがって、この技術分野では、「外部量子化効率」(external quantum efficiency)という用語を用いて、放出光強度の電流に対する比率(例えば、出射する光子/入射する電子)。光子は、半導体材料自体の内部における吸収、光が半導体から空中に通過するときの屈折率の差による反射損失、そしてSnellの法則によって規定される臨界角(critical angle)よりも大きな角度における光の全内反射によって失われる可能性がある。したがって、パーセントで示す外部量子化効率(EQE)は、放射束(ワット)、波長(ナノメートル)、駆動電流(アンペア)、そして以下の式による波長とエネルギ(λ=1.24/eV)間の変換係数から計算することができる。
EQE(%)
=(放射束)×(波長)×100/{(1240)×(駆動電流)}
ここで用いる場合、そして発光出力を記述し定義する目的上、発光面積又は表面をデバイスの「フットプリント」と定義する。異なる寸法を有する異なる部分を含むチップ又はダイについては、「面積」という用語は、ダイ又はチップ内における半導体基板材料の最大面積を意味する。何故なら、この最大寸法は、回路又はデバイスの設計者が個々の発光ダイオードを用いる際に扱わなければならないからである。
意味は同一でも別の言い方で表現すると、この面積は、(i)ダイオードの最大半導体面積、又は(ii)封入されなければならない又はされることになるダイオードの基板面積のいずれよりも大きい。殆ど全ての状況において、面積(ii)は面積(i)以上となる。
図面及び明細書において、本発明の好適な実施形態を明記し、特定的な用語を用いたが、これらは包括的及び記述的な意味で用いたに過ぎず、限定を主旨とするのではない。発明の範囲は、特許請求の範囲に規定するものとする。
本発明によるダイオードの一実施形態の断面模式図である。 本発明によるLEDを含む、ナノメートル単位の主波長に対する放射束のグラフである。 本発明によるLEDを含む主波長に対する外部量子化効率のグラフである。 本発明によるLEDについての光パワー効率対主波長のグラフである。 本発明によるダイオードについての、チップ・サイズに対する光増大のグラフである。 本発明によるダイオードを含む種々のダイオードについて、波長対発光効率を、理論的最大値と比較して示すグラフである。

Claims (40)

  1. 100,000平方ミクロンよりも広い面積と、約390及び540ナノメートルの間にある主波長において、20ミリアンペアの電流で少なくとも29ミリワットの放射束とを有することを特徴とする発光ダイオード。
  2. 請求項1記載の発光ダイオードにおいて、約450及び460ナノメートルの間にある主波長において、20ミリアンペアの電流で少なくとも29ミリワットの放射束を有することを特徴とする発光ダイオード。
  3. 請求項1記載の発光ダイオードにおいて、約453ナノメートルにおける主波長において、20ミリアンペアの電流で少なくとも30ミリワットの放射束を有することを特徴とする発光ダイオード。
  4. 請求項2記載の発光ダイオードにおいて、約200,000平方ミクロンの面積を有することを特徴とする発光ダイオード。
  5. 請求項1記載の発光ダイオードにおいて、約520及び540ナノメートルの間にある主波長において、少なくとも12ミリワットの放射束を有することを特徴とする発光ダイオード。
  6. 請求項1記載の発光ダイオードにおいて、約524及び535ナノメートルの間にある主波長において、少なくとも13ミリワットの放射束を有することを特徴とする発光ダイオード。
  7. 請求項1記載の発光ダイオードにおいて、約524及び527ナノメートルの間にある主波長において、少なくとも15ミリワットの放射束を有することを特徴とする発光ダイオード。
  8. 少なくとも100,000平方ミクロンの面積と、約390及び540ナノメートルの間にある主波長において、20ミリアンペアの電流で50パーセントよりも高い外部量子化効率とを有することを特徴とする発光ダイオード。
  9. 請求項8記載の発光ダイオードにおいて、約450及び460ナノメートルの間にある主波長において、少なくとも53パーセントの外部量子化効率を有することを特徴とする発光ダイオード。
  10. 請求項8記載の発光ダイオードにおいて、453ナノメートルにおける主波長において、少なくとも57パーセントの外部量子化効率を有することを特徴とする発光ダイオード。
  11. 請求項1又は8記載の発光ダイオードにおいて、III族窒化物材料系で形成した発光構造を備えていることを特徴とする発光ダイオード。
  12. 請求項11記載の発光ダイオードにおいて、炭化珪素単結晶基板を備えていることを特徴とする発光ダイオード。
  13. 請求項8記載の発光ダイオードにおいて、440及び470ナノメートルの間に主波長を有することを特徴とする発光ダイオード。
  14. 請求項8記載の発光ダイオードにおいて、約520及び540ナノメートルの間にある主波長において、30パーセントよりも高い外部量子化効率を有することを特徴とする発光ダイオード。
  15. 請求項8記載の発光ダイオードにおいて、約520及び530ナノメートルの間にある主波長において、30パーセントよりも高い外部量子化効率を有することを特徴とする発光ダイオード。
  16. 請求項8記載の発光ダイオードにおいて、約524及び535ナノメートルの間にある主波長において、32パーセントよりも高い外部量子化効率を有することを特徴とする発光ダイオード。
  17. 請求項8記載の発光ダイオードにおいて、約524及び527ナノメートルの間にある主波長において、33パーセントよりも高い外部量子化効率を有することを特徴とする発光ダイオード。
  18. 少なくとも100,000平方ミクロンの面積と、約450及び460ナノメートルの間にある主波長において、少なくとも50パーセントの外部量子化効率とを有することを特徴とする発光ダイオード。
  19. 請求項18記載の発光ダイオードにおいて、III族窒化物材料系で形成した発光構造を備えていることを特徴とする発光ダイオード。
  20. 請求項19記載の発光ダイオードにおいて、炭化珪素単結晶基板を備えていることを特徴とする発光ダイオード。
  21. 請求項1、8、又は18記載の発光ダイオードにおいて、長さが少なくとも400ミクロンである少なくとも1つの辺を有することを特徴とする発光ダイオード。
  22. 請求項18記載の発光ダイオードにおいて、520及び540ナノメートルの間にある主波長において、20パーセントよりも高い光パワー効率を有することを特徴とする発光ダイオード。
  23. 請求項18記載の発光ダイオードにおいて、524及び535ナノメートルの間にある主波長において、21パーセントよりも高い光パワー効率を有することを特徴とする発光ダイオード。
  24. 請求項18記載の発光ダイオードにおいて、524及び527ナノメートルの間にある主波長において、23パーセントよりも高い光パワー効率を有することを特徴とする発光ダイオード。
  25. 請求項12又は20記載の発光ダイオードにおいて、前記炭化珪素基板上に少なくとも1つのバッファ層を含み、該バッファ層がIII族窒化物材料系で形成されていることを特徴とする発光ダイオード。
  26. 請求項12又は25記載の発光ダイオードにおいて、供給される電流の下における再結合及び発光のためのキャリアを供給するために、III族窒化物材料系で形成された逆導電型の少なくとも2つの層を含むことを特徴とする発光ダイオード。
  27. 請求項26記載の発光ダイオードにおいて、前記発光構造は、少なくとも1つの窒化インジウム・ガリウムの層を含むことを特徴とする発光ダイオード。
  28. 請求項12又は20記載の発光ダイオードにおいて、前記炭化珪素基板及び前記III族発光構造に対してそれぞれオーミック・コンタクトを備えていることを特徴とする発光ダイオード。
  29. 請求項12又は20記載の発光ダイオードにおいて、前記炭化珪素基板はn型であり、炭化珪素の3C、4H、6H、及び15Rプロトタイプから選択したプロトタイプを有することを特徴とする発光ダイオード。
  30. 請求項1又は8又は18記載の発光ダイオードにおいて、150,000平方ミクロンよりも大きな面積を有することを特徴とする発光ダイオード。
  31. 請求項1、8、又は18記載の発光ダイオードにおいて、175,000平方ミクロンよりも大きな面積を有することを特徴とする発光ダイオード。
  32. 請求項1、8、又は18記載の発光ダイオードにおいて、約100,000及び約200,000平方ミクロンの間の面積を有することを特徴とする発光ダイオード。
  33. 請求項1、8、又は18記載の発光ダイオードにおいて、3.1ボルト未満の順方向電圧を有することを特徴とする発光ダイオード。
  34. 請求項1又は8又は18記載の発光ダイオードにおいて、3.0ボルトの順方向電圧を有することを特徴とする発光ダイオード。
  35. 100,000平方ミクロンの面積と、100ルーメン/ワットよりも高い発光効率とを有することを特徴とする緑色発光ダイオード。
  36. 請求項35記載の緑色発光ダイオードにおいて、III族窒化物材料系で形成した発光構造を備えていることを特徴とする緑色発光ダイオード。
  37. 請求項36記載の緑色発光ダイオードにおいて、導電性炭化珪素基板を備えていることを特徴とする緑色発光ダイオード。
  38. 請求項35記載の緑色発光ダイオードにおいて、約520及び540ナノメートルの間に主波長を有することを特徴とする緑色発光ダイオード。
  39. 少なくとも100,000平方ミクロンの面積と、15ルーメン/ワットよりも高い発光効率とを有することを特徴とする青色発光ダイオード。
  40. 請求項39記載の青色発光ダイオードにおいて、約450及び460ナノメートルの間に主波長を有することを特徴とする青色発光ダイオード。
JP2007533557A 2004-09-22 2005-09-15 高出力iii族発光ダイオード Pending JP2008514031A (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US10/951,042 US7259402B2 (en) 2004-09-22 2004-09-22 High efficiency group III nitride-silicon carbide light emitting diode
US11/037,965 US8513686B2 (en) 2004-09-22 2005-01-18 High output small area group III nitride LEDs
US11/082,470 US8174037B2 (en) 2004-09-22 2005-03-17 High efficiency group III nitride LED with lenticular surface
US11/112,429 US7737459B2 (en) 2004-09-22 2005-04-22 High output group III nitride light emitting diodes
PCT/US2005/033239 WO2006036604A1 (en) 2004-09-22 2005-09-15 High output group iii nitride light emitting diodes

Publications (1)

Publication Number Publication Date
JP2008514031A true JP2008514031A (ja) 2008-05-01

Family

ID=35613743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007533557A Pending JP2008514031A (ja) 2004-09-22 2005-09-15 高出力iii族発光ダイオード

Country Status (6)

Country Link
US (2) US7737459B2 (ja)
EP (1) EP1792352B1 (ja)
JP (1) JP2008514031A (ja)
KR (1) KR20070046181A (ja)
TW (1) TWI314787B (ja)
WO (1) WO2006036604A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014525672A (ja) * 2011-11-09 2014-09-29 東芝テクノセンター株式会社 発光装置およびその製造方法
JP2015097289A (ja) * 2009-06-08 2015-05-21 晶元光電股▲ふん▼有限公司 発光ダイオード及びその製造方法

Families Citing this family (113)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7915085B2 (en) 2003-09-18 2011-03-29 Cree, Inc. Molded chip fabrication method
US20060097385A1 (en) * 2004-10-25 2006-05-11 Negley Gerald H Solid metal block semiconductor light emitting device mounting substrates and packages including cavities and heat sinks, and methods of packaging same
US7564180B2 (en) 2005-01-10 2009-07-21 Cree, Inc. Light emission device and method utilizing multiple emitters and multiple phosphors
US8125137B2 (en) * 2005-01-10 2012-02-28 Cree, Inc. Multi-chip light emitting device lamps for providing high-CRI warm white light and light fixtures including the same
CN103925521A (zh) * 2005-12-21 2014-07-16 科锐公司 照明装置
BRPI0620413A2 (pt) 2005-12-21 2011-11-08 Cree Led Lighting Solutions dispositivo de iluminação e método de iluminação
WO2007073496A2 (en) 2005-12-22 2007-06-28 Cree Led Lighting Solutions, Inc. Lighting device
US8513875B2 (en) 2006-04-18 2013-08-20 Cree, Inc. Lighting device and lighting method
US9084328B2 (en) 2006-12-01 2015-07-14 Cree, Inc. Lighting device and lighting method
EP2052589A4 (en) * 2006-04-18 2012-09-19 Cree Inc LIGHTING DEVICE AND METHOD
JP5681364B2 (ja) 2006-04-20 2015-03-04 クリー インコーポレイテッドCree Inc. 照明装置
US7846391B2 (en) * 2006-05-22 2010-12-07 Lumencor, Inc. Bioanalytical instrumentation using a light source subsystem
US8596819B2 (en) * 2006-05-31 2013-12-03 Cree, Inc. Lighting device and method of lighting
US7910945B2 (en) * 2006-06-30 2011-03-22 Cree, Inc. Nickel tin bonding system with barrier layer for semiconductor wafers and devices
US8643195B2 (en) 2006-06-30 2014-02-04 Cree, Inc. Nickel tin bonding system for semiconductor wafers and devices
US20080042145A1 (en) * 2006-08-18 2008-02-21 Helmut Hagleitner Diffusion barrier for light emitting diodes
US7910938B2 (en) * 2006-09-01 2011-03-22 Cree, Inc. Encapsulant profile for light emitting diodes
US8425271B2 (en) 2006-09-01 2013-04-23 Cree, Inc. Phosphor position in light emitting diodes
US7766508B2 (en) * 2006-09-12 2010-08-03 Cree, Inc. LED lighting fixture
US7665862B2 (en) 2006-09-12 2010-02-23 Cree, Inc. LED lighting fixture
US7855459B2 (en) 2006-09-22 2010-12-21 Cree, Inc. Modified gold-tin system with increased melting temperature for wafer bonding
US8029155B2 (en) * 2006-11-07 2011-10-04 Cree, Inc. Lighting device and lighting method
US9441793B2 (en) 2006-12-01 2016-09-13 Cree, Inc. High efficiency lighting device including one or more solid state light emitters, and method of lighting
JP5153783B2 (ja) 2006-12-07 2013-02-27 クリー インコーポレイテッド 照明デバイスおよび照明方法
US9178121B2 (en) * 2006-12-15 2015-11-03 Cree, Inc. Reflective mounting substrates for light emitting diodes
US9159888B2 (en) * 2007-01-22 2015-10-13 Cree, Inc. Wafer level phosphor coating method and devices fabricated utilizing method
US9024349B2 (en) 2007-01-22 2015-05-05 Cree, Inc. Wafer level phosphor coating method and devices fabricated utilizing method
WO2008103876A1 (en) * 2007-02-22 2008-08-28 Cree Led Lighting Solutions, Inc. Lighting devices, methods of lighting, light filters and methods of filtering light
US7824070B2 (en) 2007-03-22 2010-11-02 Cree, Inc. LED lighting fixture
CN101720402B (zh) 2007-05-08 2011-12-28 科锐公司 照明装置和照明方法
JP2010527510A (ja) 2007-05-08 2010-08-12 クリー エル イー ディー ライティング ソリューションズ インコーポレイテッド 照明デバイスおよび照明方法
WO2008137977A1 (en) 2007-05-08 2008-11-13 Cree Led Lighting Solutions, Inc. Lighting device and lighting method
US10030824B2 (en) 2007-05-08 2018-07-24 Cree, Inc. Lighting device and lighting method
JP5325208B2 (ja) 2007-05-08 2013-10-23 クリー インコーポレイテッド 照明デバイスおよび照明方法
US8597190B2 (en) 2007-05-18 2013-12-03 Optiscan Biomedical Corporation Monitoring systems and methods with fast initialization
US7709811B2 (en) * 2007-07-03 2010-05-04 Conner Arlie R Light emitting diode illumination system
US8098375B2 (en) 2007-08-06 2012-01-17 Lumencor, Inc. Light emitting diode illumination system
US20090039375A1 (en) * 2007-08-07 2009-02-12 Cree, Inc. Semiconductor light emitting devices with separated wavelength conversion materials and methods of forming the same
US7863635B2 (en) * 2007-08-07 2011-01-04 Cree, Inc. Semiconductor light emitting devices with applied wavelength conversion materials
EP2210036B1 (en) * 2007-10-10 2016-11-23 Cree, Inc. Lighting device and method of making
US9041285B2 (en) 2007-12-14 2015-05-26 Cree, Inc. Phosphor distribution in LED lamps using centrifugal force
US8878219B2 (en) * 2008-01-11 2014-11-04 Cree, Inc. Flip-chip phosphor coating method and devices fabricated utilizing method
US8350461B2 (en) * 2008-03-28 2013-01-08 Cree, Inc. Apparatus and methods for combining light emitters
US8664747B2 (en) * 2008-04-28 2014-03-04 Toshiba Techno Center Inc. Trenched substrate for crystal growth and wafer bonding
DE102008050538B4 (de) * 2008-06-06 2022-10-06 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelektronisches Bauelement und Verfahren zu dessen Herstellung
US8240875B2 (en) 2008-06-25 2012-08-14 Cree, Inc. Solid state linear array modules for general illumination
US8242462B2 (en) 2009-01-23 2012-08-14 Lumencor, Inc. Lighting design of high quality biomedical devices
US8247886B1 (en) 2009-03-09 2012-08-21 Soraa, Inc. Polarization direction of optical devices using selected spatial configurations
US8299473B1 (en) 2009-04-07 2012-10-30 Soraa, Inc. Polarized white light devices using non-polar or semipolar gallium containing materials and transparent phosphors
US8791499B1 (en) 2009-05-27 2014-07-29 Soraa, Inc. GaN containing optical devices and method with ESD stability
US8921876B2 (en) * 2009-06-02 2014-12-30 Cree, Inc. Lighting devices with discrete lumiphor-bearing regions within or on a surface of remote elements
US8207547B2 (en) 2009-06-10 2012-06-26 Brudgelux, Inc. Thin-film LED with P and N contacts electrically isolated from the substrate
US8076682B2 (en) 2009-07-21 2011-12-13 Koninklijke Philips Electronics N.V. Contact for a semiconductor light emitting device
US9000466B1 (en) 2010-08-23 2015-04-07 Soraa, Inc. Methods and devices for light extraction from a group III-nitride volumetric LED using surface and sidewall roughening
TWI405409B (zh) * 2009-08-27 2013-08-11 Novatek Microelectronics Corp 低電壓差動訊號輸出級
US9583678B2 (en) 2009-09-18 2017-02-28 Soraa, Inc. High-performance LED fabrication
KR101368906B1 (ko) * 2009-09-18 2014-02-28 소라, 인코포레이티드 전력 발광 다이오드 및 전류 밀도 작동 방법
US8933644B2 (en) 2009-09-18 2015-01-13 Soraa, Inc. LED lamps with improved quality of light
US9293644B2 (en) * 2009-09-18 2016-03-22 Soraa, Inc. Power light emitting diode and method with uniform current density operation
EP2480816A1 (en) 2009-09-25 2012-08-01 Cree, Inc. Lighting device with low glare and high light level uniformity
US8525221B2 (en) 2009-11-25 2013-09-03 Toshiba Techno Center, Inc. LED with improved injection efficiency
US8905588B2 (en) 2010-02-03 2014-12-09 Sorra, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
US20110186874A1 (en) * 2010-02-03 2011-08-04 Soraa, Inc. White Light Apparatus and Method
US10147850B1 (en) 2010-02-03 2018-12-04 Soraa, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
US8740413B1 (en) 2010-02-03 2014-06-03 Soraa, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
US9275979B2 (en) 2010-03-03 2016-03-01 Cree, Inc. Enhanced color rendering index emitter through phosphor separation
US9450143B2 (en) 2010-06-18 2016-09-20 Soraa, Inc. Gallium and nitrogen containing triangular or diamond-shaped configuration for optical devices
US10546846B2 (en) 2010-07-23 2020-01-28 Cree, Inc. Light transmission control for masking appearance of solid state light sources
KR101795053B1 (ko) 2010-08-26 2017-11-07 엘지이노텍 주식회사 발광 소자, 발광 소자 패키지, 라이트 유닛
US8466436B2 (en) 2011-01-14 2013-06-18 Lumencor, Inc. System and method for metered dosage illumination in a bioanalysis or other system
US8389957B2 (en) 2011-01-14 2013-03-05 Lumencor, Inc. System and method for metered dosage illumination in a bioanalysis or other system
US8786053B2 (en) 2011-01-24 2014-07-22 Soraa, Inc. Gallium-nitride-on-handle substrate materials and devices and method of manufacture
US9166126B2 (en) 2011-01-31 2015-10-20 Cree, Inc. Conformally coated light emitting devices and methods for providing the same
US11251164B2 (en) 2011-02-16 2022-02-15 Creeled, Inc. Multi-layer conversion material for down conversion in solid state lighting
US8395165B2 (en) 2011-07-08 2013-03-12 Bridelux, Inc. Laterally contacted blue LED with superlattice current spreading layer
US20130026480A1 (en) 2011-07-25 2013-01-31 Bridgelux, Inc. Nucleation of Aluminum Nitride on a Silicon Substrate Using an Ammonia Preflow
US8916906B2 (en) 2011-07-29 2014-12-23 Kabushiki Kaisha Toshiba Boron-containing buffer layer for growing gallium nitride on silicon
US8865565B2 (en) 2011-08-02 2014-10-21 Kabushiki Kaisha Toshiba LED having a low defect N-type layer that has grown on a silicon substrate
US9142743B2 (en) 2011-08-02 2015-09-22 Kabushiki Kaisha Toshiba High temperature gold-free wafer bonding for light emitting diodes
US9012939B2 (en) 2011-08-02 2015-04-21 Kabushiki Kaisha Toshiba N-type gallium-nitride layer having multiple conductive intervening layers
US9343641B2 (en) 2011-08-02 2016-05-17 Manutius Ip, Inc. Non-reactive barrier metal for eutectic bonding process
US20130032810A1 (en) 2011-08-03 2013-02-07 Bridgelux, Inc. Led on silicon substrate using zinc-sulfide as buffer layer
US8564010B2 (en) 2011-08-04 2013-10-22 Toshiba Techno Center Inc. Distributed current blocking structures for light emitting diodes
US8686431B2 (en) 2011-08-22 2014-04-01 Soraa, Inc. Gallium and nitrogen containing trilateral configuration for optical devices
US8624482B2 (en) 2011-09-01 2014-01-07 Toshiba Techno Center Inc. Distributed bragg reflector for reflecting light of multiple wavelengths from an LED
US8669585B1 (en) 2011-09-03 2014-03-11 Toshiba Techno Center Inc. LED that has bounding silicon-doped regions on either side of a strain release layer
US8558247B2 (en) 2011-09-06 2013-10-15 Toshiba Techno Center Inc. GaN LEDs with improved area and method for making the same
US8686430B2 (en) 2011-09-07 2014-04-01 Toshiba Techno Center Inc. Buffer layer for GaN-on-Si LED
US8912021B2 (en) 2011-09-12 2014-12-16 SemiLEDs Optoelectronics Co., Ltd. System and method for fabricating light emitting diode (LED) dice with wavelength conversion layers
US8410508B1 (en) 2011-09-12 2013-04-02 SemiLEDs Optoelectronics Co., Ltd. Light emitting diode (LED) package having wavelength conversion member and wafer level fabrication method
US8492746B2 (en) 2011-09-12 2013-07-23 SemiLEDs Optoelectronics Co., Ltd. Light emitting diode (LED) dice having wavelength conversion layers
US8841146B2 (en) 2011-09-12 2014-09-23 SemiLEDs Optoelectronics Co., Ltd. Method and system for fabricating light emitting diode (LED) dice with wavelength conversion layers having controlled color characteristics
US9012921B2 (en) 2011-09-29 2015-04-21 Kabushiki Kaisha Toshiba Light emitting devices having light coupling layers
US8664679B2 (en) 2011-09-29 2014-03-04 Toshiba Techno Center Inc. Light emitting devices having light coupling layers with recessed electrodes
US9178114B2 (en) 2011-09-29 2015-11-03 Manutius Ip, Inc. P-type doping layers for use with light emitting devices
US8853668B2 (en) 2011-09-29 2014-10-07 Kabushiki Kaisha Toshiba Light emitting regions for use with light emitting devices
US20130082274A1 (en) 2011-09-29 2013-04-04 Bridgelux, Inc. Light emitting devices having dislocation density maintaining buffer layers
US8698163B2 (en) 2011-09-29 2014-04-15 Toshiba Techno Center Inc. P-type doping layers for use with light emitting devices
US8552465B2 (en) 2011-11-09 2013-10-08 Toshiba Techno Center Inc. Method for reducing stress in epitaxial growth
US8912025B2 (en) 2011-11-23 2014-12-16 Soraa, Inc. Method for manufacture of bright GaN LEDs using a selective removal process
US20130146904A1 (en) * 2011-12-07 2013-06-13 Cree, Inc. Optoelectronic Structures with High Lumens Per Wafer
US8967811B2 (en) 2012-01-20 2015-03-03 Lumencor, Inc. Solid state continuous white light source
WO2013134432A1 (en) 2012-03-06 2013-09-12 Soraa, Inc. Light emitting diodes with low refractive index material layers to reduce light guiding effects
US9450152B2 (en) * 2012-05-29 2016-09-20 Micron Technology, Inc. Solid state transducer dies having reflective features over contacts and associated systems and methods
US9217561B2 (en) 2012-06-15 2015-12-22 Lumencor, Inc. Solid state light source for photocuring
US8971368B1 (en) 2012-08-16 2015-03-03 Soraa Laser Diode, Inc. Laser devices having a gallium and nitrogen containing semipolar surface orientation
US9978904B2 (en) 2012-10-16 2018-05-22 Soraa, Inc. Indium gallium nitride light emitting devices
US9761763B2 (en) 2012-12-21 2017-09-12 Soraa, Inc. Dense-luminescent-materials-coated violet LEDs
US8802471B1 (en) 2012-12-21 2014-08-12 Soraa, Inc. Contacts for an n-type gallium and nitrogen substrate for optical devices
CN104241262B (zh) 2013-06-14 2020-11-06 惠州科锐半导体照明有限公司 发光装置以及显示装置
US8994033B2 (en) 2013-07-09 2015-03-31 Soraa, Inc. Contacts for an n-type gallium and nitrogen substrate for optical devices
US9410664B2 (en) 2013-08-29 2016-08-09 Soraa, Inc. Circadian friendly LED light source
US9799804B2 (en) 2014-10-28 2017-10-24 Matrix Lighting Ltd. Light-emitting device with near full spectrum light output

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249694A (ja) * 2002-02-25 2003-09-05 Mitsubishi Cable Ind Ltd 発光装置およびそれを用いた照明装置

Family Cites Families (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2001622A (en) * 1930-10-27 1935-05-14 David G Mccaa Method of and means for reducing electrical disturbances
JPS6042890A (ja) * 1983-08-18 1985-03-07 Mitsubishi Electric Corp 面発光形半導体レ−ザ及びその製造方法
FR2554606B1 (fr) * 1983-11-04 1987-04-10 Thomson Csf Dispositif optique de concentration du rayonnement lumineux emis par une diode electroluminescente, et diode electroluminescente comportant un tel dispositif
JPS6159886A (ja) 1984-08-31 1986-03-27 Fujitsu Ltd 光半導体装置の製造方法
JPH0770755B2 (ja) * 1988-01-21 1995-07-31 三菱化学株式会社 高輝度led用エピタキシャル基板及びその製造方法
US4912532A (en) * 1988-08-26 1990-03-27 Hewlett-Packard Company Electro-optical device with inverted transparent substrate and method for making same
JPH0278280A (ja) * 1988-09-14 1990-03-19 Ricoh Co Ltd 半導体発光装置
JPH02163974A (ja) * 1988-12-16 1990-06-25 Mitsubishi Electric Corp 絶縁ゲート型バイポーラトランジスタおよびその製造方法
US5103271A (en) * 1989-09-28 1992-04-07 Kabushiki Kaisha Toshiba Semiconductor light emitting device and method of fabricating the same
US5300788A (en) * 1991-01-18 1994-04-05 Kopin Corporation Light emitting diode bars and arrays and method of making same
JPH04264781A (ja) 1991-02-20 1992-09-21 Eastman Kodak Japan Kk 発光ダイオードアレイ
JP2798545B2 (ja) 1992-03-03 1998-09-17 シャープ株式会社 半導体発光素子及びその製造方法
DE4305296C3 (de) 1993-02-20 1999-07-15 Vishay Semiconductor Gmbh Verfahren zum Herstellen einer strahlungsemittierenden Diode
US5376580A (en) * 1993-03-19 1994-12-27 Hewlett-Packard Company Wafer bonding of light emitting diode layers
US5416342A (en) * 1993-06-23 1995-05-16 Cree Research, Inc. Blue light-emitting diode with high external quantum efficiency
JP3316062B2 (ja) 1993-12-09 2002-08-19 株式会社東芝 半導体発光素子
JPH07254732A (ja) * 1994-03-15 1995-10-03 Toshiba Corp 半導体発光装置
US5592501A (en) * 1994-09-20 1997-01-07 Cree Research, Inc. Low-strain laser structures with group III nitride active layers
US5631190A (en) * 1994-10-07 1997-05-20 Cree Research, Inc. Method for producing high efficiency light-emitting diodes and resulting diode structures
US5814839A (en) 1995-02-16 1998-09-29 Sharp Kabushiki Kaisha Semiconductor light-emitting device having a current adjusting layer and a uneven shape light emitting region, and method for producing same
US5739554A (en) * 1995-05-08 1998-04-14 Cree Research, Inc. Double heterojunction light emitting diode with gallium nitride active layer
US5779924A (en) 1996-03-22 1998-07-14 Hewlett-Packard Company Ordered interface texturing for a light emitting device
US5985687A (en) * 1996-04-12 1999-11-16 The Regents Of The University Of California Method for making cleaved facets for lasers fabricated with gallium nitride and other noncubic materials
JP3164016B2 (ja) * 1996-05-31 2001-05-08 住友電気工業株式会社 発光素子および発光素子用ウエハの製造方法
EP2267801B1 (de) * 1996-06-26 2015-05-27 OSRAM Opto Semiconductors GmbH Licht abstrahlendes Halbleiterbauelement mit Lumineszenzkonversionselement
DE19640594B4 (de) * 1996-10-01 2016-08-04 Osram Gmbh Bauelement
DE19644752A1 (de) * 1996-10-28 1998-04-30 Leybold Systems Gmbh Interferenzschichtensystem
JPH10294531A (ja) 1997-02-21 1998-11-04 Toshiba Corp 窒化物化合物半導体発光素子
US6057562A (en) 1997-04-18 2000-05-02 Epistar Corp. High efficiency light emitting diode with distributed Bragg reflector
US6420735B2 (en) 1997-05-07 2002-07-16 Samsung Electronics Co., Ltd. Surface-emitting light-emitting diode
US6825501B2 (en) * 1997-08-29 2004-11-30 Cree, Inc. Robust Group III light emitting diode for high reliability in standard packaging applications
TW393785B (en) * 1997-09-19 2000-06-11 Siemens Ag Method to produce many semiconductor-bodies
US6201262B1 (en) * 1997-10-07 2001-03-13 Cree, Inc. Group III nitride photonic devices on silicon carbide substrates with conductive buffer interlay structure
JPH11135834A (ja) 1997-10-27 1999-05-21 Matsushita Electric Ind Co Ltd 発光ダイオード装置及びその製造方法
EP1928034A3 (en) 1997-12-15 2008-06-18 Philips Lumileds Lighting Company LLC Light emitting device
US6071795A (en) * 1998-01-23 2000-06-06 The Regents Of The University Of California Separation of thin films from transparent substrates by selective optical processing
JPH11238913A (ja) 1998-02-20 1999-08-31 Namiki Precision Jewel Co Ltd 半導体発光デバイスチップ
US6291839B1 (en) 1998-09-11 2001-09-18 Lulileds Lighting, U.S. Llc Light emitting device having a finely-patterned reflective contact
US6459100B1 (en) * 1998-09-16 2002-10-01 Cree, Inc. Vertical geometry ingan LED
JP3525061B2 (ja) * 1998-09-25 2004-05-10 株式会社東芝 半導体発光素子の製造方法
US6744800B1 (en) * 1998-12-30 2004-06-01 Xerox Corporation Method and structure for nitride based laser diode arrays on an insulating substrate
US20010042866A1 (en) * 1999-02-05 2001-11-22 Carrie Carter Coman Inxalygazn optical emitters fabricated via substrate removal
US6320206B1 (en) * 1999-02-05 2001-11-20 Lumileds Lighting, U.S., Llc Light emitting devices having wafer bonded aluminum gallium indium nitride structures and mirror stacks
US6258699B1 (en) * 1999-05-10 2001-07-10 Visual Photonics Epitaxy Co., Ltd. Light emitting diode with a permanent subtrate of transparent glass or quartz and the method for manufacturing the same
TW437104B (en) 1999-05-25 2001-05-28 Wang Tien Yang Semiconductor light-emitting device and method for manufacturing the same
US6287947B1 (en) 1999-06-08 2001-09-11 Lumileds Lighting, U.S. Llc Method of forming transparent contacts to a p-type GaN layer
US6133589A (en) 1999-06-08 2000-10-17 Lumileds Lighting, U.S., Llc AlGaInN-based LED having thick epitaxial layer for improved light extraction
EP1065734B1 (en) * 1999-06-09 2009-05-13 Kabushiki Kaisha Toshiba Bonding type semiconductor substrate, semiconductor light emitting element, and preparation process thereof.
US6534798B1 (en) 1999-09-08 2003-03-18 California Institute Of Technology Surface plasmon enhanced light emitting diode and method of operation for the same
DE19947030A1 (de) * 1999-09-30 2001-04-19 Osram Opto Semiconductors Gmbh Oberflächenstrukturierte Lichtemissionsdiode mit verbesserter Stromeinkopplung
US6812053B1 (en) * 1999-10-14 2004-11-02 Cree, Inc. Single step pendeo- and lateral epitaxial overgrowth of Group III-nitride epitaxial layers with Group III-nitride buffer layer and resulting structures
US6812502B1 (en) 1999-11-04 2004-11-02 Uni Light Technology Incorporation Flip-chip light-emitting device
US6492661B1 (en) 1999-11-04 2002-12-10 Fen-Ren Chien Light emitting semiconductor device having reflection layer structure
US6410942B1 (en) * 1999-12-03 2002-06-25 Cree Lighting Company Enhanced light extraction through the use of micro-LED arrays
CA2393081C (en) * 1999-12-03 2011-10-11 Cree Lighting Company Enhanced light extraction in leds through the use of internal and external optical elements
US6514782B1 (en) 1999-12-22 2003-02-04 Lumileds Lighting, U.S., Llc Method of making a III-nitride light-emitting device with increased light generating capability
US6992334B1 (en) 1999-12-22 2006-01-31 Lumileds Lighting U.S., Llc Multi-layer highly reflective ohmic contacts for semiconductor devices
US6486499B1 (en) 1999-12-22 2002-11-26 Lumileds Lighting U.S., Llc III-nitride light-emitting device with increased light generating capability
US20020068373A1 (en) * 2000-02-16 2002-06-06 Nova Crystals, Inc. Method for fabricating light emitting diodes
DE10008583A1 (de) * 2000-02-24 2001-09-13 Osram Opto Semiconductors Gmbh Verfahren zum Herstellen eines optisch transparenten Substrates und Verfahren zum Herstellen eines lichtemittierenden Halbleiterchips
US6335263B1 (en) * 2000-03-22 2002-01-01 The Regents Of The University Of California Method of forming a low temperature metal bond for use in the transfer of bulk and thin film materials
JP4060511B2 (ja) * 2000-03-28 2008-03-12 パイオニア株式会社 窒化物半導体素子の分離方法
DE10051465A1 (de) * 2000-10-17 2002-05-02 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines Halbleiterbauelements auf GaN-Basis
US6410940B1 (en) * 2000-06-15 2002-06-25 Kansas State University Research Foundation Micro-size LED and detector arrays for minidisplay, hyper-bright light emitting diodes, lighting, and UV detector and imaging sensor applications
DE10033496A1 (de) * 2000-07-10 2002-01-31 Osram Opto Semiconductors Gmbh Halbleiterchip für die Optoelektronik
US6562648B1 (en) * 2000-08-23 2003-05-13 Xerox Corporation Structure and method for separation and transfer of semiconductor thin films onto dissimilar substrate materials
DE10042947A1 (de) * 2000-08-31 2002-03-21 Osram Opto Semiconductors Gmbh Strahlungsemittierendes Halbleiterbauelement auf GaN-Basis
KR100591705B1 (ko) 2000-09-21 2006-06-20 샤프 가부시키가이샤 질화물 반도체 발광소자 및 그것을 포함한 광학장치
JP4091261B2 (ja) * 2000-10-31 2008-05-28 株式会社東芝 半導体発光素子及びその製造方法
US6800876B2 (en) * 2001-01-16 2004-10-05 Cree, Inc. Group III nitride LED with undoped cladding layer (5000.137)
US6791119B2 (en) * 2001-02-01 2004-09-14 Cree, Inc. Light emitting diodes including modifications for light extraction
US6468824B2 (en) * 2001-03-22 2002-10-22 Uni Light Technology Inc. Method for forming a semiconductor device having a metallic substrate
US6946788B2 (en) 2001-05-29 2005-09-20 Toyoda Gosei Co., Ltd. Light-emitting element
JP2002368263A (ja) * 2001-06-06 2002-12-20 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体発光素子
CN1505843B (zh) * 2001-06-15 2010-05-05 克里公司 在SiC衬底上形成的GaN基LED
US7501023B2 (en) 2001-07-06 2009-03-10 Technologies And Devices, International, Inc. Method and apparatus for fabricating crack-free Group III nitride semiconductor materials
US6747298B2 (en) * 2001-07-23 2004-06-08 Cree, Inc. Collets for bonding of light emitting diodes having shaped substrates
US6740906B2 (en) * 2001-07-23 2004-05-25 Cree, Inc. Light emitting diodes including modifications for submount bonding
US6888167B2 (en) * 2001-07-23 2005-05-03 Cree, Inc. Flip-chip bonding of light emitting devices and light emitting devices suitable for flip-chip bonding
US7211833B2 (en) 2001-07-23 2007-05-01 Cree, Inc. Light emitting diodes including barrier layers/sublayers
JP4055503B2 (ja) 2001-07-24 2008-03-05 日亜化学工業株式会社 半導体発光素子
US7440479B2 (en) * 2001-09-06 2008-10-21 Brown University Magneto-optoelectronic switch and sensor
JP2003168823A (ja) 2001-09-18 2003-06-13 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体発光素子
US7148520B2 (en) 2001-10-26 2006-12-12 Lg Electronics Inc. Diode having vertical structure and method of manufacturing the same
US6924596B2 (en) * 2001-11-01 2005-08-02 Nichia Corporation Light emitting apparatus provided with fluorescent substance and semiconductor light emitting device, and method of manufacturing the same
US6635503B2 (en) * 2002-01-28 2003-10-21 Cree, Inc. Cluster packaging of light emitting diodes
US6716654B2 (en) * 2002-03-12 2004-04-06 Opto Tech Corporation Light-emitting diode with enhanced brightness and method for fabricating the same
WO2003107441A2 (en) * 2002-06-13 2003-12-24 Cree, Inc. Saturated phosphor solid emitter
US6828596B2 (en) 2002-06-13 2004-12-07 Lumileds Lighting U.S., Llc Contacting scheme for large and small area semiconductor light emitting flip chip devices
JP2004047760A (ja) 2002-07-12 2004-02-12 Hitachi Cable Ltd 発光ダイオード用エピタキシャルウェハ及び発光ダイオード
US6995032B2 (en) 2002-07-19 2006-02-07 Cree, Inc. Trench cut light emitting diodes and methods of fabricating same
US6649437B1 (en) * 2002-08-20 2003-11-18 United Epitaxy Company, Ltd. Method of manufacturing high-power light emitting diodes
DE10245628A1 (de) * 2002-09-30 2004-04-15 Osram Opto Semiconductors Gmbh Elektromagnetische Strahlung emittierender Halbleiterchip und Verfahren zu dessen Herstellung
US6917057B2 (en) 2002-12-31 2005-07-12 Gelcore Llc Layered phosphor coatings for LED devices
US6825559B2 (en) * 2003-01-02 2004-11-30 Cree, Inc. Group III nitride based flip-chip intergrated circuit and method for fabricating
TWI226138B (en) * 2003-01-03 2005-01-01 Super Nova Optoelectronics Cor GaN-based LED vertical device structure and the manufacturing method thereof
US6786390B2 (en) * 2003-02-04 2004-09-07 United Epitaxy Company Ltd. LED stack manufacturing method and its structure thereof
TWI243488B (en) * 2003-02-26 2005-11-11 Osram Opto Semiconductors Gmbh Electrical contact-area for optoelectronic semiconductor-chip and its production method
US6831302B2 (en) 2003-04-15 2004-12-14 Luminus Devices, Inc. Light emitting devices with improved extraction efficiency
US6960872B2 (en) * 2003-05-23 2005-11-01 Goldeneye, Inc. Illumination systems utilizing light emitting diodes and light recycling to enhance output radiance
US6806112B1 (en) * 2003-09-22 2004-10-19 National Chung-Hsing University High brightness light emitting diode
US7250635B2 (en) * 2004-02-06 2007-07-31 Dicon Fiberoptics, Inc. Light emitting system with high extraction efficency
TWI244221B (en) * 2004-03-01 2005-11-21 Epistar Corp Micro-reflector containing flip-chip light emitting device
US7064353B2 (en) * 2004-05-26 2006-06-20 Philips Lumileds Lighting Company, Llc LED chip with integrated fast switching diode for ESD protection
KR100631840B1 (ko) * 2004-06-03 2006-10-09 삼성전기주식회사 플립칩용 질화물 반도체 발광소자
KR100533645B1 (ko) 2004-09-13 2005-12-06 삼성전기주식회사 발광 효율을 개선한 발광 다이오드
US8174037B2 (en) * 2004-09-22 2012-05-08 Cree, Inc. High efficiency group III nitride LED with lenticular surface
KR100691177B1 (ko) 2005-05-31 2007-03-09 삼성전기주식회사 백색 발광소자

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249694A (ja) * 2002-02-25 2003-09-05 Mitsubishi Cable Ind Ltd 発光装置およびそれを用いた照明装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6010031174; John Edmond et al.: 'High efficiency GaN-based LEDs and lasers on SiC' Journal of Crystal Growth Vol.272, 20041210, p.242-250 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015097289A (ja) * 2009-06-08 2015-05-21 晶元光電股▲ふん▼有限公司 発光ダイオード及びその製造方法
JP2014525672A (ja) * 2011-11-09 2014-09-29 東芝テクノセンター株式会社 発光装置およびその製造方法
US9391234B2 (en) 2011-11-09 2016-07-12 Toshiba Corporation Series connected segmented LED

Also Published As

Publication number Publication date
US20100244052A1 (en) 2010-09-30
US7737459B2 (en) 2010-06-15
US9905731B2 (en) 2018-02-27
KR20070046181A (ko) 2007-05-02
TW200623465A (en) 2006-07-01
EP1792352A1 (en) 2007-06-06
EP1792352B1 (en) 2017-11-01
TWI314787B (en) 2009-09-11
WO2006036604A1 (en) 2006-04-06
US20060060872A1 (en) 2006-03-23

Similar Documents

Publication Publication Date Title
US7737459B2 (en) High output group III nitride light emitting diodes
US8513686B2 (en) High output small area group III nitride LEDs
KR20090103960A (ko) 고출력 3족-질화물 발광 다이오드
Nakamura Present performance of InGaN-based blue/green/yellow LEDs
US20080258130A1 (en) Beveled LED Chip with Transparent Substrate
JP5763913B2 (ja) 発光ダイオードのための反射性マウント基板
Chang et al. Nitride-based flip-chip ITO LEDs
US8178888B2 (en) Semiconductor light emitting devices with high color rendering
KR101580739B1 (ko) 발광 장치
US20140077153A1 (en) Photonic Devices with Embedded Hole Injection Layer to Improve Efficiency and Droop Rate
JP3087742B2 (ja) 白色led
JP4348488B2 (ja) 発光基板led素子
Craford Overview of device issues in high-brightness light-emitting diodes
Nakamura InGaN light-emitting diodes with quantum-well structures
KR101723540B1 (ko) 발광 소자 및 이를 갖는 발광 소자 패키지
JP2001007401A (ja) 化合物半導体発光素子
Krames Light emitting diode materials and devices
Nakamura et al. InGaN single-quantum-well LEDs
KR100665174B1 (ko) 반도체 발광 소자
Krames Light Emitting Diode Materials and
Krames Light-emitting diode technology for solid-state lighting
Chao et al. Light Emitting Diodes
Dnτn 7 Light Emitting Diodes
DeMille White light-emitting diodes based on nonpolar and semipolar gallium nitride orientations
Streubel Visible light-emitting diodes

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100603

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100903

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110727

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110913

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111027

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120309

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120608

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120615

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130204