JP2008504509A - 混合冷媒液化方法 - Google Patents
混合冷媒液化方法 Download PDFInfo
- Publication number
- JP2008504509A JP2008504509A JP2007518089A JP2007518089A JP2008504509A JP 2008504509 A JP2008504509 A JP 2008504509A JP 2007518089 A JP2007518089 A JP 2007518089A JP 2007518089 A JP2007518089 A JP 2007518089A JP 2008504509 A JP2008504509 A JP 2008504509A
- Authority
- JP
- Japan
- Prior art keywords
- kpa
- mixed component
- refrigerant
- component refrigerant
- stream
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003507 refrigerant Substances 0.000 title claims abstract description 303
- 238000000034 method Methods 0.000 title claims abstract description 161
- 239000007788 liquid Substances 0.000 claims abstract description 97
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 88
- 238000007906 compression Methods 0.000 claims abstract description 69
- 230000006835 compression Effects 0.000 claims abstract description 68
- 239000003345 natural gas Substances 0.000 claims abstract description 30
- 238000001704 evaporation Methods 0.000 claims abstract description 18
- 239000007789 gas Substances 0.000 claims description 55
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 claims description 34
- 239000012071 phase Substances 0.000 claims description 34
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 26
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 claims description 26
- 239000007791 liquid phase Substances 0.000 claims description 25
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 claims description 18
- 239000001294 propane Substances 0.000 claims description 17
- 238000000926 separation method Methods 0.000 claims description 14
- 229910052757 nitrogen Inorganic materials 0.000 claims description 13
- 239000001282 iso-butane Substances 0.000 claims description 9
- 230000008020 evaporation Effects 0.000 claims description 5
- 238000001816 cooling Methods 0.000 claims description 3
- 238000011010 flushing procedure Methods 0.000 claims 2
- 102000003979 Mineralocorticoid Receptors Human genes 0.000 description 50
- 108090000375 Mineralocorticoid Receptors Proteins 0.000 description 50
- 238000006452 multicomponent reaction Methods 0.000 description 50
- 238000005057 refrigeration Methods 0.000 description 19
- 239000000203 mixture Substances 0.000 description 17
- 150000002430 hydrocarbons Chemical class 0.000 description 11
- 229930195733 hydrocarbon Natural products 0.000 description 9
- 238000012546 transfer Methods 0.000 description 8
- 239000000126 substance Substances 0.000 description 7
- 239000004215 Carbon black (E152) Substances 0.000 description 6
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 2
- 150000001335 aliphatic alkanes Chemical class 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- 150000001345 alkine derivatives Chemical class 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- JJWKPURADFRFRB-UHFFFAOYSA-N carbonyl sulfide Chemical compound O=C=S JJWKPURADFRFRB-UHFFFAOYSA-N 0.000 description 2
- 150000008280 chlorinated hydrocarbons Chemical class 0.000 description 2
- 238000005194 fractionation Methods 0.000 description 2
- 150000008282 halocarbons Chemical class 0.000 description 2
- 239000003949 liquefied natural gas Substances 0.000 description 2
- 239000011555 saturated liquid Substances 0.000 description 2
- 230000005514 two-phase flow Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910001868 water Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/002—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
- F25B9/006—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L3/00—Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
- C10L3/06—Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
- C10L3/10—Working-up natural gas or synthetic natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0022—Hydrocarbons, e.g. natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/0042—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by liquid expansion with extraction of work
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0047—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
- F25J1/0052—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/006—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
- F25J1/008—Hydrocarbons
- F25J1/0092—Mixtures of hydrocarbons comprising possibly also minor amounts of nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/006—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
- F25J1/0097—Others, e.g. F-, Cl-, HF-, HClF-, HCl-hydrocarbons etc. or mixtures thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0211—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
- F25J1/0214—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0257—Construction and layout of liquefaction equipments, e.g. valves, machines
