JP2008280873A - 内燃機関 - Google Patents

内燃機関 Download PDF

Info

Publication number
JP2008280873A
JP2008280873A JP2007124036A JP2007124036A JP2008280873A JP 2008280873 A JP2008280873 A JP 2008280873A JP 2007124036 A JP2007124036 A JP 2007124036A JP 2007124036 A JP2007124036 A JP 2007124036A JP 2008280873 A JP2008280873 A JP 2008280873A
Authority
JP
Japan
Prior art keywords
piston
internal combustion
link
combustion engine
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007124036A
Other languages
English (en)
Other versions
JP4978300B2 (ja
Inventor
Susumu Ishizaki
晋 石崎
Shinichi Takemura
信一 竹村
Takeshi Arinaga
毅 有永
Toru Fukami
徹 深見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2007124036A priority Critical patent/JP4978300B2/ja
Publication of JP2008280873A publication Critical patent/JP2008280873A/ja
Application granted granted Critical
Publication of JP4978300B2 publication Critical patent/JP4978300B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

【課題】 排気性能の向上と加速過渡応答性の向上との両立を図る。
【解決手段】 ピストンとクランクシャフトとを連結する複リンク式のピストン−クランク機構と、排気のエネルギーを利用して過給を行うターボ式の過給機80と、を備える。上流側触媒76を過給機80のタービン82よりも上流側に配置して、冷機時における触媒昇温促進を図る。また、クランクシャフトのカウンタウェイトの最外径部を、下死点近傍において、ピストンピンの軸方向への延長線と交差させることで、内燃機関の基本的な寸法の増加を招くことなく、ピストンストロークを拡大する。これにより低速トルクが向上するので、低回転域からの加速過渡応答性を確保しつつ、タービン82の容量(例えばA/R)を大きく設定できる。
【選択図】図1

Description

この発明は、ピストン−クランク機構によりピストンが往復動する内燃機関、特に、排気のエネルギーを利用して過給を行うターボ式過給機を備えた内燃機関の改良に関する。
排気エネルギーを利用して過給を行う、いわゆるターボ過給機を備える内燃機関では、冷機時における触媒昇温を阻害することのないように、触媒を過給機のタービンよりも燃焼室に近い上流側に配置すると、タービン上流の排気ボリュームの増大などによって、特に低速からの加速時における加速過渡応答性、いわゆるトルク・過給圧の立ち上がりが低下するという問題がある。そこで特許文献1には、触媒の上流側に2次エアを供給して過渡応答性の向上を図る技術が記載されている。また、この特許文献1では、触媒の過熱等を防止するために、触媒をバイパスするバイパス通路を設けるとともに、機関運転状態に応じてバイパス通路を開閉することで触媒を通る排気の流量を制御するバイパスバルブが設けられている。
特開昭61−70115号公報
しかしながら上記特許文献1のものでは、2次エア供給用のエアシステムや900℃近くの高温下で作動する高シール性・高応答性のバイパスバルブ等を必要とするために、大型化やコストの増加等が避けられない。
また、上記のターボ式過給機における低回転域からの加速過渡応答性を向上するために、低速型で小容量のタービン、より具体的にはA/R(タービンハウジング入口部の最小断面積(A)と、その中心からタービン中心までの距離(R)との比)の小さいタービンを用い、ウェストゲートを使用して低回転側にインターセプト点を持つような過給圧制御をすることが考えられる。しかしながら、この場合、過給圧は最大出力点からの制限ではなく低回転でのノッキングやサージングに対する主運動系の強度等によって制限され、また、タービンハウジング入口部の最小断面積(A)が小さく排気ガス量が制限されるために、最大出力点を含む高回転側での過給圧を十分に高めることができず、出力向上が望めない。一方、タービンのA/Rを大きくすると、高回転側での出力性能が向上するものの、低回転側での過給圧の立ち上がりが遅くなる。このように、ターボ式の過給機では、低回転側の過渡応答性能と高回転側の出力性能とを両立することは困難であった。
ところで、本出願人は特開2005−147068号公報において、複リンク式ピストン−クランク機構を利用して、内燃機関の大型化や燃焼安定性の低下や振動騒音の悪化等を伴うことなくピストンストロークを拡大し、内燃機関の排気量を拡大して出力向上を図る技術を以前に提案している。
本発明は、これらの事情に鑑みてなされたものであり、冷機時における触媒昇温を阻害することのないように、ターボ式過給のタービンを触媒の下流に配置しつつ、低回転からの加速過渡応答性を有効に向上し得る新規な内燃機関を提供することを主たる目的としている。
本発明は、シリンダ内を往復動するピストンを有し、このピストンがピストン−クランク機構によりクランクシャフトに連結されている内燃機関において、排気のエネルギーを利用して過給を行うターボ式の過給機を備えるとともに、この過給機のタービンよりも上流側の排気通路に触媒が設けられている。このように、触媒を過給機のタービンよりも上流に配置することで、冷機時における触媒昇温が促進されて排気性能が向上する一方、上述したように、タービン上流の排気ボリュームの増大等によって、特に低回転域からの加速過渡応答性が低下する傾向にある。
そこで本発明においては、上記クランクシャフトのカウンタウェイトの最外径部が、下死点近傍において、ピストンピンの軸方向への延長線と交差するように設定している。換言すれば、ピストンが下死点近傍にあるときに、ピストンピンを保持したピンボス部の側方を、カウンタウェイトの最外径部が通過する構成としている。つまり、下死点位置におけるピストンとクランクシャフト中心との距離が非常に小さく設定されているのであり、これにより、上死点から下死点までのピストンストロークひいては排気量をより大きく確保し得る。
このようなロングストローク化によって低速トルクを向上させることで、低回転域では過給に頼ることなく過渡応答性を高めることができる。従って、排気タービンを容量の大きい高速型のもの(例えば大きいA/R)とすることで、過渡応答性と出力性能とを高いレベルで両立することができる。
上記ピストンは、周方向の中のスラスト−反スラスト側となる部分に、それぞれスカート部を備えているが、このスカート部のピストンピン軸方向に沿った幅が、ピストンピンの全長と略等しいか、あるいはこれよりも短いことが望ましい。
上記ピストン−クランク機構として、望ましくは、一端がピストンにピストンピンを介して連結されるアッパリンクと、このアッパリンクの他端が第1連結ピンを介して連結されるとともに、クランクシャフトのクランクピンに回転可能に取り付けられるロアリンクと、このロアリンクに第2連結ピンを介して一端が連結されるとともに、他端が内燃機関本体に対して揺動可能に支持されるコントロールリンクと、を備えた複リンク式ピストン−クランク機構が用いられる。上記コントロールリンクの上記他端の内燃機関本体に対する揺動支持位置を変位させる支持位置可変手段をさらに備えた構成とすれば、上記揺動支持位置の変位により機関圧縮比を可変制御する可変圧縮比機構となる。
このような複リンク式ピストン−クランク機構では、上記ピストンが最大燃焼荷重を受ける位置にあるときに、上記アッパリンクのシリンダ軸線に対する傾きが、単リンクのピストン−クランク機構の場合よりも小さくなるように、そのリンク構成を設定することが可能である。このようにアッパリンクの姿勢が垂直に近付くことで、ピストンに作用するサイドスラスト荷重が相対的に低減する。そのためピストンスカート部の小型化が可能となる。
また、上記複リンク式ピストン−クランク機構では、クランクシャフトの回転に対するピストンのピストンストローク特性が、単リンクのピストン−クランク機構における特性よりも単振動に近い特性となるように、そのリンク構成を設定することも容易である。このように単振動に近い特性とすれば、ピストン加速度が平準化されて上死点付近の最大慣性力が低減し、ピストンピンおよびピンボス部の小型化の上で有利となる。しかも騒音振動特性の上で有利となり、例えば、直列4気筒機関のピストンストローク拡大に伴う、ピストンの慣性2次振動の悪化を回避できる。
この発明によれば、ピストンとアッパリンクとを連結するピンボス部およびピストンピンをカウンタウェイトと干渉させることなく、下死点におけるピストンの位置をクランクシャフト中心に近付けることで、内燃機関の大型化を伴わずに、ピストンストロークの拡大ひいては排気量の拡大を達成することができる。そして、このようなピストンストロークの拡大により低速トルクを向上することで、冷機時における排気性能を阻害することのないように、過給機のタービンを触媒の下流に配置しているにもかかわらず、低速域からの加速過渡応答性を向上することができる。
また、排気タービンを容量の大きい高速型のもの(例えば大きいA/R)とすることで、上記の過渡応答性と出力性能とを高いレベルで両立することができる。
以下、この発明の一実施例を図面に基づいて詳細に説明する。図1は、この発明の一実施例に係る内燃機関のシステム構成を示している。内燃機関60のシリンダヘッド61には、吸気ポート62を開閉する吸気弁41と、排気ポート64を開閉する排気弁65と、燃焼室内の混合気を火花点火する点火装置66と、吸気弁41のバルブリフト特性を変更可能な可変動弁装置31と、が設けられている。吸気ポート62に接続する吸気通路68には、上流側より順に、吸入空気量を検出するエアフロメータ70と、吸気通路68を開閉する電制スロットル71と、過給機80のコンプレッサ81と、コンプレッサ81下流の過給圧を検出する圧力センサ72と、コレクタ73と、吸気ポート62へ向けて燃料を噴射する燃焼噴射弁74と、等が設けられている。一方、排気ポート64へ接続する排気通路75には、上流側より順に、上流側触媒76と、過給機80の排気タービン82と、下流側の床下触媒77と、排気消音装置84と、が設けられている。
上流側触媒76は、冷機時に速やかに昇温・活性化するように、排気タービン82よりも上流側(燃焼室に近い側)であって、エンジンルーム内の内燃機関60の近傍に配置される。一方、下流側の床下触媒77は、この実施例では、排気温度や排気圧力の影響を抑えるために、排気タービン82よりも更に下流側であって、排気昇温装置84の近傍の車両床下位置に配置される。また、排気の空燃比を精度よく検出・制御するために、上流側触媒76の前後に2つの空燃比センサ91,92が設けられている。
上記の過給機80は、排気エネルギーを利用して過給を行う、いわゆるターボ式の過給機であり、排気ガスにより回転駆動される排気タービン82のタービンロータ84と、吸気を加圧・過給するコンプレッサ81のホイール83と、が同じシャフト85上に固定されて一体的に回転する。
また上述したセンサの他、ノッキングを検出するノッキングセンサや、冷却水温を検出する水温センサ93等が設けられ、これらセンサ類の検出信号は、制御部30(図2参照)へ入力される。制御部30は、各種エンジン制御処理を記憶・実行する機能を有し、上記センサ類の信号に基づいて、燃料噴射弁74,点火装置66,可変動弁装置31及び後述する可変圧縮比機構32のアクチュエータ等へ制御信号を出力し、その動作を制御する。
図2は、上記可変動弁装置31の構成を示す構成説明図であり、この可変動弁装置31は、吸気弁41のリフト・作動角を変化させるリフト・作動角可変機構34と、そのリフトの中心角の位相(クランクシャフトに対する位相)を進角もしくは遅角させる位相可変機構35と、が組み合わされて構成されている。
まず、リフト・作動角可変機構34を説明する。なお、このリフト・作動角可変機構34は、本出願人が先に提案したものであるが、位相可変機構35とともに特開2002−89303号公報や特開2002−89341号公報等によって公知となっているので、その概要のみを説明する。リフト・作動角可変機構34は、シリンダヘッド上部の図示せぬカムブラケットに回転自在に支持された中空状の駆動軸36と、この駆動軸36に、圧入等により固定された偏心カム37と、上記駆動軸36の上方位置に同じカムブラケットによって回転自在に支持されるとともに駆動軸36と平行に配置された制御軸38と、この制御軸38の偏心カム部39に揺動自在に支持されたロッカアーム40と、各吸気弁41の上端部に配置されたタペット42に当接する揺動カム43と、を備えている。上記偏心カム37とロッカアーム40とはリング状リンク44によって連係されており、ロッカアーム40と揺動カム43とは、アーム状リンク45によって連係されている。
上記駆動軸36は、後述するように、タイミングチェーンないしはタイミングベルトを介して機関のクランクシャフトによって駆動されるものである。上記偏心カム37は、円形外周面を有し、該外周面の中心が駆動軸36の軸心から所定量だけオフセットしているとともに、この外周面に、リング状リンク44の環状部44aが回転可能に嵌合されている。上記ロッカアーム40は、略中央部が上記偏心カム部39によって支持されており、その一端部に、上記リング状リンク44の延長部44bが連係しているとともに、他端部に、上記アーム状リンク45の上端部が連係している。上記偏心カム部39は、制御軸38の軸心から偏心しており、従って、制御軸38の角度位置に応じてロッカアーム40の揺動中心は変化する。
上記揺動カム43は、駆動軸36の外周に嵌合して回転自在に支持されており、側方へ延びた端部に、上記アーム状リンク45の下端部が連係している。この揺動カム43の下面には、駆動軸36と同心状の円弧をなす基円面と、該基円面から上記端部へと所定の曲線を描いて延びるカム面と、が連続して形成されており、これらの基円面ならびにカム面が、揺動カム43の揺動位置に応じてタペット42の上面に当接するようになっている。すなわち、上記基円面はベースサークル区間として、リフト量が0となる区間であり、揺動カム43が揺動してカム面がタペット42に接触すると、徐々にリフトしていくことになる。なお、ベースサークル区間とリフト区間との間には若干のランプ区間が設けられている。
上記制御軸38は、一端部に設けられたリフト・作動角制御用油圧アクチュエータ46によって所定角度範囲内で回転するように構成されている。このリフト・作動角制御用油圧アクチュエータ46への油圧供給は、制御部30からの制御信号に基づき、第1油圧制御部47によって制御されている。
このリフト・作動角可変機構34の作用を説明すると、駆動軸36が回転すると、偏心カム37のカム作用によってリング状リンク44が上下動し、これに伴ってロッカアーム40が揺動する。このロッカアーム40の揺動は、アーム状リンク45を介して揺動カム43へ伝達され、該揺動カム43が揺動する。この揺動カム43のカム作用によって、タペット42が押圧され、吸気弁41がリフトする。ここで、リフト・作動角制御用油圧アクチュエータ46を介して制御軸38の角度が変化すると、ロッカアーム40の初期位置が変化し、ひいては揺動カム43の初期揺動位置が変化する。上記の偏心カム部39の初期位置は連続的に変化させ得るので、これに伴って、バルブリフト特性は連続的に変化する。つまり、リフトならびに作動角を、両者同時に、連続的に拡大,縮小させることができる。なお、この実施例では、リフト・作動角の大小変化に伴い、吸気弁41の開時期と閉時期とがほぼ対称に変化する。
次に、位相可変機構35は、上記駆動軸36の前端部に設けられたスプロケット48と、このスプロケット48と上記駆動軸36とを、所定の角度範囲内において相対的に回転させる位相制御用油圧アクチュエータ49と、から構成されている。上記スプロケット48は、図示せぬタイミングチェーンもしくはタイミングベルトを介して、クランクシャフトに連動している。上記位相制御用油圧アクチュエータ49への油圧供給は、制御部30からの制御信号に基づき、第2油圧制御部50によって制御されている。この位相制御用油圧アクチュエータ49への油圧制御によって、スプロケット48と駆動軸36とが相対的に回転し、リフト中心角が遅進する。つまり、リフト特性の曲線自体は変わらずに、全体が進角もしくは遅角する。また、この変化も、連続的に得ることができる。位相可変機構35としては、油圧式のものに限られず、電磁式アクチュエータを利用したものなど、種々の構成が可能である。
このようにリフト・作動角可変機構34と位相可変機構35とを組み合わせた可変動弁装置31によれば、吸気弁開時期および吸気弁閉時期の双方をそれぞれ独立して任意に制御することが可能である。なお、リフト・作動角可変機構34ならびに位相可変機構35の制御としては、実際のリフト・作動角あるいは位相を検出するセンサを設けて、クローズドループ制御するようにしても良く、あるいは運転条件に応じて単にオープンループ制御するようにしても良い。
図3は、可変圧縮比機構32の構成を示す構成説明図である。この機構32は、ロアリンク4とアッパリンク5とコントロールリンク10とを主体とした複リンク式ピストン−クランク機構から構成されている。クランクシャフト1は、複数のジャーナル部2とクランクピン3とを備えており、シリンダブロック18の主軸受に、ジャーナル部2が回転自在に支持されている。上記クランクピン3は、ジャーナル部2から所定量偏心しており、ここにロアリンク4が回転自在に連結されている。カウンタウェイト15は、ジャーナル部2とクランクピン3とを接続するクランクウェブ16からクランクピン3とは反対側へ延びている。このカウンタウェイト15は、クランクピン3を挟んで両側に互いに対向するように設けられており、その外周部は、ジャーナル部2を中心とした円弧形に形成されている。
上記ロアリンク4は、左右の2部材に分割可能に構成されているとともに、略中央の連結孔に上記クランクピン3が嵌合している。アッパリンク5は、下端側が第1連結ピン6によりロアリンク4の一端に回動可能に連結され、上端側がピストンピン7によりピストン8に回動可能に連結されている。上記ピストン8は、燃焼圧力を受け、シリンダブロック18のシリンダ19内を往復動する。
ロアリンク4の運動を拘束するコントロールリンク10は、上端側が第2連結ピン11によりロアリンク4の他端に回動可能に連結され、下端側が制御軸12を介して機関本体の一部となるシリンダブロック18の下部に回動可能に連結されている。詳しくは、制御軸12は、回転可能に機関本体に支持されているとともに、その回転中心から偏心している偏心カム部12aを有し、この偏心カム部12aに上記コントロールリンク10下端部が回転可能に嵌合している。上記制御軸12は、上記のエンジンコントロールユニットからの制御信号に基づいて作動する圧縮比制御アクチュエータによって回動位置が制御される。
上記のような複リンク式ピストン−クランク機構を用いた可変圧縮比機構においては、上記制御軸12が圧縮比制御アクチュエータによって回動されると、偏心カム部12aの中心位置、特に、機関本体に対する相対位置が変化する。これにより、コントロールリンク10の下端の揺動支持位置が変化する。そして、上記コントロールリンク10の揺動支持位置が変化すると、ピストン8の行程が変化し、ピストン上死点(TDC)におけるピストン8の位置が高くなったり低くなったりする。これにより、機関圧縮比を変えることが可能となる。
また、上記の複リンク式可変圧縮比機構においては、リンクディメンジョンを適切に選定することにより、単振動に近いピストンストローク特性が得られる。特に、図4に示すように、一般的な単リンク式ピストン−クランク機構のピストンストローク特性に比べて、より単振動に近い特性とすることが可能であり、これによりピストン加速度を平準化し、ピストン上死点付近での最大慣性力を大幅に低減することができる。なお、上記の単振動に近いピストンストローク特性によれば、上死点付近でのピストン8の速度が、単リンク式ピストン−クランク機構のものに比べて、20%近く遅くなる。
次に、ピストン8およびアッパリンク5の構造について説明する。図5及び図6は、本発明の内燃機関に用いられるピストン8の構造を示している。このピストン8は、アルミニウム合金を用いて一体に鋳造されたものであって、比較的厚肉な円盤状をなすピストン頭部21の外周面に、複数本、例えば3本のピストンリング溝22が形成されているとともに、ピストン8のスラスト−反スラスト方向となる周方向の一部に、上記外周面から円筒面に沿って延びるように、スカート部23が形成されている。このスカート部23は、ピストンピン7と直交する方向から見た投影形状が略矩形状をなし、そのピストンピン軸方向に沿った幅は、ピストンピン7の全長と略等しいか、あるいはピストンピン7の全長よりも短いものとなっている。つまり、スカート部23は、周方向の非常に小さな範囲に設けられている。また、上記ピストン8の中心部つまり円盤状をなすピストン頭部21の裏面中心部に、一対のピンボス部24が形成されており、該ピンボス部24に、ピストンピン7の端部が回転自在に嵌合するピン孔25が貫通形成されている。上記ピン孔25の内周には、軸方向に沿った一対の油溝26が形成されている。
一方、アッパリンク5は、鋼製のものであり、図6に示すように、ピストン8側の一端にピストンピン7が圧入されている。また、ロアリンク4と連結されるアッパリンク5の他端は、図8に示すように、二股状に分岐し、上記第1連結ピン6の両端部を支持している。ここで、アッパリンク5における上方のピストンピン7の軸長と、下方の第1連結ピン6の軸長とは、互いに等しい。また、ピストンピン7が受ける荷重と第1連結ピン6が受ける荷重とは基本的に等しいので、ピストンピン7と第1連結ピン6とは、互いに等しい径とすることができる。また、一対のピンボス部24およびピストンピン7からなるピストン連結構造のピストンピン軸方向の寸法は、ピストン8ないしはシリンダ19の直径に比べて、かなり小さなものとなっている。
そして、ピストン8が下死点近傍にあるときに、クランクシャフト1のカウンタウェイト15の最外径部が、図示するように、ピストンピン7を軸方向へ延長した延長線と交差するようになっている。換言すれば、ピストン8が下死点近傍にあるときに、ピストンピン7を保持したピンボス部24の側方を、カウンタウェイト15の最外径部が通過する。図7は、対比のために、従来の一般的な単リンク式ピストン−クランク機構101とピストン102とを組み合わせた場合の上死点から下死点までのピストンストロークを示している。これと図8とを比較すれば明らかなように、上記実施例の構成では、上死点から下死点までのピストンストロークが大幅に拡大し、排気量の拡大が可能である。例えば、20%程度のピストンストロークの拡大、いわゆるロングストローク化が図れる。
また、図8から明らかなように、スカート部23も小型化されていることから、上記のようにカウンタウェイト15がピンボス部24の側方を通過する際に、スカート部23と干渉することはない。このようにスカート部23を小型化すると、その剛性を大きく確保することは困難であるが、本発明が前提とする複リンク式ピストン−クランク機構においては、ピストン8を傾けようと作用するサイドスラスト荷重は、一般の単リンク式ピストン−クランク機構の場合よりも小さくなるので、スカート部23は最小の大きさで済む。具体的には、ピストン8に最大燃焼圧が作用するのは、膨張行程の前半であり、この付近でピストン頭部21が最大荷重を受けることになるが、このとき、アッパリンク5は垂直に近い姿勢となり、シリンダ19の軸線に対する傾きが非常に小さくなるように設定されている。特に、単リンク式ピストン−クランク機構の場合のコネクティングロッドの姿勢に比べて、シリンダ19の軸線に対する傾きを、大幅に小さくすることが可能である。従って、サイドスラスト荷重が低減し、スカート部23の小型化が可能となる。
さらに、上記の複リンク式ピストン−クランク機構の利点として、単振動に近いピストン−ストローク特性とすることで、ピストン加速度が平準化され、ピストン上死点付近での最大慣性力が大幅に低減する。従って、上記のように、ピストンピン7を保持するピンボス部24の小型化が可能となる。
なお、図7に示した単リンク式ピストン−クランク機構101を用いた構成において、仮に、クランクピンのクランク半径を大きくしてピストンストロークをロングストローク化したとすると、ピストン102に作用するサイドスラスト荷重は一層大きくなり、スカート部の小型化が到底困難であるばかりか、実用機関としての成立が難しくなる。
また、本実施例は直列4気筒機関に好適である。一般に、直列4気筒機関の場合、ピストン8の慣性2次振動がピストンストローク拡大に伴い急増するため、ストロークの拡大で大排気量化を図ると、騒音振動特性が悪化し、品質を著しく損ねる問題があったが、本発明で用いる複リンク式ピストン−クランク機構では、単振動に近いピストンストローク特性となるため、このような騒音振動特性の悪化を回避できる。しかも、単振動に近いピストンストローク特性とすれば、上死点付近でのピストン8の速度が、単リンク式ピストン−クランク機構のものに比べて遅くなることから、同じ燃焼速度に対し十分に時間的な余裕が与えられることになり、気筒当たりの排気量が大きな燃焼室でも、良好な燃焼を確保できる。
そして、本実施例の過給機80は、タービン82及びコンプレッサ81が比較的大きなサイズの高速型・大容量型のものであり、一例としては、タービン82のハウジング入口部の最小断面積Aと、このハウジング入口部の最小断面積Aの中心からタービン中心までの距離Rとの比A/Rが、大A/R化されたものを使用している。すなわち、低・中回転の常用回転域では、タービン回転数があまり上昇せず、実質的に過給が行われることがなく、吸気圧力が略大気圧近傍となるように、A/Rが大きく設定されている。
次に、図9〜図11を参照して、本実施例の特徴的な構成及びその作用効果について従来例と比較参照しつつ説明する。なお、図において、「SLS」は本実施例に係るピストンストロークの拡大つまりロングストローク化されたものを、「Std」は本実施例よりも短いピストンストロークの従来例を、「大容量タービン過給(大A/R過給)」は本実施例に係るタービン容量(例えばA/R)が大きく設定されたものを、「従来過給」は本実施例よりもタービン容量の小さい過給機(例えば小A/R)を使用した従来例を、「NA」は自然吸気エンジンを適用した従来例を、「WOT」はスロットル全開域をそれぞれ意味している。
従来例のように、小さいタービンサイズ(例えば小A/R)の過給機を用いた場合、低回転域から過給が行われることから、過給により低回転からのトルク立ち上がりの応答性を高めることができる反面、過給圧の過度な上昇を回避するために、例えばウェストゲートによって排気ガスをバイパスさせる必要がある。
これに対して本実施例では、冷機時の触媒昇温性能を阻害することのないように、過給機80の排気タービン82を上流側触媒76よりも下流に配置したものでありながら、複リンク式ピストン−クランク機構32を利用したロングストローク化により大型化を招くことなく低速トルクを向上することができるので、過給に頼ることなく十分な低速トルクを確保して、低速側での良好な加速過渡応答性を得ることができる。また、ロングストローク化により十分な低速トルクが得られることから、排気タービン82を、低回転からの過給圧の立ち上がりは遅いものの高回転で高効率となる大きなタービンサイズ(例えば大A/R)のものとして、高回転側での出力性能を大幅に向上することできる。
従来例のように低回転域から過給が行われるものでは、高い排気圧力によるトルクの低下や排気ガスの吹き戻しによる吸気効率の低下やノック悪化等により加速過渡応答性の低下を招くのに対し、本実施例によれば、上記の大容量(例えば大A/R)化によって、低・中回転域のような常用回転域では、吸気圧力や排気圧力が低く抑制されるので、低回転からのトルクの立ち上がりが自然吸気エンジンと同様に滑らかで応答性に優れたものとなり、かつ、排気温度の低下により燃料増量範囲が小さくなり、燃費性能が向上する。
また、高ブーストとなる高回転域で高いコンプレッサ効率となるように設定することで、コンプレッサ81の出口温度を比較的低く抑制することができ、インタークーラを廃止することも可能である。また、インタークーラの廃止によりコンプレッサ71の出口からコレクタ73までの配管設計の自由度が増すために、圧力損失が低減し、出力が向上するという効果も得られる。
更に本実施例では、上記の可変動弁装置31による吸気弁のバルブリルト特性の可変制御によって、吸入空気量をスロットル71に依存することなく調整可能であるために、特に常用回転域である低・中回転域でのスロットル損失を抑制して十分なトルクを得ることができる。従って、この低・中回転域での過給要求を更に低減でき、上記のタービン82の更なる大容量(例えば大A/R)化により、排温・排圧の上昇を更に抑制し、タービン上流の触媒76の過熱をより確実に防止することができる。
また本実施例のように、過給機80のタービン82よりも上流側に触媒76を配置しているものでは、冷機時における触媒昇温促進効果が得られる反面、過給による排気圧力や排気温度の触媒76への影響が懸念されるが、本実施例では、上記の大容量(例えば大A/R)化によって排気温度や排気圧力を低く抑制することができ、上流側触媒76への悪影響を回避することができる。
図11は、コンプレッサ81の作動線を比較したものである。従来例のように小型・小容量(例えば小A/R)のタービンを用いた場合、低回転域でのサージングを生じることのないように、サージラインの制限により小容量のコンプレッサを用いる必要があり、このため、高回転・高負荷域でのコンプレッサ効率が低下する。これに対して本実施例のように大容量(例えば大A/R)のタービンを用いた場合、低回転域で過給を必要としないので、サージラインの制限を受けることなく大容量のコンプレッサを用いることが可能となり、コンプレッサ作動線を常に高効率のものとすることができる。
図12は本発明の他の実施例を示している。なお、図1に示す実施例と同一の構成要素には同じ参照符号を付し、重複する説明を省略する。この実施例では、大きな熱容量を持つ過給機80によって下流側の床下触媒77'の活性化遅れを回避するために、過給機80のタービン82'を床下触媒77'よりも更に下流側に配置している。また、このようにタービン82'よりも上流側に配置される床下触媒77が排気温度や排気圧力による悪影響を受けることがないように、過給機80の排気タービン82'は上述した実施例と同等又はそれ以上に大容量(例えば大A/R)化されている。
なお、上述した「小A/R」、「大A/R」とはそれぞれ「小容量タイプタービン」(低速型)、「大容量タイプタービン」(高速型)を示すものであるが、厳密には「小A/R」「大A/R」が必ずしも低速型、高速型とは限らず、より正確にはタービン等価面積が低速型、高速型を決めるものである。つまり、「小容量タイプタービン」(低速型)はタービン等価面積が狭く、小さなガス量でもタービンで詰まり易い(タービン前後差圧が生じ易い)ものを意味し、低回転からタービンが仕事を始める。一方、「大容量タイプタービン」(高速型)は小容量タイプタービンとは逆に、タービン等価面積が広く、小さなガス量ではタービンで詰まらずに、高回転になってガス量が大きくなると、適度に詰まってタービン前後差圧が発生し、タービンが仕事をするものである。このタービン等価面積を決める主要なパラメータは、タービン入口最小面積(ノズル)とタービンインペラである。従って、タービン等価面積を大きくするためには、タービンノズルを大きくしても良く、あるいはタービンインペラを大きくしても良い。
この発明の一実施例に係る内燃機関を示すシステム構成図。 可変動弁装置を簡略的に示す斜視態様図。 複リンク式ピストン−クランク機構を利用した可変圧縮比機構を示す構成図。 上記可変圧縮比機構によるピストンストローク特性を示す特性図。 ピストンの一部を切り欠いて示す斜視図。 下死点におけるピストンとカウンタウェイトとの位置関係を示す説明図。 従来のピストン−クランク機構におけるピストンストロークの説明図。 実施例におけるピストンストロークの説明図。 従来例及び実施例の排圧(排気圧力),ブースト(過給圧)及びトルクの変化を示す本実施例の作用説明図。 従来例(A)及び本実施例(B)のトルク変化を示す作用説明図。 従来例(A)及び本実施例(B)のコンプレッサ作動線を示す作用説明図。 過給機を床下触媒の下流側に配置した実施例を示すシステム構成図。
符号の説明
4…ロアリンク
5…アッパリンク
7…ピストンピン
8…ピストン
10…コントロールリンク
15…カウンタウェイト
23…スカート部
24…ピンボス部
31…可変動弁装置
32…可変圧縮比機構
80…過給機
82…タービン
76…上流側触媒

Claims (9)

  1. シリンダ内を往復動するピストンを有し、このピストンがピストン−クランク機構によりクランクシャフトに連結されている内燃機関において、
    排気のエネルギーを利用して過給を行うターボ式の過給機を備えるとともに、この過給機のタービンよりも上流側の排気通路に触媒が設けられ、
    かつ、上記クランクシャフトのカウンタウェイトの最外径部が、下死点近傍において、ピストンピンの軸方向への延長線と交差することを特徴とする内燃機関。
  2. 上記ピストン−クランク機構は、一端がピストンにピストンピンを介して連結されるアッパリンクと、このアッパリンクの他端が第1連結ピンを介して連結されるとともに、クランクシャフトのクランクピンに回転可能に取り付けられるロアリンクと、このロアリンクに第2連結ピンを介して一端が連結されるとともに、他端が内燃機関本体に対して揺動可能に支持されるコントロールリンクと、を備えた複リンク式ピストン−クランク機構であることを特徴とする請求項1に記載の内燃機関。
  3. 上記ピストンピンの軸長と上記第1連結ピンの軸長とがほぼ等しいことを特徴とする請求項2に記載の内燃機関。
  4. 上記ピストンは、周方向の中のスラスト−反スラスト側となる部分に、それぞれスカート部を備えており、このスカート部のピストンピン軸方向に沿った幅が、ピストンピンの全長と略等しいことを特徴とする請求項2又は3に記載の内燃機関。
  5. 上記ピストンが最大燃焼荷重を受ける位置にあるときに、上記アッパリンクのシリンダ軸線に対する傾きが、単リンクのピストン−クランク機構の場合よりも小さくなるように、上記複リンク式ピストン−クランク機構のリンク構成が設定されていることを特徴とする請求項2〜4のいずれかに記載の内燃機関。
  6. クランクシャフトの回転に対する上記ピストンのピストンストローク特性が、単リンクのピストン−クランク機構における特性よりも単振動に近い特性となるように、上記複リンク式ピストン−クランク機構のリンク構成が設定されていることを特徴とする請求項2〜5のいずれかに記載の内燃機関。
  7. 吸気弁のバルブリフト特性を変更することにより吸入空気量を調整可能な可変動弁装置を備えることを特徴とする請求項1〜6のいずれかに記載の内燃機関。
  8. 常用の回転域での吸気圧力が大気圧近傍であることを特徴とする請求項1〜7のいずれかに記載の内燃機関。
  9. 上記過給機のタービンの効率が、エンジン回転数に対して略単調増加であることを特徴とする請求項1〜8のいずれかに記載の内燃機関。
JP2007124036A 2007-05-09 2007-05-09 内燃機関 Expired - Fee Related JP4978300B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007124036A JP4978300B2 (ja) 2007-05-09 2007-05-09 内燃機関

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007124036A JP4978300B2 (ja) 2007-05-09 2007-05-09 内燃機関

Publications (2)

Publication Number Publication Date
JP2008280873A true JP2008280873A (ja) 2008-11-20
JP4978300B2 JP4978300B2 (ja) 2012-07-18

Family

ID=40141917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007124036A Expired - Fee Related JP4978300B2 (ja) 2007-05-09 2007-05-09 内燃機関

Country Status (1)

Country Link
JP (1) JP4978300B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023007530A1 (ja) * 2021-07-26 2023-02-02 日産自動車株式会社 内燃機関の触媒暖機制御方法および装置
CN117346640A (zh) * 2023-12-05 2024-01-05 中国航发四川燃气涡轮研究院 一种压气机转轴与测扭器轴心的对中调整方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5810117A (ja) * 1981-07-10 1983-01-20 Hitachi Ltd 排気タ−ビン過給機
JPS6170115A (ja) * 1984-09-13 1986-04-10 Nissan Motor Co Ltd タ−ボチヤ−ジヤ付エンジン
JPH01113135U (ja) * 1988-01-26 1989-07-31
JPH04314922A (ja) * 1991-04-12 1992-11-06 Kubota Corp エンジンのターボチャージャのウエイストゲート弁の駆動装置
JPH06108861A (ja) * 1992-09-29 1994-04-19 Mazda Motor Corp ターボ過給機付エンジン
JPH08200181A (ja) * 1995-01-27 1996-08-06 Iseki & Co Ltd ディーゼルエンジンの燃料噴射ポンプ
JPH1018854A (ja) * 1996-06-28 1998-01-20 Yoichi Yamazaki トランクピストン型エンジン
JP2002295277A (ja) * 2001-03-30 2002-10-09 Mazda Motor Corp ターボ過給機付火花点火式直噴エンジン
JP2005147068A (ja) * 2003-11-19 2005-06-09 Nissan Motor Co Ltd 内燃機関
JP2006105099A (ja) * 2004-10-08 2006-04-20 Nissan Motor Co Ltd 内燃機関の制御装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5810117A (ja) * 1981-07-10 1983-01-20 Hitachi Ltd 排気タ−ビン過給機
JPS6170115A (ja) * 1984-09-13 1986-04-10 Nissan Motor Co Ltd タ−ボチヤ−ジヤ付エンジン
JPH01113135U (ja) * 1988-01-26 1989-07-31
JPH04314922A (ja) * 1991-04-12 1992-11-06 Kubota Corp エンジンのターボチャージャのウエイストゲート弁の駆動装置
JPH06108861A (ja) * 1992-09-29 1994-04-19 Mazda Motor Corp ターボ過給機付エンジン
JPH08200181A (ja) * 1995-01-27 1996-08-06 Iseki & Co Ltd ディーゼルエンジンの燃料噴射ポンプ
JPH1018854A (ja) * 1996-06-28 1998-01-20 Yoichi Yamazaki トランクピストン型エンジン
JP2002295277A (ja) * 2001-03-30 2002-10-09 Mazda Motor Corp ターボ過給機付火花点火式直噴エンジン
JP2005147068A (ja) * 2003-11-19 2005-06-09 Nissan Motor Co Ltd 内燃機関
JP2006105099A (ja) * 2004-10-08 2006-04-20 Nissan Motor Co Ltd 内燃機関の制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023007530A1 (ja) * 2021-07-26 2023-02-02 日産自動車株式会社 内燃機関の触媒暖機制御方法および装置
CN117346640A (zh) * 2023-12-05 2024-01-05 中国航发四川燃气涡轮研究院 一种压气机转轴与测扭器轴心的对中调整方法
CN117346640B (zh) * 2023-12-05 2024-02-20 中国航发四川燃气涡轮研究院 一种压气机转轴与测扭器轴心的对中调整方法

Also Published As

Publication number Publication date
JP4978300B2 (ja) 2012-07-18

Similar Documents

Publication Publication Date Title
JP3968957B2 (ja) 内燃機関
JP4416377B2 (ja) 内燃機関の制御装置
JP4955020B2 (ja) 4サイクルエンジン
JP4035963B2 (ja) 内燃機関の制御装置
JP2002285876A (ja) 内燃機関の燃焼制御システム
JP4387770B2 (ja) 内燃機関
WO2014046059A1 (ja) 内燃機関の制御装置及び方法
JP2007239555A (ja) 内燃機関
JP6564652B2 (ja) 内燃機関の圧縮比調整装置及び内燃機関の圧縮比調整装置の制御方法
JP4135394B2 (ja) 内燃機関の制御装置
JP2006177271A (ja) 内燃機関
JP3977374B2 (ja) 内燃機関用弁機構
JP4978300B2 (ja) 内燃機関
WO2018092586A1 (ja) 内燃機関の可変システム及びその制御方法
JP3814887B2 (ja) ディーゼル機関の吸気弁制御装置および制御方法
JP5227265B2 (ja) 排気過給機を備える内燃機関
JP2007239553A (ja) 2ストロークエンジン
JP2004060551A (ja) 内燃機関の制御装置
JP4248036B2 (ja) ターボ過給機付内燃機関の吸気弁制御装置および制御方法
JP2017218919A (ja) 可変圧縮比機械式アトキンソンサイクルエンジン
JP4760453B2 (ja) レシプロ式エンジン
JP4604358B2 (ja) 内燃機関及びその制御システム
JP6753530B2 (ja) 内燃機関の制御方法および制御装置
JP2010007533A (ja) 内燃機関
JP2009036144A (ja) 2サイクル内燃機関

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120321

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120403

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4978300

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees