JP2008286897A - 表示装置、表示装置の駆動方法および電子機器 - Google Patents

表示装置、表示装置の駆動方法および電子機器 Download PDF

Info

Publication number
JP2008286897A
JP2008286897A JP2007130013A JP2007130013A JP2008286897A JP 2008286897 A JP2008286897 A JP 2008286897A JP 2007130013 A JP2007130013 A JP 2007130013A JP 2007130013 A JP2007130013 A JP 2007130013A JP 2008286897 A JP2008286897 A JP 2008286897A
Authority
JP
Japan
Prior art keywords
potential
transistor
pixel
scanning
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007130013A
Other languages
English (en)
Inventor
Masatsugu Tomita
昌嗣 冨田
Takahisa Tanikame
貴央 谷亀
Tetsuo Mitsunami
徹雄 三並
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2007130013A priority Critical patent/JP2008286897A/ja
Publication of JP2008286897A publication Critical patent/JP2008286897A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)

Abstract

【課題】非発光期間において書き込みトランジスタのリークによる駆動トランジスタのゲート電位の変動を抑える。
【解決手段】2Tr/1Cの画素20を有し、電源供給線32の電位DSの切り替えによって発光期間/非発光期間を制御可能な有機EL表示装置10において、電源供給線32の電位DSの低電位側の電圧をVini、書き込みトランジスタ23の閾値電圧をVth23とするとき、書き込みトランジスタ23をオフさせるときの走査線31の電位WSの低電位側の電圧(オフ電圧)を、(Vini+Vth23)以下に設定し、非発光期間において映像信号の黒レベルから白レベルまで書き込みトランジスタ23を確実に非導通状態にして、書き込みトランジスタ23のリークによる駆動トランジスタ22のゲート電位の変動を抑えるようにする。
【選択図】図2

Description

本発明は、表示装置、表示装置の駆動方法および電子機器に関し、特に電気光学素子を含む画素が行列状(マトリクス状)に配置されてなる平面型(フラットパネル型)の表示装置、当該表示装置の駆動方法および当該表示装置を有する電子機器に関する。
近年、画像表示を行う表示装置の分野では、発光素子を含む画素(画素回路)が行列状に配置されてなる平面型の表示装置が急速に普及している。平面型の表示装置としては、画素の発光素子として、デバイスに流れる電流値に応じて発光輝度が変化するいわゆる電流駆動型の電気光学素子、例えば有機薄膜に電界をかけると発光する現象を利用した有機EL(Electro Luminescence)素子を用いた有機EL表示装置が開発され、商品化が進められている。
有機EL表示装置は次のような特長を持っている。すなわち、有機EL素子が10V以下の印加電圧で駆動できるために低消費電力であり、また自発光素子であることから、液晶セルを含む画素ごとに当該液晶セルにて光源(バックライト)からの光強度を制御することによって画像を表示する液晶表示装置に比べて、画像の視認性が高く、しかも液晶表示装置には必須なバックライト等の照明部材を必要としないために軽量化および薄型化が容易である。さらに、有機EL素子の応答速度が数μsec程度と非常に高速であるために動画表示時の残像が発生しない。
有機EL表示装置では、液晶表示装置と同様、その駆動方式として単純(パッシブ)マトリクス方式とアクティブマトリクス方式を採ることができる。ただし、単純マトリクス方式の表示装置は、構造が簡単であるものの、電気光学素子の発光期間が走査線(即ち、画素数)の増加によって減少するために、大型でかつ高精細な表示装置の実現が難しいなどの問題がある。
そのため、近年、電気光学素子に流れる電流を、当該電気光学素子と同じ画素回路内に設けた能動素子、例えば絶縁ゲート型電界効果トランジスタ(一般には、TFT(Thin Film Transistor;薄膜トランジスタ))によって制御するアクティブマトリクス方式の表示装置の開発が盛んに行われている。アクティブマトリクス方式の表示装置は、電気光学素子が1フィールド(1フレーム)の期間に亘って発光を持続するために、大型でかつ高精細な表示装置の実現が容易である。
ところで、一般的に、有機EL素子のI−V特性(電流−電圧特性)は、時間が経過すると劣化(いわゆる、経時劣化)することが知られている。有機EL素子を電流駆動するトランジスタ(以下、「駆動トランジスタ」と記述する)としてNチャネル型のTFTを用いた画素回路では、駆動トランジスタのソース側に有機EL素子が接続されることになるために、有機EL素子のI−V特性が経時劣化すると、駆動トランジスタのゲート−ソース間電圧Vgsが変化し、その結果、有機EL素子の発光輝度も変化する。
このことについてより具体的に説明する。駆動トランジスタのソース電位は、当該駆動トランジスタと有機EL素子の動作点で決まる。そして、有機EL素子のI−V特性が劣化すると、駆動トランジスタと有機EL素子の動作点が変動してしまうために、駆動トランジスタのゲートに同じ電圧を印加したとしても駆動トランジスタのソース電位が変化する。これにより、駆動トランジスタのソース−ゲート間電圧Vgsが変化するために、当該駆動トランジスタに流れる電流値が変化する。その結果、有機EL素子に流れる電流値も変化するために、有機EL素子の発光輝度が変化することになる。
また、ポリシリコンTFTを用いた画素回路では、有機EL素子のI−V特性の経時劣化に加えて、駆動トランジスタの閾値電圧Vthや、駆動トランジスタのチャネルを構成する半導体薄膜の移動度(以下、「駆動トランジスタの移動度」と記述する)μが経時的に変化したり、製造プロセスのばらつきによって閾値電圧Vthや移動度μが画素ごとに異なったりする(個々のトランジスタ特性にばらつきがある)。
駆動トランジスタの閾値電圧Vthや移動度μが画素ごとに異なると、画素ごとに駆動トランジスタに流れる電流値にばらつきが生じるために、駆動トランジスタのゲートに画素間で同じ電圧を印加しても、有機EL素子の発光輝度に画素間でばらつきが生じ、その結果、画面の一様性(ユニフォーミティ)が損なわれる。
そこで、有機EL素子のI−V特性が経時劣化したり、駆動トランジスタの閾値電圧Vthや移動度μが経時変化したりしても、それらの影響を受けることなく、有機EL素子の発光輝度を一定に保つようにするために、有機EL素子の特性変動に対する補償機能、さらには駆動トランジスタの閾値電圧Vthの変動に対する補正(以下、「閾値補正」と記述する)や、駆動トランジスタの移動度μの変動に対する補正(以下、「移動度補正」と記述する)の各補正機能を画素回路の各々に持たせる構成を採っている(例えば、特許文献1参照)。
特開2006−133542号公報
特許文献1記載の従来技術では、画素回路の各々に、有機EL素子の特性変動に対する補償機能および駆動トランジスタの閾値電圧Vthや移動度μの変動に対する補正機能を持たせることで、有機EL素子のI−V特性が経時劣化したり、駆動トランジスタの閾値電圧Vthや移動度μが経時変化したりしたとしても、それらの影響を受けることなく、有機EL素子の発光輝度を一定に保つことができるが、その反面、画素回路を構成する素子数が多く、画素サイズの微細化、ひいては表示装置の高精細化の妨げとなる。
本発明は、より少ない素子数にて画素を構成することで、画素サイズの微細化、ひいては表示装置の高精細化に寄与できる表示装置、当該表示装置の駆動方法および当該表示装置を用いた電子機器を提供することを目的とする。
上記目的を達成するために、本発明は、電気光学素子と、映像信号を書き込む書き込みトランジスタと、前記書き込みトランジスタによって書き込まれた前記映像信号を保持する保持容量と、前記保持容量に保持された前記映像信号に基づいて前記電気光学素子を駆動する駆動トランジスタとを含む画素が行列状に配置されてなる画素アレイ部と、前記書き込みトランジスタに走査信号を与えることによって前記画素アレイ部の各画素を行単位で走査する走査回路と、前記画素アレイ部の画素行ごとに配線され、前記駆動トランジスタに電流を供給する電源供給線に対して第1電位と第2電位とを前記走査回路の走査に同期して選択的に供給する電源供給走査回路とを備えた表示装置において、前記電源供給線の前記第2電位側の電圧をVini、前記書き込みトランジスタの閾値電圧をVthとするとき、前記書き込みトランジスタを非導通状態にする前記走査信号の電圧を、当該書き込みトランジスタがNチャネル型のときは(Vini+Vth)以下に、Pチャネル型のときは(Vini+Vth)以上に設定する構成を採っている。
上記構成の表示装置および当該表示装置を有する電子機器において、電源供給走査回路から、画素行ごとに配線された電源供給線に対して第1電位が供給されることで駆動トランジスタが導通状態になり、第2電位が供給されることで非導通状態になる。すなわち、駆動トランジスタの電源電位となる電源供給線の電位の切り替えで、電気光学素子の発光/非発光の駆動が行われる。これにより、電気光学素子の発光/非発光の駆動を行なう専用のトランジスタを省くことができるため、より少ない素子数にて画素を構成できる。
そして、書き込みトランジスタが例えばNチャネル型のとき、当該書き込みトランジスタを非導通状態にする走査信号の電圧、即ち走査信号の低電位側の電圧を(Vini+Vth)以下に設定することで、非発光期間において映像信号の黒レベルから白レベルまで書き込みトランジスタを確実に非導通状態にすることができるために、書き込みトランジスタのリークによる駆動トランジスタのゲート電位の変動を抑えることができる。これにより、より少ない素子数にて画素を構成し、電源供給線の電位の切り替えによって発光期間/非発光期間を制御可能な有機EL表示装置においても、発光期間と非発光期間の割合(デューティ比)を可変とし、かつ、1垂直走査期間(1フィールド期間)において発光と非発光を繰り返す駆動を行なうことができる。
本発明によれば、電気光学素子の発光/非発光の駆動を行なう専用のトランジスタを省き、その機能を駆動トランジスタに持たせることで、より少ない素子数にて画素を構成できるため、画素サイズの微細化、ひいては表示装置の高精細化に寄与できる。
また、非発光期間において映像信号の黒レベルから白レベルまで書き込みトランジスタを確実に非導通状態にし、書き込みトランジスタのリークによる駆動トランジスタのゲート電位の変動を抑えることができることで、発光期間と非発光期間の割合を可変とし、かつ、1垂直走査期間において発光と非発光を繰り返す駆動を行なうことができるために、フリッカ現象の発生を抑制しつつ発光輝度を調整できる。
以下、本発明の実施の形態について図面を参照して詳細に説明する。
図1は、本発明の一実施形態に係るアクティブマトリクス型表示装置の構成の概略を示すシステム構成図である。ここでは、一例として、デバイスに流れる電流値に応じて発光輝度が変化する電流駆動型の電気光学素子、例えば有機EL素子を画素(画素回路)の発光素子として用いたアクティブマトリクス型有機EL表示装置の場合を例に挙げて説明するものとする。
図1に示すように、本実施形態に係る有機EL表示装置10は、画素(PXLC)20が行列状(マトリクス状)に2次元配置されてなる画素アレイ部30と、当該画素アレイ部30の周辺に配置され、各画素20を駆動する駆動部とを有する構成となっている。画素20を駆動する駆動部としては、例えば、書き込み走査回路40、電源供給走査回路50および水平駆動回路60が設けられている。
画素アレイ部30には、m行n列の画素配列に対して、画素行ごとに走査線31−1〜31−mと電源供給線32−1〜32−mとが配線され、画素列ごとに信号線33−1〜33−nが配線されている。
画素アレイ部30は、通常、ガラス基板などの透明絶縁基板上に形成され、平面型(フラット型)のパネル構造となっている。画素アレイ部30の各画素20は、アモルファスシリコンTFT(Thin Film Transistor;薄膜トランジスタ)または低温ポリシリコンTFTを用いて形成することができる。低温ポリシリコンTFTを用いる場合には、走査回路40、電源供給走査回路50および水平駆動回路60についても、画素アレイ部30を形成する表示パネル(基板)70上に実装することができる。
書き込み走査回路40は、クロックパルスckに同期してスタートパルスspを順にシフト(転送)するシフトレジスタ等によって構成され、画素アレイ部30の各画素20への映像信号の書き込みに際して、走査線31−1〜31−mに順次走査信号WS1〜WSmを供給して画素20を行単位で順番に走査(線順次走査)する。
電源供給走査回路50は、クロックパルスckに同期してスタートパルスspを順にシフトするシフトレジスタ等によって構成され、書き込み走査回路40による線順次走査に同期して、第1電位Vccpと当該第1電位Vccpよりも低い第2電位Viniで切り替わる電源供給線電位DS1〜DSmを電源供給線32−1〜32−mに供給することにより、後述する駆動トランジスタ22(図2参照)の導通(オン)/非導通(オフ)の制御を行なう。
水平駆動回路60は、信号供給源(図示せず)から供給される輝度情報に応じた映像信号の信号電圧Vsigとオフセット電圧Vofsのいずれか一方を適宜選択し、信号線33−1〜33−nを介して画素アレイ部30の各画素20に対して例えば行単位で一斉に書き込む。すなわち、水平駆動回路60は、映像信号の信号電圧Vsigを行(ライン)単位で一斉に書き込む線順次書き込みの駆動形態を採っている。
ここで、オフセット電圧Vofsは、映像信号の信号電圧(以下、「入力信号電圧」、または単に「信号電圧」と記述する場合もある)Vsigの基準となる電圧(例えば、黒レベルに相当)である。また、第2電位Viniは、オフセット電圧Vofsよりも十分に低い電位、例えば、駆動トランジスタ22の閾値電圧をVthとするとき、Vofs−Vth>Viniに設定される。
(画素回路)
図2は、画素(画素回路)20の具体的な構成例を示す回路図である。図2に示すように、画素20は、デバイスに流れる電流値に応じて発光輝度が変化する電流駆動型の電気光学素子、例えば有機EL素子21を発光素子として有し、当該有機EL素子21に加えて、駆動トランジスタ22、書き込みトランジスタ23および保持容量24を有する、即ち2つのトランジスタ(Tr)と1つの容量素子(C)からなる2Tr/1Cの画素構成となっている。
ここでは、駆動トランジスタ22および書き込みトランジスタ23としてNチャネル型のTFTを用いている。ただし、ここでの駆動トランジスタ22および書き込みトランジスタ23の導電型の組み合わせは一例に過ぎず、これらの組み合わせに限られるものではない。
有機EL素子21は、全ての画素20に対して共通に配線された共通電源供給線34にカソード電極が接続されている。駆動トランジスタ22は、ソース電極が有機EL素子21のアノード電極に接続され、ドレイン電極が電源供給線32(32−1〜32−m)に接続されている。
書き込みトランジスタ23は、ゲート電極が走査線31(31−1〜31−m)に接続され、一方の電極(ソース電極/ドレイン電極)が信号線33(33−1〜33−n)に接続され、他方の電極(ドレイン電極/ソース電極)が駆動トランジスタ22のゲート電極に接続されている。
保持容量24は、一端が駆動トランジスタ22のゲート電極に接続され、他端が駆動トランジスタ22のソース電極(有機EL素子21のアノード電極)に接続されている。この保持容量24に対して並列に補助容量を接続して保持容量24の容量不足分を補う構成を採ることも可能である。
かかる構成の画素20において、書き込みトランジスタ23は、書き込み走査回路40から走査線31を通してゲート電極に印加される走査信号WSに応答して導通状態となることにより、信号線33を通して水平駆動回路60から供給される輝度情報に応じた映像信号の信号電圧Vsigまたはオフセット電圧Vofsをサンプリングして画素20内に書き込む。この書き込まれた信号電圧Vsigまたはオフセット電圧Vofsは保持容量24に保持される。
駆動トランジスタ22は、電源供給線32(32−1〜32−m)の電位DSが第1電位Vccpにあるときに、電源供給線32から電流の供給を受けて、保持容量24に保持された信号電圧Vsigの電圧値に応じた電流値の駆動電流を有機EL素子21に供給することによって当該有機EL素子21を電流駆動する。
(画素構造)
図3は、画素20の断面構造の一例を示す断面図である。図3に示すように、画素20は、駆動トランジスタ22、書き込みトランジスタ23等の画素回路が形成されたガラス基板201上に絶縁膜202、絶縁平坦化膜203およびウインド絶縁膜204が順に形成され、当該ウインド絶縁膜204の凹部204Aに有機EL素子21が設けられた構成となっている。
有機EL素子21は、上記ウインド絶縁膜204の凹部204Aの底部に形成された金属等からなるアノード電極205と、当該アノード電極205上に形成された有機層(電子輸送層、発光層、ホール輸送層/ホール注入層)206と、当該有機層206上に全画素共通に形成された透明導電膜等からなるカソード電極207とから構成されている。
この有機EL素子21において、有機層206は、アノード電極205上にホール輸送層/ホール注入層2061、発光層2062、電子輸送層2063および電子注入層(図示せず)が順次堆積されることによって形成される。そして、図2の駆動トランジスタ22による電流駆動の下に、駆動トランジスタ22からアノード電極205を通して有機層206に電流が流れることで、当該有機層206内の発光層2062において電子と正孔が再結合する際に発光するようになっている。
図3に示すように、画素回路が形成されたガラス基板201上に、絶縁膜202、絶縁平坦化膜203およびウインド絶縁膜204を介して有機EL素子21が画素単位で形成された後は、パッシベーション膜208を介して封止基板209が接着剤210によって接合され、当該封止基板209によって有機EL素子21が封止されることにより、表示パネル70が形成される。
(閾値補正機能)
ここで、電源供給走査回路50は、書き込みトランジスタ23が導通した後で、水平駆動回路60が信号線33(33−1〜33−n)にオフセット電圧Vofsを供給している間に、電源供給線33の電位DSを第2電位Viniから第1電位Vccpに切り替える。この電源供給線32の電位DSの切り替えにより、駆動トランジスタ22の閾値電圧Vthに相当する電圧が保持容量24に保持される。
駆動トランジスタ22の閾値電圧Vthに相当する電圧を保持容量24に保持するのは次の理由による。
駆動トランジスタ22の製造プロセスのばらつきや経時変化により、各画素ごとに駆動トランジスタ22の閾値電圧Vthや移動度μなどのトランジスタ特性が変動する。このトランジスタ特性の変動により、駆動トランジスタ22に画素間で同一のゲート電位を与えても、画素ごとにドレイン・ソース間電流(駆動電流)Idsが変動し、有機EL素子21の発光輝度のばらつきとなって現れる。この閾値電圧Vthの画素ごとのばらつきの影響をキャンセル(補正)するために、閾値電圧Vthに相当する電圧を保持容量24に保持するのである。
駆動トランジスタ22の閾値電圧Vthの補正は次のようにして行われる。すなわち、保持容量24にあらかじめ閾値電圧Vthを保持しておくことで、映像信号の信号電圧Vsigによる駆動トランジスタ22の駆動の際に、当該駆動トランジスタ22の閾値電圧Vthが保持容量24に保持された閾値電圧Vthに相当する電圧と相殺される、換言すれば、閾値電圧Vthの補正が行われる。
これが閾値補正機能である。この閾値補正機能により、画素ごとに閾値電圧Vthにばらつきや経時変化があったとしても、それらの影響を受けることなく、有機EL素子21の発光輝度を一定に保つことができることになる。閾値補正の原理については後で詳細に説明する。
(移動度補正機能)
図2に示した画素20は、上述した閾値補正機能に加えて、移動度補正機能を備えている。具体的には、水平駆動回路60が映像信号の信号電圧Vsigを信号線33(33−1〜33−n)に供給している期間で、かつ、書き込み走査回路40から出力される走査信号WS(WS1〜WSm)に応答して書き込みトランジスタ23が導通する期間、即ち移動度補正期間において、保持容量24に信号電圧Vsigを保持する際に、駆動トランジスタ22のドレイン−ソース間電流Idsの移動度μに対する依存性を打ち消す移動度補正が行われる。この移動度補正の具体的な原理および動作については後述する。
(ブートストラップ機能)
図2に示した画素20はさらにブートストラップ機能も備えている。具体的には、書き込み走査回路40は、保持容量24に映像信号の信号電圧Vsigが保持された段階で走査線31(31−1〜31−m)に対する走査信号WS(WS1〜WSm)の供給を解除し、書き込みトランジスタ23を非導通状態にして駆動トランジスタ22のゲート電極を信号線33(33−1〜33−n)から電気的に切り離してフローティング状態にする。
駆動トランジスタ22のゲート電極がフローティング状態になると、駆動トランジスタ22のゲート−ソース間に保持容量24が接続されていることにより、駆動トランジスタ22のソース電位Vsが変動すると、当該ソース電位Vsの変動に連動して(追従して)駆動トランジスタ22のゲート電位Vgも変動するために、駆動トランジスタ22のゲート−ソース間電圧Vgsが一定に維持される。
このように、保持容量24の作用により、駆動トランジスタ22のゲート電位Vgをソース電位Vsに追従させ、ゲート−ソース間電圧Vgsを一定に維持する動作がブートストラップ動作である。このブートストラップ動作により、有機EL素子21のI−V特性が経時変化しても、当該有機EL素子21の発光輝度を一定に保つことができる。
すなわち、有機EL素子21のI−V特性が経時変化し、これに伴って駆動トランジスタ22のソース電位Vsが変化したとしても、ブートストラップ動作により駆動トランジスタ22のゲート−ソース間電位Vgsが一定に維持されるために、有機EL素子21に流れる電流は変化せず、したがって有機EL素子21の発光輝度も一定に保たれる。その結果、有機EL素子21のI−V特性が経時変化しても、それに伴う輝度劣化のない画像表示を実現できる。
(有機EL表示装置の基本的な回路動作)
次に、本実施形態に係る有機EL表示装置10の基本的な回路動作について、図4のタイミング波形図を基に、図5および図6の動作説明図を用いて説明する。なお、図5および図6の動作説明図では、図面の簡略化のために、書き込みトランジスタ23をスイッチのシンボルで図示している。また、有機EL素子21は寄生容量Celを持っていることから、当該寄生容量Celについても図示している。
図4のタイミング波形図では、時間軸を共通にして、1H(Hは水平走査期間)における走査線31(31−1〜31−m)の電位(走査信号)WSの変化、電源供給線32(32−1〜32−m)の電位DSの変化、駆動トランジスタ22のゲート電位Vgおよびソース電位Vsの変化を表している。
<発光期間>
図4のタイミングチャートにおいて、時刻t1以前は有機EL素子21が発光状態にある(発光期間)。この発光期間では、電源供給線32の電位DSが高電位Vccp(第1電位)にあり、また、書き込みトランジスタ23が非導通状態にある。このとき、駆動トランジスタ22は飽和領域で動作するように設定されているために、図5(A)に示すように、電源供給線32から駆動トランジスタ22を通して当該駆動トランジスタ22のゲート−ソース間電圧Vgsに応じた駆動電流(ドレイン−ソース間電流)Idsが有機EL素子21に供給される。よって、有機EL素子21が駆動電流Idsの電流値に応じた輝度で発光する。
<閾値補正準備期間>
そして、時刻t1になると、線順次走査の新しいフィールドに入り、図5(B)に示すように、電源供給線32の電位DSが高電位Vccpから信号線33のオフセット電圧Vofsよりも十分に低い電位Vini(第2電位)に切り替わる。ここで、有機EL素子21の閾値電圧をVel、共通電源供給線34の電位をVcathとするとき、低電位ViniをVini<Vel+Vcathとすると、駆動トランジスタ22のソース電位Vsが低電位Viniにほぼ等しくなるために、有機EL素子21は逆バイアス状態となって消光する。
次に、時刻t2で走査線31の電位WSが低電位側から高電位側に遷移することで、図5(C)に示すように、書き込みトランジスタ23が導通状態となる。このとき、水平駆動回路60から信号線33に対してオフセット電圧Vofsが供給されているために、駆動トランジスタ22のゲート電位Vgがオフセット電圧Vofsになる。また、駆動トランジスタ22のソース電位Vsは、オフセット電圧Vofsよりも十分に低い電位Viniにある。
このとき、駆動トランジスタ22のゲート−ソース間電圧VgsはVofs−Viniとなる。ここで、Vofs−Viniが駆動トランジスタ22の閾値電圧Vthよりも大きくないと、先述した閾値補正動作を行うことができないために、Vofs−Vini>Vthと設定する必要がある。このように、駆動トランジスタ22のゲート電位Vgをオフセット電圧Vofsに、ソース電位Vsを低電位Viniにそれぞれ固定して(確定させて)初期化する動作が閾値補正準備の動作である。
<閾値補正期間>
次に、時刻t3で、図5(D)に示すように、電源供給線32の電位DSが低電位Viniから高電位Vccpに切り替わると、駆動トランジスタ22のソース電位Vsが上昇を開始する。やがて、駆動トランジスタ22のゲート−ソース間電圧Vgsが当該駆動トランジスタ22の閾値電圧Vthになり、当該閾値電圧Vthに相当する電圧が保持容量24に書き込まれる。
ここでは、便宜上、閾値電圧Vthに相当する電圧を保持容量24に書き込む期間を閾値補正期間と呼んでいる。なお、この閾値補正期間において、電流が専ら保持容量24側に流れ、有機EL素子21側には流れないようにするために、有機EL素子21がカットオフ状態となるように共通電源供給線34の電位Vcathを設定しておくこととする。
次に、時刻t4で走査線31の電位WSが低電位側に遷移することで、図6(A)に示すように、書き込みトランジスタ23が非導通状態となる。このとき、駆動トランジスタ22のゲート電極がフローティング状態になるが、ゲート−ソース間電圧Vgsが駆動トランジスタ22の閾値電圧Vthに等しいために、当該駆動トランジスタ22はカットオフ状態にある。したがって、駆動トランジスタ22にドレイン−ソース間電流Idsは流れない。
<書き込み期間/移動度補正期間>
次に、時刻t5で、図6(B)に示すように、信号線33の電位がオフセット電圧Vofsから映像信号の信号電圧Vsigに切り替わる。続いて、時刻t6で、走査線31の電位WSが高電位側に遷移することで、図6(C)に示すように、書き込みトランジスタ23が導通状態になって映像信号の信号電圧Vsigをサンプリングして画素20内に書き込む。
この書き込みトランジスタ23による信号電圧Vsigの書き込みにより、駆動トランジスタ22のゲート電位Vgが信号電圧Vsigとなる。そして、映像信号の信号電圧Vsigによる駆動トランジスタ22の駆動の際に、当該駆動トランジスタ22の閾値電圧Vthが保持容量24に保持された閾値電圧Vthに相当する電圧と相殺されることによって閾値補正が行われる。閾値補正の原理については後述する。
このとき、有機EL素子21は始めカットオフ状態(ハイインピーダンス状態)にあるために、映像信号の信号電圧Vsigに応じて電源供給線32から駆動トランジスタ22に流れる電流(ドレイン−ソース間電流Ids)は有機EL素子21の寄生容量Celに流れ込み、よって当該寄生容量Celの充電が開始される。
この寄生容量Celの充電により、駆動トランジスタ22のソース電位Vsが時間の経過と共に上昇していく。このとき既に、駆動トランジスタ22の閾値電圧Vthのばらつきは補正されており、駆動トランジスタ22のドレイン−ソース間電流Idsは当該駆動トランジスタ22の移動度μに依存したものとなる。
やがて、駆動トランジスタ22のソース電位VsがVofs−Vth+ΔVの電位まで上昇すると、駆動トランジスタ22のゲート‐ソース間電圧VgsはVsig−Vofs+Vth−ΔVとなる。すなわち、ソース電位Vsの上昇分ΔVは、保持容量24に保持された電圧(Vsig−Vofs+Vth)から差し引かれるように、換言すれば、保持容量24の充電電荷を放電するように作用し、負帰還がかけられたことになる。したがって、ソース電位Vsの上昇分ΔVは負帰還の帰還量となる。
このように、駆動トランジスタ22に流れるドレイン−ソース間電流Idsを当該駆動トランジスタ22のゲート入力に、即ちゲート‐ソース間電圧Vgsに負帰還することにより、駆動トランジスタ22のドレイン−ソース間電流Idsの移動度μに対する依存性を打ち消す、即ち移動度μの画素ごとのばらつきを補正する移動度補正が行われる。
より具体的には、映像信号の信号電圧Vsigが高いほどドレイン−ソース間電流Idsが大きくなるために、負帰還の帰還量(補正量)ΔVの絶対値も大きくなる。したがって、発光輝度レベルに応じた移動度補正が行われる。また、映像信号の信号電圧Vsigを一定とした場合、駆動トランジスタ22の移動度μが大きいほど負帰還の帰還量ΔVの絶対値も大きくなるために、画素ごとの移動度μのばらつきを取り除くことができる。移動度補正の原理については後述する。
<発光期間>
次に、時刻t7で走査線31の電位WSが低電位側に遷移することで、図6(D)に示すように、書き込みトランジスタ23が非導通状態となる。これにより、駆動トランジスタ22のゲート電極は信号線33から切り離される。これと同時に、ドレイン−ソース間電流Idsが有機EL素子21に流れ始めることにより、有機EL素子21のアノード電位はドレイン−ソース間電流Idsに応じて上昇する。
有機EL素子21のアノード電位の上昇は、即ち駆動トランジスタ22のソース電位Vsの上昇に他ならない。駆動トランジスタ22のソース電位Vsが上昇すると、保持容量24のブートストラップ動作により、駆動トランジスタ22のゲート電位Vgも連動して上昇する。このとき、ゲート電位Vgの上昇量はソース電位Vsの上昇量に等しくなる。故に、発光期間中駆動トランジスタ22のゲート‐ソース間電圧VgsはVsig−Vofs+Vth−ΔVで一定に保持される。そして、時刻t8で信号線33の電位が映像信号の信号電圧Vsigからオフセット電圧Vofsに切り替わる。
(閾値補正の原理)
ここで、駆動トランジスタ22の閾値補正の原理について説明する。駆動トランジスタ22は、飽和領域で動作するように設計されているために定電流源として動作する。これにより、有機EL素子21には駆動トランジスタ22から、次式(1)で与えられる一定のドレイン−ソース間電流(駆動電流)Idsが供給される。
Ids=(1/2)・μ(W/L)Cox(Vgs−Vth)2 ……(1)
ここで、Wは駆動トランジスタ22のチャネル幅、Lはチャネル長、Coxは単位面積当たりのゲート容量である。
図7に、駆動トランジスタ22のドレイン−ソース間電流Ids対ゲート−ソース間電圧Vgsの特性を示す。この特性図に示すように、駆動トランジスタ22の閾値電圧Vthのばらつきに対する補正を行わないと、閾値電圧VthがVth1のとき、ゲート−ソース間電圧Vgsに対応するドレイン−ソース間電流IdsがIds1になるのに対し、閾値電圧VthがVth2(Vth2>Vth1)のとき、同じゲート−ソース間電圧Vgsに対応するドレイン−ソース間電流IdsがIds2(Ids2<Ids)になる。すなわち、駆動トランジスタ22の閾値電圧Vthが変動すると、ゲート−ソース間電圧Vgsが一定であってもドレイン−ソース間電流Idsが変動する。
これに対して、上記構成の画素(画素回路)20では、先述したように、発光時の駆動トランジスタ22のゲート−ソース間電圧VgsがVsig−Vofs+Vth−ΔVであるために、これを式(1)に代入すると、ドレイン−ソース間電流Idsは、
Ids=(1/2)・μ(W/L)Cox(Vsig−Vofs−ΔV)2
……(2)
で表される。
すなわち、駆動トランジスタ22の閾値電圧Vthの項がキャンセルされており、駆動トランジスタ22から有機EL素子21に供給されるドレイン−ソース間電流Idsは、駆動トランジスタ22の閾値電圧Vthに依存しない。その結果、駆動トランジスタ22の製造プロセスのばらつきや経時変化により、各画素ごとに駆動トランジスタ22の閾値電圧Vthが変動しても、ドレイン−ソース間電流Idsが変動しないために、有機EL素子21の発光輝度も変動しない。
(移動度補正の原理)
次に、駆動トランジスタ22の移動度補正の原理について説明する。図8に、駆動トランジスタ22の移動度μが相対的に大きい画素Aと、駆動トランジスタ22の移動度μが相対的に小さい画素Bとを比較した状態で特性カーブを示す。駆動トランジスタ22をポリシリコン薄膜トランジスタなどで構成した場合、画素Aや画素Bのように、画素間で移動度μがばらつくことは避けられない。
画素Aと画素Bで移動度μにばらつきがある状態で、例えば両画素A,Bに同レベルの入力信号電圧Vsigを書き込んだ場合に、何ら移動度μの補正を行わないと、移動度μの大きい画素Aに流れるドレイン−ソース間電流Ids1′と移動度μの小さい画素Bに流れるドレイン−ソース間電流Ids2′との間には大きな差が生じてしまう。このように、移動度μのばらつきに起因してドレイン−ソース間電流Idsに画素間で大きな差が生じると、画面のユニフォーミティが損なわれることになる。
ここで、先述した式(1)のトランジスタ特性式から明らかなように、移動度μが大きいとドレイン−ソース間電流Idsが大きくなる。したがって、負帰還における帰還量ΔVは移動度μが大きくなるほど大きくなる。図8に示すように、移動度μの大きな画素Aの帰還量ΔV1は、移動度の小さな画素Vの帰還量ΔV2に比べて大きい。そこで、移動度補正動作によって駆動トランジスタ22のドレイン−ソース間電流Idsを入力信号電圧Vsig側に負帰還させることで、移動度μが大きいほど負帰還が大きくかかることになるために、移動度μのばらつきを抑制することができる。
具体的には、移動度μの大きな画素Aで帰還量ΔV1の補正をかけると、ドレイン−ソース間電流IdsはIds1′からIds1まで大きく下降する。一方、移動度μの小さな画素Bの帰還量ΔV2は小さいために、ドレイン−ソース間電流IdsはIds2′からIds2までの下降となり、それ程大きく下降しない。結果的に、画素Aのドレイン−ソース間電流Ids1と画素Bのドレイン−ソース間電流Ids2とはほぼ等しくなるために、移動度μのばらつきが補正される。
以上をまとめると、移動度μの異なる画素Aと画素Bがあった場合、移動度μの大きい画素Aの帰還量ΔV1は移動度μの小さい画素Bの帰還量ΔV2に比べて大きくなる。つまり、移動度μが大きい画素ほど帰還量ΔVが大きく、ドレイン−ソース間電流Idsの減少量が大きくなる。したがって、駆動トランジスタ22のドレイン−ソース間電流Idsを入力信号電圧Vsig側に負帰還させることで、移動度μの異なる画素のドレイン−ソース間電流Idsの電流値が均一化され、その結果、移動度μのばらつきを補正することができる。
上述したように、有機EL素子21に加えて、駆動トランジスタ22、書き込みトランジスタ23および保持容量24を有する2Tr/1Cの画素20が行列状に配置されてなる有機EL表示装置10において、駆動トランジスタ22に供給する電源電位(電源供給線32の電位)DSを高電位(第1電位)Vccpと低電位(第2電位)Viniに切り替え可能とし、当該電源電位の切り替えによって有機EL素子21の発光期間/非発光期間を制御する機能を駆動トランジスタ22に持たせた構成を採ることにより、画素1つにつき少なくとも、発光期間/非発光期間を制御する1つのトランジスタおよび当該トランジスタを制御する1本の制御線の配線等を省略することができるために、画素サイズの微細化、ひいては表示装置の高精細化に寄与できる。
また、本実施形態に係る有機EL表示装置10においては、保持容量24によるブートストラップ動作により、駆動トランジスタ22のゲート−ソース間電圧Vgsが発光期間中一定に保たれるために、有機EL素子21に流れる電流は変化しない。したがって、有機EL素子21のI−V特性が劣化したとしても、一定のドレイン−ソース間電流Idsが有機EL素子21に流れ続けるために、有機EL素子21の発光輝度が変化することはない(有機EL素子21の特性変動に対する補償機能)。
さらに、本実施形態に係る有機EL表示装置10においては、閾値補正機能により、駆動トランジスタ22の閾値電圧Vthのばらつきや経時変化の影響を受けない一定のドレイン−ソース間電流Idsを有機EL素子21に流すことができるとともに、移動度補正機能により、駆動トランジスタ22のドレイン−ソース間電流Idsの移動度μに対する依存性を打ち消し、信号電圧Vsigのみに依存するドレイン−ソース間電流Idsを有機EL素子21に流すことができるために、駆動トランジスタ22の閾値電圧Vthや移動度μのばらつきや経時変化に起因するスジや輝度ムラのない均一な画質の表示画像を得ることができる。
(発光輝度の調整)
ところで、電源供給線32の電位DSの切り替えによって1フィールド期間(1垂直走査期間)における有機EL素子21の発光期間を制御することにより、有機EL素子21の発光輝度(画素20の発光輝度)を調整することができる。ただし、発光期間を短くし過ぎると、非発光期間が長くなるために、垂直走査に同期して周期的に明暗を繰り返すいわゆるフリッカ現象が発生する。フリッカ現象は画質を損ねる一因となる。
そこで、発光期間と非発光期間の割合(デューティ比)を可変とし、かつ、1フィールド期間において発光と非発光を繰り返すことにより、1回当たりの非発光期間を短くすることができるために、フリッカ現象の発生を抑制できるとともに、発光期間と非発光期間のデューティ制御によって発光輝度を調整することができる。
理解を容易にするために、一例として、1フィールド期間におけるトータルの発光期間を2msecと仮定した場合、1フィールド期間において2msecで1回発光させるよりも、複数回、例えば1msecで2回発光させる方が、1回当たりの非発光期間を半分に短縮することができるために、フリッカ現象の発生を抑えることができる、即ち画面のちらつきを無くすことができる。
発光期間と非発光期間の推移を図10に示す。発光期間中に、電源供給線32の電位DSを高電位Vccpから低電位Viniに切り替えることにより、駆動トランジスタ22のドレイン電位とソース電位が低電位Viniになり、駆動トランジスタ22が非導通状態になるため、有機EL素子21に電流が流れなくなり、非発光期間となる。低電位Viniの期間を変えることで非発光期間を調整することができる。そして、電源供給線32の電位DSを高電位Vccpに切り替えることにより、再び発光期間となる。
ここで、非発光期間において、駆動トランジスタ22のソース電位Vsが低電位Viniになることで、電源供給線32の電位DSを高電位Vccpから低電位Viniまで変動させたときの電位差と同等分だけ、保持容量24を介して駆動トランジスタ22のゲート電位Vgが変動する。
駆動トランジスタ22のゲート電位Vgの変動後、信号線33から書き込みトランジスタ23を介して駆動トランジスタ22のゲートにリークが生じる可能性がある。リークが生じると、駆動トランジスタ22のゲート電位Vgに、図10に破線で示すように電位変動が起こるために、再び発光期間に入ったときに発光輝度が変動する、即ちその前の発光期間での発光輝度と異なる輝度で発光してしまう。
(本実施形態の特徴部分)
そこで、本実施形態に係る有機EL表示装置10においては、書き込みトランジスタ23を非導通(オフ)状態にするときの走査線31の電位(走査信号)WSの低電位側の電圧(オフ電圧)を、駆動トランジスタ22のゲート電位Vgに電位変動が起こらないような電圧に設定することを特徴としている。
ここで、駆動トランジスタ22のゲート電位Vgに電位変動が起きるワースト条件は、非発光期間中に駆動トランジスタ22のゲート電位Vgが最も低くなる映像信号の黒レベルに相当する電圧を書き込んだ場合である。
したがって、映像信号の黒レベルに相当する電圧を書き込んだときに、駆動トランジスタ22のゲート電位Vgに電位変動が起こらないようにするためには、電源供給線32の電位DSの低電位側の電圧をVini、書き込みトランジスタ23の閾値電圧をVth23とするとき、書き込みトランジスタ23をオフさせるときの走査線31の電位WSの低電位側の電圧(オフ電圧)を、(Vini+Vth23)以下に設定すればよい。
このように、書き込みトランジスタ23のオフ電圧を(Vini+Vth23)以下に設定することにより、非発光期間において映像信号の黒レベルから白レベルまで(全階調レベルに亘って)書き込みトランジスタ23を確実に非導通状態にすることができるために、書き込みトランジスタ23のリークによる駆動トランジスタ22のゲート電位Vgsの変動を抑えることができる。
これにより、2Tr/1Cの画素20を有し、電源供給線32の電位DSの切り替えによって発光期間/非発光期間を制御可能な有機EL表示装置10においても、発光期間と非発光期間のデューティ制御および1フィールド期間(1垂直走査期間)における発光と非発光の繰り返し駆動を行なうことができるために、発光輝度を調整できるとともに、フリッカ現象の発生を抑制できる。
因みに、書き込みトランジスタ23のオフ電圧の設定は、走査線31の電位WSを出力する書き込み走査回路40の負側の電源電位を(Vini+Vth23)以下に設定することで実現できる。具体的には、書き込み走査回路40は、例えば、シフトレジスタ、ロジック回路および画素行ごとに設けられた出力回路によって構成されており、その出力回路の負側の電源電位を(Vini+Vth23)以下に設定するようにすればよい。
<書き込み走査回路の出力回路>
図11は、書き込み走査回路40の出力回路の構成の一例を示す回路図である。図11に示すように、出力回路41は、縦続接続された例えば2段のバッファ411,412によって構成されている。
1段目のバッファ411は、ゲート電極同士およびドレイン電極同士がそれぞれ共通に接続されたPチャネルMOSトランジスタP11およびNチャネルMOSトランジスタN11からなるCMOSインバータ構成となっている。
同様に、2段目のバッファ412は、ゲート電極同士およびドレイン電極同士がそれぞれ共通に接続されたPチャネルMOSトランジスタP12およびNチャネルMOSトランジスタN12からなるCMOSインバータ構成となっている。
そして、MOSトランジスタP11,P12の各ソース電極が正側の電源電位Vddに接続され、MOSトランジスタN11,N12の各ソース電極が負側の電源電位Vssに接続されている。
上記構成の出力回路41において、バッファ411,412の負側の電源電位Vssを(Vini+Vth23)以下に設定することにより、映像信号の黒レベルから白レベルまで非発光期間において駆動トランジスタ22のゲート電位Vgに電位変動が起こらないようにすることができる。
なお、本実施形態においては、書き込みトランジスタ23としてNチャネル型のトランジスタを用いていることから、当該書き込みトランジスタ23のオフ電圧を(Vini+Vth23)以下に設定するとしたが、書き込みトランジスタ23としてPチャネル型のトランジスタを用いる場合は、当然のことながら、当該書き込みトランジスタ23のオフ電圧を(Vini+Vth23)以上に設定するようにすればよい。
[変形例]
上記実施形態では、画素20の電気光学素子として、有機EL素子を用いた有機EL表示装置に適用した場合を例に挙げて説明したが、本発明はこの適用例に限られるものではなく、デバイスに流れる電流値に応じて発光輝度が変化する電流駆動型の電気光学素子を用いた表示装置全般に対して適用可能である。
[適用例]
以上説明した本発明による表示装置は、一例として、図12〜図16に示す様々な電子機器、例えば、デジタルカメラ、ノート型パーソナルコンピュータ、携帯電話等の携帯端末装置、ビデオカメラなど、電子機器に入力された映像信号、若しくは、電子機器内で生成した映像信号を、画像若しくは映像として表示するあらゆる分野の電子機器の表示装置に適用することが可能である。
このように、あらゆる分野の電子機器の表示装置として本発明による表示装置を用いることにより、先述した実施形態の説明から明らかなように、本発明による表示装置は、より少ない素子数にて電気光学素子の特性変動やばらつきに起因するスジや輝度ムラのない均一な画質の表示画像を得ることができるために、各種の電子機器において、表示装置の高精細化を図ることができるとともに、良質な画像表示を行うことができる。
なお、本発明による表示装置は、封止された構成のモジュール形状のものをも含む。例えば、画素アレイ部30に透明なガラス等の対向部に貼り付けられて形成された表示モジュールが該当する。この透明な対向部には、カラーフィルタ、保護膜等、更には、上記した遮光膜が設けられてもよい。尚、表示モジュールには、外部から画素アレイ部への信号等を入出力するための回路部やFPC(フレキシブルプリントサーキット)等が設けられていてもよい。
以下に、本発明が適用される電子機器の具体例について説明する。
図12は、本発明が適用されるテレビを示す斜視図である。本適用例に係るテレビは、フロントパネル102やフィルターガラス103等から構成される映像表示画面部101を含み、その映像表示画面部101として本発明による表示装置を用いることにより作成される。
図13は、本発明が適用されるデジタルカメラを示す斜視図であり、(A)は表側から見た斜視図、(B)は裏側から見た斜視図である。本適用例に係るデジタルカメラは、フラッシュ用の発光部111、表示部112、メニュースイッチ113、シャッターボタン114等を含み、その表示部112として本発明による表示装置を用いることにより作製される。
図14は、本発明が適用されるノート型パーソナルコンピュータを示す斜視図である。本適用例に係るノート型パーソナルコンピュータは、本体121に、文字等を入力するとき操作されるキーボード122、画像を表示する表示部123等を含み、その表示部123として本発明による表示装置を用いることにより作製される。
図15は、本発明が適用されるビデオカメラを示す斜視図である。本適用例に係るビデオカメラは、本体部131、前方を向いた側面に被写体撮影用のレンズ132、撮影時のスタート/ストップスイッチ133、表示部134等を含み、その表示部134として本発明による表示装置を用いることにより作製される。
図16は、本発明が適用される携帯端末装置、例えば携帯電話機を示す斜視図であり、(A)は開いた状態での正面図、(B)はその側面図、(C)は閉じた状態での正面図、(D)は左側面図、(E)は右側面図、(F)は上面図、(G)は下面図である。本適用例に係る携帯電話機は、上側筐体141、下側筐体142、連結部(ここではヒンジ部)143、ディスプレイ144、サブディスプレイ145、ピクチャーライト146、カメラ147等を含み、そのディスプレイ144やサブディスプレイ145として本発明による表示装置を用いることにより作製される。
本発明の一実施形態に係る有機EL表示装置の構成の概略を示すシステム構成図である。 画素(画素回路)の具体的な構成例を示す回路図である。 画素の断面構造の一例を示す断面図である。 本発明の一実施形態に係る有機EL表示装置の基本的な回路動作の説明に供するタイミング波形図である。 本発明の一実施形態に係る有機EL表示装置の回路動作の説明図(その1)である。 本発明の一実施形態に係る有機EL表示装置の回路動作の説明図(その2)である。 駆動トランジスタの閾値電圧Vthのばらつきに起因する課題の説明に供する特性図である。 駆動トランジスタの移動度μのばらつきに起因する課題の説明に供する特性図である。 閾値補正、移動度補正の有無による映像信号の信号電圧Vsigと駆動トランジスタのドレイン・ソース間電流Idsとの関係の説明に供する特性図である。 発光期間と非発光期間の推移を示すタイミング波形図である。 書き込み走査回路の出力回路の構成の一例を示す回路図である。 本発明が適用されるテレビを示す斜視図である。 本発明が適用されるデジタルカメラを示す斜視図であり、(A)は表側から見た斜視図、(B)は裏側から見た斜視図である。 本発明が適用されるノート型パーソナルコンピュータを示す斜視図である。 本発明が適用されるビデオカメラを示す斜視図である。 本発明が適用される携帯電話機を示す斜視図であり、(A)は開いた状態での正面図、(B)はその側面図、(C)は閉じた状態での正面図、(D)は左側面図、(E)は右側面図、(F)は上面図、(G)は下面図である。
符号の説明
10…有機EL表示装置、20…画素(画素回路)、21…有機EL素子、22…駆動トランジスタ、23…書き込みトランジスタ、24…保持容量、30…画素アレイ部、31(31−1〜31−m)…走査線、32(32−1〜32−m)…電源供給線、33(33−1〜33−n)…信号線、34…共通電源供給線、40…書き込み走査回路、50…電源供給走査回路、60…水平駆動回路、70…表示パネル

Claims (5)

  1. 電気光学素子と、映像信号を書き込む書き込みトランジスタと、前記書き込みトランジスタによって書き込まれた前記映像信号を保持する保持容量と、前記保持容量に保持された前記映像信号に基づいて前記電気光学素子を駆動する駆動トランジスタとを含む画素が行列状に配置されてなる画素アレイ部と、
    前記書き込みトランジスタに走査信号を与えることによって前記画素アレイ部の各画素を行単位で走査する走査回路と、
    前記画素アレイ部の画素行ごとに配線され、前記駆動トランジスタに電流を供給する電源供給線に対して第1電位と第2電位とを前記走査回路の走査に同期して選択的に供給する電源供給走査回路とを備え、
    前記走査回路は、前記電源供給線の前記第2電位側の電圧をVini、前記書き込みトランジスタの閾値電圧をVthとするとき、前記書き込みトランジスタを非導通状態にする前記走査信号の電圧が、当該書き込みトランジスタがNチャネル型のときは(Vini+Vth)以下に、Pチャネル型のときは(Vini+Vth)以上に設定されている
    ことを特徴とする表示装置。
  2. 前記走査回路は、前記走査信号を出力する出力回路を有し、当該出力回路の負側の電源電位が(Vini+Vth)以下に設定されている
    ことを特徴とする請求項1記載の表示装置。
  3. 電気光学素子と、映像信号を書き込む書き込みトランジスタと、前記書き込みトランジスタによって書き込まれた前記映像信号を保持する保持容量と、前記保持容量に保持された前記映像信号に基づいて前記電気光学素子を駆動する駆動トランジスタとを含む画素が行列状に配置されてなる画素アレイ部と、
    前記書き込みトランジスタに走査信号を与えることによって前記画素アレイ部の各画素を行単位で走査する走査回路と、
    前記画素アレイ部の画素行ごとに配線され、前記駆動トランジスタに電流を供給する電源供給線に対して第1電位と第2電位とを前記走査回路の走査に同期して選択的に供給する電源供給走査回路とを備えた表示装置の駆動方法であって、
    前記電源供給線の前記第2電位側の電圧をVini、前記書き込みトランジスタの閾値電圧をVthとするとき、前記書き込みトランジスタを非導通状態にする前記走査信号の電圧を、当該書き込みトランジスタがNチャネル型のときは(Vini+Vth)以下に、Pチャネル型のときは(Vini+Vth)以上に設定する
    ことを特徴とする表示装置の駆動方法。
  4. 前記電気光学素子の発光期間と非発光期間の割合を可変とし、かつ、1垂直走査期間において発光と非発光を繰り返す
    ことを特徴とする請求項3記載の表示装置の駆動方法。
  5. 電気光学素子と、映像信号を書き込む書き込みトランジスタと、前記書き込みトランジスタによって書き込まれた前記映像信号を保持する保持容量と、前記保持容量に保持された前記映像信号に基づいて前記電気光学素子を駆動する駆動トランジスタとを含む画素が行列状に配置されてなる画素アレイ部と、
    前記書き込みトランジスタに走査信号を与えることによって前記画素アレイ部の各画素を行単位で走査する走査回路と、
    前記画素アレイ部の画素行ごとに配線され、前記駆動トランジスタに電流を供給する電源供給線に対して第1電位と第2電位とを前記走査回路の走査に同期して選択的に供給する電源供給走査回路とを備え、
    前記電源供給線の前記第2電位側の電圧をVini、前記書き込みトランジスタの閾値電圧をVthとするとき、前記書き込みトランジスタを非導通状態にする前記走査信号の電圧が、当該書き込みトランジスタがNチャネル型のときは(Vini+Vth)以下に、Pチャネル型のときは(Vini+Vth)以上に設定されている
    表示装置を有することを特徴とする電子機器。
JP2007130013A 2007-05-16 2007-05-16 表示装置、表示装置の駆動方法および電子機器 Pending JP2008286897A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007130013A JP2008286897A (ja) 2007-05-16 2007-05-16 表示装置、表示装置の駆動方法および電子機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007130013A JP2008286897A (ja) 2007-05-16 2007-05-16 表示装置、表示装置の駆動方法および電子機器

Publications (1)

Publication Number Publication Date
JP2008286897A true JP2008286897A (ja) 2008-11-27

Family

ID=40146703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007130013A Pending JP2008286897A (ja) 2007-05-16 2007-05-16 表示装置、表示装置の駆動方法および電子機器

Country Status (1)

Country Link
JP (1) JP2008286897A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010243938A (ja) * 2009-04-09 2010-10-28 Sony Corp 表示装置およびその駆動方法
WO2021167292A1 (en) * 2020-02-20 2021-08-26 Samsung Electronics Co., Ltd. Display apparatus and control method thereof
CN114097022A (zh) * 2019-06-25 2022-02-25 夏普株式会社 显示装置及其驱动方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001060076A (ja) * 1999-06-17 2001-03-06 Sony Corp 画像表示装置
JP2003150104A (ja) * 2001-11-15 2003-05-23 Matsushita Electric Ind Co Ltd El表示装置の駆動方法とel表示装置および情報表示装置
JP2003271095A (ja) * 2002-03-14 2003-09-25 Nec Corp 電流制御素子の駆動回路及び画像表示装置
JP2003302936A (ja) * 2002-03-29 2003-10-24 Internatl Business Mach Corp <Ibm> ディスプレイ装置、oledパネル、薄膜トランジスタの制御装置、薄膜トランジスタの制御方法およびoledディスプレイの制御方法
JP2005055726A (ja) * 2003-08-06 2005-03-03 Toshiba Matsushita Display Technology Co Ltd El表示装置
JP2005092188A (ja) * 2003-08-08 2005-04-07 Semiconductor Energy Lab Co Ltd 発光装置の駆動方法及び発光装置
JP2005257878A (ja) * 2004-03-10 2005-09-22 Sharp Corp 表示装置
JP2006106568A (ja) * 2004-10-08 2006-04-20 Sharp Corp 表示装置
JP2006154730A (ja) * 2004-10-26 2006-06-15 Seiko Epson Corp 電気光学装置、その駆動方法、画素回路および電子機器
JP2006178028A (ja) * 2004-12-21 2006-07-06 Casio Comput Co Ltd 発光駆動回路及びその駆動制御方法、並びに、表示装置及びその表示駆動方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001060076A (ja) * 1999-06-17 2001-03-06 Sony Corp 画像表示装置
JP2003150104A (ja) * 2001-11-15 2003-05-23 Matsushita Electric Ind Co Ltd El表示装置の駆動方法とel表示装置および情報表示装置
JP2003271095A (ja) * 2002-03-14 2003-09-25 Nec Corp 電流制御素子の駆動回路及び画像表示装置
JP2003302936A (ja) * 2002-03-29 2003-10-24 Internatl Business Mach Corp <Ibm> ディスプレイ装置、oledパネル、薄膜トランジスタの制御装置、薄膜トランジスタの制御方法およびoledディスプレイの制御方法
JP2005055726A (ja) * 2003-08-06 2005-03-03 Toshiba Matsushita Display Technology Co Ltd El表示装置
JP2005092188A (ja) * 2003-08-08 2005-04-07 Semiconductor Energy Lab Co Ltd 発光装置の駆動方法及び発光装置
JP2005257878A (ja) * 2004-03-10 2005-09-22 Sharp Corp 表示装置
JP2006106568A (ja) * 2004-10-08 2006-04-20 Sharp Corp 表示装置
JP2006154730A (ja) * 2004-10-26 2006-06-15 Seiko Epson Corp 電気光学装置、その駆動方法、画素回路および電子機器
JP2006178028A (ja) * 2004-12-21 2006-07-06 Casio Comput Co Ltd 発光駆動回路及びその駆動制御方法、並びに、表示装置及びその表示駆動方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010243938A (ja) * 2009-04-09 2010-10-28 Sony Corp 表示装置およびその駆動方法
CN114097022A (zh) * 2019-06-25 2022-02-25 夏普株式会社 显示装置及其驱动方法
CN114097022B (zh) * 2019-06-25 2024-03-26 夏普株式会社 显示装置及其驱动方法
WO2021167292A1 (en) * 2020-02-20 2021-08-26 Samsung Electronics Co., Ltd. Display apparatus and control method thereof

Similar Documents

Publication Publication Date Title
JP4508205B2 (ja) 表示装置、表示装置の駆動方法および電子機器
JP4293262B2 (ja) 表示装置、表示装置の駆動方法および電子機器
JP5287210B2 (ja) 表示装置および電子機器
JP4640443B2 (ja) 表示装置、表示装置の駆動方法および電子機器
TWI407409B (zh) A display device, a driving method of a display device, and an electronic device
JP2008257086A (ja) 表示装置、表示装置の製造方法および電子機器
JP2008233122A (ja) 表示装置、表示装置の駆動方法および電子機器
JP2009109521A (ja) 表示装置、表示装置の駆動方法および電子機器
KR101557290B1 (ko) 표시장치, 표시장치의 구동방법 및 전자기기
JP2010281914A (ja) 表示装置、表示装置の駆動方法および電子機器
JP2008152096A (ja) 表示装置、表示装置の駆動方法および電子機器
JP2008191296A (ja) 表示装置、表示装置の駆動方法および電子機器
JP2008310128A (ja) 表示装置、表示装置の駆動方法および電子機器
JP2009169145A (ja) 表示装置、表示装置の駆動方法および電子機器
JP2008310127A (ja) 表示装置、表示装置の駆動方法および電子機器
JP2010145581A (ja) 表示装置、表示装置の駆動方法および電子機器
JP2008249743A (ja) 表示装置、表示装置の駆動方法および電子機器
JP2008249744A (ja) 表示装置、表示装置の駆動方法および電子機器
JP5541351B2 (ja) 表示装置
JP2010008718A (ja) 表示装置、表示装置の駆動方法および電子機器
JP2009047746A (ja) 表示装置および電子機器
JP2008292619A (ja) 表示装置、表示装置の駆動方法および電子機器
JP2008233125A (ja) 表示装置、表示装置の駆動方法および電子機器
JP2009251546A (ja) 表示装置、表示装置の駆動方法および電子機器
JP2009237426A (ja) 表示装置、表示装置の駆動方法および電子機器

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091013

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091013

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091029

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121211