KR101147365B1 - 재액화 장치 및 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템의 운전방법 - Google Patents
재액화 장치 및 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템의 운전방법 Download PDFInfo
- Publication number
- KR101147365B1 KR101147365B1 KR1020110096463A KR20110096463A KR101147365B1 KR 101147365 B1 KR101147365 B1 KR 101147365B1 KR 1020110096463 A KR1020110096463 A KR 1020110096463A KR 20110096463 A KR20110096463 A KR 20110096463A KR 101147365 B1 KR101147365 B1 KR 101147365B1
- Authority
- KR
- South Korea
- Prior art keywords
- gas
- boil
- refrigerant
- storage tank
- liquefied
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M21/00—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
- F02M21/02—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
- F02M21/0218—Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
- F02M21/0245—High pressure fuel supply systems; Rails; Pumps; Arrangement of valves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B25/00—Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
- B63B25/02—Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
- B63B25/08—Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
- B63B25/12—Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
- B63B25/16—Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63H—MARINE PROPULSION OR STEERING
- B63H21/00—Use of propulsion power plant or units on vessels
- B63H21/38—Apparatus or methods specially adapted for use on marine vessels, for handling power plant or unit liquids, e.g. lubricants, coolants, fuels or the like
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M21/00—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
- F02M21/02—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
- F02M21/0203—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels characterised by the type of gaseous fuel
- F02M21/0215—Mixtures of gaseous fuels; Natural gas; Biogas; Mine gas; Landfill gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M21/00—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
- F02M21/02—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
- F02M21/0218—Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
- F02M21/0221—Fuel storage reservoirs, e.g. cryogenic tanks
- F02M21/0224—Secondary gaseous fuel storages
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M21/00—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
- F02M21/02—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
- F02M21/0218—Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
- F02M21/0287—Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers characterised by the transition from liquid to gaseous phase ; Injection in liquid phase; Cooling and low temperature storage
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M25/00—Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
- F02M25/08—Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
- F02M25/089—Layout of the fuel vapour installation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M31/00—Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture
- F02M31/02—Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating
- F02M31/16—Other apparatus for heating fuel
- F02M31/18—Other apparatus for heating fuel to vaporise fuel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M31/00—Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture
- F02M31/20—Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for cooling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/30—Use of alternative fuels, e.g. biofuels
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T70/00—Maritime or waterways transport
- Y02T70/50—Measures to reduce greenhouse gas emissions related to the propulsion system
- Y02T70/5218—Less carbon-intensive fuels, e.g. natural gas, biofuels
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Ocean & Marine Engineering (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Abstract
본 발명은 증발가스의 재액화 장치 및 고압 천연가스 분사 엔진, 예컨대 ME-GI 엔진을 탑재한 LNG 운반선과 같은 해상 구조물에 있어서 고압 천연가스 분사 엔진에 효율적으로 연료를 공급하는 동시에 재액화 장치에서 소모하는 에너지를 최소화할 수 있는 연료 공급 시스템의 운전방법에 관한 것이다.
본 발명에 따르면, 저장탱크 내에서 발생한 증발가스를 상기 저장탱크로부터 공급받아 압축하는 증발가스 압축부, 상기 증발가스 압축부에서 압축된 증발가스를 공급받아 액화시키는 재액화 장치, 상기 재액화 장치에서 액화된 액화증발가스를 압축시키는 고압 펌프, 그리고 상기 고압 펌프에서 압축된 액화증발가스를 기화시키기 위한 고압 기화기를 포함하여, 고압 천연가스 분사 엔진에 연료를 공급하는 연료 공급 시스템의 운전방법으로서, 상기 연료 공급 시스템은 상기 고압 펌프의 상류측에 설치되는 재응축기를 포함하며; 상기 저장탱크로부터 공급된 액화가스를 이용하여, 발생된 증발가스 중 일부 혹은 전부를 상기 재응축기에서 재응축시키되, 밸러스트 운항과정 중, 상기 증발가스 전부를 상기 재응축기로 공급하여 재응축시키고 상기 재액화 장치의 가동을 중단시키는 기간을 포함하는 것을 특징으로 하는 고압 천연가스 분사 엔진용 연료 공급 시스템이 제공된다.
본 발명에 따르면, 저장탱크 내에서 발생한 증발가스를 상기 저장탱크로부터 공급받아 압축하는 증발가스 압축부, 상기 증발가스 압축부에서 압축된 증발가스를 공급받아 액화시키는 재액화 장치, 상기 재액화 장치에서 액화된 액화증발가스를 압축시키는 고압 펌프, 그리고 상기 고압 펌프에서 압축된 액화증발가스를 기화시키기 위한 고압 기화기를 포함하여, 고압 천연가스 분사 엔진에 연료를 공급하는 연료 공급 시스템의 운전방법으로서, 상기 연료 공급 시스템은 상기 고압 펌프의 상류측에 설치되는 재응축기를 포함하며; 상기 저장탱크로부터 공급된 액화가스를 이용하여, 발생된 증발가스 중 일부 혹은 전부를 상기 재응축기에서 재응축시키되, 밸러스트 운항과정 중, 상기 증발가스 전부를 상기 재응축기로 공급하여 재응축시키고 상기 재액화 장치의 가동을 중단시키는 기간을 포함하는 것을 특징으로 하는 고압 천연가스 분사 엔진용 연료 공급 시스템이 제공된다.
Description
본 발명은 고압 천연가스 분사 엔진용 연료 공급 시스템의 운전방법에 관한 것으로서, 더욱 상세하게는 증발가스의 재액화 장치 및 고압 천연가스 분사 엔진, 예컨대 ME-GI 엔진을 탑재한 LNG 운반선과 같은 해상 구조물에 있어서 고압 천연가스 분사 엔진에 효율적으로 연료를 공급하는 동시에 재액화 장치에서 소모하는 에너지를 최소화할 수 있는 연료 공급 시스템의 운전방법에 관한 것이다.
근래, LNG(Liquefied Natural Gas)나 LPG(Liquefied Petroleum Gas) 등의 액화가스의 소비량이 전 세계적으로 급증하고 있는 추세이다. 액화가스는, 육상 또는 해상의 가스배관을 통해 가스 상태로 운반되거나, 또는, 액화된 상태로 액화가스 운반선에 저장된 채 원거리의 소비처로 운반된다. LNG나 LPG 등의 액화가스는 천연가스 혹은 석유가스를 극저온(LNG의 경우 대략 -163℃)으로 냉각하여 얻어지는 것으로 가스 상태일 때보다 그 부피가 대폭적으로 감소되므로 해상을 통한 원거리 운반에 매우 적합하다.
액화가스 운반선은, 액화가스를 싣고 바다를 운항하여 육상 소요처에 이 액화가스를 하역하기 위한 것이며, 이를 위해, 액화가스의 극저온에 견딜 수 있는 저장탱크(흔히, '화물창'이라 함)를 포함한다.
이와 같이 극저온 상태의 액화가스를 저장할 수 있는 저장탱크가 마련된 해상 구조물의 예로서는 액화가스 운반선 이외에도 LNG RV (Regasification Vessel)와 같은 선박이나 LNG FSRU (Floating Storage and Regasification Unit), LNG FPSO (Floating, Production, Storage and Off-loading)와 같은 구조물 등을 들 수 있다.
LNG RV는 자력 항해 및 부유가 가능한 액화가스 운반선에 LNG 재기화 설비를 설치한 것이고, LNG FSRU는 육상으로부터 멀리 떨어진 해상에서 LNG 수송선으로부터 하역되는 액화 천연가스를 저장탱크에 저장한 후 필요에 따라 액화 천연가스를 기화시켜 육상 수요처에 공급하는 해상 구조물이다. 그리고, LNG FPSO는 채굴된 천연가스를 해상에서 정제한 후 직접 액화시켜 저장탱크 내에 저장하고, 필요시 이 저장탱크 내에 저장된 LNG를 LNG 수송선으로 옮겨싣기 위해 사용되는 해상 구조물이다. 본 명세서에서 해상 구조물이란, 액화가스 운반선, LNG RV 등의 선박을 비롯하여, LNG FPSO, LNG FSRU 등의 구조물까지도 모두 포함하는 개념이다.
천연가스의 액화온도는 상압에서 약 -163℃의 극저온이므로, LNG는 그 온도가 상압에서 -163℃ 보다 약간만 높아도 증발된다. 종래의 LNG 운반선의 경우를 예를 들어 설명하면, LNG 운반선의 LNG 저장탱크는 단열처리가 되어 있기는 하지만, 외부의 열이 LNG에 지속적으로 전달되므로, LNG 운반선에 의해 LNG를 수송하는 도중에 LNG가 LNG 저장탱크 내에서 지속적으로 기화되어 LNG 저장 탱크 내에 증발가스(BOG; Boil-Off Gas)가 발생한다.
발생된 증발가스는 저장탱크 내의 압력을 증가시키며 선박의 요동에 따라 액화가스의 유동을 가속시켜 구조적인 문제를 야기시킬 수 있기 때문에, 증발가스의 발생을 억제할 필요가 있다.
종래, 액화가스 운반선의 저장탱크 내에서의 증발가스를 억제하기 위해, 증발가스를 저장탱크의 외부로 배출시켜 소각해 버리는 방법, 증발가스를 저장탱크의 외부로 배출시켜 재액화 장치를 통해 재액화시킨 후 다시 저장탱크로 복귀시키는 방법, 선박의 추진기관에서 사용되는 연료로서 증발가스를 사용하는 방법, 저장탱크의 내부압력을 높게 유지함으로써 증발가스의 발생을 억제하는 방법 등이 단독으로 혹은 복합적으로 사용되고 있었다.
증발가스 재액화 장치가 탑재된 종래의 해상 구조물의 경우, 저장탱크의 적정 압력 유지를 위해 저장탱크 내부의 증발가스를 저장탱크 외부로 배출시켜 재액화 장치를 통해 재액화시키게 되는데, 재액화 작업이 이루어지기 전에 증발가스를 대략 4 내지 8 bara 정도의 저압으로 압축시켜 재액화 장치로 공급한다. 압축된 증발가스는 질소 냉동 사이클을 포함하는 재액화 장치에서 초저온으로 냉각된 질소와의 열교환을 통해 재액화된 후 저장탱크로 복귀된다.
증발가스의 재액화 효율을 높이기 위해서는 증발가스를 높은 압력으로 압축시키는 것이 바람직하지만, 저장탱크에 저장된 LNG는 상압 상태를 유지하고 있기 때문에 재액화된 액화증발가스의 압력이 지나치게 높으면 저장탱크에 복귀할 때 플래시 가스(flash gas)가 발생하게 된다. 따라서, 재액화 효율은 낮지만 상기한 4 내지 8 bara 정도의 저압으로 증발가스를 압축할 수밖에 없다는 문제가 있다.
즉, 도 1에 도시된 바와 같이, 종래에는 저장탱크에서 발생된 증발가스, 즉 NBOG를 증발가스 압축기로 공급하여 대략 4 내지 8 bara 정도의 저압으로 압축시킨 후, 이 저압 BOG를 질소가스를 냉매로 사용하는 재액화 장치로 공급한다. 재액화 장치에서 액화된 증발가스, 즉 LBOG는 저장탱크로 복귀하면서 플래시 가스가 발생하는 문제가 있었으며, 그로 인해 증발가스 압축기에서 증발가스의 압력을 저압으로 압축시킬 수밖에 없었다.
또한, 종래 저장탱크에서 발생된 증발가스를 선박의 추진기관에서 사용되는 연료로서 사용하는 방법이 알려져 있었으며, 증발가스를 연료로서 사용할 수 있는 종래의 추진기관으로서는 스팀 터빈이나 DFDE 등의 엔진이 공지되어 있었다. 그런데, 스팀 터빈이나 DFDE는 수 bar 내지 수십 bar 정도의 압력으로 압축된 증발가스를 연료로서 소모할 수는 있지만 중유 등을 연료로서 사용하는 디젤 엔진에 비해 효율이 낮다는 문제가 있어, 선박의 주 추진기관으로 활용하기에는 선결되어야 할 문제가 많은 것이었다.
결국, 종래에는 저장탱크에서 발생되는 증발가스는 재액화 장치를 통해 재액화한 후 저장탱크에 복귀시키는 것이 전형적인 증발가스 처리방법으로 활용되고 있었으며, 재액화 이후 저장탱크 복귀시 플래시 가스 발생을 가능한 한 억제하기 위해 재액화되는 증발가스의 압력을 높이지 않는 것이 기본적인 개념으로 굳어져 있었다.
증발가스를 재액화시키는 재액화 장치로서는 국제특허공개 WO 2007/117148 호 공보 및 WO 2009/136793 호 공보 등에 개시되어 있는 것이 사용될 수 있다.
또한, 증발가스의 재액화를 위하여 종래에는 질소 냉동 사이클, 혼합냉매 사이클 등이 이용되는데, 질소 냉동 사이클은 냉매로서 질소가스(N2)를 사용하여 액화 효율이 낮은 문제가 있고, 혼합냉매 사이클은 냉매로서 질소와 탄화수소 가스 등이 혼합된 냉매를 사용하기 때문에 안정성이 떨어지는 문제가 있다.
더욱 상세하게는, 종래의 선박이나 해상 플랜트 등의 해상용 LNG 재액화 장치에서는 터보 팽창기(tubo expander) 방식의 질소 역브레이튼 사이클을 구현하여 증발가스를 재액화하였고, 육상용 LNG 액화 플랜트에서는 혼합냉매를 이용하는 줄-톰슨 냉동 사이클을 구현하여 천연가스를 액화시켰다. 해상용으로 사용하던 질소 역브레이튼 사이클은 상대적으로 장치의 구성이 단순하여 공간이 한정된 선박이나 해상 구조물에서 유리하지만 효율이 낮은 문제가 있고, 육상용으로 사용하던 혼합냉매 줄-톰슨 냉동 사이클은 상대적으로 효율이 높지만 혼합냉매의 특성상 기액상태가 동시에 존재할 때 이를 분리하기 위한 세퍼레이터를 사용해야 하는 등 장치 구성이 복잡해지는 문제가 있다.
그 밖에도 LNG 등의 액화가스를 저장하는 저장탱크를 구비한 해상 구조물에 대하여, 저장탱크에서 지속적으로 발생하는 증발가스를 효율적으로 처리하되, 플래시 가스의 발생을 억제할 수 있는 방법에 대한 연구 개발이 계속해서 이루어질 필요가 있다.
본 발명은 상기한 바와 같은 종래의 문제점을 해결하기 위한 것으로서, 액화가스 저장탱크로부터 발생하는 증발가스를 고압 천연가스 분사 엔진, 예컨대 ME-GI 엔진의 연료로 활용하되, 증발가스를 종래에 비해 높은 압력으로 압축하여 재액화한 후 고압 천연가스 분사 엔진에 공급하며, 재응축기를 설치하여 발생된 증발가스 중 적어도 일부를 이 재응축기에서 재응축하여 재액화 장치의 부하를 감소시킴으로써, 고압 천연가스 분사 엔진에 효율적으로 연료를 공급하는 동시에 재액화 장치에서 소모하는 에너지를 최소화할 수 있는 연료 공급 시스템의 운전방법을 제공하고자 하는 것이다.
상기 목적을 달성하기 위한 본 발명의 일 측면에 따르면, 저장탱크 내에서 발생한 증발가스를 상기 저장탱크로부터 공급받아 압축하는 증발가스 압축부, 상기 증발가스 압축부에서 압축된 증발가스를 공급받아 액화시키는 재액화 장치, 상기 재액화 장치에서 액화된 액화증발가스를 압축시키는 고압 펌프, 그리고 상기 고압 펌프에서 압축된 액화증발가스를 기화시키기 위한 고압 기화기를 포함하여, 고압 천연가스 분사 엔진에 연료를 공급하는 연료 공급 시스템의 운전방법으로서, 상기 연료 공급 시스템은 상기 고압 펌프의 상류측에 설치되는 재응축기를 포함하며; 상기 저장탱크로부터 공급된 액화가스를 이용하여, 발생된 증발가스 중 일부 혹은 전부를 상기 재응축기에서 재응축시키되, 밸러스트 운항과정 중, 상기 증발가스 전부를 상기 재응축기로 공급하여 재응축시키고 상기 재액화 장치의 가동을 중단시키는 기간을 포함하는 것을 특징으로 하는 고압 천연가스 분사 엔진용 연료 공급 시스템의 운전방법이 제공된다.
상기 연료 공급 시스템의 운전방법에 따르면, 상기 저장탱크에 저장된 LNG는 LNG 공급라인을 통해 상기 재응축기로 공급되는 것이 바람직하다.
상기 연료 공급 시스템의 운전방법에 따르면, 상기 저장탱크로부터 배출된 증발가스는 상기 증발가스 압축부에서 12 내지 45bara로 압축된 후 상기 재응축기로 공급되는 것이 바람직하다.
상기 연료 공급 시스템의 운전방법에 따르면, 상기 저장탱크가 액화가스 화물로 가득 채워진 레이든(laden)시, 상기 저장탱크에서 자연적으로 발생하는 증발가스를 상기 재액화 장치에 공급하여 재액화하는 것이 바람직하다.
상기 연료 공급 시스템의 운전방법에 따르면, 상기 저장탱크에서 발생된 증발가스 중 일부는 증발가스 우회라인을 통해 상기 재응축기로 우회됨으로써 상기 재액화 장치에서의 재액화 부하를 감소시키는 것이 바람직하다.
상기 연료 공급 시스템의 운전방법에 따르면, 상기 재응축기와 상기 고압 펌프 사이에 부스터 펌프를 설치하는 것이 바람직하다.
상기 연료 공급 시스템의 운전방법에 따르면, 상기 저장탱크의 내부에 위치하는 잠수식 펌프에 의해 상기 저장탱크에 수용된 LNG를 상기 재응축기에 공급하는 것이 바람직하다.
상기 연료 공급 시스템의 운전방법에 따르면, 상기 저장탱크의 외부로 배출된 LNG를 부스터 펌프에 의해 상기 재응축기의 내부압력과 동일한 압력까지 압축시킨 후 상기 재응축기에 공급하는 것이 바람직하다.
상기 연료 공급 시스템의 운전방법에 따르면, 상기 증발가스 압축부에서 압축된 증발가스와 상기 고압 펌프에서 압축된 액화증발가스를 열교환기에서 열교환함으로써 증발가스를 냉각하여 상기 재액화 장치 및 상기 재응축기 중 적어도 하나에 공급하는 동시에 액화증발가스를 가열하여 상기 고압 기화기에 공급하는 것이 바람직하다.
본 발명에 따르면, 액화가스 저장탱크로부터 발생하는 증발가스를 고압 천연가스 분사 엔진, 예컨대 ME-GI 엔진의 연료로 활용하되, 증발가스를 종래에 비해 높은 압력으로 압축하여 재액화한 후 고압 천연가스 분사 엔진에 공급하며, 재응축기를 설치하여 발생된 증발가스 중 적어도 일부를 이 재응축기에서 재응축하여 재액화 장치의 부하를 감소시킬 수 있는 고압 천연가스 분사 엔진용 연료 공급 시스템의 운전방법이 제공될 수 있다.
본 발명의 고압 천연가스 분사 엔진용 연료 공급 시스템의 운전방법에 의하면, 고압 천연가스 분사 엔진에 효율적으로 연료를 공급하는 동시에 재액화 장치에서 소모하는 에너지를 최소화할 수 있게 된다.
도 1은 종래기술에 따른 증발가스 재액화를 통한 증발가스 처리 방법을 설명하기 위한 개략적인 블록선도,
도 2는 본 발명에 따른 연료 공급을 통한 증발가스 처리 방법을 설명하기 위한 개략적인 블록선도,
도 3a는 본 발명의 제1 실시형태에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 3b는 본 발명의 제1 실시형태의 변형예에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 4a는 본 발명의 비폭발성 혼합냉매에 함유된 성분들의 어는점 및 끓는점을 나타내는 그래프,
도 4b는 탄화수소 혼합냉매에 함유된 성분들의 어는점 및 끓는점을 나타내는 그래프,
도 4c는 천연가스의 가압 압력에 따른 액화 온도를 나타내는 그래프,
도 5는 비폭발성 혼합냉매를 구성하기 위한 냉매 성분들의 끓는점을 나타내는 그래프,
도 6은 증발가스의 재액화 장치에서 비폭발성 혼합냉매 냉동사이클을 사용한 경우와 질소가스 냉동 사이클을 사용한 경우의 소모동력을 비교한 그래프들,
도 7a는 본 발명의 제2 실시형태에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 7b는 본 발명의 제2 실시형태의 변형예에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 8a는 본 발명의 제3 실시형태에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 8b는 본 발명의 제3 실시형태의 변형예에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 9a는 본 발명의 제4 실시형태에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 9b는 본 발명의 제4 실시형태의 변형예에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 10a는 본 발명의 제5 실시형태에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 10b는 본 발명의 제5 실시형태의 변형예에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도, 그리고
도 11은 본 발명의 제6 실시형태에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도이다.
도 2는 본 발명에 따른 연료 공급을 통한 증발가스 처리 방법을 설명하기 위한 개략적인 블록선도,
도 3a는 본 발명의 제1 실시형태에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 3b는 본 발명의 제1 실시형태의 변형예에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 4a는 본 발명의 비폭발성 혼합냉매에 함유된 성분들의 어는점 및 끓는점을 나타내는 그래프,
도 4b는 탄화수소 혼합냉매에 함유된 성분들의 어는점 및 끓는점을 나타내는 그래프,
도 4c는 천연가스의 가압 압력에 따른 액화 온도를 나타내는 그래프,
도 5는 비폭발성 혼합냉매를 구성하기 위한 냉매 성분들의 끓는점을 나타내는 그래프,
도 6은 증발가스의 재액화 장치에서 비폭발성 혼합냉매 냉동사이클을 사용한 경우와 질소가스 냉동 사이클을 사용한 경우의 소모동력을 비교한 그래프들,
도 7a는 본 발명의 제2 실시형태에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 7b는 본 발명의 제2 실시형태의 변형예에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 8a는 본 발명의 제3 실시형태에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 8b는 본 발명의 제3 실시형태의 변형예에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 9a는 본 발명의 제4 실시형태에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 9b는 본 발명의 제4 실시형태의 변형예에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 10a는 본 발명의 제5 실시형태에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도,
도 10b는 본 발명의 제5 실시형태의 변형예에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도, 그리고
도 11은 본 발명의 제6 실시형태에 따른 고압 천연가스 분사 엔진을 위한 연료 공급 시스템을 도시한 구성도이다.
이하 첨부한 도면을 참조하여 본 발명의 바람직한 실시예에 대한 구성 및 작용을 상세히 설명하면 다음과 같다. 또한 하기 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.
일반적으로, 선박에서 배출되는 폐기가스 중 국제 해사 기구(International Maritime Organization)의 규제를 받고 있는 것은 질소산화물(NOx)과 황산화물(SOx)이며, 이산화탄소(CO2)의 배출도 규제하려 하고 있다. 특히, 질소산화물(NOx)과 황산화물(SOx)의 경우, 1997년 해상오염 방지협약(MARPOL; The Prevention of Marine Pollution from Ships) 의정서를 통하여 제기되고, 8년이라는 긴 시간이 소요된 후 2005년 5월에 발효요건을 만족하여 현재 강제규정으로 이행되고 있다.
따라서, 이러한 규정을 충족시키기 위하여 질소산화물(NOx) 배출량을 저감하기 위하여 다양한 방법들이 소개되고 있는데, 이러한 방법 중에서 LNG 운반선을 위하여 고압 천연가스 분사 엔진, 예를 들어 ME-GI 엔진이 개발되어 사용되고 있다.
이와 같은 ME-GI 엔진은 LNG(Liquefied Natural Gas)를 극저온에 견디는 저장탱크에 저장하여 운반하도록 하는 LNG 운반선 등과 같은 해상 구조물(본 명세서에서 해상 구조물이란, LNG 운반선, LNG RV 등의 선박을 비롯하여, LNG FPSO, LNG FSRU 등의 해상 플랜트까지도 모두 포함하는 개념이다.)에 설치될 수 있으며, 이 경우 천연가스를 연료로 사용하게 되며, 그 부하에 따라 대략 150 ~ 400 bara(절대압력) 정도의 고압의 가스 공급 압력이 요구된다.
ME-GI 엔진과 같은 고압 천연가스 분사 엔진을 탑재한 해상 구조물의 경우에도, LNG 저장탱크에서 발생하는 증발가스(Boil Off Gas; BOG)를 처리하기 위해서는 재액화(Reliquefaction) 장치가 여전히 필요하게 된다. ME-GI 엔진과 같은 고압 천연가스 분사 엔진과, 증발가스를 처리하기 위한 재액화 장치를 모두 탑재한 종래의 해상 구조물의 경우, 가스와 연료유 가격의 변화와 배출가스의 규제 정도에 따라 증발가스를 연료로 사용할 것인지, 아니면 증발가스를 재액화하여 저장탱크로 보내고 중유(Heavy Fuel Oil; HFO)를 사용할 것인지 선택할 수 있는 장점이 있으며, 특히, 특정규제를 받는 해역을 통과시 간편하게 LNG를 기화시켜서 연료로 사용할 수 있다는 장점이 있고, 차세대 친환경적인 엔진으로서 효율이 50%에 육박하여 향후에는 LNG 운반선의 메인 엔진으로서 사용될 수 있다.
그런데, 고압 천연가스 분사 엔진과 재액화 장치를 모두 탑재한 종래의 해상 구조물의 경우에도, 발생된 증발가스는 모두 재액화 장치를 통해 재액화 처리를 거쳐야 하므로 재액화 장치에서 전력이 많이 소모된다.
본 발명은, 고압 천연가스 분사 엔진과 재액화 장치를 모두 탑재한 해상 구조물에 있어서, 고압 천연가스 분사 엔진에 효율적으로 연료를 공급하는 시스템에 관한 것이다. 또한, 본 발명은, 고압 천연가스 분사 엔진과 재액화 장치를 모두 탑재한 해상 구조물에 있어서, 재액화 장치에서 소모하는 에너지를 최소화하기 위한, 또는 해상 구조물의 운항 조건에 따라서는 재액화 장치를 전혀 구동하지 않도록 하여 재액화 장치에서 소모하는 에너지를 절감할 수 있도록 하기 위한 시스템에 관한 것이다.
도 2에는 본 발명에 따른 연료 공급 방법을 설명하기 위한 개략적인 블록선도가 도시되어 있다. 본 발명의 연료 공급 방법에 의하면, 저장탱크에서 발생된 증발가스, 즉 NBOG를 증발가스 압축기로 공급하여 대략 12 내지 45 bara 정도의 중압으로 압축시킨 후, 이 중압 BOG를 비폭발성 혼합냉매(Non Flammable Mixed Refrigerant)를 냉매로 사용하는 재액화 장치로 공급한다. 재액화 장치에서 액화된 증발가스, 즉 LBOG는 연료 공급 시스템에서 ME-GI 엔진에서 요구하는 압력(예컨대 400 bara 정도의 고압)으로 압축된 후 ME-GI 엔진에 연료로서 공급된다. 본 발명에 의하면, 재액화 장치에서 연료 공급 시스템에 공급되는 LBOG가 저장탱크로 복귀하지 않으므로 종래기술에서와 같이 플래시 가스가 발생하는 문제를 방지할 수 있으며, 그로 인해 증발가스 압축기에서 증발가스의 압력을 중압으로 압축시킬 수있다.
본 명세서에 있어서, 고압이 의미하는 압력범위는 고압 천연가스 분사 엔진에서 요구하는 연료 공급 압력인 대략 150 내지 400 bara 정도의 압력이고, 중압이 의미하는 압력범위는 증발가스 압축부(13)에서 증발가스를 압축하는 대략 12 내지 45 bara 정도의 압력이고, 저압이 의미하는 압력범위는 종래 기술에서 증발가스를 재액화 장치로 공급하기 위해 압축하는 대략 4 내지 8 bara 정도의 압력이다.
(제1 실시형태)
도 3a는 본 발명의 제1 실시형태에 따른 고압 천연가스 분사 엔진, 예컨대 ME-GI 엔진을 갖는 해상 구조물, 특히 액화천연가스 운반선의 연료 공급 시스템을 도시한 구성도이다. 도 3a에는, 천연가스를 연료로 사용할 수 있는 ME-GI 엔진을 설치한 LNG 운반선에 본 발명의 고압 천연가스 분사 엔진용 연료 공급 시스템이 적용된 예가 도시되어 있지만, 본 발명의 고압 천연가스 분사 엔진용 연료 공급 시스템은 액화가스 저장탱크가 설치된 모든 종류의 해상 구조물, 즉 LNG 운반선, LNG RV와 같은 선박을 비롯하여, LNG FPSO, LNG FSRU와 같은 해상 플랜트에 적용될 수 있다.
본 발명의 제1 실시형태에 따른 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템에 따르면, 액화가스 저장탱크(11)에서 발생되어 배출된 증발가스(NBOG)는, 증발가스 압축부(13)에서 대략 12 내지 45 bara(절대압력) 정도의 중압으로 압축된 후 재액화 장치(20)에 공급된다. 재액화 장치(20)에서 액화에너지, 즉 냉열을 공급받아 재액화된 액화증발가스(LBOG)는 고압 펌프(33)에 의해 대략 150 내지 400 bara 정도의 고압으로 압축된 후 고압 기화기(37)에 공급된다. 고압 기화기(37)에서 기화된 증발가스는 계속해서 고압 천연가스 분사 엔진, 예컨대 ME-GI 엔진에 연료로서 공급된다.
고압 펌프(33)에 의해 고압으로 압축된 액화증발가스(즉, 액화천연가스)는 초임계압 상태이므로 사실상 액상과 기상을 구별할 수 없다. 그렇지만 본 명세서에서는 고압 상태에서 액화증발가스를 주위온도(혹은 고압 천연가스 분사 엔진에서 요구하는 온도)까지 가열하는 것을 기화시킨다고 표현하고 있으며, 고압 상태에서 액화증발가스를 주위온도까지 가열하는 장치를 고압 기화기라고 표현한다.
저장탱크는 LNG 등의 액화가스를 극저온 상태로 저장할 수 있도록 밀봉 및 단열 방벽을 갖추고 있지만, 외부로부터 전달되는 열을 완벽하게 차단할 수는 없다. 그에 따라 저장탱크(11) 내에서는 액화가스의 증발이 지속적으로 이루어지며, 증발가스의 압력을 적정한 수준으로 유지하기 위해 증발가스 배출라인(L1)을 통하여 저장탱크(11) 내부의 증발가스를 배출시킨다.
배출된 증발가스는 증발가스 배출라인(L1)을 통해 증발가스 압축부(13)에 공급된다. 증발가스 압축부(13)는 하나 이상의 증발가스 압축기(14)와, 이 증발가스 압축기(14)에서 압축되면서 온도가 상승한 증발가스를 냉각시키기 위한 하나 이상의 중간 냉각기(15)를 포함한다. 도 3a에서는 5개의 증발가스 압축기(14)와 5개의 중간 냉각기(15)를 포함하는 5단 압축의 증발가스 압축부(13)가 예시되어 있다.
증발가스 압축부(13)에서 압축된 증발가스는 증발가스 공급라인(L2)을 통하여 재액화 장치(20)에 공급된다. 재액화 장치(20)에 공급된 증발가스는 재액화 장치(20)의 콜드 박스(21)를 통과하면서 냉매에 의해 냉각되어 재액화된다. 재액화 장치(20)로서는, LNG 등의 액화가스로부터 발생하는 증발가스 등을 액화시킬 수 있는 것이라면 어떠한 구성의 것이라도 사용될 수 있다.
콜드 박스(21)에서의 열교환을 통해 재액화된 증발가스는 버퍼 탱크(31)에서 기체와 액체 상태로 분리되며, 액체 상태의 액화증발가스만이 연료 공급라인(L3)을 통해 고압 펌프(33)에 공급된다. 고압 펌프(33)는 복수개, 예를 들어 2개가 병렬로 설치될 수 있다.
고압 펌프(33)에서는 액화증발가스를 고압 천연가스 분사 엔진(예컨대 ME-GI 엔진)에서 요구하는 연료 공급 압력까지 가압하여 송출한다. 고압 펌프(33)에서 송출되는 액화증발가스는 대략 150 ~ 400 bara(절대압력) 정도의 고압을 갖는다.
도 3a에 예시된 재액화 장치(20)는, 냉매와 증발가스의 열교환에 의해 증발가스를 재액화시키기 위한 콜드 박스(21)와, 이 콜드 박스(21)에서 가열되어 부분적으로 기화된 냉매를 기체 상태의 냉매와 액체 상태의 냉매로 분리하기 위한 하나 이상의 냉매 기액분리기(22)와, 이 냉매 기액분리기(22)에서 분리된 기체 상태의 냉매를 압축시키기 위한 하나 이상의 냉매 압축기(23)와, 냉매 압축기(23)에서 압축된 냉매를 냉각시키기 위한 냉매 냉각기(24)와, 냉매 압축기(23)에서 압축된 후 냉매 냉각기(24)에서 냉각된 냉매를 팽창시켜 온도를 낮추는 냉매 팽창밸브(25)와, 냉매 기액분리기(22)에서 분리된 액체 상태의 냉매를 냉매 팽창밸브(25)에 공급하기 위한 냉매 펌프(26)를 포함한다.
냉매 펌프(26)를 통하여 냉매 팽창밸브(25)에 공급되는 냉매는 냉매 팽창밸브(25)의 상류측에서 냉매 냉각기(24)를 통과한 후 냉매 팽창밸브(25)에 공급되는 냉매와 혼합되는 것이 바람직하다.
한편, 냉매 팽창밸브(25)에 공급되는 냉매는 팽창 전에 콜드 박스(21)를 통과하면서 팽창 후의 극저온 상태의 냉매와 열교환될 수 있도록 구성되어도 좋다.
또한, 냉매 냉각기(24)에서 냉각된 냉매는 또 다른 냉매 기액분리기에 공급되어 기체 상태의 냉매와 액체 상태의 냉매로 분리되어 처리될 수 있다. 이를 위해 도 3a의 재액화 장치(20)는 각각 2개씩의 냉매 기액분리기(22), 냉매 압축기(23), 냉매 냉각기, 및 냉매 펌프(26)를 포함하는 것으로 예시되어 있지만, 이는 본 발명을 한정하지 않으며 설계시 필요에 따라 설치 개수는 가감될 수 있다.
(제1 실시형태의 변형예)
도 3b에는 본 발명의 바람직한 제1 실시형태의 변형예에 따른 연료 공급 시스템이 도시되어 있다. 본 제1 실시형태의 변형예는, 증발가스 압축부(13) 및 재액화 장치(20)의 구성이 상술한 제1 실시형태에 비해 부분적으로 상이하므로, 이하에서는 그 차이점만을 설명한다.
도 3b에 예시된 본 제1 실시형태의 변형예에 따른 증발가스 압축부(13)는 5개의 증발가스 압축기(14)를 가진다는 점에서는 도 3a에 예시된 것과 동일하지만, 증발가스 압축부(13)에 포함된 첫 번째 증발가스 압축기와 두 번째 증발가스 압축기 사이, 그리고 두 번째 증발가스 압축기와 세 번째 증발가스 압축기 사이에 중간 냉각기(15)가 생략되어 있다는 점에서 도 3a에 예시된 것과 상이하다. 본 발명에 따르면, 이와 같이 증발가스 압축기(14) 사이마다 중간 냉각기(15)가 배치될 수도 있고, 그렇지 않을 수도 있다.
또한, 도 3b에 예시된 본 제1 실시형태의 변형예에 따른 재액화 장치(20)는, 냉매와 증발가스의 열교환이 이루어지는 콜드 박스(21), 이 콜드 박스(21)에서 가열되어 적어도 부분적으로 기화된 냉매를 압축하기 위한 압축수단, 압축된 냉매를 팽창시켜 온도를 떨어뜨리기 위한 팽창수단을 포함한다.
더욱 상세하게는, 도 3b에 예시된 본 제1 실시형태의 변형예에 따른 재액화 장치(20)는, 냉매와 증발가스의 열교환에 의해 증발가스를 재액화시키기 위한 콜드 박스(21)와, 이 콜드 박스(21)에서 가열되어 부분적으로 기화된 냉매를 기체 상태의 냉매와 액체 상태의 냉매로 분리하기 위한 제1 냉매 기액분리기(22a)와, 이 제1 냉매 기액분리기(22a)에서 분리된 기체 상태의 냉매를 압축시키기 위한 제1 냉매 압축기(23a)와, 이 제1 냉매 압축기(23a)에서 압축된 냉매를 냉각시키기 위한 제1 냉매 냉각기(24a)와, 이 제1 냉매 냉각기(24a)에서 냉각된 냉매를 2차적으로 기체 상태의 냉매와 액체 상태의 냉매로 분리하기 위한 제2 냉매 기액분리기(22b)와, 이 제2 냉매 기액분리기(22b)에서 분리된 기체 상태의 냉매를 압축시키기 위한 제2 냉매 압축기(23b)와, 이 제2 냉매 압축기(23b)에서 압축된 냉매를 냉각시키기 위한 제2 냉매 냉각기(24b)와, 제1 냉매 기액분리기(22a)에서 분리된 액체 상태의 냉매를 제2 냉매 냉각기(24b)에 공급하기 위한 제1 냉매 펌프(26a)와, 제2 냉매 기액분리기(22b)에서 분리된 액체 상태의 냉매를 제2 냉매 냉각기(24b)에 공급하기 위한 제2 냉매 펌프(26b)와, 제2 냉매 냉각기(24b)에서 냉각된 냉매를 3차적으로 기체 상태의 냉매와 액체 상태의 냉매로 분리하기 위한 제3 냉매 기액분리기(22c)와, 이 제3 냉매 기액분리기(22c)에서 분리된 액체 상태의 냉매를 팽창시켜 온도를 떨어뜨리기 위한 냉매 팽창밸브(25)와, 액체 상태의 냉매를 제3 냉매 기액분리기(22c)에서 냉매 팽창밸브(25)에 공급하기 위한 제3 냉매 펌프(26c)를 포함한다.
제1 및 제2 냉매 기액분리기(22a, 22b)에서 제2 냉매 냉각기(24b)에 공급되는 액체 상태의 냉매는 합류된 후, 제2 냉매 압축기(23b)에서 제2 냉매 냉각기(24b)로 공급되는 기체 상태의 냉매와 혼합된 상태로 제2 냉매 냉각기(24b)에 공급될 수 있다. 또한, 제3 기액 분리기(22c)에서 분리된 기체 상태의 냉매는 제3 냉매 펌프(26c)에 의해 냉매 팽창밸브(25)에 공급되는 액체 상태의 냉매와 혼합될 수 있다. 또한, 냉매 팽창밸브(25)에 공급되는 냉매는 팽창 전에 콜드 박스(21)를 통과하면서 팽창 후의 극저온 상태의 냉매와 열교환될 수 있도록 구성되어도 좋다.
도 3b의 재액화 장치(20)는 예시일 뿐이고 본 발명을 한정하지 않으며, 설계시 필요에 따라 재액화 장치의 구성은 변화될 수 있다.
(비폭발성 혼합냉매)
본 발명에 따르면, 재액화 장치(20) 내에서 순환하는 냉매로서는 종래와는 달리 R14를 포함하는 비폭발성 혼합냉매가 사용된다. 복수의 비폭발성 냉매를 혼합하여 이루어지는 비폭발성 혼합냉매는 중압으로 압축된 증발가스를 재액화할 때의 액화온도에서도 응결되지 않는 특성을 가지도록 하는 혼합 조성비를 갖는다.
혼합냉매의 상변화를 이용한 냉동 사이클은 질소만을 냉매로 하는 질소가스 냉동 사이클보다 효율이 높다. 종래의 혼합냉매는 폭발성 냉매가 혼합되어 안전성에 문제가 있었지만, 본 발명의 비폭발성 혼합냉매는 비폭발성 냉매를 혼합한 냉매이므로 안정성이 높다.
본 발명의 비폭발성 혼합냉매에 의해, 혼합냉매 줄-톰슨 냉동 사이클을 해상용 LNG 재액화 장치에 적용하는 것이 가능해질 수 있다. 한편, 종래 육상용 LNG 액화 플랜트에서 혼합냉매를 사용하는 것이 알려져 있었지만, 이 혼합냉매는 탄화수소(Hydro-Carbon; 이하, "HC" 라 함) 혼합냉매로서 폭발성을 가져 취급에 어려움이 있었다. 본 발명의 비폭발성 혼합냉매는 아르곤, 하이드로플루오르카본(Hydro-Fluoro-Carbon; 이하, "HFC" 라 함) 냉매, 및 플루오르카본(Fluoro-Carbon; 이하, "FC" 라 함) 냉매로 이루어져 폭발성이 없다.
HFC/FC 냉매로서는 다음 표 1과 같은 것이 사용될 수 있다. 표 1에는 아르곤을 함께 표시하였다.
냉매번호 | 화학식 | Mole. weight | 끓는점(NBP)(℃) |
Ar | Ar | 39.95 | -185.9 |
R14 | CF4 | 88 | -128.1 |
R23 | CHF3 | 70.01 | -82.1 |
R116 | CF3CF3 | 138.01 | -78.2 |
R41 | CH3F | 34.03 | -78.1 |
R32 | CH2F2 | 52.02 | -51.7 |
R125 | CHF2CF3 | 120.02 | -48.1 |
R143a | CH3CF3 | 84.04 | -47.2 |
R161 | CH3CHF2 | 48.06 | -37.1 |
R218 | CF3CF2CF3 | 188.02 | -36.6 |
R134a | CH2FCF3 | 102.03 | -26.1 |
R152a | CH3CHF2 | 66.05 | -24 |
R227ea | CF3CHFCF3 | 170.03 | -15.6 |
R236fa | CF3CH2CF3 | 152.04 | -1.4 |
R245fa | CHF2CH2CF3 | 134.05 | 15.1 |
표 1에 나타낸 냉매 이외에도, 이러한 냉매들을 2 이상 혼합하여 별도의 냉매 번호(R400 및 R500 계열)를 붙여 사용하기도 한다. 이러한 HFC/FC 혼합냉매는 표 2에 표시하였다.
냉매번호 | 화학식(mass ratio) | Mole. weight | 끓는점(NBP)(℃) |
R410A | R32/125(50/50) | 72.58 | -51.6 |
R410B | R32/125(45/55) | 75.57 | -51.5 |
R507 | R125/143a(50/50) | 98.86 | -47.1 |
R407B | R32/125/134a(10/70/20) | 102.94 | -46.8 |
R404A | R125/143a/134a(44/52/4) | 97.6 | -46.6 |
R407A | R32/125/134a(20/40/40) | 90.11 | -45.2 |
R407C | R32/125/134a(23/25/52) | 86.2 | -43.8 |
R407E | R32/125/134a(25/15/60) | 83.78 | -42.8 |
R407D | R32/125/134a(15/15/70) | 90.96 | -39.4 |
다만, 도 4a 및 도 4b에 도시된 바와 같이, HFC/FC 냉매의 경우 어는점이 LNG의 일반적인 온도(-163℃)보다 높아 LNG의 재액화시 냉매로서 사용할 수 없다. 그러나, 본 발명자들은, 도 4c에 도시된 바와 같이, 천연가스(혹은 증발가스)의 압력이 높아질수록 액화(혹은 재액화) 온도가 상승하는 점에 착안하여, 효율이 높고 안전한 HFC/FC 혼합냉매(즉, 비폭발성 혼합냉매) 줄-톰슨 냉동 사이클에 의해 해상 구조물에서의 LNG 저장탱크로부터 발생하는 증발가스를 재액화할 수 있는 재액화 장치를 개발하였다. 다시 말해서, 본 발명에 따르면, 증발가스를 재액화하기 전에 12 내지 45 bara의 중압으로 가압함으로써, 상압에서의 증발가스 재액화 온도보다 높은 온도, 즉 비폭발성 혼합냉매의 어는점보다 높은 온도에서 증발가스의 재액화가 가능해지도록 한다.
본 발명의 비폭발성 혼합냉매는, 비등점이 천연가스 액화온도(혹은 증발가스 재액화온도)와 상온 사이에 골고루 분포되어 넓은 상변화 구간을 이용할 수 있도록 다양한 성분의 냉매를 혼합하여 만들어진다. 끓는점이 서로 유사한 냉매들을 5개의 계열로 분류하여, 각각의 계열에서 하나 이상의 성분을 선택하여 본 발명의 비폭발성 혼합냉매를 구성하는 것이 바람직하다. 즉, 본 발명의 비폭발성 혼합냉매는 5개의 계열에서 각각 적어도 하나의 성분을 선택하여 혼합함으로써 만들어진다.
도 5에 도시된 바와 같이, 계열 I에는 냉매들 중 끓는점이 가장 낮은 Ar이 포함되고, 계열 II에는 R14가 포함되고, 계열 III에는 R23, R116, 및 R41이 포함되고, 계열 IV에는 R32, R410A, R410B, R125, R143a, R507, R407B, R404A, R407A, R407C, R407E, R407D, R161, R218, R134a, R152a, 및 R227ea가 포함되고, 계열 V에는 R236fa 및 R245fa가 포함된다.
이들 5개의 계열에서 각각 하나 이상의 냉매를 선택하여 이루어지는 본 발명의 비폭발성 혼합냉매는, 냉매 수급의 용이함, 비용 등을 감안하여 볼 때, 다음 표 1과 같은 구성성분과 조성을 가지는 것이 바람직하다. 비폭발성 혼합냉매의 조성 비율은, 증발가스와의 열교환이 이루어지는 열교환기, 즉 콜드박스(21)에서의 고온 유체(즉, 증발가스)와 저온 유체(즉, 비폭발성 혼합냉매) 사이의 온도차가 가능한 한 일정하게 유지되도록 정해지는 것이 효율면에서 바람직하다.
구성성분 | 조성(% mole) |
Ar | 20 내지 55 |
R14 | 15 내지 30 |
R23 | 5 내지 15 |
R410a | 10 내지 15 |
R245fa | 15 내지 20 |
비폭발성 혼합냉매를 사용할 경우, 종래기술에서와 같이 질소가스 냉매를 사용하여 증발가스를 재액화할 때에 비하여 소모되는 동력, 즉 전력(kW)을 절감할 수 있어 재액화 효율을 향상시킬 수 있다.
더욱 상세하게는, 본 발명은 종래의 재액화 장치에서 사용되는 재액화시 증발가스 압력에 비해 상대적으로 높은 압력인 12 내지 45 bara 정도의 중압으로 증발가스를 압축시켜 재액화하고 있기 때문에 재액화시 소요되는 동력을 절감할 수 있는 것이며, 여기에서 본 발명에 따른 압력범위(즉, 12 내지 45 bara)는 재액화 장치에서 냉매로 사용하는 상기 조성의 비폭발성 혼합냉매의 특성으로 인해 정해진 것이다. 즉, 상기 조성의 비폭발성 혼합냉매를 사용할 경우, 증발가스가 바람직하게는 12 내지 45 bara 정도의 압력을 가질 때 재액화 장치에서의 재액화 효율을 가장 양호하게 유지할 수 있게 된다.
또한, 증발가스의 압력이 12 bara일 때의 재액화 온도는 약 -130℃이고, 이 온도까지 증발가스를 냉각시키기 위해서 비폭발성 혼합냉매의 온도는 약 -155℃ 로 낮아진다. 상기 조성의 비폭발성 혼합냉매는 -155℃ 이하에서 동결이 발생할 우려가 있으므로, 증발가스의 압력이 12 bara보다 낮은 경우에는 비폭발성 혼합냉매를 사용하는 냉동사이클이 구성되기 어렵다.
또한, 주성분이 메탄인 증발가스의 임계압력이 약 46 bara 정도이며 이 임계압력 이상에서는 상이 존재하지 않아 액화의 의미가 없어지므로, 증발가스 압력의 상한은 45 bara 정도로 정해지는 것이 바람직하다.
도 6의 (a)를 참조하면, 중압, 즉 12 내지 45 bara의 압력범위(증발가스 4.3 ton/h 기준)에 있어서, 질소가스 냉매를 사용하는 종래의 재액화 장치에 비해 본 발명의 상기한 바와 같은 조성을 갖는 비폭발성 혼합냉매를 사용하는 재액화 장치가 대략 10 내지 20% 정도 동력이 절감됨을 알 수 있다.
도 6의 (b)에는, 종래기술에 따른 재액화 장치의 조건(즉, 재액화 장치에서 사용되는 냉매는 질소가스(N2)이고 재액화 장치에 공급되는 증발가스의 압력은 8bara인 경우)에서의 동력 필요량과, 본 발명에 따른 비폭발성 혼합냉매(NFMR)를 사용하는 재액화 장치의 조건(즉, 재액화 장치에서 사용되는 냉매는 비폭발성 혼합냉매(NFMR)이고 재액화 장치에 공급되는 증발가스의 압력은 12 내지 45bara인 경우)에서의 동력 필요량을 비교한 그래프가 도시되어 있다. 도 6의 (b)를 참조하면, 질소 냉매를 사용하는 종래의 재액화 장치(냉동 사이클)에서 소모되는 동력에 비해 본 발명의 재액화 장치는 대략 50 내지 80% 정도의 동력만으로도 운전이 가능함을 알 수 있다. 이와 같이 본 발명은 종래에 비해 상당히 적은 동력으로 운전이 가능하기 때문에, 발전기 용량을 감소시킬 수 있어 발전기의 소형화가 가능하게 된다.
한편, 본 발명의 재액화 장치는 냉매의 팽창 수단으로서 줄-톰슨 밸브(Joule Thomson valve)를 사용하므로, 팽창기(expander)를 사용하는 종래의 질소 컴팬더(N2 compander)보다 전체 시스템이 단순해져 경제적이라는 장점을 얻을 수 있다.
또한 표 1에는 기재하지 않았지만, 본 발명의 비폭발성 혼합냉매는 표 1에 기재된 성분 이외의 비폭발성 냉매 성분을 미소량 함유할 수 있다.
(제2 실시형태)
도 7a는 본 발명의 제2 실시형태에 따른 고압 천연가스 분사 엔진(예컨대 ME-GI 엔진)을 갖는 해상 구조물의 연료 공급 시스템을 도시한 구성도이다. 도 7a에 도시된 제2 실시형태의 연료 공급 시스템은, 전술한 제1 실시형태의 연료 공급 시스템에 비하여 증발가스를 중압으로 압축시킨 후 재액화 장치에서 재액화시키기 전에, 고압 펌프(33)에서 고압 기화기(37)로 공급되는 LNG와 열교환시켜 예냉한다는 점에서만 서로 상이하므로, 이어지는 설명에서는 제1 실시형태와의 차이점을 위주로 설명한다.
도 7a에 도시된 바와 같이, 고압 펌프(33)에서 고압으로 압축된 액화증발가스는, 고압 기화기(37)에 공급되기 전에, 재액화 장치(20)에 공급되는 증발가스와 열교환기(35)에서 열교환된다. 고압 기화기(37)에 공급되는 액화증발가스는 재액화 장치(20)에 공급되는 증발가스에 비해 상대적으로 저온이므로, 열교환기(35)를 통과하면서 재액화 장치(20)에 공급되는 증발가스의 온도를 낮출 수 있어 재액화 장치(20)에서의 재액화 에너지를 절감할 수 있다. 그와 함께, 고압 기화기(37)에 공급되는 액화증발가스는 열교환기(35)를 통과하면서 가열되어 고압 기화기(37)에서의 기화 에너지를 절감할 수 있다.
증발가스 압축부(13)에서 압축된 증발가스는 증발가스 공급라인(L2)을 통하여 재액화 장치(20)에 공급된다. 증발가스 공급라인(L2)의 도중에는 열교환기(35)가 설치되어 있으며, 전술한 바와 같이 열교환기(35)에서 상대적으로 고온의 압축된 증발가스와 고압 펌프(33)로부터 배출된 상대적으로 저온의 액화증발가스는 서로 열교환한다. 열교환기(35)를 통과하면서 냉각된 증발가스는 재액화 장치(20)의 콜드 박스(21)를 통과하면서 냉매에 의해 냉각되어 재액화된다.
(제2 실시형태의 변형예)
도 7b에는 본 발명의 바람직한 제2 실시형태의 변형예에 따른 연료 공급 시스템이 도시되어 있다. 본 제2 실시형태의 변형예는, 제1 실시형태의 변형예에서 설명한 바와 같이, 증발가스 압축부(13) 및 재액화 장치(20)의 구성이 상술한 제2 실시형태에 비해 부분적으로 상이하다.
즉, 도 7b에 예시된 본 제2 실시형태의 변형예에 따른 증발가스 압축부(13)는 5개의 증발가스 압축기(14)를 가진다는 점에서는 도 7a에 예시된 것과 동일하지만, 증발가스 압축부(13)에 포함된 첫 번째 증발가스 압축기와 두 번째 증발가스 압축기 사이, 그리고 두 번째 증발가스 압축기와 세 번째 증발가스 압축기 사이에 중간 냉각기(15)가 생략되어 있다는 점에서 도 7a에 예시된 것과 상이하다. 본 발명에 따르면, 이와 같이 증발가스 압축기(14) 사이마다 중간 냉각기(15)가 배치될 수도 있고, 그렇지 않을 수도 있다.
또한, 도 7b에 예시된 본 제2 실시형태의 변형예에 따른 재액화 장치(20)는, 도 2b에 예시된 제1 실시형태의 변형예에 따른 재액화 장치(20)와 마찬가지로, 냉매와 증발가스의 열교환이 이루어지는 콜드 박스(21), 이 콜드 박스(21)에서 가열되어 적어도 부분적으로 기화된 냉매를 압축하기 위한 압축수단, 압축된 냉매를 팽창시켜 온도를 떨어뜨리기 위한 팽창수단, 그리고 기체 상태의 냉매와 액체 상태의 냉매를 분리하기 위한 냉매 기액분리기를 포함한다.
특히, 도 7b에 예시된 본 제2 실시형태의 변형예에 따른 재액화 장치(20)는, 도 2b에서와 마찬가지로, 복수의 냉매 기액분리기(22a, 22b, 22c)를 포함하고 있으며, 이들 복수의 냉매 기액분리기 중에서 가장 하류측에 배치되는 냉매 기액분리기(22c)에는 상류측에 배치되는 냉매 기액분리기(22a, 22b)들에서 분리된 기체 상태의 냉매와 액체 상태의 냉매가 혼합된 후 공급된다. 상류측에 배치되는 냉매 기액분리기(22a, 22b)들에서 분리된 기체 상태의 냉매는, 가장 하류측에 배치되는 냉매 기액분리기(22c)에 공급되기 전에, 냉매 압축기(23a, 23b)에 의해 압축되고 냉매 냉각기(24a, 24b)에 의해 냉각되는 과정을 거칠 수 있다. 상류측에 배치되는 냉매 기액분리기(22a, 22b)들에서 분리된 액체 상태의 냉매는, 기체 상태의 냉매가 가장 하류측에 배치되는 냉매 기액분리기(22c)에 공급되기 전에, 더욱 상세하게는 기체 상태의 냉매가 냉매 냉각기(24b)에 의해 냉각되기 전에 이 기체 상태의 냉매와 혼합된다.
(제3 실시형태)
도 8a는 본 발명의 제3 실시형태에 따른 고압 천연가스 분사 엔진(예컨대 ME-GI 엔진)을 갖는 해상 구조물의 연료 공급 시스템을 도시한 구성도이다. 도 8a에 도시된 제3 실시형태의 연료 공급 시스템은, 전술한 제1 실시형태의 연료 공급 시스템에 비하여 증발가스를 압축시키기 전에 예열한다는 점에서만 서로 상이하므로, 이어지는 설명에서는 제1 실시형태와의 차이점을 위주로 설명한다.
도 8a에 도시된 바와 같이, 본 발명의 제2 실시형태에 따른 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템에 따르면, 액화가스 저장탱크(11)에서 발생되어 배출된 증발가스(NBOG)는, 증발가스 압축부(13)에서 대략 12 내지 45 bara(절대압력) 정도의 중압으로 압축된 후 재액화 장치(20)에 공급되기 전에 증발가스 압축부(13)의 상류측에 설치된 증발가스 예열기(41)에 공급된다. 증발가스 압축부(13)에서 대략 12 내지 45 bara로 압축되고 중간 냉각기(15)를 통해 대략 40℃ 정도로 냉각된 증발가스는 증발가스 예열기(41)에서 액화가스 저장탱크(11)에서 배출된 극저온의 증발가스와 열교환됨으로써 냉각된 후 재액화 장치(20)에 공급된다.
제3 실시형태에 따르면 재액화 장치(20)에 공급될 증발가스의 온도를 증발가스 예열기(41)를 통해 낮출 수 있어 콜드 박스(21)에서의 열부하를 감소시킬 수 있다. 또한, 증발가스 압축부(13)에 공급되는 극저온 상태의 증발가스와, 증발가스 압축부(13)에서 압축된 상대적으로 온도가 높은 증발가스를, 증발가스 압축부(13)의 상류측에 위치한 증발가스 예열기(41)에서 열교환함으로써, 증발가스 압축부에 공급되는 증발가스의 온도를 상승시키고 증발가스 압축부(즉, 증발가스 압축기)의 입구온도를 일정하게 유지할 수 있게 된다.
증발가스 압축부(13)에서 압축된 후 증발가스 예열기(41)를 통과한 증발가스는 전술한 제1 실시형태의 연료 공급 시스템과 마찬가지로 재액화 장치(20)에 공급된다. 계속해서, 재액화 장치(20)에서 액화에너지, 즉 냉열을 공급받아 재액화된 액화증발가스(LBOG)는 고압 펌프(33)에 의해 대략 150 내지 400 bara 정도의 고압으로 압축된 후 고압 기화기(37)에 공급된다. 고압 기화기(37)에서 기화된 증발가스는 계속해서 고압 천연가스 분사 엔진, 예컨대 ME-GI 엔진에 연료로서 공급된다.
(제3 실시형태의 변형예)
도 8b에는 본 발명의 바람직한 제3 실시형태의 변형예에 따른 연료 공급 시스템이 도시되어 있다. 본 제3 실시형태의 변형예는, 재액화 장치(20)의 구성이 상술한 제3 실시형태에 비해 부분적으로 상이하다.
즉, 도 8b에 예시된 본 제3 실시형태의 변형예에 따른 재액화 장치(20)는, 도 2b에 예시된 제1 실시형태의 변형예에 따른 재액화 장치(20)와 마찬가지로, 냉매와 증발가스의 열교환이 이루어지는 콜드 박스(21), 이 콜드 박스(21)에서 가열되어 적어도 부분적으로 기화된 냉매를 압축하기 위한 압축수단, 압축된 냉매를 팽창시켜 온도를 떨어뜨리기 위한 팽창수단, 그리고 기체 상태의 냉매와 액체 상태의 냉매를 분리하기 위한 냉매 기액분리기를 포함한다.
특히, 도 8b에 예시된 본 제3 실시형태의 변형예에 따른 재액화 장치(20)는, 도 2b에서와 마찬가지로, 복수의 냉매 기액분리기(22a, 22b, 22c)를 포함하고 있으며, 이들 복수의 냉매 기액분리기 중에서 가장 하류측에 배치되는 냉매 기액분리기(22c)에는 상류측에 배치되는 냉매 기액분리기(22a, 22b)들에서 분리된 기체 상태의 냉매와 액체 상태의 냉매가 혼합된 후 공급된다. 상류측에 배치되는 냉매 기액분리기(22a, 22b)들에서 분리된 기체 상태의 냉매는, 가장 하류측에 배치되는 냉매 기액분리기(22c)에 공급되기 전에, 냉매 압축기(23a, 23b)에 의해 압축되고 냉매 냉각기(24a, 24b)에 의해 냉각되는 과정을 거칠 수 있다. 상류측에 배치되는 냉매 기액분리기(22a, 22b)들에서 분리된 액체 상태의 냉매는, 기체 상태의 냉매가 가장 하류측에 배치되는 냉매 기액분리기(22c)에 공급되기 전에, 더욱 상세하게는 기체 상태의 냉매가 냉매 냉각기(24b)에 의해 냉각되기 전에 이 기체 상태의 냉매와 혼합된다.
(제4 실시형태)
도 9a는 본 발명의 제4 실시형태에 따른 고압 천연가스 분사 엔진(예컨대 ME-GI 엔진)을 갖는 해상 구조물의 연료 공급 시스템을 도시한 구성도이다. 도 9a에 도시된 제4 실시형태의 연료 공급 시스템은, 전술한 제3 실시형태의 연료 공급 시스템에 비하여 잉여 증발가스를 처리하기 위한 수단, 즉 이종연료엔진(DFDE)과, 안정적인 연료 공급을 위한 수단, 즉 LNG 공급라인이 추가되었다는 점에서 서로 상이하므로, 이어지는 설명에서는 제2 실시예와의 차이점을 위주로 설명한다.
본 발명의 제4 실시형태에 따른 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템에 따르면, 고압 천연가스 분사 엔진의 부하가 줄어들거나 발생된 증발가스의 양이 많을 경우, 잉여의 액화증발가스(LBOG)는 버퍼 탱크(31)의 후단에서 연료 공급라인(L3)으로부터 분기하는 LBOG 복귀라인(L4)에 설치되는 LBOG 팽창밸브(51)를 통하여 감압되고, 감압 과정에서 발생하는 플래시 가스를 포함한 LBOG는 기액분리기를 통해 액체 성분(LBOG)과 기체 성분(플래시가스)으로 분리된 후, 액체 성분만이 LBOG 복귀라인(L4)을 통해 저장탱크(11)로 복귀된다.
더욱 상세하게는, LBOG 팽창밸브(51)에서 감압되어 플래시 가스를 포함하는 LBOG는 LBOG 기액분리기(53)로 공급되어 액체 성분과 기체 성분으로 분리되며, LBOG 기액분리기(53)에서 분리된 기체 성분(즉, 플래시 가스)은, 연료가스 공급라인(L6)을 통하여, 발전 등을 위해 해상 구조물 내에 설치될 수 있는 이종연료엔진(DFDE)에 연료로서 공급된다. 이종연료엔진에 공급되는 연료가스의 압력은 연료가스 공급라인(L6)의 도중에 있어서의 LBOG 기액분리기(53)의 하류측에 설치되는 압력조절밸브에 의해 조절될 수 있으며, 역시 연료가스 공급라인(L6)의 도중에 설치되는 연료가스 히터(55)에서 연료가스의 온도는 이종연료엔진에서 요구하는 온도까지 가열될 수 있다. 또한, LBOG 기액분리기(53)에서 분리된 액체 성분은 LBOG 복귀라인(L4)을 통해 저장탱크로 복귀된다.
이때, 이종연료엔진에 대한 연료가스 공급압력은 일반적으로 5 내지 8 bara 정도이므로, LBOG 기액분리기(53)에서 분리된 액체 성분의 압력이 여전히 상압보다 높을 수 있다. 이 경우, LBOG 기액분리기(53)에서 분리된 액체 성분(즉, LBOG)은 또 다른 LBOG 팽창밸브(52)를 통하여 추가적으로 감압되고, 계속해서 또 다른 LBOG 기액분리기(54)에 공급되어 액체 성분(LBOG)과 기체 성분(플래시가스)으로 분리된 후, 상압의 액체 성분만이 LBOG 복귀라인(L4)을 통해 저장탱크(11)로 복귀된다. 또 다른 LBOG 기액분리기(54)에서 분리된 기체 성분은 가스 연소 유닛(GCU; Gas Combustion Unit)에 공급되어 연소됨으로써 소비될 수 있다.
한편, 이종연료엔진에 공급되는 연료가 부족하면, 고압 천연가스 분사 엔진(즉, ME-GI)에 연료를 공급하는 연료 공급라인(L3)으로부터 분기되어 이종연료엔진(즉, DFDE)에 연료를 공급하는 연료가스 공급라인(L6)에 연결되는 분기라인(L5)을 통하여 이종연료엔진에 연료가 추가로 공급될 수 있다. 분기라인(L5)에는 압력강하를 위해 밸브가 설치된다.
또한, 증발가스 재액화 장치가 작동하지 않거나 저장탱크(11)에서 발생하는 증발가스의 양이 적은 경우, 저장탱크(11) 내에 설치된 LNG 공급펌프(57)와 LNG 공급라인(L7)을 통해 저장탱크(11)에 수용된 LNG를 버퍼 탱크(31)에 공급함으로써 연료를 공급할 수 있다.
이와 같이 이종연료엔진은 압력 차이로 인하여 저장탱크(11)에 복귀되는 도중의 LBOG로부터 발생할 수 있는 플래시 가스를 처리할 수 있는 플래시 가스 처리수단으로서 기능하게 된다.
한편, 도면에는 도시하지 않았지만, LBOG 기액분리기(53)에서 분리된 기체성분은 이종연료엔진 대신에 가스터빈이나, 보일러 등과 같은 소비처로 공급되어 연료로서 사용될 수 있다. 또한, 이 기체성분은, 대기중에 천연가스를 방출하는 가스 방출장치나, 대기중에서 연소시키는 가스 연소장치(예컨대 플레어 타워) 등에 공급되어 처리될 수 있다. 이때 이종연료엔진, 가스터빈, 보일러, 가스 방출장치나 플레어 타워 등은 플래시 가스 처리수단에 포함되며, 이와 같은 플래시 가스 처리수단에 공급되는 기체성분은 연료가스 히터(55)에서 가열될 수 있다.
증발가스 압축부(13)에서 12 내지 45 bara 정도의 중압으로 압축된 후 재액화 장치(20)에서 액화된 증발가스를 ME-GI 엔진과 같은 고압 천연가스 분사 엔진에서 모두 소비하지 못하는 경우에는, 중압 상태의 액화된 증발가스를 저장탱크(11)에 복귀시킬 필요가 있다. 본 발명자들은, 저장탱크(11)의 압력은 상압 상태이므로, 액화된 증발가스를 저장탱크에 공급하기 전에 압력을 낮출 필요가 있으나, 압력을 낮추는 과정에서 플래시 가스가 발생한다는 점을 인식하여 플래시 가스를 처리할 수 있는 수단을 갖춘 연료 공급 시스템을 발명하였다. 이와 같이 본 발명에 따르면 상기된 바와 같은 플래시 가스 처리수단이 구비되어 있기 때문에, 재액화 장치에 공급되는 증발가스를 12 내지 45 bara 정도의 중압으로 압축하여 공급할 수 있으며, 그에 따라 재액화시의 에너지 소모량을 절감할 수 있게 된다.
(제4 실시형태의 변형예)
도 9b에는 본 발명의 바람직한 제4 실시형태의 변형예에 따른 연료 공급 시스템이 도시되어 있다. 본 제4 실시형태의 변형예는, 재액화 장치(20)의 구성이 상술한 제4 실시형태에 비해 부분적으로 상이하고, 잉여의 증발가스가 발생할 경우 증발가스 압축부(13)로부터 혹은 그 하류측 끝에서 분기되는 라인을 통해 잉여의 증발가스를 처리한다는 점이 제4 실시형태에 비해 상이하다.
도 9b에 예시된 본 제4 실시형태의 변형예에 따른 재액화 장치(20)는, 도 2b에 예시된 제1 실시형태의 변형예에 따른 재액화 장치(20)와 마찬가지로, 냉매와 증발가스의 열교환이 이루어지는 콜드 박스(21), 이 콜드 박스(21)에서 가열되어 적어도 부분적으로 기화된 냉매를 압축하기 위한 압축수단, 압축된 냉매를 팽창시켜 온도를 떨어뜨리기 위한 팽창수단, 그리고 기체 상태의 냉매와 액체 상태의 냉매를 분리하기 위한 냉매 기액분리기를 포함한다.
특히, 도 9b에 예시된 본 제4 실시형태의 변형예에 따른 재액화 장치(20)는, 도 2b에서와 마찬가지로, 복수의 냉매 기액분리기(22a, 22b, 22c)를 포함하고 있으며, 이들 복수의 냉매 기액분리기 중에서 가장 하류측에 배치되는 냉매 기액분리기(22c)에는 상류측에 배치되는 냉매 기액분리기(22a, 22b)들에서 분리된 기체 상태의 냉매와 액체 상태의 냉매가 혼합된 후 공급된다. 상류측에 배치되는 냉매 기액분리기(22a, 22b)들에서 분리된 기체 상태의 냉매는, 가장 하류측에 배치되는 냉매 기액분리기(22c)에 공급되기 전에, 냉매 압축기(23a, 23b)에 의해 압축되고 냉매 냉각기(24a, 24b)에 의해 냉각되는 과정을 거칠 수 있다. 상류측에 배치되는 냉매 기액분리기(22a, 22b)들에서 분리된 액체 상태의 냉매는, 기체 상태의 냉매가 가장 하류측에 배치되는 냉매 기액분리기(22c)에 공급되기 전에, 더욱 상세하게는 기체 상태의 냉매가 냉매 냉각기(24b)에 의해 냉각되기 전에 이 기체 상태의 냉매와 혼합된다.
또한, 도 9b에 예시된 제4 실시형태의 변형예에 따른 연료 공급 시스템은, 소요량보다 많은 증발가스가 발생할 경우, 증발가스 압축부(13)에서 분기하는 제2 분기라인(L8)을 통해 잉여 증발가스를 이종연료엔진(DFDE)에 공급하여 사용하도록 구성할 수 있다. 이때 증발가스 압축부(13)에 포함된 중간 냉각기(15)에서 증발가스의 온도를 대략 40℃로 냉각시키기 때문에 이종연료엔진에 공급되는 증발가스의 온도를 조절하기 위한 별도의 히터 등의 장치는 생략될 수 있다.
또는, 잉여 증발가스를 증발가스 압축부(13)의 후단에서 분기하는 제3 분기라인(L9)을 통해 가스터빈에 공급하여 사용하도록 구성할 수 있다. 마찬가지로 이때에도 가스터빈에 공급되는 증발가스의 온도를 조절하기 위한 별도의 장치는 생략될 수 있다.
또한, 도 9b에 예시된 제4 실시형태의 변형예에 따른 연료 공급 시스템은, 전술한 제4 실시형태에 비해 LBOG 복귀라인(L4)에 LBOG 팽창밸브 및 LBOG 기액분리기가 각각 하나씩 배치되는 것으로 구성되어 있지만, 필요에 따라 전술한 제4 실시형태와 마찬가지로 또 다른 LBOG 팽창밸브(52) 및 LBOG 기액분리기(54)가 추가로 배치되도록 구성될 수 있다.
(제5 실시형태)
도 10a는 본 발명의 제5 실시형태에 따른 고압 천연가스 분사 엔진(예컨대 ME-GI 엔진)을 갖는 해상 구조물의 연료 공급 시스템을 도시한 구성도이다. 도 10a에 도시된 제5 실시형태의 연료 공급 시스템은, 전술한 제3 실시형태의 연료 공급 시스템에 비하여 잉여 증발가스를 처리하기 위한 수단, 즉 가스 연소 유닛(GCU; Gas Combustion Unit)과, 안정적인 연료 공급을 위한 수단, 즉 LNG 공급라인이 추가되었다는 점에서 서로 상이하다. 또한, 잉여 증발가스가 발생하지 않도록 증발가스 중 일부를 재액화 이전에 분기시켜 소비하기 위한 수단, 즉 이종연료엔진(DFDE) 혹은 가스터빈 등을 가진다는 점에서 서로 상이하다. 이어지는 설명에서는 제3 실시형태와의 차이점을 위주로 설명한다.
본 발명의 제5 실시형태에 따른 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템에 따르면, 고압 천연가스 분사 엔진의 부하가 줄어들거나 발생된 증발가스의 양이 많아 잉여의 액화증발가스(LBOG)가 발생할 것으로 예상될 경우에는, 증발가스 압축부(13)에서 압축된 혹은 압축되고 있는 도중의 증발가스를 분기라인을 통해 분기시켜 증발가스 소비수단에서 사용한다.
즉, 잉여 증발가스를 증발가스 압축부(13)에서 분기하는 제2 분기라인(L8)을 통해 이종연료엔진(DFDE)에 공급하여 사용하도록 구성할 수 있다. 이때 증발가스 압축부(13)에 포함된 중간 냉각기(15)에서 증발가스의 온도를 대략 40℃로 냉각시키기 때문에 이종연료엔진에 공급되는 증발가스의 온도를 조절하기 위한 별도의 히터 등의 장치는 생략될 수 있다.
또는, 잉여 증발가스를 증발가스 압축부(13)의 후단에서 분기하는 제3 분기라인(L9)을 통해 가스터빈에 공급하여 사용하도록 구성할 수 있다. 마찬가지로 이때에도 가스터빈에 공급되는 증발가스의 온도를 조절하기 위한 별도의 장치는 생략될 수 있다.
한편, 상기된 바와 같이 재액화 장치(20)에 공급되는 증발가스의 양을 감소시켰음에도 불구하고 고압 천연가스 분사 엔진에서 요구하는 증발가스의 양보다 공급되는 연료로서의 증발가스의 양이 많은 경우에는, 잉여의 증발가스를, 전술한 제4 실시형태에서와 마찬가지로 처리한다.
즉, 잉여의 증발가스는, 버퍼 탱크(31)의 후단에서 연료 공급라인(L3)으로부터 분기하는 LBOG 복귀라인(L4)에 설치되는 LBOG 팽창밸브(51)를 통하여 감압되고, 감압 과정에서 발생하는 플래시 가스를 포함한 LBOG는 LBOG 기액분리기(53)를 통해 액체 성분(LBOG)과 기체 성분(플래시가스)으로 분리된 후, 액체 성분만이 LBOG 복귀라인(L4)을 통해 저장탱크(11)로 복귀된다. LBOG 기액분리기(53)에서 분리된 기체 성분(즉, 플래시 가스)은, 연료가스 공급라인(L6)을 통하여, 가스 연소 유닛(GCU)에 연료로서 공급된다.
한편, 고압 천연가스 분사 엔진(즉, ME-GI)에 연료를 공급하는 연료 공급라인(L3)으로부터 분기되어 연료가스 공급라인(L6)에 연결되는 분기라인(L5)을 통하여 잉여의 증발가스가 GCU에 추가로 공급될 수 있다. 분기라인(L5)에는 압력강하를 위해 밸브가 설치된다.
또한, 전술한 제4 실시형태와 마찬가지로, 증발가스 재액화 장치가 작동하지 않거나 저장탱크(11)에서 발생하는 증발가스의 양이 적은 경우, 저장탱크(11) 내에 설치된 LNG 공급펌프(57)와 LNG 공급라인(L7)을 통해 저장탱크(11)에 수용된 LNG를 버퍼 탱크(31)에 공급함으로써 연료를 공급할 수 있다.
지금까지 설명한 제4 및 제5 실시형태에 있어서, 발생된 플래시 가스를 처리하기 위한 수단으로 설명된 DFDE(제4 실시형태), GCU(제5 실시형태) 등의 장치와, 플래시 가스가 발생하지 않도록 잉여의 증발가스를 재액화 이전에 미리 소비하는 수단으로 설명된 DFDE(제5 실시형태), 가스터빈(제5 실시형태) 등의 장치는, 모두 플래시 가스의 발생을 억제할 수 있는 것이므로 플래시 가스 억제수단으로 통칭할 수 있다.
(제5 실시형태의 변형예)
도 10b에는 본 발명의 바람직한 제5 실시형태의 변형예에 따른 연료 공급 시스템이 도시되어 있다. 본 제5 실시형태의 변형예는, 재액화 장치(20)의 구성이 상술한 제5 실시형태에 비해 부분적으로 상이하다.
즉, 도 10b에 예시된 본 제5 실시형태의 변형예에 따른 재액화 장치(20)는, 도 2b에 예시된 제1 실시형태의 변형예에 따른 재액화 장치(20)와 마찬가지로, 냉매와 증발가스의 열교환이 이루어지는 콜드 박스(21), 이 콜드 박스(21)에서 가열되어 적어도 부분적으로 기화된 냉매를 압축하기 위한 압축수단, 압축된 냉매를 팽창시켜 온도를 떨어뜨리기 위한 팽창수단, 그리고 기체 상태의 냉매와 액체 상태의 냉매를 분리하기 위한 냉매 기액분리기를 포함한다.
특히, 도 10b에 예시된 본 제5 실시형태의 변형예에 따른 재액화 장치(20)는, 도 2b에서와 마찬가지로, 복수의 냉매 기액분리기(22a, 22b, 22c)를 포함하고 있으며, 이들 복수의 냉매 기액분리기 중에서 가장 하류측에 배치되는 냉매 기액분리기(22c)에는 상류측에 배치되는 냉매 기액분리기(22a, 22b)들에서 분리된 기체 상태의 냉매와 액체 상태의 냉매가 혼합된 후 공급된다. 상류측에 배치되는 냉매 기액분리기(22a, 22b)들에서 분리된 기체 상태의 냉매는, 가장 하류측에 배치되는 냉매 기액분리기(22c)에 공급되기 전에, 냉매 압축기(23a, 23b)에 의해 압축되고 냉매 냉각기(24a, 24b)에 의해 냉각되는 과정을 거칠 수 있다. 상류측에 배치되는 냉매 기액분리기(22a, 22b)들에서 분리된 액체 상태의 냉매는, 기체 상태의 냉매가 가장 하류측에 배치되는 냉매 기액분리기(22c)에 공급되기 전에, 더욱 상세하게는 기체 상태의 냉매가 냉매 냉각기(24b)에 의해 냉각되기 전에 이 기체 상태의 냉매와 혼합된다.
상기된 바와 같은 본 발명의 제1 내지 제5 실시형태 및 그 변형예들에 따른 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템은 종래에 비해 다음과 같은 장점을 갖는다.
일반적으로, 증발가스의 재액화 효율을 높이기 위해서는 증발가스를 높은 압력으로 압축시키는 것이 바람직하다. 그러나 종래에는 증발가스를 재액화 장치에 의해 재액화하여 저장탱크로 복귀시켰으며, 저장탱크에 저장된 LNG는 상압 상태를 유지하고 있기 때문에, 재액화된 액화증발가스의 압력이 지나치게 높아 저장탱크에 복귀할 때 플래시 가스(flash gas)가 발생하지 않도록, 재액화 효율은 낮지만 4 내지 8 bara 정도의 저압으로 증발가스를 압축할 수밖에 없었다.
그에 비해 본 발명에 의하면, 저장탱크로부터 배출된 증발가스를 고압 천연가스 분사 엔진에서 연료로서 사용하기 때문에, 플래시 가스 발생을 우려할 필요 없이 증발가스를 종래에 비해 높은 압력으로 압축시켜 재액화시킴으로써 재액화 효율을 높일 수 있다.
이와 같이 본 발명에 의하면, 재액화된 증발가스를 고압 천연가스 분사 엔진, 예컨대 ME-GI 엔진에 연료로서 공급하기 때문에 재액화된 증발가스를 저장탱크로 재저장을 위해 복귀시킬 필요가 없어 저장탱크로의 복귀시 발생될 수 있는 플래시 가스의 발생을 방지할 수 있고, 플래시 가스의 발생이 억제됨으로써 재액화 이전에 증발가스의 압력을 종래에 비해 높은 압력, 즉 12 내지 45 bara 정도의 중압으로 압축시켜 재액화할 수 있다. 이러한 중압으로 증발가스를 압축시켜 재액화함에 따라 비폭발성 혼합냉매에 의한 재액화 효율을 종래와 같이 질소가스 냉매를 사용하는 것에 비해 크게 증대시킬 수 있다. 즉, 종래의 질소가스 냉매를 사용하는 것에 비해 비폭발성 혼합냉매를 사용하는 본 발명의 재액화 장치는 상당히 적은 에너지만을 사용하여 증발가스를 재액화해서 엔진에 연료로서 공급하는 것이 가능하게 된다.
(제6 실시형태)
도 11은 본 발명의 제6 실시형태에 따른 고압 천연가스 분사 엔진(예컨대 ME-GI 엔진)을 갖는 해상 구조물의 연료 공급 시스템을 도시한 구성도이다. 도 11에 도시된 제6 실시형태의 연료 공급 시스템은, 전술한 제1 내지 제5 실시형태의 연료 공급 시스템에 포함된 버퍼 탱크를 대신하여 재응축기(Recondenser)를 사용한다는 점에서 서로 상이하다.
본 발명의 제6 실시형태에 따른 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료가스 공급 시스템에 따르면, 액화가스 저장탱크(110)에서 발생되어 배출된 증발가스(NBOG)는, 증발가스 압축부(113)에서 대략 12 내지 45 bara(절대압력) 정도의 중압으로 압축된 후 재액화 장치(120)에 공급된다. 재액화 장치(120)에서 액화에너지, 즉 냉열을 공급받아 재액화된 액화증발가스(LBOG)는 고압 펌프(133)에 의해 대략 150 내지 400 bara 정도의 고압으로 압축된 후 고압 기화기(137)에 공급된다. 고압 기화기(137)에서 기화된 증발가스는 계속해서 고압 천연가스 분사 엔진, 예컨대 ME-GI 엔진에 연료로서 공급된다.
저장탱크는 LNG 등의 액화가스를 극저온 상태로 저장할 수 있도록 밀봉 및 단열 방벽을 갖추고 있지만, 외부로부터 전달되는 열을 완벽하게 차단할 수는 없다. 그에 따라 저장탱크(110) 내에서는 액화가스의 증발이 지속적으로 이루어지며, 증발가스의 압력을 적정한 수준으로 유지하기 위해 증발가스 배출라인(L11)을 통하여 저장탱크(110) 내부의 증발가스를 배출시킨다.
배출된 증발가스는 증발가스 배출라인(L11)을 통해 증발가스 압축부(113)에 공급된다. 증발가스 압축부(113)는 하나 이상의 증발가스 압축기(114)를 포함한다. 도시하지는 않았지만, 증발가스 압축부(113)는 증발가스 압축기(114)에서 압축되면서 온도가 상승한 증발가스를 냉각시키기 위한 하나 이상의 중간 냉각기(도시생략)를 포함할 수 있다. 도 11에서는 3개의 증발가스 압축기(114)를 포함하는 3단 압축의 증발가스 압축부(113)가 예시되어 있다.
증발가스 압축부(113)에서 압축된 증발가스는 증발가스 공급라인(L12)을 통하여 재액화 장치(120)에 공급된다. 재액화 장치(120)에 공급된 증발가스는 재액화 장치(120)의 콜드 박스, 즉, 메인 극저온 열교환기(Main Cryogenic Heat Exchanger)(121)를 통과하면서 냉매에 의해 냉각되어 재액화된다.
재액화 장치(120)로서는, LNG 등의 액화가스로부터 발생하는 증발가스 등을 액화시킬 수 있는 것이라면 어떠한 구성의 것이라도 사용될 수 있다. 즉, 상술한 제1 내지 제5 실시형태 및 그 변형예에서 설명된 바와 같은 구성의 비폭발성 혼합냉매를 활용한 재액화 시스템이 사용될 수 있다. 또한, 종래 공지되어 있는 질소냉매를 활용한 재액화 시스템이 사용될 수도 있으며, 예를 들어 국제특허공개 WO 2007/117148 호 공보 및 WO 2009/136793 호 공보 등에 개시되어 있는 것이 사용될 수도 있다.
콜드 박스(121)에서의 열교환을 통해 재액화된 증발가스는 재응축기(131)에 공급되어 임시 저장된다. 본 실시형태에 따르면, 재액화된 액화증발가스와, 액화가스 저장탱크(110)에서 공급되는 액화가스, 즉 LNG를 재응축기(131)에 임시 저장하고, 액화가스 저장탱크(110)로부터 재액화 장치(120)에 공급되는 증발가스 중 일부 혹은 전체를 재응축기(131)로 우회시켜 응축시킴으로써 재액화 장치(120)로 유입되는 증발가스의 양을 감소시키거나 없앰으로써 전체적인 시스템 효율을 향상시킬 수 있다. 이하 상세하게 설명되는 바와 같이, 재응축기(131)는, 재액화 장치(120)에서 재액화된 후 재응축기(131)에 공급되어 임시 저장되는 액화증발가스 및 저장탱크(110)에서 직접 재응축기(131)에 공급된 액화가스(즉, LNG) 중 적어도 하나로부터의 냉열을 이용하여, 발생된 증발가스 중 일부 혹은 전부를 재응축시킨다.
재응축기(131)는 전술한 실시형태들에서의 버퍼 탱크와 마찬가지로 기체와 액체 성분을 분리하는 기능을 수행할 수도 있으므로, 재응축기(131)에 임시 저장된 액화가스는 기체와 액체 상태로 분리되며, 액체 상태의 액화가스만이 연료 공급라인(L13)을 통해 고압 펌프(133)에 공급된다. 고압 펌프(133)는 복수개, 예를 들어 2개가 병렬로 설치될 수 있다.
고압 펌프(133)에서는 액화가스를 고압 천연가스 분사 엔진(예컨대 ME-GI 엔진)에서 요구하는 연료 공급 압력까지 가압하여 송출한다. 고압 펌프(133)에서 송출되는 액화가스는 대략 150 ~ 400 bara(절대압력) 정도의 고압을 갖는다.
고압 펌프(133)에서의 충분한 유효 흡인 수두(NPSH; Net Positive Suction Head)를 보장할 수 있도록, 필요시, 연료 공급라인(L13)의 재응축기(131)와 고압 펌프(133) 사이에는 부스터 펌프(132)가 설치될 수 있다.
또한, 전술한 제2 실시형태에서와 같이, 고압 펌프(133)에서 고압으로 압축된 액화가스는, 고압 기화기(137)에 공급되기 전에, 재액화 장치(120)에 공급되는 증발가스와 열교환기(135)에서 열교환되도록 시스템을 구성하여도 좋다. 고압 기화기(137)에 공급되는 액화가스는 재액화 장치(120)에 공급되는 증발가스에 비해 상대적으로 저온이므로, 열교환기(135)를 통과하면서 재액화 장치(120)에 공급되는 증발가스의 온도를 낮출 수 있어 재액화 장치(120)에서의 재액화 에너지를 절감할 수 있다. 그와 함께, 고압 기화기(137)에 공급되는 액화가스는 열교환기(135)를 통과하면서 가열되어 고압 기화기(137)에서의 기화 에너지를 절감할 수 있다.
재응축기(131)에 재응축되어 임시 저장된 액화증발가스는, 필요시, LBOG 복귀라인(L14)을 통해 액화가스 저장탱크(110)에 복귀될 수 있다. 도 11에 도시하지는 않았지만, LBOG 복귀라인(L14)에는, 도 9a 내지 도 10b를 참조하여 설명한 제4 및 제5 실시형태 및 그 변형예와 같은 팽창밸브, 기액분리기 등이 설치될 수 있다.
그러나, 본 제6 실시형태에 따른 연료가스 공급 시스템에 의하면, 해상 구조물의 운항 중 대부분의 기간 동안, 저장탱크에서 발생된 증발가스를 액화시켜 모두 고압 천연가스 분사 엔진에서 연료로서 사용하고 있으며, 그에 따라 LBOG 복귀라인(L14)을 통하여 저장탱크(110)에 복귀하는 액화가스를 없앨 수 있다. LBOG 복귀라인(L14)은, 해상 구조물을 항구 내에 접안하기 위해 예인하는 경우, 운하를 통과하는 경우, 혹은 저속 운항중인 경우와 같이 고압 천연가스 분사 엔진의 연료 소모량이 저장탱크에서 발생된 증발가스의 양보다 적은 극히 예외적인 경우에만, LBOG를 재응축기(131)로부터 저장탱크(110)에 복귀시키는 용도로 사용될 수 있다. 또한, 재응축기의 고장이나 유지보수시 재응축기(131) 내에 남아있는 LBOG를 저장탱크(110)에 복귀시키는 용도로 사용될 수 있다.
본 실시형태에 따르면, 해상 구조물의 운항시 대부분의 기간 동안 LBOG를 저장탱크로 복귀시키지 않고 전량 엔진에서 사용할 수 있으므로, 그 기간 동안에는 복귀하는 LBOG 자체를 없앨 수 있고, 그에 따라 LBOG의 복귀 도중에 압력 차이로 인하여 발생할 수 있는 플래시 가스를 원천적으로 제거할 수 있다. 본 명세서에서 "플래시 가스를 제거한다"는 표현은, 발생된 플래시 가스를 소모함으로써 플래시 가스가 저장탱크(110)의 내부에 공급되지 않도록 하는 것과, 재액화된 증발가스가 저장탱크(110)에 되돌아가는 것을 방지하여 복귀 도중의 플래시 가스 발생을 원천적으로 차단함으로써 플래시 가스의 발생 자체를 방지하는 것을 모두 포함하는 개념이다.
또한, 본 명세서에서의 "고압 천연가스 분사 엔진의 연료 소모량이 저장탱크에서 발생된 증발가스의 양보다 많다거나 적다"는 표현 중에서 '고압 천연가스 분사 엔진의 연료 소모량' 은, 고압 천연가스 분사 엔진 이외에도 해상 구조물 내에 증발가스를 연료로서 사용하는 엔진, 예컨대 DFDE, 가스 터빈 등이 존재할 경우, 이들 엔진에서의 연료 소모량과 고압 천연가스 분사 엔진의 연료 소모량이 더해진 것으로 간주되어야 한다. 물론, 증발가스를 연료로서 사용하는 엔진이 고압 천연가스 분사 엔진뿐이라면, 고압 천연가스 분사 엔진의 연료 소모량만을 의미하는 것이다.
액화가스 저장탱크(110)에서 발생하는 증발가스의 양이 고압 천연가스 분사 엔진에서 요구하는 연료량보다 적은 경우 등에는, LNG 공급라인(L17)을 통해 저장탱크(110)에 수용된 LNG를 직접 재응축기(131)에 공급할 수 있다. 저장탱크(110)에 수용된 LNG를 직접 재응축기(131)에 공급할 수 있도록, LNG 공급라인(L17)의 일단, 즉 액화가스 저장탱크(110) 내부에 위치하는 LNG 공급라인(L17)의 시작지점에는 잠수식 펌프(157)가 설치된다. 본 실시형태에 따르면, 재응축기(131) (혹은, 제1 내지 제5 실시형태 및 그 변형예에서의 버퍼 탱크(31))에서의 내부압력은, 증발가스 압축부(130)에서 대략 12 내지 45 bara 정도의 중압으로 압축된 증발가스의 압력과 거의 동일한 압력을 가지므로, 잠수식 펌프(157)만으로 저장탱크(110)에 대략 상압 정도의 압력으로 저장되어 있는 액화가스를 중압까지 압축시키는 것은 한계가 있을 수 있다. 따라서, LNG 공급라인(L17)의 도중에 부스터 펌프(158)를 설치하여, 잠수식 펌프(157)에 의해 저장탱크의 외부로 배출된 액화가스를 재응축기(131) (혹은 버퍼 탱크) 내부의 압력과 동일한 수준의 압력까지 압축시키는 것이 바람직하다.
액화가스 저장탱크(110)에서 발생하는 증발가스의 양이 고압 천연가스 분사 엔진에서 요구하는 연료량보다 많아 잉여의 액화증발가스(LBOG)가 발생할 것으로 예상되는 경우에는, 증발가스 압축부(113)에서 압축된 혹은 단계적으로 압축되고 있는 도중의 증발가스를, 증발가스 분기라인(L18)을 통하여 분기시켜 증발가스 소비수단에서 사용한다. 증발가스 소비수단으로서는 ME-GI 엔진에 비해 상대적으로 낮은 압력의 천연가스를 연료로서 사용할 수 있는 가스 터빈이나 DFDE 등이 사용될 수 있다.
한편, 전술한 바와 같이, 재액화 장치(120)의 부하를 감소시키거나 재액화 장치의 운전을 완전히 중단시켜 전체 시스템의 효율을 향상시킬 수 있도록, 본 실시형태에 따른 연료가스 공급 시스템은, 증발가스 공급라인(L12)으로부터 분기하여 증발가스 압축부(113)에서 압축된 증발가스 중 일부 혹은 전체를 재액화 장치를 우회하여 직접 재응축기(131)에 공급할 수 있는 증발가스 우회라인(L21)을 포함할 수 있다.
더욱 상세하게는, 증발가스 우회라인(L21)은 증발가스 공급라인(L12)의 열교환기(135) 하류측에서 분기하여 재응축기(131)에 연결되는 것이 바람직하다. 필요시 재응축기(131)의 압력을 조절할 수 있도록 증발가스 우회라인(L21)에는 압력제어밸브(161)가 설치되는 것이 바람직하다.
액화가스 저장탱크(110)에서 발생하는 증발가스의 양이 고압 천연가스 분사 엔진에서 요구하는 연료량보다 적은 경우에는 저장탱크(110) 내의 LNG를 재응축기(131)에 공급하여 부족한 연료량을 보충하며, 이때 재액화 장치에 공급되는 증발가스 중 일부를 증발가스 우회라인(L21)을 통해 재응축기(131)에 공급하여 LNG와 혼합시켜 재응축시킴으로써 재액화 장치의 부하를 감소시킬 수 있다.
이하, 상기된 바와 같이 구성된 제6 실시형태의 연료가스 공급 시스템이 예를 들어 LNG 운반선에 설치되었을 때의 재응축기(131)를 활용한 운전방법을, 도 11을 참조하여 설명한다.
제6 실시형태에 따른 연료가스 공급 시스템은, 재응축기(131)를 구비하고 있기 때문에, 저장탱크(110)에서 발생된 증발가스를 모두 재액화 장치(120)의 콜드 박스(121)에 공급하지 않고 적어도 일부의 증발가스를 재응축기(131)로 우회시킴으로써, 에너지 소모가 많은 재액화 장치의 부하를 감소시키거나, 또는 경우에 따라서는 재액화 장치의 작동을 완전히 중지할 수 있다.
저장탱크(110)를 거의 비우고 항해하는 밸러스트(ballast) 항해시에는 증발가스의 발생량이 비교적 적다. 이때에는 저장탱크에서 자연적으로 발생하는 증발가스만으로는 고압 천연가스 분사 엔진에서의 연료 요구량을 만족시킬 수 없으므로, 저장탱크(110)에 저장된 LNG를 LNG 공급라인(L17)을 통해 재응축기(131)로 직접 공급한다.
그와 함께 액화가스 저장탱크(110)로부터 배출된 증발가스는 증발가스 압축부(113)에서 12 내지 45bara 정도의 중압으로 압축되고 열교환기(135)에서 냉각된 후 증발가스 우회라인(L21)을 통해 전량 재응축기(131)로 공급된다.
밸러스트 항해시에는 발생되는 증발가스의 양이 적기 때문에, 발생된 증발가스는 전량 재응축기(131)에 공급되어 재응축될 수 있다. 즉, 밸러스트 운항과정 중에는, 대부분의 기간 동안, 저장탱크에서 발생된 증발가스 전부를 재응축기(131)에서 재응축함으로써, 재액화 장치의 가동을 중단시킬 수 있다. 다만, 밸러스트 운항과정 중 해상 구조물이 예인되는 도중과 같이 고압 천연가스 분사 엔진이 저속으로 운전되거나 작동을 멈춘 경우에는 고압 천연가스 분사 엔진의 연료 소모량이 없거나 현저히 감소하기 때문에, 저장탱크에서 발생된 증발가스 전부를 재응축시켜 연료로서 소모하지 못하고, 부분적으로 재액화 장치에서 재액화시킬 수도 있지만, 이러한 경우는 밸러스트 운항 과정 중 매우 예외적인 경우이다.
LNG 공급라인(L17)을 통해 재응축기(131)에 공급된 LNG는 과냉각된 상태이므로, 증발가스 우회라인(L21)을 통해 공급되어 온 증발가스는 재응축기(131) 내에서 과냉각된 LNG와 혼합되는 과정에서 LNG로부터 냉열을 공급받아 전량 응축될 수 있다.
이와 같이 본 실시형태의 연료가스 공급 시스템에 의하면, 밸러스트시 발생된 증발가스를 모두 재응축기(131) 내에서 재응축하여 고압 천연가스 분사 엔진에서의 연료로서 사용할 수 있으며, 그에 따라 저장탱크(110)로 복귀하는 LBOG는 전혀 존재하지 않는다.
또한, 발생된 증발가스를 전량 재응축기(131) 내에서 처리할 수 있기 때문에, 전력 소모가 많아 에너지를 많이 사용하는 재액화 장치(120)를 전혀 가동하지 않을 수 있어 상당한 양의 에너지를 절약할 수 있게 된다.
한편, 저장탱크(110)를 가득 채우고 항해하는 레이든(laden) 항해시에는 증발가스의 발생량이 상대적으로 많다. 이때에는 저장탱크에서 자연적으로 발생하는 증발가스를 모두 재응축기(131)에서 처리할 수 없으므로 재액화 장치(120)를 가동하여 증발가스를 재액화한다. 필요하다면, 발생된 증발가스 중 일부는 증발가스 우회라인(L21)을 통해 재응축기(131)로 우회시켜 재액화 장치(120)에서의 재액화 부하를 감소시킴으로써 에너지를 절약할 수 있다.
재액화 장치(120)에서 증발가스를 과냉 상태로 냉각하기 위해 증발가스를 포화온도보다 낮은 과냉온도까지 냉각하는 것은 효율적이지 못하다. 하지만, 증발가스를 포화온도까지만 냉각하여 액화시킬 경우에는 포화 상태의 LBOG가 배관을 따라 이동하면서 가열되어 다시 기화될 우려가 있으므로, 재액화 장치(120)에서 증발가스를 액화시킬 때에는 증발가스를 해당 압력에서의 과냉온도까지 냉각시키는 것이 바람직하다.
국제특허공개 WO 2007/117148 호 공보 및 WO 2009/136793 호 공보 등에 개시되어 있는 종래 공지된 재액화 장치의 경우에는, 기본적으로 재액화 장치에 의해 재액화된 LBOG를 LNG 저장탱크로 복귀시키는 개념을 가지고 있었기 때문에, LNG 저장탱크 내부의 온도(대략 -163℃)에 맞춰 4 내지 8bara에서의 포화온도보다 훨씬 낮은 온도로 증발가스를 과냉시키고 있었다.
그러나, 본 발명의 연료 공급 시스템에 따르면, 기본적으로 재액화된 LBOG를 고압 천연가스 분사 엔진에 연료로서 공급하여 사용하는 개념을 가지고 있기 때문에, 증발가스를 대략 12 내지 45bara로 압축하고 있으며, 재액화 장치에서의 재액화 온도 역시 해당 압력에서의 포화 온도보다 대략 1℃ 정도만 낮은 온도로 재액화 장치를 운전하고 있다.
본 발명에 따르면, 재액화 장치에서 재액화된 LBOG를 저장탱크로 복귀시키지 않기 때문에 저장탱크 내부에 저장된 LNG의 온도 및 압력을 고려할 필요가 없다. 또한, 종래 LBOG를 저장탱크까지 이송하는 배관의 길이가 상대적으로 긴 것에 비해, 본 발명의 경우 LBOG의 과냉 상태를 유지하면서 이송해야 하는 배관의 길이가 상대적으로 짧아 포화 온도보다 지나치게 낮은 온도까지 증발가스를 과냉시킬 필요가 없다.
그러므로, 증발가스의 액화온도를 포화온도보다 약간만 낮은 온도로 설정(예컨대 1℃ 정도만 과냉)하여 재액화 장치(120)를 가동함으로써 재액화 장치의 동력 소모를 감소시킬 수 있다.
이때, 증발가스 우회라인(L21) 상에 설치된 압력 제어 밸브(161)를 개폐 조절함으로써, 열교환기(135)에서의 열교환을 통해 냉각된 증발가스가 재응축기 내로 유입될 수 있도록 하여 재응축기(131)의 압력을 적절하게 조절할 수 있다.
또, 본 실시형태에 따르면, 증발가스를 해당 압력에서의 포화온도보다 1℃ 정도만 과냉시켜 액화시킨 후 재응축기(131)에 공급하더라도, 고압 천연가스 분사 엔진에 연료로서 공급되는 과정에서 부스터 펌프(132) 및 고압 펌프(133)에 의해 가압되기 때문에, 압력 증가로 인해 포화상태의 LBOG는 이후 과냉상태가 안정적으로 유지될 수 있다.
종래 재액화 장치를 구비한 해상 구조물에서는, 증발가스를 저장탱크에 복귀시킬 것을 염두에 두고 증발가스를 재액화하였기 때문에, 복귀시 플래시 가스 발생을 억제하고자 증발가스의 압력을 4 내지 8bara 정도의 저압으로 압축시키는 것이 당연하였다. 그러나, 전술한 바와 같은 본 발명의 연료가스 공급 시스템에서는, 증발가스를 재액화한 후 모두 고압 천연가스 분사 엔진에서 연료로서 사용하기 때문에, 증발가스를 12 내지 45bara 정도의 비교적 높은 압력으로 압축하고 있다. 이러한 개념은, 증발가스를 재액화한 후 저장탱크에 복귀시키던 종래에는 전혀 생각하지 못하던 본 발명 특유의 신규하고 진보적인 개념이라 할 수 있다.
또한, 종래에는 재액화된 LBOG를 저장탱크에 다시 주입하는 과정에서 감압을 통해 플래시 가스가 생성되고, 이 플래시 가스를 다시 재액화 장치로 보내 재액화 장치의 효율을 떨어뜨리고 있었으나, 본 발명에서는 재액화된 LBOG를 감압 없이(오히려 가압하여) 고압 천연가스 분사 엔진에서 연료로 전량 사용함으로써 재액화 장치의 효율을 종래에 비해 향상시킬 수 있다.
이와 같이 본 발명의 연료가스 공급 시스템에 따르면, 대부분의 운항 기간 동안에, 증발가스를 재액화한 후 모두 고압 천연가스 분사 엔진에서 연료로서 사용하기 때문에, 증발가스를 12 내지 45bara 정도의 비교적 높은 압력으로 압축하는 것이 가능하다. 그에 따라, 도 6을 참조하여 전술한 바와 같이, 종래의 재액화 장치(냉동 사이클)에서 소모되는 동력에 비해 본 발명의 재액화 장치는 대략 50 내지 80% 정도의 동력만으로도 운전이 가능함을 알 수 있다. 이와 같이 본 발명은 종래에 비해 상당히 적은 동력으로 운전이 가능하기 때문에, 발전기 용량을 감소시킬 수 있어 발전기의 소형화가 가능하게 되고, 비용을 절감할 수 있게 된다.
더욱이, 종래의 재액화 장치의 경우 대기 상태로 운전하는데 대략 1 내지 1.5 MW의 전력이 소모되었으나, 본 발명의 경우 밸러스트 운항 중에는 대부분의 기간동안 재액화 장치의 운전을 중단시킬 수 있기 때문에, 재액화 장치에서 소모하는 전력을 절약할 수 있다. 예를 들어, 연간 밸러스트 운항을 150일로 가정하고, 재액화 장치의 운전을 위해 연료 소비 183g/kWh의 디젤 발전기를 사용한다고 가정하면, 연간 660 내지 923ton의 HFO를 절약할 수 있다. 2011년 9월 중순 현재 싱가포르 HFO 가격이 ton당 671 USD 정도이므로, 연간 0.4 내지 0.6 mil USD를 절감할 수 있다는 현저한 효과가 있다.
이상에서는 본 발명의 연료 공급 시스템 및 방법이 LNG 운반선 등의 해상 구조물에 적용된 것을 예로 들어 설명이 이루어졌지만, 본 발명의 연료 공급 시스템 및 방법은 육상에서의 고압 천연가스 분사 엔진에 대한 연료 공급에 적용될 수 있음은 물론이다.
본 발명은 상기 실시예에 한정되지 않고 본 발명의 기술적 요지를 벗어나지 아니하는 범위 내에서 다양하게 수정 또는 변형되어 실시될 수 있음은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어서 자명한 것이다.
11, 110 : 저장탱크 13, 113 : 증발가스 압축부
14, 114 : 증발가스 압축기 15 : 중간 냉각기
20, 120 : 재액화 장치 21, 121 : 콜드 박스
22 : 냉매 기액분리기 23 : 냉매 압축기
24 : 냉매 냉각기 25 : 냉매 팽창밸브
26 : 냉매 펌프 31 : 버퍼 탱크
33, 133 : 고압 펌프 37, 137 : 고압 기화기
41 : 증발가스 열교환기 51, 52 : LBOG 팽창밸브
53, 54 : LBOG 기액분리기 55 : 연료가스 히터
57 : LNG 공급펌프 131, 재응축기
132 : 부스터 펌프 135 : 열교환기
157 : 잠수식 펌프 158 : 부스터 펌프
161 : 압력 제어 밸브 L1, L11 : 증발가스 배출라인
L2, L12 : 증발가스 공급라인 L3, L13 : 연료 공급라인
L4, L14 : LBOG 복귀라인 L5 : 분기라인
L6 : 연료가스 공급라인 L7, L17 : LNG 공급라인
L8 : 제2 분기라인 L9 : 제3 분기라인
L18 : 증발가스 분기라인 L21 : 증발가스 우회라인
14, 114 : 증발가스 압축기 15 : 중간 냉각기
20, 120 : 재액화 장치 21, 121 : 콜드 박스
22 : 냉매 기액분리기 23 : 냉매 압축기
24 : 냉매 냉각기 25 : 냉매 팽창밸브
26 : 냉매 펌프 31 : 버퍼 탱크
33, 133 : 고압 펌프 37, 137 : 고압 기화기
41 : 증발가스 열교환기 51, 52 : LBOG 팽창밸브
53, 54 : LBOG 기액분리기 55 : 연료가스 히터
57 : LNG 공급펌프 131, 재응축기
132 : 부스터 펌프 135 : 열교환기
157 : 잠수식 펌프 158 : 부스터 펌프
161 : 압력 제어 밸브 L1, L11 : 증발가스 배출라인
L2, L12 : 증발가스 공급라인 L3, L13 : 연료 공급라인
L4, L14 : LBOG 복귀라인 L5 : 분기라인
L6 : 연료가스 공급라인 L7, L17 : LNG 공급라인
L8 : 제2 분기라인 L9 : 제3 분기라인
L18 : 증발가스 분기라인 L21 : 증발가스 우회라인
Claims (9)
- 저장탱크 내에서 발생한 증발가스를 상기 저장탱크로부터 공급받아 압축하는 증발가스 압축부, 상기 증발가스 압축부에서 압축된 증발가스를 공급받아 액화시키는 재액화 장치, 상기 재액화 장치에서 액화된 액화증발가스를 압축시키는 고압 펌프, 그리고 상기 고압 펌프에서 압축된 액화증발가스를 기화시키기 위한 고압 기화기를 포함하여, 고압 천연가스 분사 엔진에 연료를 공급하는 연료 공급 시스템의 운전방법으로서,
상기 연료 공급 시스템은 상기 고압 펌프의 상류측에 설치되는 재응축기를 포함하며;
상기 저장탱크로부터 공급된 액화가스를 이용하여, 발생된 증발가스 중 일부 혹은 전부를 상기 재응축기에서 재응축시키되, 밸러스트 운항과정 중, 상기 증발가스 전부를 상기 재응축기로 공급하여 재응축시키고 상기 재액화 장치의 가동을 중단시키는 기간을 포함하며;
상기 저장탱크로부터 배출된 증발가스는 상기 증발가스 압축부에서 12 내지 45bara로 압축된 후 상기 재응축기로 공급되는 것을 특징으로 하는 고압 천연가스 분사 엔진용 연료 공급 시스템의 운전방법. - 청구항 1에 있어서,
상기 저장탱크에 저장된 LNG는 LNG 공급라인을 통해 상기 재응축기로 공급되는 것을 특징으로 하는 고압 천연가스 분사 엔진용 연료 공급 시스템의 운전방법. - 삭제
- 청구항 1에 있어서,
상기 저장탱크가 액화가스 화물로 가득 채워진 레이든(laden)시, 상기 저장탱크에서 자연적으로 발생하는 증발가스를 상기 재액화 장치에 공급하여 재액화하는 것을 특징으로 하는 고압 천연가스 분사 엔진용 연료 공급 시스템의 운전방법. - 청구항 4에 있어서,
상기 저장탱크에서 발생된 증발가스 중 일부는 증발가스 우회라인을 통해 상기 재응축기로 우회됨으로써 상기 재액화 장치에서의 재액화 부하를 감소시키는 것을 특징으로 하는 고압 천연가스 분사 엔진용 연료 공급 시스템의 운전방법. - 청구항 1에 있어서,
상기 재응축기와 상기 고압 펌프 사이에 부스터 펌프를 설치하는 것을 특징으로 하는 고압 천연가스 분사 엔진용 연료 공급 시스템의 운전방법. - 청구항 1에 있어서,
상기 저장탱크의 내부에 위치하는 잠수식 펌프에 의해 상기 저장탱크에 수용된 LNG를 상기 재응축기에 공급하는 것을 특징으로 하는 고압 천연가스 분사 엔진용 연료 공급 시스템의 운전방법. - 청구항 1 또는 청구항 7에 있어서,
상기 저장탱크의 외부로 배출된 LNG를 부스터 펌프에 의해 상기 재응축기의 내부압력과 동일한 압력까지 압축시킨 후 상기 재응축기에 공급하는 것을 특징으로 하는 고압 천연가스 분사 엔진용 연료 공급 시스템의 운전방법. - 청구항 1에 있어서,
상기 증발가스 압축부에서 압축된 증발가스와 상기 고압 펌프에서 압축된 액화증발가스를 열교환기에서 열교환함으로써 증발가스를 냉각하여 상기 재액화 장치 및 상기 재응축기 중 적어도 하나에 공급하는 동시에 액화증발가스를 가열하여 상기 고압 기화기에 공급하는 것을 특징으로 하는 고압 천연가스 분사 엔진용 연료 공급 시스템의 운전방법.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011800691837A CN103443435A (zh) | 2011-03-11 | 2011-12-20 | 用于将燃料供应到具有再液化装置和高压天然气喷射式发动机的海事结构的系统的驱动方法 |
EP11860886.8A EP2685077B1 (en) | 2011-03-11 | 2011-12-20 | Method for driving system for supplying fuel to marine structure having re-liquefying device and high-pressure natural gas injection engine |
JP2013557632A JP5776055B2 (ja) | 2011-03-11 | 2011-12-20 | 再液化装置及び高圧天然ガス噴射エンジンを有する海上構造物の燃料供給システムの運転方法 |
US14/004,669 US9239186B2 (en) | 2011-03-11 | 2011-12-20 | Method for operating fuel supply system for marine structure having reliquefaction apparatus and high-pressure natural gas injection engine |
PCT/KR2011/009823 WO2012124885A1 (ko) | 2011-03-11 | 2011-12-20 | 재액화 장치 및 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템의 운전방법 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20110022101 | 2011-03-11 | ||
KR1020110022101 | 2011-03-11 | ||
KR1020110025398 | 2011-03-22 | ||
KR20110025398 | 2011-03-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR101147365B1 true KR101147365B1 (ko) | 2012-05-22 |
Family
ID=45840453
Family Applications (9)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020110096463A KR101147365B1 (ko) | 2011-03-11 | 2011-09-23 | 재액화 장치 및 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템의 운전방법 |
KR1020110096464A KR101115466B1 (ko) | 2011-03-11 | 2011-09-23 | 재액화 장치 및 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템 |
KR1020110101402A KR20120103409A (ko) | 2011-03-11 | 2011-10-05 | 고압 천연가스 분사 엔진용 연료 공급 시스템의 재액화 장치에 사용되는 비폭발성 혼합냉매 |
KR1020110101400A KR20120103407A (ko) | 2011-03-11 | 2011-10-05 | 고압 천연가스 분사 엔진을 위한 연료 공급 시스템 |
KR1020110101401A KR101823026B1 (ko) | 2011-03-11 | 2011-10-05 | 고압 천연가스 분사 엔진을 위한 연료 공급 방법 |
KR1020110101399A KR20120103406A (ko) | 2011-03-11 | 2011-10-05 | 고압 천연가스 분사 엔진용 연료 공급 시스템 및 방법 |
KR1020110107231A KR101255132B1 (ko) | 2011-03-11 | 2011-10-19 | 재액화 장치 및 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템 |
KR1020110107230A KR101300708B1 (ko) | 2011-03-11 | 2011-10-19 | 재액화 장치 및 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템 |
KR1020110124107A KR20120103421A (ko) | 2011-03-11 | 2011-11-25 | 재액화 장치 및 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템 |
Family Applications After (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020110096464A KR101115466B1 (ko) | 2011-03-11 | 2011-09-23 | 재액화 장치 및 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템 |
KR1020110101402A KR20120103409A (ko) | 2011-03-11 | 2011-10-05 | 고압 천연가스 분사 엔진용 연료 공급 시스템의 재액화 장치에 사용되는 비폭발성 혼합냉매 |
KR1020110101400A KR20120103407A (ko) | 2011-03-11 | 2011-10-05 | 고압 천연가스 분사 엔진을 위한 연료 공급 시스템 |
KR1020110101401A KR101823026B1 (ko) | 2011-03-11 | 2011-10-05 | 고압 천연가스 분사 엔진을 위한 연료 공급 방법 |
KR1020110101399A KR20120103406A (ko) | 2011-03-11 | 2011-10-05 | 고압 천연가스 분사 엔진용 연료 공급 시스템 및 방법 |
KR1020110107231A KR101255132B1 (ko) | 2011-03-11 | 2011-10-19 | 재액화 장치 및 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템 |
KR1020110107230A KR101300708B1 (ko) | 2011-03-11 | 2011-10-19 | 재액화 장치 및 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템 |
KR1020110124107A KR20120103421A (ko) | 2011-03-11 | 2011-11-25 | 재액화 장치 및 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템 |
Country Status (1)
Country | Link |
---|---|
KR (9) | KR101147365B1 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140143017A (ko) * | 2013-06-05 | 2014-12-15 | 현대중공업 주식회사 | Lng 처리 시스템 |
KR20140143029A (ko) * | 2013-06-05 | 2014-12-15 | 현대중공업 주식회사 | Lng 처리 시스템 |
Families Citing this family (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101309631B1 (ko) | 2012-03-20 | 2013-09-17 | 에스티엑스조선해양 주식회사 | Lng 연료 사용 선박의 연료공급 시스템 |
KR101398357B1 (ko) * | 2013-04-24 | 2014-05-23 | 현대중공업 주식회사 | 고압 펌프 구동 장치 및 lng 연료 공급 시스템 |
KR101468808B1 (ko) * | 2013-05-29 | 2014-12-03 | 현대중공업 주식회사 | Lng 처리 시스템 |
KR101289212B1 (ko) * | 2013-05-30 | 2013-07-29 | 현대중공업 주식회사 | 액화가스 처리 시스템 |
US20140352330A1 (en) | 2013-05-30 | 2014-12-04 | Hyundai Heavy Industries Co., Ltd. | Liquefied gas treatment system |
KR20150026675A (ko) * | 2013-08-29 | 2015-03-11 | 대우조선해양 주식회사 | 부유 저장식 가스 발전플랜트 및 그 가스 발전플랜트의 계류방법 |
KR102276355B1 (ko) | 2013-09-17 | 2021-07-13 | 대우조선해양 주식회사 | Bog 처리장치 및 이를 구비한 액화가스 운반선 |
KR101941314B1 (ko) * | 2014-04-02 | 2019-01-23 | 현대중공업 주식회사 | 액화가스 처리 시스템 |
WO2015178634A1 (ko) * | 2014-05-19 | 2015-11-26 | 현대중공업 주식회사 | 액화가스 처리 시스템 |
KR102200362B1 (ko) * | 2014-05-19 | 2021-01-08 | 한국조선해양 주식회사 | 액화가스 처리 시스템 |
KR101938915B1 (ko) * | 2014-10-06 | 2019-01-16 | 현대중공업 주식회사 | 엔진의 연료공급 시스템 및 이를 이용한 연료공급 방법 |
KR101938914B1 (ko) * | 2014-10-06 | 2019-01-16 | 현대중공업 주식회사 | 엔진의 연료공급 시스템 및 이를 이용한 연료공급 방법 |
KR101938916B1 (ko) * | 2014-10-06 | 2019-01-16 | 현대중공업 주식회사 | 엔진의 연료공급 시스템 및 이를 이용한 연료공급 방법 |
KR101763677B1 (ko) | 2014-11-24 | 2017-08-02 | 삼성중공업 주식회사 | 재액화 시스템 |
KR101763696B1 (ko) | 2014-11-25 | 2017-08-02 | 삼성중공업 주식회사 | 재액화 시스템 |
KR101690939B1 (ko) | 2014-11-28 | 2016-12-30 | 삼성중공업 주식회사 | 재액화 시스템 및 이를 포함하는 선박 |
KR101763639B1 (ko) | 2014-11-28 | 2017-08-02 | 삼성중공업 주식회사 | 이종 액화가스 분리시스템 |
KR20160068344A (ko) | 2014-12-05 | 2016-06-15 | 삼성중공업 주식회사 | 재액화 시스템 |
KR101701719B1 (ko) | 2014-12-12 | 2017-02-02 | 삼성중공업 주식회사 | 재액화 시스템 |
KR101707511B1 (ko) * | 2015-01-08 | 2017-02-16 | 대우조선해양 주식회사 | 선박의 연료 가스 공급 제어 장치 및 방법 |
KR102295430B1 (ko) | 2015-01-12 | 2021-08-31 | 삼성중공업 주식회사 | 재액화 시스템 |
KR20160087117A (ko) | 2015-01-13 | 2016-07-21 | 삼성중공업 주식회사 | 재액화 시스템 |
KR101741756B1 (ko) | 2015-03-20 | 2017-05-30 | 삼성중공업 주식회사 | 재액화 시스템 |
KR20160120373A (ko) | 2015-04-07 | 2016-10-18 | 삼성중공업 주식회사 | 연료가스 공급시스템 |
KR101672180B1 (ko) * | 2015-04-09 | 2016-11-04 | 삼성중공업 주식회사 | 연료가스 공급시스템 |
KR101672175B1 (ko) * | 2015-04-09 | 2016-11-04 | 삼성중공업 주식회사 | 연료가스 공급시스템 |
KR101686513B1 (ko) * | 2015-06-02 | 2016-12-14 | 대우조선해양 주식회사 | 증발가스 재액화 장치 및 방법 |
KR20170036177A (ko) | 2015-09-23 | 2017-04-03 | 삼성중공업 주식회사 | 증발가스 처리장치 및 그 처리방법 |
KR101987983B1 (ko) * | 2016-01-29 | 2019-06-11 | 현대중공업 주식회사 | 액화가스 처리 시스템 |
KR102654825B1 (ko) * | 2016-12-29 | 2024-04-04 | 한화오션 주식회사 | 선박용 엔진의 연료 공급 시스템 |
CN107013389B (zh) * | 2017-04-07 | 2019-05-14 | 四川森洁燃气设备有限公司 | 一种发动机油气两用管路结构 |
KR102285470B1 (ko) | 2017-04-18 | 2021-08-05 | 삼성중공업 주식회사 | 연료공급시스템 |
KR102260378B1 (ko) | 2017-05-12 | 2021-06-04 | 삼성중공업 주식회사 | 연료가스 공급시스템 |
KR102334542B1 (ko) | 2017-06-08 | 2021-12-07 | 삼성중공업 주식회사 | 재액화 시스템 |
KR101957399B1 (ko) * | 2017-09-01 | 2019-03-21 | 유니셈(주) | Mr 냉동 시스템의 혼합 냉매 |
KR102334545B1 (ko) | 2017-10-12 | 2021-12-07 | 삼성중공업 주식회사 | 재액화 시스템 |
KR102334731B1 (ko) | 2017-10-12 | 2021-12-07 | 삼성중공업 주식회사 | 재액화 시스템 |
KR102334541B1 (ko) | 2017-10-12 | 2021-12-07 | 삼성중공업 주식회사 | 재액화 시스템 |
KR102334540B1 (ko) | 2017-10-12 | 2021-12-07 | 삼성중공업 주식회사 | 재액화 시스템 |
KR102462000B1 (ko) | 2018-09-19 | 2022-11-03 | 삼성중공업 주식회사 | 액화가스 재기화 시스템 |
KR102153624B1 (ko) * | 2018-11-14 | 2020-09-09 | 대우조선해양 주식회사 | 선박의 증발가스 처리 시스템 및 방법 |
KR102624234B1 (ko) * | 2018-11-30 | 2024-01-12 | 한화오션 주식회사 | 증발가스 재액화 시스템 및 방법 |
EP3951297B1 (en) | 2019-04-01 | 2023-11-15 | Samsung Heavy Ind. Co., Ltd. | Cooling system |
KR102538530B1 (ko) * | 2019-04-01 | 2023-06-05 | 삼성중공업 주식회사 | 냉각시스템 |
KR102572928B1 (ko) | 2019-08-27 | 2023-08-31 | 삼성중공업 주식회사 | 재액화 시스템 및 상기 재액화 시스템을 구비한 선박 |
KR102528221B1 (ko) | 2019-09-11 | 2023-05-03 | 삼성중공업 주식회사 | 가스 처리 시스템 |
KR102631166B1 (ko) | 2019-12-09 | 2024-01-31 | 삼성중공업 주식회사 | 선박용 연료가스공급시스템 |
KR102632433B1 (ko) | 2019-12-09 | 2024-02-02 | 삼성중공업 주식회사 | 선박용 연료가스공급시스템 |
KR102631167B1 (ko) | 2019-12-09 | 2024-01-31 | 삼성중공업 주식회사 | 선박용 연료가스공급시스템 |
KR102196129B1 (ko) * | 2019-12-27 | 2020-12-29 | 김성훈 | 듀얼 인젝터를 구비한 이종연료 직접 분사 장치 |
KR20220021972A (ko) | 2020-08-14 | 2022-02-23 | 삼성중공업 주식회사 | 선박 |
KR20220037528A (ko) | 2020-09-16 | 2022-03-25 | 삼성중공업 주식회사 | 재액화시스템 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20100108932A (ko) * | 2009-03-31 | 2010-10-08 | 대우조선해양 주식회사 | 재액화 전력 소비량을 절감하기 위한 증발가스 처리장치 및방법 |
KR20100136691A (ko) * | 2009-06-19 | 2010-12-29 | 삼성중공업 주식회사 | 선박의 연료가스 공급장치 및 방법 |
KR20110018162A (ko) * | 2009-08-17 | 2011-02-23 | 삼성중공업 주식회사 | 연료가스 공급시스템 |
KR20110023856A (ko) * | 2008-05-08 | 2011-03-08 | 함보르티 가스 시스템즈 아에스 | 가스 엔진용 가스 공급 시스템 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010077227A (ko) * | 2000-02-01 | 2001-08-17 | 윤상국 | 액화천연가스의 냉열을 이용한 천연가스증기의 재액화장치및 방법 |
KR100857487B1 (ko) | 2000-06-28 | 2008-09-09 | 브룩스 오토메이션 인코퍼레이티드 | 극저온 교축 사이클 냉동 시스템에 사용하기 위한 불연성 혼합 냉매 |
CN100504262C (zh) * | 2004-06-23 | 2009-06-24 | 埃克森美孚上游研究公司 | 混合冷却剂液化方法 |
JP2008286211A (ja) | 2007-05-15 | 2008-11-27 | Ihi Corp | Bog圧縮設備及びその運転方法 |
KR20090025514A (ko) * | 2007-09-06 | 2009-03-11 | 신영중공업주식회사 | Lng 운반선에 대한 bog 재액화 시스템 |
KR101009920B1 (ko) * | 2008-08-18 | 2011-01-20 | 에스티엑스조선해양 주식회사 | 선박 및 부유식 설비의 연료가스 공급장치 및 공급방법 |
KR101187532B1 (ko) * | 2009-03-03 | 2012-10-02 | 에스티엑스조선해양 주식회사 | 재액화 기능을 가지는 전기추진 lng 운반선의 증발가스 처리장치 |
-
2011
- 2011-09-23 KR KR1020110096463A patent/KR101147365B1/ko active IP Right Grant
- 2011-09-23 KR KR1020110096464A patent/KR101115466B1/ko not_active IP Right Cessation
- 2011-10-05 KR KR1020110101402A patent/KR20120103409A/ko not_active Application Discontinuation
- 2011-10-05 KR KR1020110101400A patent/KR20120103407A/ko not_active Application Discontinuation
- 2011-10-05 KR KR1020110101401A patent/KR101823026B1/ko active IP Right Grant
- 2011-10-05 KR KR1020110101399A patent/KR20120103406A/ko not_active Application Discontinuation
- 2011-10-19 KR KR1020110107231A patent/KR101255132B1/ko not_active IP Right Cessation
- 2011-10-19 KR KR1020110107230A patent/KR101300708B1/ko active IP Right Grant
- 2011-11-25 KR KR1020110124107A patent/KR20120103421A/ko not_active Application Discontinuation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110023856A (ko) * | 2008-05-08 | 2011-03-08 | 함보르티 가스 시스템즈 아에스 | 가스 엔진용 가스 공급 시스템 |
KR20100108932A (ko) * | 2009-03-31 | 2010-10-08 | 대우조선해양 주식회사 | 재액화 전력 소비량을 절감하기 위한 증발가스 처리장치 및방법 |
KR20100136691A (ko) * | 2009-06-19 | 2010-12-29 | 삼성중공업 주식회사 | 선박의 연료가스 공급장치 및 방법 |
KR20110018162A (ko) * | 2009-08-17 | 2011-02-23 | 삼성중공업 주식회사 | 연료가스 공급시스템 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140143017A (ko) * | 2013-06-05 | 2014-12-15 | 현대중공업 주식회사 | Lng 처리 시스템 |
KR20140143029A (ko) * | 2013-06-05 | 2014-12-15 | 현대중공업 주식회사 | Lng 처리 시스템 |
KR102049477B1 (ko) * | 2013-06-05 | 2019-11-28 | 한국조선해양 주식회사 | Lng 처리 시스템 |
KR102053927B1 (ko) * | 2013-06-05 | 2019-12-11 | 한국조선해양 주식회사 | Lng 처리 시스템 |
Also Published As
Publication number | Publication date |
---|---|
KR101300708B1 (ko) | 2013-08-26 |
KR101115466B1 (ko) | 2012-02-24 |
KR101255132B1 (ko) | 2013-04-15 |
KR20120103409A (ko) | 2012-09-19 |
KR20120103411A (ko) | 2012-09-19 |
KR20120103408A (ko) | 2012-09-19 |
KR20120103406A (ko) | 2012-09-19 |
KR20120103412A (ko) | 2012-09-19 |
KR20120103407A (ko) | 2012-09-19 |
KR20120103421A (ko) | 2012-09-19 |
KR101823026B1 (ko) | 2018-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101147365B1 (ko) | 재액화 장치 및 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템의 운전방법 | |
KR101298625B1 (ko) | 재액화 장치 및 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템 및 방법 | |
KR101106089B1 (ko) | 고압 천연가스 분사 엔진을 위한 연료 공급 방법 | |
JP5806381B2 (ja) | 超過ボイルオフガス消費手段を備えた高圧天然ガス噴射エンジン用燃料供給システム | |
JP5611476B2 (ja) | 再液化装置及び高圧天然ガス噴射エンジンを有する海上構造物の燃料供給システム | |
KR20110118604A (ko) | 가스 공급 장치 | |
KR20120107831A (ko) | 잉여 증발가스 소비수단을 갖춘 고압 천연가스 분사 엔진용 연료 공급 시스템 | |
EP2693035A1 (en) | Method and system for supplying fuel to high-pressure natural gas injection engine | |
KR20120107832A (ko) | 고압 천연가스 분사 엔진을 위한 연료 공급 시스템 및 방법 | |
KR20120107835A (ko) | 재액화 장치 및 고압 천연가스 분사 엔진을 갖는 해상 구조물의 연료 공급 시스템 | |
KR20120103413A (ko) | 고압 천연가스 분사 엔진을 위한 연료 공급 시스템 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
A302 | Request for accelerated examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20150420 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20170420 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20180503 Year of fee payment: 8 |