- F25J1/0262—Details of the cold heat exchange system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0291—Refrigerant compression by combined gas compression and liquid pumping
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0292—Refrigerant compression by cold or cryogenic suction of the refrigerant gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/12—Inflammable refrigerants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/13—Economisers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2290/00—Other details not covered by groups F25J2200/00 - F25J2280/00
- F25J2290/32—Details on header or distribution passages of heat exchangers, e.g. of reboiler-condenser or plate heat exchangers
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
Description
この出願は2004年6月23日に出願された、米国仮特許出願第60/565,589号の利益を主張する。
本発明の実施態様は一般に混合成分冷媒を使用して、天然ガスの如き、ガス流を冷凍するための方法に関する。
別の実施態様において、その方法は混合成分冷媒をプロセス流で熱交換領域に入れ、混合成分冷媒の二つ以上の側流を熱交換領域から取り出し、混合成分冷媒の側流を一つ以上の圧力レベルで分離して冷媒蒸気及び冷媒液体を生成し、冷媒蒸気を熱交換領域のまわりで圧縮ユニットにバイパスし、そして冷媒液体を熱交換領域に通すことを含む。
別の実施態様において、その方法は混合成分冷媒をプロセス流で熱交換領域に入れ、混合成分冷媒を一つ以上の圧力レベルで分離して冷媒蒸気流及び冷媒液体流を生成し、冷媒蒸気流を熱交換領域のまわりで圧縮ユニットにバイパスし、冷媒液体流を熱交換領域に通し、そして冷媒液体流を熱交換領域内で部分蒸発させて少なくとも1重量%の液体画分を保持することを含む。
更に別の実施態様において、その方法は第一混合成分冷媒をプロセス流で第一熱交換領域に入れ、第一混合成分冷媒を一つ以上の圧力レベルで分離して冷媒蒸気流及び冷媒液体流を生成し、冷媒蒸気流を第一熱交換領域のまわりで圧縮ユニットにバイパスし、冷媒液体流を第一熱交換領域に通してプロセス流を冷却し、そして第二混合成分冷媒を冷却されたプロセス流で第二熱交換領域に入れてプロセス流を液化することを含む。
更に別の実施態様において、その方法は第一混合成分冷媒をプロセス流で第一熱交換領域に入れ、混合成分冷媒を一つ以上の圧力レベルで分離して冷媒蒸気流及び冷媒液体流を生成し、冷媒蒸気流を第一熱交換領域のまわりで圧縮ユニットにバイパスし、冷媒液体流を第一熱交換領域に戻してガス流を冷却し、第二混合成分冷媒を冷却されたプロセス流で第二熱交換領域に入れ、そして第二混合成分冷媒を単一圧力レベルで蒸発させてガス流を液化することを含む。
更に別の実施態様において、その方法は混合成分冷媒流をプロセス流で熱交換に入れ(その冷媒流は液体冷媒を含む)、そして液体冷媒流が完全に気化される前に熱交換を中止することを含む。
更に別の実施態様において、その方法は混合成分冷媒をプロセス流で熱交換領域に入れ、混合成分冷媒を一つ以上の圧力レベルで分離して冷媒蒸気及び冷媒液体を生成し、少なくとも冷媒液体を熱交換領域に通し、そして冷媒液体を熱交換領域内で部分蒸発させて液相を保持することにより天然ガス流を液化することを含む。別の実施態様において、その方法は混合成分冷媒をプロセス流で熱交換領域に入れ、混合成分冷媒の二つ以上の側流を熱交換領域から取り出し、混合成分冷媒の側流を一つ以上の圧力レベルで分離して冷媒蒸気及び冷媒液体を生成し、少なくとも冷媒液体を熱交換領域に通し、そして冷媒液体を熱交換領域内で部分蒸発させて液相を保持することを含む。
詳細な説明が今提示される。特許請求の範囲の夫々が別々の発明を特定し、これは侵害目的のために特許請求の範囲に特定された種々の要素又は制限の均等物を含むものと認められる。状況に応じて、“発明”についての以下の全ての言及は或る場合には或る特定の実施態様のみについて言及し得る。その他の場合には、“発明”についての言及は特許請求の範囲の一つ以上(必ずしも全てではないが)に記載された主題について言及することが認められるであろう。発明の夫々が以下に更に大いに詳しく今記載されるが(特定の実施態様、別型及び例を含む)、これらの発明はこれらの実施態様、別型又は例に制限されず、これらはこの特許における情報が利用できる情報及び技術と組み合わされる場合に、当業者がこれらの発明をつくり、使用することを可能にするために含まれる。本明細書に使用される種々の用語が以下に定義される。特許請求の範囲に使用される用語が以下に定義されない程度では、それは当業者が印刷された刊行物及び発行された特許に反映されたようなその用語に与えた最も広い定義を与えられるべきである。
“混合成分冷媒”及び“MCR”という用語は互換可能に使用され、2種以上の冷媒成分を含む混合物を意味する。本明細書に記載されるMCRの例は“第一MCR”及び“第二MCR”である。
“冷媒成分”という用語は低温で熱を吸収し、高温で熱を放出する伝熱に使用される物質を意味する。例えば、圧縮冷凍系中の、“冷媒成分”は、低温及び低圧で蒸発により熱を吸収し、高温及び高圧で凝縮により熱を放出するであろう。例示の冷媒成分として、1〜5個の炭素原子を有するアルカン、アルケン、及びアルキン、窒素、塩素化炭化水素、フッ素化炭化水素、その他のハロゲン化炭化水素、並びにこれらの混合物又は組み合わせが挙げられるが、これらに限定されない。
“ガス”及び“蒸気”という用語は互換可能に使用され、液体状態又は固体状態から区別されるようなガス状態の物質又は物質の混合物を意味する。
“部分蒸発された”という用語は100%の蒸気ではない物質の混合物を含んでもよい物質を記載する。“部分蒸発された”流れは気相及び液相の両方を有してもよい。“部分蒸発された”流れの少なくとも一つの例は少なくとも1重量%、もしくは少なくとも2重量%、又は少なくとも3重量%、或いは少なくとも4重量%、又は少なくとも5重量%の液相、及び気相である残部を有する流れを含む。一つ以上の特定の実施態様において、“部分蒸発された”流れは1重量%、もしくは3重量%、又は10重量%の低い値から90重量%、もしくは97重量%、又は99重量%の高い値までの範囲の液相を有する。
“熱交換領域”という用語は伝熱を促進するために当業界で知られているあらゆる一つの型の装置又は同様の型もしくは異なる型の装置の組み合わせを意味する。例えば、“熱交換領域”は一つ以上のらせん巻き型交換器、プレート-フィン型交換器、シェル及びチューブ型交換器、又は以下に更に詳しく本明細書に記載されるプロセス条件に耐えることができる当業界で知られているあらゆるその他の型の熱交換器内に含まれ、又は少なくとも部分的に含まれてもよい。
特定の実施態様
種々の特定の実施例が今記載され、これらの少なくとも幾つかがまた特許請求の範囲に記載される。例えば、少なくとも一つの実施態様は混合成分冷媒をプロセス流で熱交換領域に入れ、混合成分冷媒を一つ以上の圧力レベルで分離して冷媒蒸気及び冷媒液体を生成することによる天然ガス流の液化方法に関する。冷媒蒸気は熱交換領域のまわりで圧縮ユニットにバイパスし、冷媒液体は熱交換領域に流入する。
少なくとも一つの別の特定実施例は混合成分冷媒をプロセス流で熱交換領域に入れ、混合成分冷媒の二つ以上の側流を熱交換領域から取り出すことによる天然ガス流の液化に関する。次いで混合成分冷媒の側流が一つ以上の圧力レベルで分離されて冷媒蒸気及び冷媒液体を生成する。冷媒蒸気が熱交換領域のまわりで圧縮ユニットにバイパスされ、冷媒液体が熱交換領域に通される。
更に別の特定実施態様は混合成分冷媒をプロセス流で熱交換領域に入れ、混合成分冷媒を一つ以上の圧力レベルで分離して冷媒蒸気流及び冷媒液体流を生成することによる天然ガス流の液化に関する。冷媒蒸気流が熱交換領域のまわりで圧縮ユニットにバイパスする。冷媒液体流が熱交換領域に通され、熱交換領域内で少なくとも部分蒸発されて少なくとも1重量%の液体画分を保持する。
更に別の特定実施態様は第一混合成分冷媒をプロセス流で第一熱交換領域に入れ、混合成分冷媒を一つ以上の圧力レベルで分離して冷媒蒸気流及び冷媒液体流を生成することによる天然ガス流の液化に関する。冷媒蒸気流が第一熱交換領域のまわりで圧縮ユニットにバイパスされ、冷媒液体流が第一熱交換領域に通されてガス流を冷却する。第二混合成分冷媒が冷却されたプロセス流で第二熱交換領域に入れられ、単一圧力レベルで蒸発されてガス流を液化する。
更に別の特定実施態様は混合成分冷媒流をプロセス流で熱交換に入れることによる天然ガスのプロセス流の冷却に関する。冷媒流が液体冷媒を含み、液体冷媒流が完全に気化される前に熱交換が中止される。
更に別の実施態様において、一つ以上の冷媒蒸気流は一つ以上の熱交換器をバイパスする必要がなく、かつ/又は圧縮ユニット直接送られる必要がない。このような実施態様において、一つ以上の蒸気流が、例えば、一つ以上の熱交換器に戻されてもよく、又はそれらが一つ以上の熱交換器をバイパスし、圧縮ユニット以外の装置に送られてもよい。こうして、本方法の実施態様は本明細書に記載されたあらゆる実施態様の改良を含み、これらの場合、一つ以上の冷媒蒸気流が一つ以上の熱交換器をバイパスせず、かつ/又は圧縮ユニットに直接送られない。このような実施態様は、例えば、混合成分冷媒をプロセス流で熱交換領域に入れ、混合成分冷媒を一つ以上の圧力レベルで分離して冷媒蒸気及び冷媒液体を生成し、少なくとも冷媒液体を熱交換領域に通し、冷媒液体を熱交換領域内で部分蒸発させて液相を保持することによる天然ガス流の液化を含む。このような実施態様はまた混合成分冷媒をプロセス流で熱交換領域に入れ、混合成分冷媒の二つ以上の側流を熱交換領域から取り出し、混合成分冷媒の側流を一つ以上の圧力レベルで分離して冷媒蒸気及び冷媒液体を生成し、少なくとも冷媒液体を熱交換領域に通し、冷媒液体を熱交換領域内で部分蒸発させて液相を保持することを含む。
図面に示される特定実施態様が今記載される。特許請求の範囲は図面の局面に限定されると解されるべきではないことが強調される。記載の簡素化及び容易さのために、これらの冷凍方法はそれらが液化天然ガス(“LNG”)を生成するために過冷却される天然ガスのプロセス流又は供給ガスに関するように本明細書に更に記載される。
