JP2008292028A - 給熱装置 - Google Patents

給熱装置 Download PDF

Info

Publication number
JP2008292028A
JP2008292028A JP2007136286A JP2007136286A JP2008292028A JP 2008292028 A JP2008292028 A JP 2008292028A JP 2007136286 A JP2007136286 A JP 2007136286A JP 2007136286 A JP2007136286 A JP 2007136286A JP 2008292028 A JP2008292028 A JP 2008292028A
Authority
JP
Japan
Prior art keywords
heat
heating
hot water
temperature
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007136286A
Other languages
English (en)
Inventor
Koichi Miura
浩一 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chofu Seisakusho Co Ltd
Original Assignee
Chofu Seisakusho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chofu Seisakusho Co Ltd filed Critical Chofu Seisakusho Co Ltd
Priority to JP2007136286A priority Critical patent/JP2008292028A/ja
Publication of JP2008292028A publication Critical patent/JP2008292028A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Abstract

【課題】熱源熱媒の温度を高温に維持しつつ、低温暖房装置に対する給熱も行うことが可能な給熱装置を提供する。
【解決手段】暖房装置40への給熱を行うための暖房熱媒が循環する暖房用循環路39と、排熱熱交換器28aにより与熱された、暖房熱媒に給熱を行うための熱源熱媒が循環する給熱循環路27と、給熱循環路27を循環する暖房熱媒と暖房用循環路39を循環する熱源熱媒との間で熱交換を行う暖房低温熱交換器32と、両端が、暖房低温熱交換器32と並列に、暖房用循環路39に接続されたバイパス路47と、バイパス路47に設けられ、バイパス路47を通過する暖房熱媒の流量を調節するバイパス弁42と、暖房装置40へ供給される暖房用循環路39内の暖房熱媒の温度を検出する暖房サーミスタ46と、暖房サーミスタ46の検出温度が暖房要求温度となるようにバイパス弁42の開度を調節する制御部72とを備えた。
【選択図】図1

Description

本発明は、温水暖房装置のように加熱された熱媒を循環させて暖房を行う暖房装置に対し給熱を行う給熱装置に関し、特に、高温熱源器を用いて低温暖房を行うのに適した給熱装置に関する。
従来から、給湯器で沸き上げた温水を熱交換器に循環させ、室内の空気や床面と温水の間で熱交換を行うことによって暖房を行う温水暖房装置が広く用いられている。かかる温水暖房装置のように、熱媒循環型の暖房装置に加熱された熱媒を供給する装置を「給熱装置」と呼ぶ。
従来の給熱装置としては、例えば、特許文献1に記載のものが公知である。
図7は、特許文献1に記載の給熱装置100の構成を表す図である。給熱装置100は、高温暖房装置101及び床暖房装置102,102への給熱を行うとともに、浴槽103内の浴槽水の追い焚き、並びに給湯栓104への給湯も行う。また、熱源としてガスエンジン発電機105の排熱を使用する。
給熱装置100は、貯湯タンク106、補助熱源機107、熱交換器108,109,110,111、循環ポンプ112,113,114,115、シスターン116,117、及び余剰電力回収ヒータ118を備えている。
また、給熱装置100は、
(1)ガスエンジン発電機105→余剰電力回収ヒータ118→熱交換器108→熱交換器109→熱動三方弁120→シスターン116→循環ポンプ112→ガスエンジン発電機105を経由する給熱循環路119と、
(2)高温暖房装置101及び床暖房装置102,102→シスターン117→循環ポンプ114→熱交換器109→熱交換器110→高温暖房装置101及び床暖房装置102,102を経由する暖房用循環路121と、
(3)貯湯タンク106→水量制御弁124→給水弁125→熱交換器108→循環ポンプ113→逆止弁126→貯湯タンク106を経由する蓄熱循環路122と、
(4)補助熱源機107→熱交換器110→暖房弁127→循環ポンプ113→逆止弁126→補助熱源機107を経由する補助給熱循環路123と、
を備えている。
給熱循環路119内には、循環ポンプ112により水熱媒が循環される。以下では、給熱循環路119内を循環する水熱媒を「熱源熱媒」と呼ぶ。ガスエンジン発電機105で発生する排熱は、給熱循環路119内を循環する熱源熱媒に回収され、熱交換器108,109で熱回収がされる。
回収した排熱を貯湯タンク106へ蓄熱する場合には、循環ポンプ113を起動して、蓄熱循環路122に水熱媒を循環させる。貯湯タンク106は成層式貯湯槽であり、タンク下部には低温の水熱媒が貯留されている。この低温の水熱媒が蓄熱循環路122を通って熱交換器108を通過する。この際、給熱循環路119内を循環する高温の熱源熱媒と熱交換し、蓄熱循環路122内の水熱媒が加熱され、給熱循環路119内の熱源熱媒が冷却される。加熱された蓄熱循環路122内の水熱媒は、貯湯タンク106の上部に戻される。これにより、貯湯タンク106内の水熱媒は上部から高温となり蓄熱がされる。
一方、回収した排熱により高温暖房を行う場合、循環ポンプ114を起動して暖房用循環路121内に水熱媒を循環させる。以下、暖房用循環路121内を循環する水熱媒を「暖房熱媒」と呼ぶ。暖房熱媒は、熱交換器109において、給熱循環路119内の熱源熱媒と熱交換し加熱される。その後、暖房用循環路121を通って高温暖房装置101に送られ、室内空気と熱交換して冷却される。そして、シスターン117,循環ポンプ114を経由して再び熱交換器109に戻される。このようにして、ガスエンジン発電機105で回収された排熱によって高温暖房装置101での暖房が行われる。
また、排熱のみでは高温暖房装置101で要求される熱量に不足の場合がある。かかる場合、給水弁125を閉止し暖房弁127を開弁した状態で循環ポンプ113を起動し、補助給熱循環路123内に水熱媒を循環させるとともに補助熱源機107を起動する。これにより、補助熱源機107において補助給熱循環路123内の水熱媒に給熱され、この熱は、熱交換器110において暖房用循環路121内の暖房熱媒に与熱される。これにより、不足する熱量の補熱がされる。尚、床暖房装置102による床暖房を行う場合も同様である。
特開2002−364917号公報
上記従来の給熱装置100によれば、給熱循環路119内の熱源熱媒に回収されたガスエンジン発電機105の排熱により、高温暖房装置101や床暖房装置102で室内暖房を行うことができる。
ところで、一般に、ガスエンジン発電機105で発生する排熱を回収した後の熱源熱媒の温度は80℃程度である。また、ガスエンジン発電機105では、一般に排熱回収のための冷却水の温度は60℃程度とされている。
一方、高温暖房装置101で暖房を行う場合に、高温暖房装置101へ送る暖房熱媒の送り温度は最低でも60℃程度である。従って、熱交換器109で熱交換した後の熱源熱媒の温度は60℃を下回ることがなく、上記給熱装置100は不都合なく作動する。
しかしながら、高温暖房装置101の代わりに、より低い温度で作動する低温暖房装置を取り付けたい場合がある。通常、低温暖房装置は、給熱用の暖房熱媒の送り温度は40℃程度である。従って、熱交換器109において暖房熱媒の加熱温度を40℃程度にするためには、給熱循環路119を循環する熱源熱媒の温度も低くする必要があり、熱交換器109出口での熱源熱媒の温度は40℃程度、ガスエンジン発電機105へ送られる冷却水(熱源熱媒)の温度は30℃程度となる。このように、ガスエンジン発電機105へ送られる冷却水温度が常時低くなってしまうため、ガスエンジン発電機105の効率と耐久性が低下し不都合が生じる。
また、給熱循環路119を循環する熱源熱媒の温度を低下させると、熱交換器108で回収される熱量も低下し、貯湯タンク106上部の水熱媒の温度が低下する。成層式貯湯の場合、高温層と低温層との温度差が大きいほど蓄熱可能な熱量は大きくなるが、逆に高温層と低温層との温度差が小さいと蓄熱量は大きく低下する。従って、貯湯タンク106の蓄熱能力が大きく低下するため、システム全体のエネルギー効率が低下してしまうという問題がある。
更に、補助熱源機107により暖房熱媒への給熱を行う場合においては、補助熱源機107を低給熱量で稼働させる必要がある。従って、補助熱源機107内部は比較的低温となる。しかしながら、補助熱源機107内部の温度が下がると結露を生じる。特に、補助熱源機として石油バーナやガスバーナを使用する場合、燃焼器内部で結露が生じ、腐蝕や故障の原因となる。
そこで、本発明の目的は、熱源熱媒の温度を高温に維持しつつ、低温暖房装置に対する給熱も行うことが可能な給熱装置を提供することにある。
本発明に係る給熱装置の第1の構成は、加熱された熱媒を暖房装置に供給するための給熱装置であって、前記暖房装置への給熱を行うための暖房熱媒が循環する暖房用循環路と、与熱手段により与熱された、前記暖房熱媒に給熱を行うための熱源熱媒が循環する給熱循環路と、前記給熱循環路を循環する熱源熱媒と前記暖房用循環路を循環する暖房熱媒との間で熱交換を行う第1の熱交換器と、両端が、前記第1の熱交換器と並列に、前記暖房用循環路に接続されたバイパス路と、前記バイパス路に設けられ、前記バイパス路を通過する暖房熱媒の流量を調節するバイパス弁と、前記暖房装置へ供給される前記暖房用循環路内の暖房熱媒の温度を検出する温度センサと、前記温度センサの検出温度が前記暖房要求温度となるように前記バイパス弁の開度を調節する制御手段と、を備えたことを特徴とする。
この構成によれば、暖房装置から還流する暖房熱媒は、第1の熱交換器を経由する流れと、バイパス路を経由する流れとの2つの流れに分けられる。そして、第1の熱交換器を経由する流れは熱源熱媒により加熱され高温となるが、その後バイパス路を経由する流れと混合され、暖房装置へ送られる。そのため、暖房装置に送られる暖房熱媒の温度は適温に調温される。制御手段は、温度センサで検出される温度が所定の暖房要求温度となるように、バイパス弁を制御してバイパス路を通過する暖房熱媒の流量を調節する。これにより、熱源熱媒の温度を高温に維持しつつ、低温暖房装置に対する給熱量を高温から低温まで幅広く調温することが可能となる。
本発明に係る給熱装置の第2の構成は、前記第1の構成において、不足の熱量を補熱する補助熱源機と、前記補助熱源機により加熱される熱媒が循環する補助熱源循環路と、前記補助熱源循環路を循環する熱媒と前記暖房用循環路を循環する熱源熱媒との間で熱交換を行う第2の熱交換器と、を備え、前記バイパス路は、両端が、前記第2の熱交換器と並列に、前記暖房用循環路に接続されていることを特徴とする。
この構成によれば、暖房装置から還流する暖房熱媒は、第2の熱交換器を経由する流れと、バイパス路を経由する流れとの2つの流れに分けられる。そして、第2の熱交換器を経由する流れは補助熱源機(すなわち、補助熱源機で加熱された補助熱源循環路を循環する熱媒)により加熱され高温となるが、その後バイパス路を経由する流れと混合され、暖房装置へ送られる。そのため、暖房装置に送られる暖房熱媒の温度は適温に調温される。制御手段は、温度センサで検出される温度が所定の暖房要求温度となるように、バイパス弁を制御してバイパス路を通過する暖房熱媒の流量を調節する。これにより、補助熱源機における給熱温度を高温に維持しつつ、低温暖房装置に対する給熱量を高温から低温まで幅広く調温することが可能となる。故に、補助熱源機における結露発生の問題を回避することが可能となる。
本発明に係る給熱装置の第3の構成は、前記第1又は2の構成において、前記与熱手段は、熱電併給装置の排熱を回収する排熱交換器であることを特徴とする。
この構成によれば、熱電併給装置の冷却媒体である熱源媒体の温度を、熱電併給装置で要求される温度に維持しつつ、低温暖房装置に対する給熱量を高温から低温まで幅広く調温することが可能となる。
ここで、「熱電併給装置」とは、燃料電池、エンジン発電機等の熱と電気の双方を供給する装置をいう。
本発明に係る給熱装置の第4の構成は、前記第1乃至3の何れか一の構成において、前記与熱手段により給熱される熱を温水として蓄熱する貯湯タンクと、前記貯湯タンク内の水が、前記貯湯タンクの底部から出て前記貯湯タンクの頂部へ戻される蓄熱循環路と、前記給熱循環路内の熱源熱媒と前記蓄熱循環路内の水熱媒との間で熱交換を行う第3の熱交換器と、を備え、前記第3の熱交換器は、前記給熱循環路の前記第1の熱交換器よりも上流側に設けられていることを特徴とする。
この構成によれば、与熱手段で熱源媒体に与えられた熱のうち、暖房装置で消費する以外の余熱は、第3の熱交換器で蓄熱循環路内の水熱媒に回収され貯湯タンクに蓄熱される。従って、暖房装置の消費熱量によらず、与熱手段へ送られる熱源媒体の温度を常に一定に調温することができる。
本発明に係る給熱装置の第5の構成は、前記第1乃至4の何れか一の構成において、前記バイパス弁は、前記バイパス路の一端に設けられ、前記バイパス路を通過する暖房熱媒と前記第1又は第2の熱交換器を通過する暖房熱媒との流量比を調節可能な比例三方弁であることを特徴とする。
この構成によれば、バイパス弁として比例三方弁を使用することで、暖房用循環路内の流体圧力や流速によらず、バイパス路に流れる暖房熱媒の流量と第1又は第2の熱交換器に流れる流量とを、(バイパス路中に比例弁を設けて調節する場合に比べて)きめ細かく調節することができる。従って、バイパス弁による流量制御の応答が速くなり、正確な温度制御が可能となる。
以上のように、本発明によれば、暖房装置への給熱を行うための暖房熱媒が循環する暖房用循環路に、給熱用の熱交換器(第1又は第2の熱交換器)に並列となるようにバイパス路を設けるとともに、バイパス路を通過する暖房熱媒の流量を調節するバイパス弁を設けたことにより、熱源熱媒の温度を高温に維持しつつ、低温暖房装置に対する給熱量を高温から低温まで幅広く調温することが可能となる。従って、与熱手段として例えばガスエンジン発電機の排熱熱交換器を用いる場合、排熱熱交換器へ送る熱源熱媒の温度条件を満たした状態で、暖房装置へ送る暖房熱媒の温度を高温から低温まで幅広く調節することが可能となる。また、貯湯温度を低下させないので、蓄熱容量の低下を防ぐことができる。
また、第2の熱交換器を通過させる補助熱源循環路内の熱媒の温度を常に高温とすることができるため、補助熱源機を稼働中は常に高温の状態に維持することができ、上述したような結露の問題が生じるのを防止することができる。
以下、本発明を実施するための最良の形態について、図面を参照しながら説明する。
図1は、本発明の実施例1に係る給熱装置1の構成を表す図である。給熱装置1は、熱電併給装置28から排出される排熱を回収し、給湯栓5からの給湯、暖房装置40の運転、並びに浴槽54の湯張り及び追焚のための熱源として効率的に利用する装置である。尚、本実施例において熱電併給装置28としては、エンジン発電機や燃料電池等の発電と同時に熱を発生する装置が使用される。
給熱装置1は、貯湯タンク2、給水路3、給湯路4、減圧弁6、給水サーミスタ7、給水水量センサ8、逆止弁9、逃し弁10、貯湯サーミスタ11,12,13,14、バキューム・ブレーカ15、圧力スイッチ16、BU水量センサ17、BU入サーミスタ18、補助熱源機19、BU出サーミスタ20、混合比例弁21、給湯サーミスタ22、調温水路23、逆止弁24、ガス供給路25、ガス複合電磁弁26、給熱循環路27、貯湯熱交換器30、循環サーミスタ31、暖房低温熱交換器32、排熱サーミスタ33、エンジン冷却水タンク34、排熱ポンプ35、沸上循環路36、循環比例弁37、循環ポンプ38、暖房用循環路39、補給水路41,41a,41b、バイパス弁42、暖房高温熱交換器43、暖房水タンク44、暖房ポンプ45、暖房サーミスタ46、バイパス路47、補助熱源循環路48、暖房弁49、追焚循環路50、風呂熱交換器51、風呂弁52、浴槽循環路53、水位センサ55、風呂サーミスタ56、風呂水流スイッチ57、風呂ポンプ58、湯張り路59、湯張り弁60、湯張り水量センサ61、逆止弁62,63、バイパス路64a、背圧路64b、排水弁65、高温出湯防止弁66、逆止弁67、補給水閉止弁69、排熱補給水弁70、暖房補給水弁71、及び制御部72を備えている。
貯湯タンク2は、成層貯湯方式により貯湯するタンクである。貯湯タンク2には、その上部から底部にかけて、4つの貯湯サーミスタ11,12,13,14が設けられている。各貯湯サーミスタ11,12,13,14は、それぞれの高さにおける貯湯タンク2内の温度を検出する。
給水路3は、上流端が上水道(水道、井水等)に接続され、下流端が貯湯タンク2の底部に連通する管路である。給水路3は、上水から貯湯タンク2への給水を行う。
給水路3には、上流側から減圧弁6,給水サーミスタ7,給水水量センサ8,逆止弁9,及び逃し弁10が備えられている。
減圧弁6は、上水道から供給される水の水圧を減圧する弁である。給水サーミスタ7は、上水道から供給される水の温度を検出するセンサである。給水水量センサ8は、上水道から給水される水の水量を検出するセンサである。逆止弁9は、上水道から貯湯タンク2の側の方向のみ通水し、その逆方向へは通水させない弁である。逃し弁10は、貯湯タンク2の水圧がある一定以上となったときに開弁して排水する弁であり、貯湯タンク2が過圧状態となることを防止するために設けられている。
給湯路4は、上流端が貯湯タンク2の頂部に接続され、下流端が外部の給湯栓5に接続されている。給湯路4は、貯湯タンク2に貯留された温水を給湯栓5へ供給する管路である。
給湯路4には、上流側(貯湯タンク2側)から下流側(給湯栓5側)にかけて、バキューム・ブレーカ15,圧力スイッチ16,BU水量センサ17,BU入サーミスタ18,補助熱源機19,BU出サーミスタ20,混合比例弁21,及び給湯サーミスタ22が設けられている。
バキューム・ブレーカ15は、貯湯タンク2の頂部近傍の給湯管4に接続されている。バキューム・ブレーカ15は、貯湯タンク2が断水等により負圧になった場合に給湯管4内に大気を導入して貯湯タンク2の真空破壊と水の吸い上げを防止する。圧力スイッチ16はバキューム・ブレーカ15とともに貯湯タンク2の頂部近傍の給湯管4に接続されている。圧力スイッチ16は、貯湯タンク2内の圧力を検出する。
補助熱源機19は、給湯路4を流れる温水をガスバーナ19aにより加熱する熱源機である。ガスバーナ19aには、ガス供給路25を通して、都市ガスが供給される。ガス供給路25には、ガス複合電磁弁26が設けられている。このガス供給路25は、供給される都市ガスの通断及び流量調節を行うための電磁弁である。
BU水量センサ17は、給湯路4を通って補助熱源機19へ流入する温水の流量を検出する流量センサである。BU入サーミスタ18は、補助熱源器19へ流入する温水の温度を検出する温度センサである。BU出サーミスタ20は、補助熱源機19から流出する温水の温度を検出する温度センサである。
混合比例弁21は、貯湯タンク2から供給される温水と、上水道から給水路3,調温水路23を経て供給される冷水とを適宜な割合で混合し調温するための弁である。混合比例弁21は、湯比例弁21aと水比例弁21bを備えている。湯比例弁21aは、貯湯タンク2から供給される温水の流量を調節する弁である。水比例弁21bは、上水道から供給される冷水の流量を調節する弁である。
尚、調温水路23は、その上流端が、給水水量センサ8と逆止弁9の間の給水路3に接続され、その下流端が、混合比例弁21に接続された管路である。調温水路23には、逆止弁24が設けられており、混合比例弁21から上水道の方への水の逆流が防止されている。
給湯サーミスタ22は、混合比例弁21の出口の給湯路4に設けられている。給湯サーミスタ22は、混合比例弁21で調温された温水の温度を検出する温度センサである。
給熱循環路27は、外部に設けられる熱電併給装置28の排熱を回収するための温水(熱源熱媒)が循環する管路である。給熱循環路27は、その両端が排熱熱交換器28aに接続されている。排熱熱交換器28aは、熱電併給装置28を駆動する際に発生する熱を排出するための熱交換器である。排熱熱交換器28aは、給熱循環路27を循環する温水に与熱する与熱手段である。
給熱循環路27には、排熱熱交換器28aからの戻り側から往き側にかけて、貯湯熱交換器30,循環サーミスタ31,暖房低温熱交換器32,排熱サーミスタ33,エンジン冷却水タンク34,及び排熱ポンプ35が設けられている。
貯湯熱交換器30は、排熱熱交換器28aによって与熱された給熱循環路27内の温水と、沸上循環路36(後述)を通して貯湯タンク2の底部から頂部へ送られる水との間で熱交換を行うための熱交換器である。
循環サーミスタ31は、貯湯熱交換器30出口の給熱循環路27内の温水の温度を検出する温度センサである。暖房低温熱交換器32は、給熱循環路27内の温水(熱源熱媒)と、暖房用循環路39(後述)を通して暖房装置40へ送られる温水(暖房熱媒)との間で熱交換を行うための熱交換器である。排熱サーミスタ33は、暖房低温熱交換器32出口の給熱循環路27内の温水の温度を検出する温度センサである。
エンジン冷却水タンク34は、給熱循環路27内を循環する温水を一時的に貯留するタンクである。エンジン冷却水タンク34内には、タンク内の液面の高さを検出する水位センサ(排熱高水位電極34a及び排熱低水位電極34b)が設けられており、給熱循環路27内の温水(熱源熱媒)の量が適正な量か否かが常時検知されている。また、エンジン冷却水タンク34には、給水路3に繋がる補給水路41,41aが接続されており、給熱循環路27内の温水(熱源熱媒)が不足した場合には上水道から水が補給される。
排熱ポンプ35は、給熱循環路27内の温水を付勢し、給熱循環路27内に温水を循環させるためのポンプである。
沸上循環路36は、その上流端が給水路3の最下流部分を介して貯湯タンク2の底部に連通され、その下流端が給湯路4の最上流部分を介して貯湯タンク2の頂部に連通された管路である。沸上循環路36には、貯湯タンク2の底部側から貯湯タンク2の頂部側にかけて、循環比例弁37,貯湯熱交換器30,循環ポンプ38が配設されている。循環比例弁37は、沸上循環路36を流れる水の流量を調節する比例弁である。循環ポンプ38は、沸上循環路36内の水を貯湯タンク2の底部側から貯湯タンク2の頂部側へ圧送するポンプである。貯湯熱交換器30により、貯湯タンク2底部から貯湯熱交換器30へ流入する水が加熱され、貯湯タンク2頂部へ送られて蓄熱がされる。一方、給熱循環路27内の温水は、貯湯熱交換器30において冷却される。
暖房用循環路39は、その両端が温水循環型の暖房装置40に接続された管路である。暖房用循環路39は、暖房装置40との間で温水を循環させることにより、暖房装置40への給熱を行う。
暖房用循環路39には、暖房装置40からの戻り側から往き側にかけて、バイパス弁42,暖房低温熱交換器32,暖房高温熱交換器43,暖房水タンク44,暖房ポンプ45,及び暖房サーミスタ46が配設されている。
また、バイパス弁42と、暖房高温熱交換器43−暖房水タンク44間の暖房用循環路39との間に、暖房低温熱交換器32及び暖房高温熱交換器43をバイパスする管路であるバイパス路47が設けられている。
また、暖房高温熱交換器43−暖房水タンク44間の暖房用循環路39と、暖房ポンプ45下流側の暖房用循環路39とをバイパスする放圧路68が設けられている。放圧路68は細管が使用されており、暖房用循環路39が閉塞した際に暖房ポンプ45の吐出圧を放圧して機器が破損するのを防止するために設けられている。
バイパス弁42は、バイパス路47を流れる温水流量と、暖房低温熱交換器32及び暖房高温熱交換器43を流れる温水流量との比率を調節する弁である。
暖房低温熱交換器32は、上述したように、給熱循環路27内の温水(熱源熱媒)と、暖房用循環路39内の温水(暖房熱媒)との間で熱交換を行う熱交換器である。暖房低温熱交換器32により、暖房用循環路39内の温水(暖房熱媒)は加熱され、逆に給熱循環路27内の温水(熱源熱媒)は冷却される。
暖房高温熱交換器43は、補助熱源循環路48(後述)内を流れる温水と、暖房用循環路39内を流れる温水との間で熱交換を行う熱交換器である。補助熱源循環路48には、必要に応じて、補助熱源機19によって加熱された高温の温水が循環される。従って、暖房用循環路39内の温水は、この暖房高温熱交換器43によって追加的に加熱される。
暖房水タンク44は、暖房用循環路39内を循環する温水を一時的に貯留するタンクである。暖房水タンク44内には、タンク内の液面の高さを検出する水位センサ(暖房高水位電極44a及び暖房低水位電極44b)が設けられており、暖房用循環路39内の温水(暖房熱媒)の量が適正な量か否かが常時検知されている。また、暖房水タンク44には、給水路3に繋がる補給水路41,41bが接続されており、暖房水タンク44内の温水(暖房熱媒)が不足した場合には上水道から水が補給される。
暖房ポンプ45は、暖房用循環路39内の温水を付勢し、暖房用循環路39内に温水を循環させるためのポンプである。暖房サーミスタ46は、暖房ポンプ45から暖房用循環路39を通して暖房装置40へ送られる温水の温度を検出する温度センサである。
補助熱源循環路48は、その上流端が補助熱源機19下流側の給湯路4に接続され、その下流欄が循環ポンプ38上流側の沸上循環路36に接続された管路である。補助熱源循環路48には暖房弁49が設けられている。暖房弁49は、補助熱源循環路48の通断を行う開閉弁である。暖房弁49が開弁された状態で循環ポンプ38が起動すると、循環ポンプ38→補助熱源機19→暖房高温熱交換器43→循環ポンプ38の経路で温水が循環する。これにより、補助熱源機19で加熱される高温の温水が暖房高温熱交換器43に送られて、暖房熱媒への追加的な給熱が行われる。
追焚循環路50は、その上流端が補助熱源機19下流側の給湯路4に接続され、その下流端が貯湯熱交換器30上流側の沸上循環路36に接続された管路である。追焚循環路50には、上流側から下流側にかけて、風呂熱交換器51,風呂弁52が設けられている。
風呂熱交換器51は、浴槽54から浴槽循環路53(後述)内を循環する浴槽水と、追焚循環路50を通して供給される温水との間で熱交換を行い、浴槽水の追焚を行う熱交換器である。風呂弁52は、追焚循環路50の通断を行う開閉弁である。風呂弁52が開弁した状態で循環ポンプ38が起動すると、貯湯熱交換器30→循環ポンプ38→補助熱源機19→風呂熱交換器51→貯湯熱交換器30の順に温水が循環される。これにより、貯湯熱交換器30で加熱される高温の温水が風呂熱交換器51に供給され、この熱によって浴槽水の追焚が行われる。
浴槽循環路53は、その両端が浴槽54に接続された管路である。浴槽循環路53には、上流側から、水位センサ55,風呂サーミスタ56,風呂水流スイッチ57,風呂熱交換器51,及び風呂ポンプ58が配設されている。
水位センサ55は、浴槽54の水位(浴槽水があるか否か)を検出するセンサである。風呂サーミスタ56は、浴槽54から浴槽循環路53へ流入する浴槽水の温度を検出する温度センサである。風呂水流スイッチ57は、浴槽循環路53に浴槽水が流れているか否かを検出するスイッチである。風呂熱交換器51は、前述のように、浴槽水と追焚循環路50内の温水との間で熱交換を行うことにより、浴槽水の追焚を行う熱交換器である。風呂ポンプ58は、浴槽循環路53内に浴槽水を循環させるためのポンプである。
湯張り路59は、その上流端が給湯サーミスタ22下流側の給湯路4に接続され、その下流端が風呂ポンプ58上流側の浴槽循環路53に接続された管路である。湯張り路59は、浴槽54の湯張りを行う際に、温水を浴槽に供給するための経路である。湯張り路59には、湯張り弁60,湯張り水量センサ61,及び逆止弁62,63が設けられている。湯張り弁60は、湯張り路59の通断を行う開閉弁である。湯張り水量センサ61は、湯張り路59を通過する温水の流量を検出するセンサである。逆止弁62,63は、湯張り路59を通って、浴槽水が浴槽循環路53の側から給湯路4の側に逆流するのを防止するための弁である。
バイパス路64aは、その一端が逆止弁24と混合比例弁21との間の混合水供給路23に接続され、その他端が混合比例弁21上流側の給湯路4に接続された管路である。バイパス路64aには、混合水供給路23に接続された一端側から給湯路4に接続された他端側にかけて、高温出湯防止弁66及び逆止弁67が設けられている。バイパス路64aは通電時閉、非通電時開の電磁弁で、停電時混合比例弁21の開度が調節できなくなったときでも、混合水供給路23から混合比例弁21の上流側の給湯路4へ冷水を流入させ、給湯栓5に高温のお湯が出ていくことを防ぐ。
背圧路64bは、その一端が逆止弁62,63の間の湯張り路59に接続され、その他端が逆止弁24と混合比例弁21との間の混合水供給路23に接続された管路である。背圧路64bには排水弁65が設けられている。背圧路64bは、排水弁65のダイヤフラムの背圧側に給水圧をかけるための管である。給水が正常なときはダイヤフラムの背圧側に圧力がかかっているので排水弁65は閉じており、湯張り路59と排水弁65の間は閉止状態である。断水になると背圧路64bは圧力0または負圧になるので排水弁65はスプリングの力で開となり、仮に逆止弁62、63が開いたままで故障したとしても浴槽水が給湯路4に入り込むことを防ぐことができる。
補給水路41は、その上流端が給水路3に接続された管路である。補給水路41の下流側は、2つの補給水路41a,41bに分岐しており、前者はエンジン冷却水タンク34、後者は暖房水タンク44に接続されている。前述したように、補給水路41は、給熱循環路27又は暖房用循環路39内の水(温水)が不足した場合に、水を補充するための管路である。補給水路41,41a,41bには、それぞれ、各水路の通断を行う補給水閉止弁69,排熱補給水弁70,及び暖房補給水弁71が設けられている。
制御部72は、給熱装置1全体の制御を行う電子回路である。
以上のように構成された本実施例の給熱装置1において、以下その貯湯及び暖房に関わる動作について説明する。
(1)貯湯運転
図2は、給熱装置1の貯湯運転を表す図である。「貯湯運転」とは、熱電併給装置28から排出される排熱を貯湯タンク2に蓄熱する運転状態をいう。
貯湯運転では、制御部72は、循環比例弁37を開弁、暖房弁49を閉止し循環ポンプ38を起動するとともに、排熱ポンプ35を起動する。これにより、給熱循環路27と沸上循環路36に温水が循環する。
給熱循環路27を循環する温水(熱源熱媒)は、排熱熱交換器28aにおいて、熱電併給装置28で発生する熱(排熱)により加熱される。高温になった給熱循環路27内の温水(熱源熱媒)は、貯湯熱交換器30において沸上循環路36内の水と熱交換する。沸上循環路36には、貯湯タンク2の底部の低温の水が流入しており、この低温の水は貯湯熱交換器30で加熱されて高温の温水となり貯湯タンク2の頂部に戻される。従って、貯湯タンク2は、上部から下部に向けて高温層が徐々に拡大していき貯熱が行われる。
一方、貯湯熱交換器30において奪熱された給熱循環路27内の温水(熱源熱媒)は、暖房低温熱交換器32,エンジン冷却水タンク34,排熱ポンプ35を通過して再び排熱熱交換器28aに戻って加熱される。
一般に、熱電併給装置28の排熱熱交換器28aへ送られる温水(熱源熱媒)の温度は60℃程度である。一方、排熱熱交換器28aから戻される温水(熱源熱媒)の温度は80℃程度である。貯湯熱交換器30において、沸上循環路36内の温水は75℃程度まで加熱される。従って、貯湯タンク2の上部には、75℃程度の高温層が形成される。一方、給熱循環路27内の温水(熱源熱媒)は71℃程度まで冷却される。そして、その後各所で放熱し、排熱熱交換器28aへ送られる迄には温度は60℃程度まで低下する。
このように、貯湯運転では、熱電併給装置28の排熱が逐次貯湯タンク2に蓄熱される。
(2)高温暖房運転
図3は、給熱装置1の高温暖房運転を表す図である。「高温暖房運転」とは、熱電併給装置28から排出される排熱を用いて、暖房装置40に高温の温水を循環させて暖房を行う運転状態をいう。ここで、「高温」とは、ここでは具体的には55〜65℃程度以上のことを指す。
高温暖房運転においては、制御部72は、循環比例弁37を開弁し、暖房弁49を閉止した状態で循環ポンプ38及び排熱ポンプ35を起動する。これにより、給熱循環路27と沸上循環路36に温水が循環される。また、暖房ポンプ45を起動させ、暖房用循環路39に温水を循環させる。
制御部72は、暖房装置40で要求される温水温度Tが、所定の閾値Tth1(例えば、55〜65℃)以上である場合には、バイパス弁42を、暖房用循環路39の方に100%温水が通水するように設定する。したがって、この場合、バイパス路47には温水は流れない。
熱電併給装置28の排熱熱交換器28aにおいて加熱された給熱循環路27内の温水(熱源熱媒)は、まず貯湯熱交換器30を通過する。このとき、温水(熱源熱媒)の熱の一部は、沸上循環路36内を流れる温水に与熱され、貯湯タンク2に回収される。
次いで、温水(熱源熱媒)は、暖房低温熱交換器32を通過し、暖房用循環路39内を循環する温水(暖房熱媒)に与熱する。温水(暖房熱媒)に与熱して冷却された温水(熱源熱媒)は、エンジン冷却水タンク34,排熱ポンプ35を通過して再び排熱熱交換器28aに戻されて給熱が行われる。
一方、暖房用循環路39では、暖房低温熱交換器32において給熱された温水(暖房熱媒)は、暖房高温熱交換器43,暖房水タンク44,暖房ポンプ45を通過して暖房装置40へ送水される。そして、暖房装置40において室内空気と熱交換をして放熱した後に、再びバイパス弁42を通って暖房低温熱交換器32に戻され給熱が行われる。
このような高温暖房運転においては、排熱熱交換器28aから戻される温水(熱源熱媒)の温度は66℃程度である。そして、貯湯熱交換器30を通過する際の温水(熱源熱媒)の温度は64〜65℃程度となる。したがって、貯湯熱交換器30で給熱された沸上循環路36内の温水の温度は61〜62℃程度となり、貯湯タンク2の上層は60℃程度の高温層が形成される。
貯湯熱交換器30を出て暖房低温熱交換器32に流入する給熱循環路27内の温水(熱源熱媒)の温度は65℃程度となる。したがって、暖房低温熱交換器32で給熱された暖房用循環路39内の温水(暖房熱媒)の温度は58〜64℃程度となり、最終的に暖房装置40に送水される温水(暖房熱媒)の温度は57〜63℃程度、暖房装置40から返水される温水(暖房熱媒)の温度は40〜50℃程度となる。
また、貯湯熱交換器30を出て熱電併給装置28の排熱熱交換器28aに送水される温水(熱源熱媒)の温度は56〜61℃程度となる。
この高温暖房運転では、暖房能力の調節は暖房弁49の開閉と補助熱源器43により行われる。すなわち、暖房サーミスタ46で検出される温水(暖房熱媒)の温度が暖房装置40の要求温度Tよりも低い場合、制御部72は、暖房弁49を開弁し補助熱源循環路48に高温の温水を循環させる。ここで、暖房弁49が開弁されると、循環ポンプ38を出た高温の温水は、貯湯タンク2の側と補助熱源機19の側に分流する。補助熱源機19の側に分流した高温の温水は、補助熱源循環路48に流入し暖房高温熱交換器43を通過した後に循環ポンプ38に戻る。したがって、この際、暖房高温熱交換器43において暖房用循環路39内の温水(暖房熱媒)への給熱が行われ、温水(暖房熱媒)の温度が上昇する。また、それでも温水(暖房熱媒)の温度が暖房装置40の要求温度Tに達しなければ、制御部72は、補助熱源機19を起動して追加的な給熱を行う。
また、熱電併給装置28の排熱熱交換器28aに送る温水(熱源熱媒)の温度調節は、循環比例弁37の開度制御により行われる。すなわち、排熱サーミスタ33で検出される温水(熱源熱媒)の温度が熱電併給装置28で要求される冷却水よりも低い場合、制御部72は循環比例弁37の開度を絞って沸上循環路36を流れる温水の流量を減少させる。これにより、貯湯熱交換器30において給熱循環路27内の温水(熱源熱媒)から沸上循環路36内の温水に与熱される熱量は減少し、熱電併給装置28に流入する温水(熱源熱媒)の温度は上昇する。一方、排熱サーミスタ33で検出される温水(暖房熱媒)の温度が熱電併給装置28で要求される冷却水温度よりも高い場合、制御部72は循環比例弁37の開度を広げて沸上循環路36を流れる温水の流量を増加させる。これにより、貯湯熱交換器30において給熱循環路27内の温水(熱源熱媒)から沸上循環路36内の温水に与熱される熱量は増加し、熱電併給装置28に流入する温水(熱源熱媒)の温度は下降する。
高温暖房運転では、暖房低温熱交換器32から流出する温水(熱源熱媒)の温度が高いため、熱電併給装置28の排熱熱交換器28aに送水される温水(熱源熱媒)の温度は、熱電併給装置28の仕様に沿った一定の温度レベルを維持することができる。
(3)低温暖房運転
図4は、給熱装置1の低温暖房運転を表す図である。「低温暖房運転」とは、熱電併給装置28から排出される排熱を用いて、暖房装置40に低温の温水を循環させて暖房を行う運転状態をいう。ここで、「低温」とは、ここでは具体的には40〜50℃程度のことを指す。
低温暖房運転においては、制御部72は、循環比例弁37を開弁し、暖房弁49を閉止した状態で循環ポンプ38及び排熱ポンプ35を起動する。これにより、給熱循環路27と沸上循環路36に温水が循環される。また、暖房ポンプ45を起動させ、暖房用循環路39に温水を循環させる。
また、制御部72は、暖房装置40で要求される温水温度Tが、所定の閾値Tth1(例えば、40〜50℃)未満である場合には、暖房サーミスタ46で検出される温水(暖房熱媒)の温度が要求温度Tとなるように、バイパス弁42の開度制御を行う。したがって、この場合、バイパス路47には温水(暖房熱媒)の一部が流れる。
熱電併給装置28の排熱熱交換器28aにおいて加熱された給熱循環路27内の温水(熱源熱媒)は、排熱ポンプ35により給熱循環路27内を圧送され、まず貯湯熱交換器30を通過する。このとき、温水(熱源熱媒)の熱の一部は、沸上循環路36内を流れる温水に与熱され、貯湯タンク2に回収される。そのため、給熱循環路27内の温水(熱源熱媒)の温度はある程度降下する。
次いで、温水(熱源熱媒)は、暖房低温熱交換器32を通過し、暖房用循環路39内を循環する温水(暖房熱媒)に与熱する。温水(暖房熱媒)に与熱して冷却された温水(熱源熱媒)は、エンジン冷却水タンク34,排熱ポンプ35を通過して再び排熱熱交換器28aに戻されて給熱が行われる。
ここで、暖房低温熱交換器32に流入する給熱循環路27内の温水(熱源熱媒)は、貯湯熱交換器30で奪熱されてある程度は温度が低くなっているが、熱電併給装置28で要求される冷却水温度に温度制限があるため、あまり低温にまで下げることができない。従って、低温暖房での要求温度Tに比べると高すぎる温度である。この高温の温水(熱源熱媒)を用いて暖房用循環路39内の温水(暖房熱媒)を加熱すると、温水(暖房熱媒)の温度が上がりすぎることになる。そこで、この場合には、バイパス路47に暖房低温熱交換器32をバイパスする温水(暖房熱媒)を分流させ、このバイパス路47を通る加熱されない温水(暖房熱媒)と暖房低温熱交換器32で加熱された温水(暖房熱媒)とを合流・混合させて暖房装置40へ送る温水(暖房熱媒)の調温を行う。
暖房用循環路39において、暖房装置40から返流された温水(暖房熱媒)は、バイパス弁42において、暖房低温熱交換器32の側の流れとバイパス路47の側の流れとに分流する。暖房低温熱交換器32の側の流れの温水(暖房熱媒)は、暖房低温熱交換器32において加熱された後、暖房高温熱交換器43を通過して暖房水タンク44へ送水される。一方、バイパス路47の側の流れの温水(暖房熱媒)は、暖房水タンク44の手前で暖房低温熱交換器32の側の流れと合流して、暖房水タンク44へ送水される。そして、暖房水タンク44において2つの流れの温水(暖房熱媒)は完全に混合される。
バイパス弁42に流入する温水(暖房熱媒)の温度をT,バイパス弁42に流入する温水(暖房熱媒)の流量をf,暖房低温熱交換器32の側の流れの流量をf,バイパス路47の側の流れの流量をf,暖房低温熱交換器32から流出する温水(暖房熱媒)の温度をTとする。暖房高温熱交換器43における放熱が小さいとすると、暖房水タンク44で混合された温水(暖房熱媒)の温度Tは次式のようになる。
Figure 2008292028
すなわち、流量f,fの比率を制御することによりT〜Tの範囲で温度調節を行うことができる。尚、実際には暖房低温熱交換器32から流出する温水(暖房熱媒)の温度Tは流量fにも依存して変化するため、式(1)は流量f,fの比率に対して非線形となる。
従って、制御部72は、暖房サーミスタ46の検出温度Tを参照して、流量f,fの比率のフィードバック制御を行う。すなわち、制御部72は、T−Tに比例してバイパス路47の流量fの比率を変化させるように、バイパス弁42の開度を制御する。これにより、暖房装置40の要求温度Tに対して検出温度Tが高い場合(T>T)、バイパス路47の流量fの比率が増加する。従って、暖房水タンク44で混合された温水(暖房熱媒)の温度Tは下降する。一方、暖房装置40の要求温度Tに対して検出温度Tが低い場合(T<T)、バイパス路47の流量fの比率が減少する。従って、暖房水タンク44で混合された温水(暖房熱媒)の温度Tは上昇する。このように、混合された温水(暖房熱媒)の温度Tは常時暖房装置40の要求温度Tの近傍となるように制御される。
上述のような低温暖房運転においては、排熱熱交換器28aから戻される温水(熱源熱媒)の温度は66℃程度である。そして、貯湯熱交換器30を通過する際の温水(熱源熱媒)の温度は64〜65℃程度となる。したがって、貯湯熱交換器30で給熱された沸上循環路36内の温水の温度は61〜62℃程度となり、貯湯タンク2の上層は60℃程度の高温層が形成される。
貯湯熱交換器30を出て暖房低温熱交換器32に流入する給熱循環路27内の温水(熱源熱媒)の温度は65℃程度となる。したがって、暖房低温熱交換器32で給熱された暖房用循環路39内の温水(暖房熱媒)の温度は58〜64℃程度となる。また、貯湯熱交換器30を出て熱電併給装置28の排熱熱交換器28aに送水される温水(熱源熱媒)の温度は56〜61℃程度となる。
一方、暖房水タンク44で混合された温水(暖房熱媒)の温度Tは40〜50℃程度、暖房装置40から返水される温水(暖房熱媒)の温度は30〜35℃程度となる。
尚、熱電併給装置28に送水される温水(熱源熱媒)の温度調節は、循環比例弁37の開度制御によって行われる。すなわち、排熱サーミスタ33で検出される温水(熱源熱媒)の温度が熱電併給装置28で要求される冷却水よりも低い場合、制御部72は循環比例弁37の開度を絞って沸上循環路36を流れる温水の流量を減少させる。これにより、貯湯熱交換器30において給熱循環路27内の温水(熱源熱媒)から沸上循環路36内の温水に与熱される熱量は減少し、熱電併給装置28に流入する温水(熱源熱媒)の温度は上昇する。一方、排熱サーミスタ33で検出される温水(暖房熱媒)の温度が熱電併給装置28で要求される冷却水温度よりも高い場合、制御部72は循環比例弁37の開度を広げて沸上循環路36を流れる温水の流量を増加させる。これにより、貯湯熱交換器30において給熱循環路27内の温水(熱源熱媒)から沸上循環路36内の温水に与熱される熱量は増加し、熱電併給装置28に流入する温水(熱源熱媒)の温度は下降する。この制御により、熱電併給装置28に送水される温水(熱源熱媒)の温度調節が行われる。
(4)高温BU暖房運転
図5は、給熱装置1の高温BU暖房運転を表す図である。「高温BU暖房運転」とは、補助熱源機19で生成される熱を用いて、暖房装置40に高温の温水を循環させて暖房を行う運転状態をいう。高温BU暖房運転は、熱電併給装置28が運転又は停止している状態で実行される。
高温BU暖房運転においては、制御部72は、循環比例弁37を閉止し、暖房弁49を開弁した状態で循環ポンプ38を起動する。これにより、補助熱源循環路48に温水が循環される。また、暖房ポンプ45を起動させ、暖房用循環路39に温水を循環させる。更に、補助熱源機19のガスバーナ19aを点火して、補助熱源機19を起動させる。
制御部72は、暖房装置40で要求される温水温度Tが、所定の閾値Tth2(例えば、55〜65℃)以上である場合には、バイパス弁42を、暖房用循環路39の方に100%温水が通水するように設定する。したがって、この場合、バイパス路47には温水は流れない。
まず、補助熱源機19によって、給湯路4,補助熱源循環路48,沸上循環路36により形成される閉路を回流する温水に給熱が行われる。補助熱源機19を出た温水は、補助熱源循環路48に流入して暖房高温熱交換器43を通過する。このとき、暖房用循環路39内を流れる温水(暖房熱媒)に与熱して冷却される。そして、暖房弁49,循環ポンプ38を経由して再び補助熱源機19に還流する。
一方、暖房用循環路39では、暖房装置40から返流された温水は、バイパス弁42,暖房低温熱交換器32を経由して暖房高温熱交換器43に送水される。ここで、補助熱源循環路48内を循環する温水から給熱され、高温の温水となる。そして、暖房水タンク44,暖房ポンプ45を経由して、再び暖房装置40へ送流される。
高温BU暖房運転においては、暖房装置40で要求される温水温度Tが高温であるため、補助熱源機19も高温状態で運転させることができる。従って、この場合には補助熱源機19での結露の問題は生じない。
(5)低温BU暖房運転
図6は、給熱装置1の低温BU暖房運転を表す図である。「低温BU暖房運転」とは、補助熱源機19で生成される熱を用いて、暖房装置40に低温の温水を循環させて暖房を行う運転状態をいう。低温BU暖房運転は、熱電併給装置28が運転又は停止している状態で実行される。
低温BU暖房運転においては、制御部72は、循環比例弁37を閉止し、暖房弁49を開弁した状態で循環ポンプ38を起動する。これにより、補助熱源循環路48に温水が循環される。また、暖房ポンプ45を起動させ、暖房用循環路39に温水を循環させる。更に、補助熱源機19のガスバーナ19aを点火して、補助熱源機19を起動させる。
暖房装置40で要求される温水温度Tが、所定の閾値Tth2(例えば、40〜50℃)未満である場合、制御部72は、暖房サーミスタ46が検出する温水(暖房熱媒)の温度に基づいて、バイパス弁42の開度のフィードバック制御を行う。
まず、補助熱源機19によって、給湯路4,補助熱源循環路48,沸上循環路36により形成される閉路を回流する温水に給熱が行われる。補助熱源機19を出た温水は、補助熱源循環路48に流入して暖房高温熱交換器43を通過する。このとき、暖房用循環路39内を流れる温水(暖房熱媒)に与熱して冷却される。そして、暖房弁49,循環ポンプ38を経由して再び補助熱源機19に還流する。
一方、暖房用循環路39では、暖房装置40から返流された温水(暖房熱媒)の流れは、バイパス弁42において、暖房高温熱交換器43側の流れとバイパス路47側の流れとに分流する。暖房高温熱交換器43側の流れの温水(暖房熱媒)は、暖房高温熱交換器43で加熱された後、暖房水タンク44へ流入する。一方、バイパス路47側の流れの温水(暖房熱媒)は、暖房水タンク44の手前で暖房高温熱交換器43側の流れと合流した後に、暖房水タンク44へ流入する。そして、両者は暖房水タンク44で完全に混合され調温された後、暖房ポンプ45を経て暖房装置40へ送流される。
バイパス弁42の開度は、上述の低温暖房運転の場合と同様に、暖房サーミスタ46の検出温度に基づくフィードバック制御がされる。これにより、暖房高温熱交換器43は高温状態のまま、暖房装置40へ送水する温水(暖房熱媒)の温度を低くすることができる。従って、この場合も補助熱源機19は常に高温状態で運転させることができるため、補助熱源機19での結露の問題の発生を防止することができる。
本発明の実施例1に係る給熱装置1の構成を表す図である。 給熱装置1の貯湯運転を表す図である。 給熱装置1の高温暖房運転を表す図である。 給熱装置1の低温暖房運転を表す図である。 給熱装置1の高温BU暖房運転を表す図である。 給熱装置1の低温BU暖房運転を表す図である。 特許文献1に記載の給熱装置100の構成を表す図である。
符号の説明
1 給熱装置
2 貯湯タンク
3 給水路
4 給湯路
5 給湯栓
6 減圧弁
7 給水サーミスタ
8 給水水量センサ
9 逆止弁
10 逃し弁
11,12,13,14 貯湯サーミスタ
15 バキューム・ブレーカ
16 圧力スイッチ
17 BU水量センサ
18 BU入サーミスタ
19 補助熱源機
19a ガスバーナ
20 BU出サーミスタ
21 混合比例弁
21a 湯比例弁
21b 水比例弁
22 給湯サーミスタ
23 調温水路
24 逆止弁
25 ガス供給路
26 ガス複合電磁弁
27 給熱循環路
28 熱電併給装置
28a 排熱熱交換器(与熱手段)
30 貯湯熱交換器
31 循環サーミスタ
32 暖房低温熱交換器
33 排熱サーミスタ
34 エンジン冷却水タンク
34a,44a 排熱高水位電極
34b,44b 排熱低水位電極
35 排熱ポンプ
36 沸上循環路
37 循環比例弁
38 循環ポンプ
39 暖房用循環路
40 暖房装置
41,41a,41b 補給水路
42 バイパス弁
43 暖房高温熱交換器
44 暖房水タンク
45 暖房ポンプ
46 暖房サーミスタ(温度センサ)
47 バイパス路
48 補助熱源循環路
49 暖房弁
50 追焚循環路
51 風呂熱交換器
52 風呂弁
53 浴槽循環路
54 浴槽
55 水位センサ
56 風呂サーミスタ
57 風呂水流スイッチ
58 風呂ポンプ
59 湯張り路
60 湯張り弁
61 湯張り水量センサ
62,63 逆止弁
64a バイパス路
64b 背圧路
65 排水弁
66 高温出湯防止弁
67 逆止弁
69 補給水閉止弁
70 排熱補給水弁
71 暖房補給水弁
72 制御部(制御手段)

Claims (5)

  1. 加熱された熱媒を暖房装置に供給するための給熱装置であって、
    前記暖房装置への給熱を行うための暖房熱媒が循環する暖房用循環路と、
    与熱手段により与熱された、前記暖房熱媒に給熱を行うための熱源熱媒が循環する給熱循環路と、
    前記給熱循環路を循環する熱源熱媒と前記暖房用循環路を循環する暖房熱媒との間で熱交換を行う第1の熱交換器と、
    両端が、前記第1の熱交換器と並列に、前記暖房用循環路に接続されたバイパス路と、
    前記バイパス路に設けられ、前記バイパス路を通過する暖房熱媒の流量を調節するバイパス弁と、
    前記暖房装置へ供給される前記暖房用循環路内の暖房熱媒の温度を検出する温度センサと、
    前記温度センサの検出温度が前記暖房要求温度となるように前記バイパス弁の開度を調節する制御手段と、
    を備えたことを特徴とする給熱装置。
  2. 不足の熱量を補熱する補助熱源機と、
    前記補助熱源機により加熱される熱媒が循環する補助熱源循環路と、
    前記補助熱源循環路を循環する熱媒と前記暖房用循環路を循環する熱源熱媒との間で熱交換を行う第2の熱交換器と、を備え、
    前記バイパス路は、両端が、前記第2の熱交換器と並列に、前記暖房用循環路に接続されていることを特徴とする請求項1記載の給熱装置。
  3. 前記与熱手段は、熱電併給装置の排熱を回収する排熱交換器であることを特徴とする請求項1又は2記載の給熱装置。
  4. 前記与熱手段により給熱される熱を温水として蓄熱する貯湯タンクと、
    前記貯湯タンク内の水が、前記貯湯タンクの底部から出て前記貯湯タンクの頂部へ戻される蓄熱循環路と、
    前記給熱循環路内の熱源熱媒と前記蓄熱循環路内の水熱媒との間で熱交換を行う第3の熱交換器と、を備え、
    前記第3の熱交換器は、前記給熱循環路の前記第1の熱交換器よりも上流側に設けられていることを特徴とする請求項1乃至3の何れか一記載の給熱装置。
  5. 前記バイパス弁は、前記バイパス路の一端に設けられ、前記バイパス路を通過する暖房熱媒と前記第1又は第2の熱交換器を通過する暖房熱媒との流量比を調節可能な比例三方弁であることを特徴とする請求項1乃至4の何れか一記載の給熱装置。
JP2007136286A 2007-05-23 2007-05-23 給熱装置 Pending JP2008292028A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007136286A JP2008292028A (ja) 2007-05-23 2007-05-23 給熱装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007136286A JP2008292028A (ja) 2007-05-23 2007-05-23 給熱装置

Publications (1)

Publication Number Publication Date
JP2008292028A true JP2008292028A (ja) 2008-12-04

Family

ID=40166937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007136286A Pending JP2008292028A (ja) 2007-05-23 2007-05-23 給熱装置

Country Status (1)

Country Link
JP (1) JP2008292028A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105444247A (zh) * 2015-12-25 2016-03-30 力明(北京)节能科技有限公司 基于多种低品位余热综合回收利用的区域能源供应系统
JP2018128225A (ja) * 2017-02-10 2018-08-16 リンナイ株式会社 給湯暖房装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0611188A (ja) * 1992-04-21 1994-01-21 Takagi Ind Co Ltd 給湯装置
JP2003130448A (ja) * 2001-10-17 2003-05-08 Takagi Ind Co Ltd 熱源装置
JP2004053054A (ja) * 2002-07-17 2004-02-19 Chofu Seisakusho Co Ltd コージェネレーションシステム
JP2007064518A (ja) * 2005-08-30 2007-03-15 Chofu Seisakusho Co Ltd コージェネレーションシステム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0611188A (ja) * 1992-04-21 1994-01-21 Takagi Ind Co Ltd 給湯装置
JP2003130448A (ja) * 2001-10-17 2003-05-08 Takagi Ind Co Ltd 熱源装置
JP2004053054A (ja) * 2002-07-17 2004-02-19 Chofu Seisakusho Co Ltd コージェネレーションシステム
JP2007064518A (ja) * 2005-08-30 2007-03-15 Chofu Seisakusho Co Ltd コージェネレーションシステム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105444247A (zh) * 2015-12-25 2016-03-30 力明(北京)节能科技有限公司 基于多种低品位余热综合回收利用的区域能源供应系统
CN105444247B (zh) * 2015-12-25 2024-01-12 力明(北京)节能科技有限公司 基于多种低品位余热综合回收利用的区域能源供应系统
JP2018128225A (ja) * 2017-02-10 2018-08-16 リンナイ株式会社 給湯暖房装置

Similar Documents

Publication Publication Date Title
JP5097624B2 (ja) 温水供給システム
JP2007132612A (ja) コージェネレーションシステム及びその制御方法並びにプログラム
KR20130061987A (ko) 예열기능을 구비한 팽창탱크 및 이를 사용한 보일러시스템
JP5828219B2 (ja) コージェネレーションシステム、排熱利用装置、コージェネレーションシステムの制御方法及びヒートポンプ式給湯装置
JP2008292028A (ja) 給熱装置
JP2018173228A (ja) 熱源装置
US20210190328A1 (en) Combined heating and cooling system
JP4685553B2 (ja) コージェネレーションシステム
JP2007271237A (ja) 貯湯式給湯装置
JP4091046B2 (ja) コージェネレーションシステム
JP4523809B2 (ja) 給湯装置
JP6147541B2 (ja) 熱源装置
JP6088771B2 (ja) 熱源装置
JP5671304B2 (ja) 熱源装置
JP5224115B2 (ja) 温水装置
JP4784824B2 (ja) 貯留型熱源装置
JP2007333284A (ja) 蓄熱式熱源システム
JP6570908B2 (ja) 給湯システム
JP6125877B2 (ja) 熱源装置
JP4408269B2 (ja) 排熱回収システム及びコージェネレーションシステム
JP6843679B2 (ja) 熱源装置
US20240142138A1 (en) Combined heating and cooling system
JP4727680B2 (ja) 給湯装置
JP6800795B2 (ja) 熱源装置
JP6902740B2 (ja) コージェネレーションシステム及びその運転方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120912

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130130