図1
図1は少なくとも部分蒸発された混合成分冷媒を利用してプロセス流又は供給ガスを少なくとも冷却する冷凍方法5を図示する。供給ガス流12が熱交換器10内で混合成分冷媒(“MCR”)流30との熱交換に入れられる。以下に更に詳しく説明されるように、MCR流30が膨張され、冷却されて熱交換器10内で供給ガス流12から熱を除く。示されていないが、冷凍を必要とする付加的なプロセス流が熱交換器10に入り得る。このような付加的な流れの非限定例として、その他の冷媒流、その後の処理段階で流れ12のガスとブレンドされるその他の炭化水素流、及び一つ以上の分別処理工程と一体化される流れが挙げられる。
図1に示されるような、熱交換器10は、少なくとも一つの熱交換領域を含む単一ユニットである。示されていないが、以下に記載されるように、熱交換器10は二つ以上、例えば、二つ、三つ、四つ、又は五つの熱交換領域を含んでもよく、これらは単一ユニット内に含まれてもよく、又は夫々の領域が別々のユニット中に含まれてもよい。
供給ガス流12は天然ガスであることが好ましく、少なくとも55モル%、もしくは少なくとも65モル%、又は少なくとも75モル%のメタンを含んでもよい。MCR流30は一種以上の1〜5個の炭素原子を有するアルカン、アルケン、及びアルキン、窒素、塩素化炭化水素、フッ素化炭化水素、その他のハロゲン化炭化水素、並びにこれらの混合物又は組み合わせを含んでもよい。一つ以上の特定実施態様において、MCR流30はエタンとプロパンの混合物である。一つ以上の特定実施態様において、MCR流30はエタン、プロパン及びイソブタンの混合物である。一つ以上の特定実施態様において、MCR流30はメタン、エタン、及び窒素の混合物である。
減圧され、こうして冷却された後に、液体流65は熱交換領域10に戻り、そこでそれがプロセスガス流12及びMCR流30との熱交換のために完全に蒸発され、又は部分蒸発される。この完全に蒸発され、又は部分蒸発された流れが流れ70として熱交換領域10を出る。一つ以上の特定実施態様において、流れ70は少なくとも85重量%、もしくは少なくとも90重量%、又は少なくとも99重量%の蒸気画分を有し、残部が液相画分である。一つ以上の特定実施態様において、流れ70は液相を有しない蒸気流である。次いで流れ70は圧縮ユニット75に流入する。
蒸気流60を熱交換領域10のまわりで圧縮ユニット75に直接送ることにより(即ち、冷媒蒸気を熱交換領域のまわりで圧縮ユニットにバイパスすることにより)、2相冷媒と関連する或る分布問題が回避し得る。“2相冷媒”という用語は液相中の冷媒の少なくとも一部及び気相中の少なくとも10容積%を有する冷媒を表す。2相分布は熱交換領域内の2相冷媒の不適当な分布のために減少された液化ガス生成及び失われた収益をもたらし得る。熱交換領域内の2相冷媒の不適当な分布は非効率の伝熱をもたらす。何とならば、2相冷媒の気相が液相と較べて熱交換領域内で多くの容積を占有するからである。気相は蒸発する液相と較べて熱交換に非常にわずかに寄与するので、冷媒の冷却能が悪化される。
更に、2相冷媒を一つ以上の熱交換器に有効に分配し得る系の水力的デザインが操作時間及び購入装置の両方で高価であり得る。このようなデザインの挙動は温度、圧力、及び/又は流量に関するデザイン条件からあまりにもかけ離れている状況で予測するのに一層困難である。本明細書に記載された一つ以上の実施態様に従って得られる利益は共通の源から冷媒を供給される平行配置の熱交換器のアレイに特に適用できる。何とならば、気相が除去されてこの分布考慮を排除するからである。
図2は一つより多い熱交換領域をその中に含んだ熱交換器を利用してプロセス流又は供給ガスを冷却又は液化する冷凍方法100を図示する。冷凍方法100は二つ以上の熱交換領域、例えば、図2に示された三つの領域をその中に含んだ熱交換器200、及びMCR圧縮ユニット300を利用する。供給ガス流102が熱交換器200内で混合成分冷媒(“MCR”)に対し冷却される。示されていないが、冷凍を必要とする付加的なプロセス流が熱交換器200に入り得る。このような付加的な流れの非限定例として、その他の冷媒流、その後の処理段階で流れ102のガスとブレンドされるその他の炭化水素流、及び一つ以上の分別処理工程と一体化される流れが挙げられる。
供給ガス流102の組成はその溜め源に依存するが、例えば、99モル%までのメタン、15モル%までのエタン、10モル%までのプロパン、及び30モル%までの窒素を含み得る。一つの特定実施態様において、供給ガス流102は少なくとも55モル容積%、もしくは少なくとも65モル容積%、又は少なくとも75モル容積%のメタンを含んでもよい。別の特定実施態様において、供給ガス流102はまた1モル%まで、もしくは2モル%まで、又は5モル%までの非炭化水素化合物、例えば、水、二酸化炭素、硫黄含有化合物、水銀、及びこれらの組み合わせを含んでもよい。一つ以上の特定実施態様において、供給ガス流102は精製方法(示されていない)にかけられて熱交換器200に入る前にこれらの非炭化水素化合物の大半(全てではないとしても)を供給ガス流102からストリップしてもよく、又はそれ以外に除去してもよい。
或る実施態様において、供給ガス流102が15℃、もしくは25℃、又は35℃の低い温度から40℃、もしくは45℃、又は55℃の高い温度までの範囲内の温度、及び4,000kPa、もしくは6,000kPa、又は7,000kPaの低い圧力から8,500kPa、もしくは10,000kPa、又は12,000kPaの高い圧力までの範囲内の圧力で熱交換器200に入る。供給ガス流102は冷却された流れ104として熱交換器200を出る。冷却された流れ104は-70℃、もしくは-80℃、又は-100℃の低い温度から-60℃、もしくは-50℃、又は-35℃の高い温度までの範囲内の温度で熱交換器200を出る。例えば、冷却された流れ104は約-70℃〜約-75℃の温度で熱交換器200を出ることができる。
混合成分冷媒(“MCR”)はエタン、プロパン及びイソブタンの混合物であることが好ましい。MCRは約20モル%〜80モル%のエタン、約10モル%〜90モル%のプロパン、及び約5モル%〜30モル%のイソブタンを含んでもよい。一つ以上の特定実施態様において、第一MCR内のエタンの濃度は20モル%、もしくは30モル%、又は40モル%の低い濃度から60モル%、もしくは70モル%、又は80モル%の高い濃度までの範囲である。一つ以上の特定実施態様において、MCR内のプロパンの濃度は10モル%、もしくは20モル%、又は30モル%の低い濃度から70モル%、もしくは80モル%、又は90モル%の高い濃度までの範囲である。一つ以上の特定実施態様において、MCR内のイソブタンの濃度は3モル%、もしくは5モル%、又は10モル%の低い濃度から20モル%、もしくは25モル%、又は30モル%の高い濃度までの範囲である。
一つの特定実施態様において、MCRは約32〜約45の分子量を有する。MCRの分子量は32、もしくは34、又は35の低い分子量から42、もしくは43、又は45の高い分子量までの範囲であることが更に好ましい。更に、MCR対供給ガス流102のモル比は1.0、もしくは1.2、又は1.5の低い値から1.8、もしくは2.0、又は2.2の高い値までの範囲である。一つ以上の特定実施態様において、MCR対供給ガス流102のモル比は少なくとも1.0、もしくは少なくとも1.2、又は少なくとも1.5である。
熱交換器200を更に詳しく考慮して、MCRが流れ202として熱交換器200に入る。流れ202の少なくとも一部が側流203として熱交換器200の第一熱交換領域から取り出される。側流203が膨張装置205を使用して第一圧力まで膨張されて、2相流207(即ち、気相及び液相を有する流れ)を生じる。一つ以上の特定実施態様において、この第一圧力は800kPa、もしくは1,200kPa、又は1,500kPaの低い圧力から1,900kPa、もしくは2,200kPa、又は2,600kPaの高い圧力までの範囲である。それ故、膨張された流れ207の温度は0℃、もしくは3℃、又は4℃の低い温度から6℃、もしくは10℃、又は15℃の高い温度までの範囲である。側流203は1,600kPaから1,800kPaまでの圧力及び4℃から6℃までの温度に膨張されることが好ましい。
次いで2相流207がセパレーター210内で分離されて蒸気流214及び液体流212を生じる。2相流207はフラッシ分離にかけられることが好ましい。蒸気流214が熱交換器200をバイパスし、圧縮ユニット300に直接送られる。蒸気流214を熱交換器200のまわりで圧縮ユニット300に直接送ることにより(即ち、冷媒蒸気を熱交換領域のまわりで圧縮ユニットにバイパスすることにより)、先に注目された2相冷媒と関連する或る分布問題が回避し得る。
流れ202の少なくとも別の部分が側流213として熱交換器200の第二熱交換領域から取り出される。側流213が膨張装置215を使用して第二圧力まで膨張されて、流れ217を生じる。流れ217は気相及び液相を有する。一つ以上の特定実施態様において、この第二圧力は250kPa、もしくは400kPa、又は500kPaの低い圧力から600kPa、もしくは700kPa、又は850kPaの高い圧力までの範囲である。それ故、膨張された流れ217の温度は-60℃、もしくは-50℃、又は-40℃の低い温度から-30℃、もしくは-20℃、又は-10℃の高い温度までの範囲である。側流213は550kPaから570kPaまでの圧力及び-35℃から-45℃までの温度に膨張されることが好ましい。
次いで2相流217がセパレーター220内で分離されて蒸気流224及び液体流222を生じる。2相流217はフラッシ分離にかけられることが好ましい。蒸気流224が熱交換器200をバイパスし、圧縮ユニット300に直接送られる。減圧され、こうしれ冷却された、液体流222が、熱交換器200に戻り、そこでそれが熱交換器200内の熱交換のために完全に蒸発され、又は部分蒸発される。この完全に蒸発され、又は部分蒸発された流れが流れ226として熱交換器200を出る。一つ以上の特定実施態様において、流れ226が少なくとも85重量%、もしくは少なくとも90重量%、又は少なくとも99重量%の蒸気画分を有し、残部が液相画分である。流れ226は図1に示されるようにセパレーター220からの蒸気流224と合わされて圧縮ユニット300に流入するリサイクル流228を生成してもよい。
次いで2相流227がセパレーター230内で分離されてフラッシ蒸気流234及び飽和液体流232を生じる。2相流227はフラッシ分離にかけられることが好ましい。蒸気流234が熱交換器200をバイパスし、圧縮ユニット300に直接送られる。減圧され、こうしれ冷却された、飽和液体流232が、熱交換器200に戻り、そこでそれが熱交換器200内の熱交換のために完全に蒸発され、又は部分蒸発される。この完全に蒸発され、又は部分蒸発された冷媒が流れ236として熱交換器200を出る。一つ以上の特定実施態様において、流れ236が少なくとも85重量%、もしくは少なくとも90重量%、又は少なくとも99重量%の蒸気画分を有し、残部が液相画分である。流れ236は図2に示されるようにセパレーター230からの蒸気流234と合わされて圧縮ユニット300に流入するリサイクル流238を生成してもよい。
上記された一つ以上の特定実施態様において、膨張装置はあらゆる減圧装置であってもよい。例示の膨張装置として、弁、調節弁、ジュール・トンプソン弁、ベンチュリ装置、液体膨張装置、水力タービン等が挙げられるが、これらに限定されない。膨張装置205、215、225は自動的に始動される膨張弁又はジュール・トンプソン型弁であることが好ましい。
上記されたように、蒸気流214、224、234は熱交換器200をバイパスし、圧縮ユニット300に直接送られる。このバイパス配置は先に説明されたように2相冷媒と関連する分布問題を回避する。更に、2相を有する熱交換領域を出る部分蒸発された冷媒は熱交換領域内の機械応力を減少するように形成された。機械応力は液相により占有された容積及び気相により占有された容積にわたる迅速な温度遷移の産物であり得る。液体又は2相流体部分の容積から蒸気部分の容積への温度遷移は始動、シャットダウン、もしくはアップセット中の応力破断をもたらすかもしれず、又は交換器の疲労破損をもたらすかもしれない。それ故、冷媒流れ条件の形成は迅速な温度勾配により生じる機械応力の固有の効果を生じないで冷媒液体流212、222及び232の不完全な気化を可能にする。冷媒が充分に気化される系から冷媒が部分蒸発される系への遷移について、流量が増大されてもよく、蒸発圧力が変化されてもよく、冷媒組成が一層高い沸点を有する多い成分、又はこれらの設計パラメーターの組み合わせを含むように変化されてもよい。
MCR圧縮ユニット300は一つ以上の異なる圧力レベルを含む。夫々の圧縮段階の吸引はリサイクル流218、228、238の圧力レベルに相当することが好ましい。少なくとも一つの特定実施態様において、第一圧縮段階は吸引ノックアウト容器310及びコンプレッサー320を含む。少なくとも一つの特定実施態様において、第二圧縮段階は吸引ノックアウト容器330、コンプレッサー340、及び排出クーラー又は冷却器350を含む。少なくとも一つの特定実施態様において、第三圧縮段階は吸引ノックアウト容器360、コンプレッサー370、及び排出クーラー380を含む。少なくとも一つの特定実施態様において、圧縮ユニット300は最終クーラー又は冷却器390を更に含む。
第一圧縮段階につき更に詳しく言及して、流れ322が第一段階320を出る。一つ以上の特定実施態様において、流れ322の圧力は200kPa、もしくは300kPa、又は400kPaの低い圧力から600kPa、もしくは700kPa、又は800kPaの高い圧力までの範囲である。流れ322の温度は5℃、もしくは10℃、又は15℃の低い温度から20℃、もしくは25℃、又は30℃の高い温度までの範囲である。
第二圧縮段階につき言及して、流れ342が第二段階340を出て、排出クーラー350内で冷却されて流れ352を生じる。一つ以上の特定実施態様において、流れ342の圧力は800kPa、もしくは1,200kPa、又は1,400kPaの低い圧力から1,800kPa、もしくは20,00kPa、又は2,500kPaの高い圧力までの範囲である。一つ以上の特定実施態様において、流れ352の温度は15℃、もしくは25℃、又は35℃の低い温度から40℃、もしくは45℃、又は55℃の高い温度までの範囲である。
第三圧縮段階につき言及して、流れ372が第三段階370を出て、排出クーラー380内で冷却されて流れ382を生じる。一つ以上の特定実施態様において、流れ372の圧力は1,600kPa、もしくは2,400kPa、又は2,900kPaの低い圧力から3,500kPa、もしくは40,00kPa、又は5,000kPaの高い圧力までの範囲である。流れ372の温度は40℃、もしくは50℃、又は60℃の低い温度から100℃、もしくは120℃、又は150℃の高い温度までの範囲である。一つ以上の特定実施態様において、流れ382の温度は0℃、もしくは10℃、又は20℃の低い温度から40℃、もしくは50℃、又は60℃の高い温度までの範囲である。
一つ以上の或る実施態様において、流れ382が冷却器390に流入して流れ392を生じる。流れ392の温度は0℃、もしくは10℃、又は20℃の低い温度から40℃、もしくは45℃、又は55℃の高い温度までの範囲である。一つ以上の或る実施態様において、流れ392がサージ容器295に流入して運転性考慮のための滞留時間を与える。何とならば、高圧液体冷媒が流れ202として熱交換器200に入るからである。
冷凍又は液化方法100は図3に示されるように第二熱交換器400及び第二MCR圧縮ユニット500を更に利用してもよい。図3は2種の混合成分冷媒を別々の熱交換器中で利用してプロセス流又は供給ガスを冷却又は液化する冷凍方法を図示する。しかしながら、第一熱交換器200及び第二熱交換器400が共通のユニット内に含まれてもよい。両方の場合、第一熱交換器200及び第二熱交換器400は示されるように直列に配置されることが好ましい。
第一熱交換器200を去る冷却された流れ104が第二熱交換器400内で第二混合成分冷媒(“第二MCR”)に対し過冷却される。冷却された流れ104が液化された流れ106として第二熱交換器400を出る。或る実施態様において、液化された流れ106が-220℃、もしくは-180℃、又は-160℃の低い温度から-130℃、もしくは-110℃、又は-70℃の高い温度までの範囲内の温度で熱交換器400を出る。一つの特定実施態様において、液化された流れ106が約-145℃〜約-155℃の温度で熱交換器400を出る。或る実施態様において、液化された流れ106が3,900kPa、もしくは5,800kPa、又は6,900kPaの低い圧力から9,000kPa、もしくは10,000kPa、又は12,000kPaの高い圧力までの範囲内の圧力で熱交換器400を出る。
一つ以上の特定実施態様において、第二混合成分冷媒(“第二MCR”)は第一混合成分冷媒(“第一MCR”)と同じであってもよい。一つ以上の特定実施態様において、第二MCRは異なっていてもよい。例えば、第二MCRは窒素、メタン、及びエタンの混合物であってもよい。一つ以上の特定実施態様において、第二MCRは約5モル%〜20モル%の窒素、約20モル%〜80モル%のメタン、及び約10モル%〜60モル%のエタンを含んでもよい。一つ以上の特定実施態様において、第二MCR内の窒素の濃度は5モル%、もしくは6モル%、又は7モル%の低い濃度から15モル%、もしくは18モル%、又は20モル%の高い濃度までの範囲である。一つ以上の特定実施態様において、第二MCR内のメタンの濃度は20モル%、もしくは30モル%、又は40モル%の低い濃度から60モル%、もしくは70モル%、又は80モル%の高い濃度までの範囲である。一つ以上の特定実施態様において、第二MCR内のエタンの濃度は10モル%、もしくは15モル%、又は20モル%の低い濃度から45モル%、もしくは55モル%、又は60モル%の高い濃度までの範囲である。
第二MCRの分子量は18、もしくは19、又は20の低い分子量から25、もしくは26、又は27の高い分子量までの範囲である。一つ以上の特定実施態様において、第二MCRは約18〜約27の分子量を有する。更に、第二MCR対冷却された流れ104のモル比は0.5、もしくは0.6、又は0.7の低い値から0.8、もしくは0.9、又は1.0の高い値までの範囲である。一つ以上の特定実施態様において、第二MCR対冷却された流れ104のモル比は少なくとも0.5、もしくは少なくとも0.6、又は少なくとも0.7である。
第二MCRは流れ404として第一熱交換器200を出る。一つ以上の特定実施態様において、流れ402が第一熱交換器200内で蒸気画分を有しない液体流404に完全に凝縮される。一つ以上の特定実施態様において、流れ402が第一MCRとの間接の伝熱により部分凝縮され、その結果、流れ404が少なくとも85重量%、もしくは少なくとも90重量%、又は少なくとも95重量%、或いは少なくとも99重量%の液体画分を有する。一つ以上の特定実施態様において、流れ404は2,500kPa、もしくは4,000kPa、又は5,000kPaの低い圧力から6,000kPa、もしくは7,000kPa、又は9,000kPaの高い圧力までの範囲内の圧力を有する。一つの特定実施態様において、流れ404は-110℃、もしくは-90℃、又は-80℃の低い温度から-60℃、もしくは-50℃、又は-30℃の高い温度までの範囲内の温度を有する。
一つ以上の特定実施態様において、冷凍を必要とする付加的なプロセス流が熱交換器400に入り得る。このような付加的な流れの非限定例として、その他の冷媒流、その後の処理段階で流れ102のガスとブレンドされるその他の炭化水素流、及び一つ以上の分別処理工程と一体化される流れが挙げられる。
第二熱交換器400を更に詳しく考慮して、第一熱交換器200内で冷却され、完全には凝縮されないとしても、少なくとも部分凝縮された第二MCRが、サージ容器406中に集められ、流れ410として第二熱交換器400に供給される。第二MCRは流れ415として第二熱交換器400を出る。一つ以上の特定実施態様において、流れ415が2,800kPa、もしくは4,200kPa、又は5,500kPaの低い圧力から6,200kPa、もしくは7,000kPa、又は8,500kPaの高い圧力までの範囲内の圧力を有する。一つ以上の特定実施態様において、流れ415が-230℃、もしくは-190℃、又は-170℃の低い温度から-140℃、もしくは-120℃、又は-70℃の高い温度までの範囲内の温度を有する。
一つ以上の特定実施態様において、第二熱交換器400を出る流れ415が膨張装置450を使用して減圧される(即ち、膨張される)。次いで流れ415が膨張装置420を使用して更に減圧されて(即ち、膨張されて)流れ425を生じる。上記のように、膨張装置420、450は弁、調節弁、ジュール・トンプソン弁、ベンチュリ装置、液体膨張装置、水力タービン等を含むが、これらに限定されないあらゆる減圧装置であってもよい。膨張装置420は自動的に始動される膨張弁又はジュール・トンプソン型弁であることが好ましい。膨張装置450は液体膨張装置又は水力タービンであることが好ましい。一つ以上の特定実施態様において、流れ425が200kPa、もしくは300kPa、又は400kPaの低い圧力から500kPa、もしくは600kPa、又は700kPaの高い圧力までの範囲内の圧力;-250℃、もしくは-200℃、又は-170℃の低い温度から-140℃、もしくは-110℃、又は-70℃の高い温度までの範囲内の温度を有する。流れ425が435kPa〜445kPaの圧力及び-150℃〜-160℃の温度まで膨張されることが好ましい。
膨張装置420内の等エンタルピー膨張後に、流れ425が第二熱交換器400内で完全に蒸発され、又は部分蒸発され、流れ430として第二熱交換器400を出る。一つ以上の特定実施態様において、流れ425が単一圧力レベルで第二熱交換器400内で完全に蒸発され、又は部分蒸発される。一つ以上の特定実施態様において、流れ425が単一圧力レベルで第二熱交換器400内で完全に蒸発される(即ち、全気相)。一つ以上の特定実施態様において、第二熱交換器400内の単一圧力レベルが150kPa、もしくは250kPa、又は350kPaの低い圧力から400kPa、もしくは500kPa、又は600kPaの高い圧力までの範囲内に維持される。第二熱交換器400内の単一圧力レベルは約350kPa〜約450kPaであることが好ましい。
次いで流れ430が第二圧縮ユニット500に送られる。圧縮ユニット500はプロセス要件に応じて一つ以上の圧縮段階を含んでもよい。一つ以上の特定実施態様において、圧縮ユニット500は図3に示されるように二つの圧縮段階を含む。例えば、圧縮ユニット500は第一圧縮段階510及び第二圧縮段階520を有する。
運転中に、流れ430が吸引ノックアウト容器510A中を流れ、そこで蒸気流が第一圧縮段階510に続き、アフター-クーラー515中で冷却されて流れ512を生じる。一つ以上の特定実施態様において、流れ512が1,900kPa、もしくは2,800kPa、又は3,500kPaの低い圧力から4,000kPa、もしくは4,800kPa、又は5,800kPaの高い圧力までの範囲内の圧力、及び15℃、もしくは25℃、又は30℃の低い温度から40℃、もしくは50℃、又は60℃の高い温度までの範囲内の温度を有する。
流れ512が吸引ノックアウト容器520A中を流れ、そこで蒸気流が第二圧縮段階520に続き、冷却される。一つ以上の特定実施態様において、第二圧縮段階520を出る蒸気流522は2,900kPa、もしくは4,300kPa、又は5,200kPaの低い圧力から6,400kPa、もしくは7,500kPa、又は9,000kPaの高い圧力までの範囲内の圧力、及び15℃、もしくは25℃、又は35℃の低い温度から40℃、もしくは45℃、又は60℃の高い温度までの範囲内の温度を有する。次いで蒸気流522がアフター-クーラー525内で冷却され、流れ402として第一熱交換器200に循環される。
図4は液体冷媒収集系を利用するプロセス流又は供給ガスの別の冷凍方法を図示する。図4に示されるように、セパレーター510A及び520Bから集められた液体冷媒がポンプ530と流体連通していてもよい。ポンプ530がこの液体冷媒を流れ532によりそのプロセスに戻す。これが熱交換領域内で部分蒸発する混合成分冷媒を処理するのに有効かつ効率のよい方法を可能にする。また、セパレーター510A及び520Bから集められた液体冷媒が排出され、捨てられてもよい。同様に、示されていないが、圧縮ユニット300のノックアウトドラム(例えば、ドラム310、330、及び360)が同様の液体収集系を備えていてもよい。
10、200、400−熱交換器
12、102−供給ガス流
30−混合成分冷媒流
45、205、215、225、420、450−膨張装置
50、207、217、227−2相流
55、210、220、230−セパレーター
60、214、224、234−蒸気流
65、212、222、232−液体流
75、300、500−圧縮ユニット
218、228、238−リサイクル流
295、406−サージ容器
310、330、360−吸引ノックアウト容器
320、340、370−コンプレッサー
350、380−排出クーラー
530−ポンプ
Claims (66)
- 混合成分冷媒をプロセス流で熱交換領域に入れ、
混合成分冷媒を一つ以上の圧力レベルで分離して冷媒蒸気及び冷媒液体を生成し、
冷媒蒸気を熱交換領域のまわりで圧縮ユニットにバイパスし、
冷媒液体を熱交換領域に通し、そして
冷媒液体を熱交換領域内で部分蒸発させて液相を保持することを特徴とする、天然ガス流の液化方法。 - 熱交換領域が単一熱交換器内に含まれる、請求項1記載の方法。
- 熱交換領域が二つ以上の熱交換器内に含まれる、請求項1記載の方法。
- 熱交換領域が単一熱交換器内に含まれた二つ以上の領域を含む、請求項1記載の方法。
- 熱交換領域が二つ以上の領域を含み、夫々の領域が単一熱交換器内に含まれる、請求項1記載の方法。
- 熱交換領域が二つ以上の熱交換器内に含まれた二つ以上の領域を含む、請求項1記載の方法。
- プロセス流が実質的に天然ガスからなる、請求項1記載の方法。
- 第一混合成分冷媒がエタン、プロパン、及びイソブタンを含む、請求項1記載の方法。
- 第一混合成分冷媒がエタン及びプロパンを含む、請求項1記載の方法。
- 第一混合成分冷媒がメタン、エタン及び窒素を含む、請求項1記載の方法。
- 混合成分冷媒の分離が混合成分冷媒を約80kPa〜約2,600kPaの圧力まで膨張することを含む、請求項1記載の方法。
- 混合成分冷媒の分離が混合成分冷媒を約250kPa〜約2,200kPaの圧力まで膨張することを含む、請求項1記載の方法。
- 混合成分冷媒の分離が混合成分冷媒を約500kPa〜約1,900kPaの圧力まで膨張することを含む、請求項1記載の方法。
- 混合成分冷媒の分離が混合成分冷媒の第一部分を約1,500kPa〜約1,900kPaの第一圧力まで膨張し、混合成分冷媒の第二部分を約500kPa〜約700kPaの第二圧力まで膨張することを含む、請求項1記載の方法。
- 混合成分冷媒の分離が混合成分冷媒の第一部分を約800kPa〜約2,600kPaの第一圧力まで膨張し、混合成分冷媒の第二部分を約250kPa〜約850kPaの第二圧力まで膨張し、混合成分冷媒の第三部分を約80kPa〜約250kPaの第三圧力まで膨張することを含む、請求項1記載の方法。
- 混合成分冷媒をプロセス流で熱交換領域に入れ、
混合成分冷媒の二つ以上の側流を熱交換領域から取り出し、
混合成分冷媒の側流を一つ以上の圧力レベルで分離して冷媒蒸気及び冷媒液体を生成し、
冷媒蒸気を熱交換領域のまわりで圧縮ユニットにバイパスし、
冷媒液体を熱交換領域に通し、そして
冷媒液体を熱交換領域内で部分蒸発させて液相を保持することを特徴とする、天然ガス流の液化方法。 - 混合成分冷媒の分離が混合成分冷媒の側流を約80kPa〜約2,600kPaの圧力まで膨張することを含む、請求項16記載の方法。
- 混合成分冷媒の分離が混合成分冷媒の側流を約250kPa〜約2,200kPaの圧力まで膨張することを含む、請求項16記載の方法。
- 混合成分冷媒の分離が混合成分冷媒の第一側流を約1,500kPa〜約1,900kPaの第一圧力まで膨張し、混合成分冷媒の第二側流を約500kPa〜約700kPaの第二圧力まで膨張することを含む、請求項16記載の方法。
- 混合成分冷媒の分離が混合成分冷媒の第一側流を約800kPa〜約2,600kPaの第一圧力まで膨張し、混合成分冷媒の第二側流を約250kPa〜約850kPaの第二圧力まで膨張し、混合成分冷媒の第三側流を約80kPa〜約250kPaの第三圧力まで膨張することを含む、請求項16記載の方法。
- 第一混合成分冷媒がエタン、プロパン、及びイソブタンを含む、請求項16記載の方法。
- 第一混合成分冷媒がエタン及びプロパンを含む、請求項16記載の方法。
- 第一混合成分冷媒がメタン、エタン及び窒素を含む、請求項16記載の方法。
- 熱交換領域内の冷媒液体の部分蒸発が少なくとも1重量%の液体画分を保持する、請求項1記載の方法。
- 混合成分冷媒の分離が混合成分冷媒を約80kPa〜約180kPaの圧力まで膨張することを含む、請求項24記載の方法。
- 混合成分冷媒の分離が混合成分冷媒を約250kPa〜約600kPaの圧力まで膨張することを含む、請求項24記載の方法。
- 混合成分冷媒の分離が混合成分冷媒を約800kPa〜約1900kPaの圧力まで膨張することを含む、請求項24記載の方法。
- 混合成分冷媒の分離が混合成分冷媒の第一部分を約1,200kPa〜約2,200kPaの第一圧力まで膨張し、混合成分冷媒の第二部分を約400kPa〜約700kPaの第二圧力まで膨張することを含む、請求項24記載の方法。
- 混合成分冷媒の分離が混合成分冷媒の第一部分を約1,500kPa〜約1,900kPaの第一圧力まで膨張し、混合成分冷媒の第二部分を約500kPa〜約600kPaの第二圧力まで膨張し、混合成分冷媒の第三部分を約150kPa〜約180kPaの第三圧力まで膨張することを含む、請求項24記載の方法。
- 冷媒液体の部分蒸発が少なくとも1重量%の液体画分を有する2相冷媒を生成する、請求項24記載の方法。
- 冷媒液体の少なくとも部分蒸発が少なくとも3重量%の液体画分を有する2相冷媒を生成する、請求項24記載の方法。
- プロセス流が実質的に天然ガスからなる、請求項24記載の方法。
- 第一混合成分冷媒がエタン、プロパン、及びイソブタンを含む、請求項24記載の方法。
- 第一混合成分冷媒がエタン及びプロパンを含む、請求項24記載の方法。
- 第一混合成分冷媒がメタン、エタン及び窒素を含む、請求項24記載の方法。
- 第一混合成分冷媒をプロセス流で第一熱交換領域に入れ、
第一混合成分冷媒を一つ以上の圧力レベルで分離して冷媒蒸気流及び冷媒液体流を生成し、
冷媒蒸気流を第一熱交換領域のまわりで圧縮ユニットにバイパスし、
冷媒液体流を第一熱交換領域に通してプロセス流を冷却し、そして
第二混合成分冷媒を冷却されたプロセス流で第二熱交換領域に入れてプロセス流を液化することを特徴とする、天然ガス流の液化方法。 - 冷媒液体流を第一熱交換領域内で部分蒸発させて少なくとも1重量%の液体画分を保持することを更に含む、請求項36記載の方法。
- 第二混合成分冷媒を第二熱交換領域内で部分蒸発させて少なくとも1重量%の液体画分を保持することを更に含む、請求項36記載の方法。
- 第一混合成分冷媒の分離が第一混合成分冷媒を約1,200kPa〜約2,200kPaの圧力まで膨張することを含む、請求項36記載の方法。
- 第一混合成分冷媒の分離が第一混合成分冷媒を約400kPa〜約700kPaの圧力まで膨張することを含む、請求項36記載の方法。
- 第一混合成分冷媒の分離が第一混合成分冷媒を約120kPa〜約200kPaの圧力まで膨張することを含む、請求項36記載の方法。
- 第一混合成分冷媒の分離が第一混合成分冷媒の第一部分を約1,500kPa〜約1,900kPaの第一圧力まで膨張し、第一混合成分冷媒の第二部分を約500kPa〜約600kPaの第二圧力まで膨張することを含む、請求項36記載の方法。
- 第一混合成分冷媒の分離が第一混合成分冷媒の第一部分を約1,500kPa〜約1,900kPaの第一圧力まで膨張し、第一混合成分冷媒の第二部分を約500kPa〜約600kPaの第二圧力まで膨張し、第一混合成分冷媒の第三部分を約150kPa〜約180kPaの第三圧力まで膨張することを含む、請求項36記載の方法。
- プロセス流が実質的に天然ガスからなる、請求項36記載の方法。
- 第一混合成分冷媒がエタン、プロパン、及びイソブタンを含む、請求項36記載の方法。
- 第一混合成分冷媒がエタン及びプロパンを含む、請求項36記載の方法。
- 第二混合成分冷媒がメタン、エタン及び窒素を含む、請求項36記載の方法。
- 第一混合成分冷媒をプロセス流で第一熱交換領域に入れ、
混合成分冷媒を一つ以上の圧力レベルで分離して冷媒蒸気流及び冷媒液体流を生成し、
冷媒蒸気流を第一熱交換領域のまわりで圧縮ユニットにバイパスし、
冷媒液体流を第一熱交換領域に戻してガス流を冷却し、
第二混合成分冷媒を冷却されたプロセス流で第二熱交換領域に入れ、そして
第二混合成分冷媒を単一圧力レベルで蒸発させてガス流を液化することを特徴とする、天然ガス流の液化方法。 - 冷媒液体流を第一熱交換領域内で部分蒸発させて少なくとも1重量%の液体画分を保持することを更に含む、請求項48記載の方法。
- 第二混合成分冷媒を第二熱交換領域内で部分蒸発させて少なくとも1重量%の液体画分を保持することを更に含む、請求項48記載の方法。
- 第一混合成分冷媒の分離が第一混合成分冷媒を約1,200kPa〜約2,200kPaの圧力まで膨張することを含む、請求項48記載の方法。
- 第一混合成分冷媒の分離が第一混合成分冷媒を約400kPa〜約700kPaの圧力まで膨張することを含む、請求項48記載の方法。
- 第一混合成分冷媒の分離が第一混合成分冷媒を約120kPa〜約200kPaの圧力まで膨張することを含む、請求項48記載の方法。
- 第一混合成分冷媒の分離が第一混合成分冷媒の第一部分を約1,500kPa〜約1,900kPaの第一圧力まで膨張し、第一混合成分冷媒の第二部分を約500kPa〜約600kPaの第二圧力まで膨張することを含む、請求項48記載の方法。
- 第一混合成分冷媒の分離が第一混合成分冷媒の第一部分を約1,500kPa〜約1,900kPaの第一圧力まで膨張し、第一混合成分冷媒の第二部分を約500kPa〜約600kPaの第二圧力まで膨張し、第一混合成分冷媒の第三部分を約150kPa〜約180kPaの第三圧力まで膨張することを含む、請求項48記載の方法。
- 第二混合成分冷媒を単一圧力レベルで蒸発させることが第二混合成分冷媒を減圧装置により200kPaから700kPaまでの範囲内の圧力までフラッシすることを含む、請求項48記載の方法。
- 第二混合成分冷媒を単一圧力レベルで蒸発させることが第二混合成分冷媒を弁により400kPaから500kPaまでの範囲内の圧力までフラッシすることを含む、請求項48記載の方法。
- 第二混合成分冷媒を第一熱交換領域内で第一混合成分冷媒との熱交換により冷却する、請求項48記載の方法。
- 第二混合成分冷媒を第一熱交換領域内で第一混合成分冷媒との熱交換により凝縮する、請求項48記載の方法。
- プロセス流が実質的に天然ガスからなる、請求項48記載の方法。
- 第一混合成分冷媒がエタン、プロパン、及びイソブタンを含む、請求項48記載の方法。
- 第一混合成分冷媒がエタン及びプロパンを含む、請求項48記載の方法。
- 第二混合成分冷媒がメタン、エタン及び窒素を含む、請求項48記載の方法。
- 混合成分冷媒流をプロセス流で熱交換に入れ(その冷媒流は液体冷媒を含む)、そして
液体冷媒流が完全に気化される前に熱交換を中止することを特徴とする、天然ガスのプロセス流の冷却方法。 - 混合成分冷媒をプロセス流で熱交換領域に入れ、
混合成分冷媒を一つ以上の圧力レベルで分離して冷媒蒸気及び冷媒液体を生成し、
少なくとも冷媒液体を熱交換領域に通し、そして
冷媒液体を熱交換領域内で部分蒸発させて液相を保持することを特徴とする、天然ガス流の液化方法。 - 混合成分冷媒をプロセス流で熱交換領域に入れ、
混合成分冷媒の二つ以上の側流を熱交換領域から取り出し、
混合成分冷媒の側流を一つ以上の圧力レベルで分離して冷媒蒸気及び冷媒液体を生成し、
少なくとも冷媒液体を熱交換領域に通し、そして
冷媒液体を熱交換領域内で部分蒸発させて液相を保持することを特徴とする、天然ガス流の液化方法。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US56558904P | 2004-06-23 | 2004-06-23 | |
US60/565,589 | 2004-06-23 | ||
PCT/US2005/019606 WO2006007278A2 (en) | 2004-06-23 | 2005-06-06 | Mixed refrigerant liquefaction process |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2008504509A true JP2008504509A (ja) | 2008-02-14 |
JP2008504509A5 JP2008504509A5 (ja) | 2008-07-24 |
JP5605977B2 JP5605977B2 (ja) | 2014-10-15 |
Family
ID=34956193
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007518089A Active JP5605977B2 (ja) | 2004-06-23 | 2005-06-06 | 混合冷媒液化方法 |
Country Status (11)
Country | Link |
---|---|
US (1) | US20070227185A1 (ja) |
EP (1) | EP1774233A4 (ja) |
JP (1) | JP5605977B2 (ja) |
KR (1) | KR101301024B1 (ja) |
CN (1) | CN100504262C (ja) |
AU (1) | AU2005262611B2 (ja) |
BR (1) | BRPI0511785B8 (ja) |
CA (1) | CA2567052C (ja) |
MX (1) | MXPA06014437A (ja) |
NO (1) | NO20070370L (ja) |
WO (1) | WO2006007278A2 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009543894A (ja) * | 2006-07-14 | 2009-12-10 | シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ | 炭化水素流を液化するための方法及び装置 |
JP2010513833A (ja) * | 2006-12-14 | 2010-04-30 | ユーオーピー エルエルシー | 天然ガス液化のための熱交換器 |
JP2012503753A (ja) * | 2008-08-06 | 2012-02-09 | ルマス テクノロジー インコーポレイテッド | 拡張二成分冷却システムを用いた冷却方法 |
JP2015506454A (ja) * | 2011-12-20 | 2015-03-02 | コノコフィリップス カンパニー | 動き環境下での天然ガスの液化 |
JP2015522782A (ja) * | 2012-04-23 | 2015-08-06 | ルマス テクノロジー インコーポレイテッド | コア交換用のコールドボックス設計 |
JP2016001102A (ja) * | 2010-03-17 | 2016-01-07 | チャート・インコーポレーテッド | 予備冷却される混合冷媒統合システムおよび方法 |
JP2017067432A (ja) * | 2015-09-30 | 2017-04-06 | エア プロダクツ アンド ケミカルズ インコーポレイテッドAir Products And Chemicals Incorporated | 容積圧縮機を使用したlngプラントでの並列圧縮 |
CN111727351A (zh) * | 2017-09-14 | 2020-09-29 | 查特能源化工股份有限公司 | 混合制冷剂冷凝器出口歧管分离器 |
JP2021181851A (ja) * | 2020-05-19 | 2021-11-25 | 大陽日酸株式会社 | 天然ガス液化装置及びその起動方法 |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005038266A1 (de) * | 2005-08-12 | 2007-02-15 | Linde Ag | Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes |
US20100223951A1 (en) * | 2006-08-14 | 2010-09-09 | Marco Dick Jager | Method and apparatus for cooling a hydrocarbon stream |
EP2165138A2 (en) * | 2007-07-12 | 2010-03-24 | Shell Internationale Research Maatschappij B.V. | Method and apparatus for cooling a hydrocarbon stream |
WO2009081672A1 (ja) * | 2007-12-26 | 2009-07-02 | E.R.D.Co., Ltd. | 炭化水素混合冷媒、冷凍冷蔵又は冷暖房空調システム、冷凍冷蔵又は冷暖房空調方法、冷凍冷蔵又は冷暖房空調システムの製造方法 |
US8464551B2 (en) * | 2008-11-18 | 2013-06-18 | Air Products And Chemicals, Inc. | Liquefaction method and system |
US20100154469A1 (en) * | 2008-12-19 | 2010-06-24 | Chevron U.S.A., Inc. | Process and system for liquefaction of hydrocarbon-rich gas stream utilizing three refrigeration cycles |
ITMI20091768A1 (it) * | 2009-10-15 | 2011-04-16 | Ecoproject Sas Di Luigi Gazzi E C | Processo per impianti gnl anche di grande capacita' richiedente basse portate volumetriche ai compressori frigoriferi |
EP2369279A1 (de) * | 2010-03-12 | 2011-09-28 | Ph-th Consulting AG | Verfahren zur Kühlung oder Verflüssigung eines an Kohlenwasserstoffen reichen Stromes und Anlage zur Durchführung desselben |
KR101009892B1 (ko) * | 2010-04-30 | 2011-01-20 | 한국가스공사연구개발원 | 천연가스 액화공정 |
CN101967413A (zh) * | 2010-06-07 | 2011-02-09 | 杭州福斯达实业集团有限公司 | 采用单一混合工质制冷来液化天然气的方法和装置 |
KR101106089B1 (ko) * | 2011-03-11 | 2012-01-18 | 대우조선해양 주식회사 | 고압 천연가스 분사 엔진을 위한 연료 공급 방법 |
KR101147365B1 (ko) * | 2011-03-11 | 2012-05-22 | 대우조선해양 주식회사 | 재액화 장치 및 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템의 운전방법 |
FR2993643B1 (fr) * | 2012-07-17 | 2014-08-22 | Saipem Sa | Procede de liquefaction de gaz naturel avec changement de phase |
US11408673B2 (en) | 2013-03-15 | 2022-08-09 | Chart Energy & Chemicals, Inc. | Mixed refrigerant system and method |
US11428463B2 (en) | 2013-03-15 | 2022-08-30 | Chart Energy & Chemicals, Inc. | Mixed refrigerant system and method |
CA3140415A1 (en) | 2013-03-15 | 2014-09-18 | Chart Energy & Chemicals, Inc. | Mixed refrigerant system and method |
CN103216998B (zh) * | 2013-04-12 | 2015-12-02 | 北京安珂罗工程技术有限公司 | 一种单循环混合冷剂压缩与输送的方法和系统 |
WO2016026533A1 (en) * | 2014-08-21 | 2016-02-25 | Statoil Petroleum As | Heat pump system |
KR101693925B1 (ko) | 2014-09-30 | 2017-01-06 | (주)삼신엔지니어링 | 탈부착 교체 가능한 승강기 도어 |
AR105277A1 (es) | 2015-07-08 | 2017-09-20 | Chart Energy & Chemicals Inc | Sistema y método de refrigeración mixta |
FR3043451B1 (fr) * | 2015-11-10 | 2019-12-20 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Methode pour optimiser la liquefaction de gaz naturel |
AU2017249441B2 (en) | 2016-04-11 | 2021-05-27 | Geoff Rowe | A system and method for liquefying production gas from a gas source |
KR101792708B1 (ko) | 2016-06-22 | 2017-11-02 | 삼성중공업(주) | 유체냉각장치 |
CN107101456A (zh) * | 2017-06-13 | 2017-08-29 | 江苏华滋海洋工程有限公司 | 一种船用液化乙烷蒸发气再液化装置 |
FR3099563B1 (fr) * | 2019-08-01 | 2021-07-30 | Air Liquide | Echangeur de chaleur avec configuration de passages et structures d’échange thermique améliorées |
FR3099557B1 (fr) * | 2019-08-01 | 2021-07-30 | Air Liquide | Procédé de liquéfaction de gaz naturel avec circulation améliorée d’un courant réfrigérant mixte |
FR3099560B1 (fr) | 2019-08-01 | 2021-07-02 | Air Liquide | Procédé de liquéfaction de gaz naturel avec injection améliorée d’un courant réfrigérant mixte |
EP4007881A1 (de) * | 2019-08-02 | 2022-06-08 | Linde GmbH | Verfahren und anlage zur herstellung von flüssigerdgas |
EP4182617A1 (en) | 2020-07-17 | 2023-05-24 | ExxonMobil Technology and Engineering Company | Heat recovery steam generation integration with high pressure feed gas processes for the production of liquefied natural gas |
FR3145207A1 (fr) * | 2023-01-19 | 2024-07-26 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Procédé de liquéfaction d’un débit riche en dioxyde de carbone |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6099982A (ja) * | 1983-05-06 | 1985-06-03 | コンパニユエ・フランセ−ズ・デチユ−ド・エ・ド・コンストリユクチオン・“テクニツプ” | 天然ガスのような低沸点の少くとも一つのガスの冷却および液化方法および装置 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3929438A (en) * | 1970-09-28 | 1975-12-30 | Phillips Petroleum Co | Refrigeration process |
FR2123095B1 (ja) * | 1970-12-21 | 1974-02-15 | Air Liquide | |
US3964891A (en) * | 1972-09-01 | 1976-06-22 | Heinrich Krieger | Process and arrangement for cooling fluids |
FR2280041A1 (fr) * | 1974-05-31 | 1976-02-20 | Teal Technip Liquefaction Gaz | Procede et installation pour le refroidissement d'un melange gazeux |
US4180123A (en) * | 1977-02-14 | 1979-12-25 | Phillips Petroleum Company | Mixed-component refrigeration in shell-tube exchanger |
US4911741A (en) * | 1988-09-23 | 1990-03-27 | Davis Robert N | Natural gas liquefaction process using low level high level and absorption refrigeration cycles |
GB9103622D0 (en) * | 1991-02-21 | 1991-04-10 | Ugland Eng | Unprocessed petroleum gas transport |
US5329774A (en) * | 1992-10-08 | 1994-07-19 | Liquid Air Engineering Corporation | Method and apparatus for separating C4 hydrocarbons from a gaseous mixture |
DE69523437T2 (de) * | 1994-12-09 | 2002-06-20 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Anlage und Verfahren zur Gasverflüssigung |
DE19716415C1 (de) * | 1997-04-18 | 1998-10-22 | Linde Ag | Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes |
FR2778232B1 (fr) * | 1998-04-29 | 2000-06-02 | Inst Francais Du Petrole | Procede et dispositif de liquefaction d'un gaz naturel sans separation de phases sur les melanges refrigerants |
JP4073081B2 (ja) * | 1998-05-08 | 2008-04-09 | 株式会社ブリヂストン | 空気入りラジアルタイヤ |
MY117548A (en) * | 1998-12-18 | 2004-07-31 | Exxon Production Research Co | Dual multi-component refrigeration cycles for liquefaction of natural gas |
DE19937623B4 (de) * | 1999-08-10 | 2009-08-27 | Linde Ag | Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes |
FR2800349B1 (fr) * | 1999-10-27 | 2002-01-18 | Bouygues Offshore | Barge de stokage de gaz liquefie a structure flottante en beton |
US6658890B1 (en) * | 2002-11-13 | 2003-12-09 | Conocophillips Company | Enhanced methane flash system for natural gas liquefaction |
US6742357B1 (en) * | 2003-03-18 | 2004-06-01 | Air Products And Chemicals, Inc. | Integrated multiple-loop refrigeration process for gas liquefaction |
-
2005
- 2005-06-06 KR KR1020067027111A patent/KR101301024B1/ko active IP Right Grant
- 2005-06-06 CA CA2567052A patent/CA2567052C/en active Active
- 2005-06-06 JP JP2007518089A patent/JP5605977B2/ja active Active
- 2005-06-06 AU AU2005262611A patent/AU2005262611B2/en active Active
- 2005-06-06 WO PCT/US2005/019606 patent/WO2006007278A2/en active Search and Examination
- 2005-06-06 BR BRPI0511785A patent/BRPI0511785B8/pt not_active IP Right Cessation
- 2005-06-06 MX MXPA06014437A patent/MXPA06014437A/es active IP Right Grant
- 2005-06-06 EP EP05756120A patent/EP1774233A4/en not_active Withdrawn
- 2005-06-06 US US11/579,129 patent/US20070227185A1/en not_active Abandoned
- 2005-06-06 CN CNB2005800174924A patent/CN100504262C/zh not_active Expired - Fee Related
-
2007
- 2007-01-23 NO NO20070370A patent/NO20070370L/no not_active Application Discontinuation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6099982A (ja) * | 1983-05-06 | 1985-06-03 | コンパニユエ・フランセ−ズ・デチユ−ド・エ・ド・コンストリユクチオン・“テクニツプ” | 天然ガスのような低沸点の少くとも一つのガスの冷却および液化方法および装置 |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009543894A (ja) * | 2006-07-14 | 2009-12-10 | シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ | 炭化水素流を液化するための方法及び装置 |
JP2010513833A (ja) * | 2006-12-14 | 2010-04-30 | ユーオーピー エルエルシー | 天然ガス液化のための熱交換器 |
JP2012503753A (ja) * | 2008-08-06 | 2012-02-09 | ルマス テクノロジー インコーポレイテッド | 拡張二成分冷却システムを用いた冷却方法 |
KR101810709B1 (ko) | 2010-03-17 | 2017-12-19 | 차트 인코포레이티드 | 일체형 예냉 혼합 냉매 시스템 및 방법 |
JP2016001102A (ja) * | 2010-03-17 | 2016-01-07 | チャート・インコーポレーテッド | 予備冷却される混合冷媒統合システムおよび方法 |
JP2015506454A (ja) * | 2011-12-20 | 2015-03-02 | コノコフィリップス カンパニー | 動き環境下での天然ガスの液化 |
JP2015522782A (ja) * | 2012-04-23 | 2015-08-06 | ルマス テクノロジー インコーポレイテッド | コア交換用のコールドボックス設計 |
JP2017067432A (ja) * | 2015-09-30 | 2017-04-06 | エア プロダクツ アンド ケミカルズ インコーポレイテッドAir Products And Chemicals Incorporated | 容積圧縮機を使用したlngプラントでの並列圧縮 |
US10180282B2 (en) | 2015-09-30 | 2019-01-15 | Air Products And Chemicals, Inc. | Parallel compression in LNG plants using a positive displacement compressor |
CN111727351A (zh) * | 2017-09-14 | 2020-09-29 | 查特能源化工股份有限公司 | 混合制冷剂冷凝器出口歧管分离器 |
CN111727351B (zh) * | 2017-09-14 | 2023-03-28 | 查特能源化工股份有限公司 | 混合制冷剂冷凝器出口歧管分离器 |
JP2021181851A (ja) * | 2020-05-19 | 2021-11-25 | 大陽日酸株式会社 | 天然ガス液化装置及びその起動方法 |
JP7429600B2 (ja) | 2020-05-19 | 2024-02-08 | 大陽日酸株式会社 | 天然ガス液化装置及びその起動方法 |
Also Published As
Publication number | Publication date |
---|---|
BRPI0511785B1 (pt) | 2018-04-03 |
CN1965204A (zh) | 2007-05-16 |
BRPI0511785B8 (pt) | 2018-04-24 |
AU2005262611A1 (en) | 2006-01-19 |
WO2006007278A3 (en) | 2006-12-21 |
US20070227185A1 (en) | 2007-10-04 |
CA2567052C (en) | 2013-09-24 |
MXPA06014437A (es) | 2007-07-13 |
AU2005262611B2 (en) | 2010-11-04 |
CA2567052A1 (en) | 2006-01-19 |
WO2006007278A2 (en) | 2006-01-19 |
BRPI0511785A (pt) | 2008-01-15 |
JP5605977B2 (ja) | 2014-10-15 |
EP1774233A2 (en) | 2007-04-18 |
KR20070022788A (ko) | 2007-02-27 |
EP1774233A4 (en) | 2013-01-16 |
CN100504262C (zh) | 2009-06-24 |
NO20070370L (no) | 2007-03-23 |
KR101301024B1 (ko) | 2013-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5605977B2 (ja) | 混合冷媒液化方法 | |
JP7253579B2 (ja) | 混合冷媒システムおよび方法 | |
TWI547676B (zh) | 集成的預冷混合製冷劑系統和方法 | |
JP6635911B2 (ja) | 混合冷媒システムおよび方法 | |
KR20010040029A (ko) | 액화 천연 가스의 제조를 위한 하이브리드 사이클 | |
MX2010004379A (es) | Proceso de licuacion pre-enfriado. | |
WO2008020044A2 (en) | Method and apparatus for liquefying a hydrocarbon-containing feed stream | |
JP6702919B2 (ja) | 混合冷媒冷却プロセスおよびシステム | |
US12111101B2 (en) | Two-stage heavies removal in lng processing | |
RU2725914C1 (ru) | Способ сжижения насыщенной углеводородами фракции | |
US20230375261A1 (en) | Closed loop lng process for a feed gas with nitrogen | |
US11604025B2 (en) | Standalone high-pressure heavies removal unit for LNG processing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080606 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080606 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111003 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20111221 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20120104 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120305 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20121210 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130507 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140718 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140826 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5605977 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |