JP2008277872A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2008277872A
JP2008277872A JP2008214075A JP2008214075A JP2008277872A JP 2008277872 A JP2008277872 A JP 2008277872A JP 2008214075 A JP2008214075 A JP 2008214075A JP 2008214075 A JP2008214075 A JP 2008214075A JP 2008277872 A JP2008277872 A JP 2008277872A
Authority
JP
Japan
Prior art keywords
base substrate
main surface
semiconductor device
electrode pad
semiconductor pellet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008214075A
Other languages
Japanese (ja)
Inventor
Atsushi Nakamura
篤 中村
Kunihiko Nishi
邦彦 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP2008214075A priority Critical patent/JP2008277872A/en
Publication of JP2008277872A publication Critical patent/JP2008277872A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/565Moulds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05553Shape in top view being rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0612Layout
    • H01L2224/0613Square or rectangular array
    • H01L2224/06134Square or rectangular array covering only portions of the surface to be connected
    • H01L2224/06135Covering only the peripheral area of the surface to be connected, i.e. peripheral arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0612Layout
    • H01L2224/0613Square or rectangular array
    • H01L2224/06134Square or rectangular array covering only portions of the surface to be connected
    • H01L2224/06136Covering only the central area of the surface to be connected, i.e. central arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45565Single coating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/4569Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/4824Connecting between the body and an opposite side of the item with respect to the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73215Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape
    • H01L2924/1816Exposing the passive side of the semiconductor or solid-state body
    • H01L2924/18165Exposing the passive side of the semiconductor or solid-state body of a wire bonded chip
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance

Abstract

<P>PROBLEM TO BE SOLVED: To achieve size reduction and high operation speed of a semiconductor device, and to enhance electrical reliability and mounting accuracy thereof. <P>SOLUTION: In a semiconductor device in which a semiconductor pellet 2 is mounted on a pellet mounting area of the main surface of a base substrate 1, and first electrode pads 1B arranged on the back surface of the base substrate 1 are electrically connected to an external terminal 2A arranged on the main surface of the semiconductor pellet 2, the base substrate 1 is formed of a rigid substrate, and the first electrode pads 1B of the base substrate 1 are electrically connected to the second electrode pads 1A arranged on the back surface of the base substrate 1. The semiconductor pellet 2 is mounted on the pellet mounting area of the main surface of the base substrate 1, with its main surface downward, and the external terminal 2A of the semiconductor pellet 2 is electrically connected to the second electrode pads 1A of the base substrate 1 by bonding wires 6 through a slit 5 formed in the base substrate 1. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、半導体装置の製造技術に関し、特に、ベース基板の主面のペレット搭載領域上に半導体ペレットが搭載され、前記半導体ペレットの主面に配置された外部端子に前記ベース基板の裏面に配置された第1電極パッドが電気的に接続される半導体装置およびその製造技術に適用して有効な技術に関するものである。   The present invention relates to a manufacturing technique of a semiconductor device, and in particular, a semiconductor pellet is mounted on a pellet mounting region on a main surface of a base substrate, and is disposed on an outer terminal disposed on the main surface of the semiconductor pellet on the back surface of the base substrate. The present invention relates to a semiconductor device to which the formed first electrode pad is electrically connected and a technique effective when applied to a manufacturing technique thereof.

高い実装密度が得られる半導体装置として、BGA(all rid rray)構造の半導体装置が、例えば日経マグロウヒル社発行の日経エレクトロニクス[1994年、2月28日号、第111頁乃至第117頁]に開示されている。このBGA構造の半導体装置は、図16(要部断面図)に示すように、ベース基板1の主面のペレット搭載領域上に半導体ペレット2を搭載し、ベース基板1の主面と対向するその裏面側に複数のバンプ電極4を格子状に配置した構造で構成される。 As a semiconductor device having a high mounting density is obtained, BGA semiconductor device (B all G rid A rray) structure, for example, Nikkei McGraw-Hill, published in Nikkei Electronics [1994 Feb. 28, the 111 pages to 117 pages ] Is disclosed. The semiconductor device of this BGA structure has a semiconductor pellet 2 mounted on the pellet mounting region on the main surface of the base substrate 1 and is opposed to the main surface of the base substrate 1 as shown in FIG. A plurality of bump electrodes 4 are arranged on the back side in a grid pattern.

前記ベース基板1は例えば2層配線構造のプリント配線基板で構成される。ベース基板1の主面の周辺領域(ペレット搭載領域の周囲)には複数の第2電極パッド1Aが配置される。また、ベース基板1の主面と対向するその裏面には複数の第1電極パッド1Bが配置される。第2電極パッド1Aは、ベース基板1の主面に配置された配線1Aを介してスルーホール配線1Cに電気的に接続される。第1電極パッド1Bは、ベース基板1の裏面に配置された配線1Bを介してスルーホール配線1Cに電気的に接続される。 The base substrate 1 is composed of a printed wiring board having a two-layer wiring structure, for example. A plurality of second electrode pads 1 </ b> A are arranged in a peripheral region (around the pellet mounting region) of the main surface of the base substrate 1. A plurality of first electrode pads 1 </ b> B are disposed on the back surface of the base substrate 1 that faces the main surface. The second electrode pad 1A is electrically connected to the through-hole wiring 1C via the wiring 1A 1 disposed on the main surface of the base substrate 1. The first electrode pad 1B is electrically connected to the through-hole wiring 1C via the wiring 1B 1 disposed on the back surface of the base substrate 1.

前記半導体ペレット2は例えば単結晶珪素からなる半導体基板2Bを主体に構成される。半導体基板2Bの主面(素子形成面)には論理回路システム、記憶回路システム、或はそれらの混合回路システムが搭載される。また、半導体基板2Bの主面上には複数の外部端子(ボンディングパッド)2Aが配置される。この外部端子2Aは、半導体基板2Bの主面上に形成された配線層のうち最上層の配線層に形成される。   The semiconductor pellet 2 is mainly composed of a semiconductor substrate 2B made of, for example, single crystal silicon. A logic circuit system, a memory circuit system, or a mixed circuit system thereof is mounted on the main surface (element formation surface) of the semiconductor substrate 2B. A plurality of external terminals (bonding pads) 2A are disposed on the main surface of the semiconductor substrate 2B. The external terminal 2A is formed in the uppermost wiring layer among the wiring layers formed on the main surface of the semiconductor substrate 2B.

前記半導体ペレット2の外部端子2Aはベース基板1の主面に配置された第2電極パッド1Aにボンディングワイヤ6を介して電気的に接続される。つまり、半導体ペレット2の外部端子2Aは、ボンディングワイヤ3、第2電極パッド1A、配線1A、スルーホール配線1C、配線1Bの夫々を介して第1電極パッド1Bに電気的に接続される。 The external terminals 2A of the semiconductor pellet 2 are electrically connected to the second electrode pads 1A disposed on the main surface of the base substrate 1 through bonding wires 6. That is, the external terminal 2A of the semiconductor pellet 2 is electrically connected to the first electrode pad 1B via each of the bonding wire 3, the second electrode pad 1A, the wiring 1A 1 , the through-hole wiring 1C, and the wiring 1B 1. .

前記半導体ペレット2、ボンディングワイヤ6等は、ベース基板1の主面上に形成された樹脂封止体7で封止される。樹脂封止体7はトランスファモール法で形成される。   The semiconductor pellet 2, the bonding wire 6 and the like are sealed with a resin sealing body 7 formed on the main surface of the base substrate 1. The resin sealing body 7 is formed by a transfer molding method.

前記ベース基板1の第1電極パッド1Bの表面上にはバンプ電極4が電気的及び機械的に接続される。バンプ電極4は例えばPb−Sn系の合金材で形成される。   A bump electrode 4 is electrically and mechanically connected to the surface of the first electrode pad 1B of the base substrate 1. The bump electrode 4 is made of, for example, a Pb—Sn alloy material.

このように構成されるBGA構造の半導体装置は実装基板の実装面上に実装され、そのバンプ電極4は実装基板の実装面に配置された電極パッドに電気的及び機械的に接続される。   The semiconductor device having the BGA structure configured as described above is mounted on the mounting surface of the mounting substrate, and the bump electrodes 4 are electrically and mechanically connected to the electrode pads arranged on the mounting surface of the mounting substrate.

また、高い実装密度が得られる半導体装置として、ベース基板をフレキシブル基板で構成した半導体装置が、例えば米国特許第5148265号に開示されている。この半導体装置は、フレキシブル基板で構成されたベース基板の主面のペレット搭載領域上に半導体ペレットをその主面を下にして搭載し、半導体ペレットの主面に配置された外部端子とベース基板の裏面に配置された第2電極パッドとをボンディングワイヤで電気的に接続した構造で構成される。ベース基板の第2電極パッドはその裏面に配置された配線を介してその裏面に配置された第1電極パッドに電気的に接続される。第1電極パッドの表面にはバンプ電極が電気的及び機械的に接続される。   In addition, as a semiconductor device that can obtain a high mounting density, a semiconductor device in which a base substrate is formed of a flexible substrate is disclosed in, for example, US Pat. No. 5,148,265. In this semiconductor device, a semiconductor pellet is mounted on a pellet mounting region on a main surface of a base substrate composed of a flexible substrate with the main surface facing down, and an external terminal and a base substrate disposed on the main surface of the semiconductor pellet are mounted. The second electrode pad disposed on the back surface is electrically connected with a bonding wire. The second electrode pad of the base substrate is electrically connected to the first electrode pad disposed on the back surface via the wiring disposed on the back surface. A bump electrode is electrically and mechanically connected to the surface of the first electrode pad.

このように構成される半導体装置は実装基板の実装面上に実装され、そのバンプ電極は実装基板の実装面に配置された電極パッドに電気的及び機械的に接続される。
米国特許第5148265号 日経マグロウヒル社発行、「日経エレクトロニクス」、1994年、2月28日号、第111頁乃至第117頁
The semiconductor device configured as described above is mounted on the mounting surface of the mounting substrate, and the bump electrodes are electrically and mechanically connected to electrode pads arranged on the mounting surface of the mounting substrate.
US Pat. No. 5,148,265 Published by Nikkei McGraw-Hill, “Nikkei Electronics”, February 28, 1994, pp. 111-117

(1)BGA構造の半導体装置において、図16に示すように、ベース基板1の主面に配置された第2電極パッド1Aは、スルーホール配線1Cを介してベース基板1の裏面に配置された第1電極パッド1Bに電気的に接続される。スルーホール配線1Cは、ベース基板1のスルーホール内に形成されたホール領域と、ベース基板1の主面及び裏面に形成されたランド領域(フリンジ部)とで構成される。スルーホールの内径寸法は例えばφ0.3[mm]程度に設定され、スルーホール配線1Cのランド領域の外径寸法は例えばφ0.6[mm]程度に設定される。このスルーホールの内径寸法及びスルーホール配線1Cのランド領域の外径寸法は、第2電極パッド1Aとスルーホール配線1Cとを電気的に接続する配線1Aの配線幅及び第1電極パッド1Bとスルーホール配線1Cとを電気的に接続する配線1Bの配線幅に比べて大きく構成される。 (1) In the semiconductor device having the BGA structure, as shown in FIG. 16, the second electrode pad 1A disposed on the main surface of the base substrate 1 is disposed on the back surface of the base substrate 1 through the through-hole wiring 1C. It is electrically connected to the first electrode pad 1B. The through-hole wiring 1 </ b> C includes a hole region formed in the through-hole of the base substrate 1 and land regions (fringe portions) formed on the main surface and the back surface of the base substrate 1. The inner diameter dimension of the through hole is set to, for example, about φ0.3 [mm], and the outer diameter dimension of the land region of the through-hole wiring 1C is set to, for example, about φ0.6 [mm]. The inner diameter dimension of the through hole and the outer diameter dimension of the land area of the through hole wiring 1C are the wiring width of the wiring 1A 1 that electrically connects the second electrode pad 1A and the through hole wiring 1C, and the first electrode pad 1B. It is configured to be larger than the wiring width of the wiring 1B 1 that electrically connects the through-hole wiring 1C.

一方、半導体ペレット2に搭載される回路システムは高集積化の傾向にあり、この回路システムの高集積化に伴って半導体ペレット2の外部端子2Aの数及びベース基板1の第2電極パッド1Aの数は増加する。つまり、回路システムの高集積化に伴い、第2電極パッド1Aと第1電極パッド1Bとを電気的に接続するスルーホール配線1Cの数は増加する。このため、スルーホール配線1Cの数に相当する分、ベース基板1の外形サイズが増加し、半導体装置が大型化する問題があった。
(2)BGA構造の半導体装置において、スルーホール配線1Cの増加に伴い、スルーホール配線1Cは半導体ペレット2からその外側に向って遠い位置に配置される。このため、第2電極パッド1Aとスルーホール配線1Cとを電気的に接続する配線1Aの長さ及び第1電極パッド1Bとスルーホール配線1Cとを電気的に接続する配線1Bの長さが長くなるので、インダクタンスが増加し、半導体装置の動作速度が低下するという問題があった。
(3)ベース基板をフレキシブル基板で構成した半導体装置において、フレキシブル基板は、例えばポリエステルフィルム、ポリイミドフィルムで構成される。このフレキシブル基板は、ガラス繊維にエポキシ樹脂、ポリイミド樹脂等を含浸させたリジット基板に比べてヤング率が低く軟らかい(硬度が低い)。このため、半導体ペレットの主面に配置された外部端子とベース基板の裏面に配置された第2電極パッドとをボンディングワイヤで電気的に接続する際、第2電極パッドに加えるボンディング荷重がベース基板に吸収されてしまい、ボンディング荷重、超音波振動が第2電極パッドに有効に伝わらず、ボンディングワイヤと第2電極パッドとの接続強度が低下し、ボンディングワイヤの接続不良が発生し、半導体装置の電気的信頼性が低下するという問題があった。
(4)ベース基板をフレキシブル基板で構成した半導体装置において、フレキシブル基板は、リジット基板に比べて平面方向の熱膨張係数が大きく、更にヤング率が低く曲がりやすい(剛性が小さい)。このため、実装基板の実装面上に半導体装置を実装する際、実装時のリフロー熱でベース基板に反り、ねじれ等の変形が生じ、実装基板の実装面に対するベース基板の裏面の平坦度が低下し、半導体装置の実装精度が低下するという問題があった。
On the other hand, the circuit system mounted on the semiconductor pellet 2 tends to be highly integrated. As the circuit system is highly integrated, the number of external terminals 2A of the semiconductor pellet 2 and the number of second electrode pads 1A of the base substrate 1 are increased. The number increases. That is, as the circuit system is highly integrated, the number of through-hole wirings 1C that electrically connect the second electrode pads 1A and the first electrode pads 1B increases. For this reason, there is a problem in that the outer size of the base substrate 1 is increased by an amount corresponding to the number of through-hole wirings 1C, and the semiconductor device is increased in size.
(2) In the semiconductor device having the BGA structure, the through-hole wiring 1C is arranged at a position farther from the semiconductor pellet 2 toward the outside thereof as the through-hole wiring 1C increases. For this reason, the length of the wiring 1A 1 that electrically connects the second electrode pad 1A and the through-hole wiring 1C and the length of the wiring 1B 1 that electrically connects the first electrode pad 1B and the through-hole wiring 1C. Therefore, there is a problem that the inductance increases and the operation speed of the semiconductor device decreases.
(3) In the semiconductor device in which the base substrate is configured by a flexible substrate, the flexible substrate is configured by, for example, a polyester film or a polyimide film. This flexible substrate has a lower Young's modulus and is softer (lower hardness) than a rigid substrate in which glass fiber is impregnated with epoxy resin, polyimide resin, or the like. Therefore, when the external terminals arranged on the main surface of the semiconductor pellet and the second electrode pads arranged on the back surface of the base substrate are electrically connected with bonding wires, the bonding load applied to the second electrode pads is The bonding load and the ultrasonic vibration are not effectively transmitted to the second electrode pad, the connection strength between the bonding wire and the second electrode pad is lowered, and the bonding wire connection failure occurs. There was a problem that the electrical reliability decreased.
(4) In a semiconductor device in which a base substrate is formed of a flexible substrate, the flexible substrate has a larger coefficient of thermal expansion in the planar direction than a rigid substrate, and has a low Young's modulus and is easily bent (small rigidity). For this reason, when mounting a semiconductor device on the mounting surface of the mounting substrate, the reflow heat during mounting warps the base substrate, causing deformation such as torsion, and the flatness of the back surface of the base substrate with respect to the mounting surface of the mounting substrate decreases. However, there is a problem that the mounting accuracy of the semiconductor device is lowered.

本発明の目的は、半導体装置の小型化を図ることが可能な技術を提供することにある。   An object of the present invention is to provide a technique capable of reducing the size of a semiconductor device.

本発明の他の目的は、前記半導体装置の動作速度の高速化を図ることが可能な技術を提供することにある。   Another object of the present invention is to provide a technique capable of increasing the operating speed of the semiconductor device.

本発明の他の目的は、半導体装置の電気的信頼性を高めることが可能な技術を提供することにある。   Another object of the present invention is to provide a technique capable of improving the electrical reliability of a semiconductor device.

本発明の他の目的は、半導体装置の実装精度を高めることが可能な技術を提供することにある。   Another object of the present invention is to provide a technique capable of increasing the mounting accuracy of a semiconductor device.

本発明の他の目的は、前記目的を達成する半導体装置の製造技術を提供することにある。   Another object of the present invention is to provide a semiconductor device manufacturing technique that achieves the above object.

本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述及び添付図面によって明らかになるであろう。   The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.

本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、下記のとおりである。   Of the inventions disclosed in this application, the outline of typical ones will be briefly described as follows.

本発明の半導体装置は、第1主面、前記第1主面とは反対側の第2主面、前記第1主面から前記第2主面に貫通する複数のスリット、及び前記第2主面上に形成された複数の電極パッドを有するベース基板と、複数の外部端子が形成された主面を有し、前記主面が前記ベース基板の前記第1主面と対向し、かつ、前記複数の外部端子が前記複数のスリットの内側にそれぞれ平面的に位置し、かつ、前記複数のスリットのそれぞれの一部が前記主面の外側に平面的に位置するように、前記ベース基板の前記第1主面上に搭載された半導体ペレットと、前記半導体ペレットの前記複数の外部端子と前記ベース基板の前記複数の電極パッドとを、それぞれ電気的に接続する複数のボンディングワイヤと、前記ベース基板の前記第1主面及び前記第2主面のそれぞれを覆うように前記ベース基板の前記第1主面及び前記第2主面の両側に形成され、前記複数の電極パッド、前記複数の外部端子及び前記複数のボンディングワイヤを封止する樹脂封止体と、前記ベース基板の前記第2主面上に形成され、前記複数の電極パッドとそれぞれ電気的に接続された複数のバンプ電極と、を含むものである。   The semiconductor device of the present invention includes a first main surface, a second main surface opposite to the first main surface, a plurality of slits penetrating from the first main surface to the second main surface, and the second main surface. A base substrate having a plurality of electrode pads formed on the surface, a main surface on which a plurality of external terminals are formed, the main surface facing the first main surface of the base substrate, and The plurality of external terminals are planarly located inside the plurality of slits, respectively, and a part of each of the plurality of slits is planarly located outside the main surface. A semiconductor pellet mounted on the first main surface; a plurality of bonding wires that electrically connect the plurality of external terminals of the semiconductor pellet and the plurality of electrode pads of the base substrate; and the base substrate The first main surface and the second main surface Resin that is formed on both sides of the first main surface and the second main surface of the base substrate so as to cover each of the surfaces, and seals the plurality of electrode pads, the plurality of external terminals, and the plurality of bonding wires A sealing body and a plurality of bump electrodes formed on the second main surface of the base substrate and electrically connected to the plurality of electrode pads, respectively.

また、本発明の半導体装置の製造方法は、主面に回路システムと複数の外部端子を有する半導体ペレットを準備する工程と、第1主面及び前記第1主面とは反対側の第2主面と、前記第1主面から前記第2主面に貫通するスリットを有し、前記第2主面上に複数の電極パッドを有するベース基板を準備する工程と、前記半導体ペレットを前記ベース基板上に搭載する工程であって、前記半導体ペレットの主面が前記ベース基板の前記第1主面に向かい合い、かつ、前記複数の外部端子が前記スリットの内側に平面的に位置し、かつ、前記スリットの一部の領域が前記半導体ペレットの外側に平面的に位置するように前記半導体ペレットを前記ベース基板上に搭載する工程と、前記半導体ペレットの前記複数の外部端子と前記ベース基板の前記複数の電極パッドとを複数のボンディングワイヤで各々接続する工程と、前記ベース基板の前記第1主面及び前記第2主面の両側に、前記スリットを介して互いに連続した樹脂封止体を形成する工程であって、前記複数のボンディングワイヤを封止する樹脂封止体を形成する工程と、前記ベース基板の前記第2主面上に、前記複数の電極パッドと各々電気的に接続された複数のバンプ電極を形成する工程と、備えたものである。   The method of manufacturing a semiconductor device according to the present invention includes a step of preparing a semiconductor pellet having a circuit system and a plurality of external terminals on a main surface, and a second main surface opposite to the first main surface and the first main surface. A base substrate having a surface and a slit penetrating from the first main surface to the second main surface and having a plurality of electrode pads on the second main surface; A main surface of the semiconductor pellet is opposed to the first main surface of the base substrate, and the plurality of external terminals are planarly located inside the slit, and Mounting the semiconductor pellet on the base substrate such that a partial region of the slit is planarly positioned outside the semiconductor pellet, the plurality of external terminals of the semiconductor pellet, and the base substrate Connecting a plurality of electrode pads with a plurality of bonding wires, and forming a resin sealing body that is continuous with each other through the slits on both sides of the first main surface and the second main surface of the base substrate A step of forming a resin sealing body that seals the plurality of bonding wires, and the plurality of electrode pads are electrically connected to the second main surface of the base substrate, respectively. And a step of forming a plurality of bump electrodes.

上述した手段によれば、半導体ペレットの外部端子とベース基板の第1電極パッドとをボンディングワイヤ、第2電極パッドの夫々を介して電気的に接続することができるので、第2電極パッドと第1電極パッドとを電気的に接続するスルーホール配線を廃止することができる。この結果、スルーホール配線の占有面積(ランド領域の面積)に相当する分、ベース基板の外形サイズを縮小することができるので、半導体装置の小型化を図ることができる。   According to the above-described means, the external terminal of the semiconductor pellet and the first electrode pad of the base substrate can be electrically connected through the bonding wire and the second electrode pad, respectively. A through-hole wiring that electrically connects one electrode pad can be eliminated. As a result, the outer size of the base substrate can be reduced by an amount corresponding to the area occupied by the through-hole wiring (area of the land region), so that the semiconductor device can be reduced in size.

また、スルーホール配線の占有面積に相当する分、第1電極パッドを第2電極パッドに近づけることができるので、第2電極パッドと第1電極パッドとを電気的に接続するベース基板の配線の長さを短くすることができる。この結果、インダクタンスを低減することができるので、半導体装置の動作速度の高速化を図ることができる。   Further, since the first electrode pad can be brought close to the second electrode pad by an amount corresponding to the occupied area of the through-hole wiring, the wiring of the base substrate that electrically connects the second electrode pad and the first electrode pad can be obtained. The length can be shortened. As a result, the inductance can be reduced, so that the operation speed of the semiconductor device can be increased.

また、リジット基板はフレキシブル基板に比べてヤング率が高く硬いので、半導体ペレットの主面に配置された外部端子とベース基板の裏面に配置された第2電極パッドとをボンディングワイヤで電気的に接続する際、第2電極パッドに加えるボンディング荷重がベース基板に吸収されず、ボンディング荷重、超音波振動が第2電極パッドに有効に伝わる。この結果、ボンディングワイヤと第2電極パッドとの接続強度を高めることができるので、ボンディングワイヤの接続不良を防止でき、半導体装置の電気的信頼性を高めることができる。   In addition, the rigid substrate has a higher Young's modulus and is harder than the flexible substrate, so that the external terminals arranged on the main surface of the semiconductor pellet and the second electrode pads arranged on the back surface of the base substrate are electrically connected by a bonding wire. In this case, the bonding load applied to the second electrode pad is not absorbed by the base substrate, and the bonding load and ultrasonic vibration are effectively transmitted to the second electrode pad. As a result, since the connection strength between the bonding wire and the second electrode pad can be increased, a bonding wire connection failure can be prevented, and the electrical reliability of the semiconductor device can be increased.

また、リジット基板はフレキシブル基板に比べて平面方向の熱膨張係数が小さく、更にヤング率が高く曲がりにくいので、実装基板の実装面上に半導体装置を実装する際、実装時のリフロー熱によるベース基板の変形(反り、ねじれ等)を防止することができる。この結果、実装基板の実装面に対するベース基板の裏面の平坦度を確保することができるので、半導体装置の実装精度を高めることができる。   In addition, the rigid substrate has a smaller coefficient of thermal expansion in the plane direction than the flexible substrate, and has a high Young's modulus and is difficult to bend. Therefore, when mounting a semiconductor device on the mounting surface of the mounting substrate, the base substrate due to reflow heat during mounting Deformation (warping, twisting, etc.) can be prevented. As a result, since the flatness of the back surface of the base substrate with respect to the mounting surface of the mounting substrate can be ensured, the mounting accuracy of the semiconductor device can be increased.

上述した手段によれば、半導体ペレットの外部端子とベース基板の第1電極パッドとをボンディングワイヤ、第2電極パッドの夫々を介して電気的に接続するので、第2電極パッドと第1電極パッドとを電気的に接続するスルーホール配線が廃止され、このスルーホール配線の占有面積に相当する分、外形サイズが縮小されたベース基板を使用することができる。この結果、外形サイズの小さい半導体装置を製造することができる。   According to the above-described means, the external terminal of the semiconductor pellet and the first electrode pad of the base substrate are electrically connected via the bonding wire and the second electrode pad, so the second electrode pad and the first electrode pad The through-hole wiring that electrically connects the through-hole wiring is abolished, and it is possible to use a base substrate whose outer size is reduced by an amount corresponding to the occupied area of the through-hole wiring. As a result, a semiconductor device with a small outer size can be manufactured.

また、半導体ペレットの外部端子とベース基板の第1電極パッドとをボンディングワイヤ、第2電極パッドの夫々を介して電気的に接続するので、第2電極パッドと第1電極パッドとを電気的に接続するスルーホール配線が廃止され、このスルーホール配線の占有面積に相当する分、第2電極パッドと第1電極パッドとを電気的に接続する配線の長さが短いベース基板を使用することができる。この結果、動作速度が速い半導体装置を製造することができる。   In addition, since the external terminal of the semiconductor pellet and the first electrode pad of the base substrate are electrically connected via the bonding wire and the second electrode pad, the second electrode pad and the first electrode pad are electrically connected. The through-hole wiring to be connected is abolished, and a base substrate having a short wiring length for electrically connecting the second electrode pad and the first electrode pad can be used corresponding to the occupied area of the through-hole wiring. it can. As a result, a semiconductor device having a high operating speed can be manufactured.

フレキシブル基板に比べてヤング率が高く硬いリジット基板で構成されたベース基板を使用しているので、半導体ペレットの主面に配置された外部端子とベース基板の裏面に配置された第2電極パッドとをボンディングワイヤで電気的に接続する際、第2電極パッドに加えるボンディング荷重がベース基板に吸収されず、ボンディング荷重、超音波振動が第2電極パッドに有効に伝わる。この結果、ボンディングワイヤと第2電極パッドとの接続強度を高めることができるので、電気的信頼性の高い半導体装置を製造することができる。   Since a base substrate made of a rigid substrate having a higher Young's modulus than that of the flexible substrate is used, an external terminal disposed on the main surface of the semiconductor pellet and a second electrode pad disposed on the back surface of the base substrate Is electrically connected with the bonding wire, the bonding load applied to the second electrode pad is not absorbed by the base substrate, and the bonding load and ultrasonic vibration are effectively transmitted to the second electrode pad. As a result, since the connection strength between the bonding wire and the second electrode pad can be increased, a semiconductor device with high electrical reliability can be manufactured.

また、フレキシブル基板に比べて平面方向の熱膨張係数が小さく、更にヤング率が高く曲がりにくいリジット基板で構成されたベース基板を使用しているので、実装基板の実装面上に半導体装置を実装する際、実装時のリフロー熱によるベース基板の変形(反り、ねじれ等)を防止することができる。この結果、実装基板の実装面に対するベース基板の裏面の平坦度を確保することができるので、実装精度の高い半導体装置を製造することができる。   Also, since the base substrate is made of a rigid substrate that has a smaller coefficient of thermal expansion in the planar direction than a flexible substrate, and has a high Young's modulus and is difficult to bend, a semiconductor device is mounted on the mounting surface of the mounting substrate. At this time, deformation (warping, twisting, etc.) of the base substrate due to reflow heat during mounting can be prevented. As a result, since the flatness of the back surface of the base substrate with respect to the mounting surface of the mounting substrate can be ensured, a semiconductor device with high mounting accuracy can be manufactured.

本願において開示される発明のうち代表的なものによって得られる効果を簡単に説明すれば、下記のとおりである。   The effects obtained by the representative ones of the inventions disclosed in the present application will be briefly described as follows.

ベース基板の主面のペレット搭載面上に半導体ペレットが搭載され、前記半導体ペレットの主面に配置された外部端子に前記ベース基板の裏面に配置された第1電極パッドが電気的に接続される半導体装置の小型化を図ることができる。   A semiconductor pellet is mounted on the pellet mounting surface of the main surface of the base substrate, and a first electrode pad disposed on the back surface of the base substrate is electrically connected to an external terminal disposed on the main surface of the semiconductor pellet. The semiconductor device can be reduced in size.

また、前記半導体装置の動作速度の高速化を図ることができる。   In addition, the operation speed of the semiconductor device can be increased.

また、前記半導体装置の電気的信頼性を高めることができる。   In addition, the electrical reliability of the semiconductor device can be improved.

また、前記半導体装置の実装精度を高めることができる。   In addition, the mounting accuracy of the semiconductor device can be increased.

以下、本発明の構成について、BGA構造を採用する半導体装置に本発明を適用した実施例とともに説明する。   The configuration of the present invention will be described below together with an embodiment in which the present invention is applied to a semiconductor device adopting a BGA structure.

なお、実施例を説明するための全図において、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。   In all the drawings for explaining the embodiments, parts having the same functions are given the same reference numerals, and repeated explanation thereof is omitted.

(実施例1)
本発明の実施例1であるBGA構造を採用する半導体装置の概略構成を図1(主面側の平面図)、図2(図1に示すA−A線の位置で切った断面図)、図3(図2の要部拡大断面図)及び図4(裏面側の樹脂封止体を除去した状態を示す裏面側の要部拡大平面図)に示す。
Example 1
FIG. 1 (plan view on the main surface side), FIG. 2 (cross-sectional view taken along the line AA shown in FIG. 1) of the schematic configuration of the semiconductor device adopting the BGA structure which is Embodiment 1 of the present invention, FIG. 3 (enlarged cross-sectional view of the main part of FIG. 2) and FIG. 4 (enlarged plan view of the main part on the back side showing the state where the resin sealing body on the back side is removed) are shown.

図1、図2、図3及図4に示すように、半導体装置は、ベース基板1の主面のペレット搭載領域上に半導体ペレット2を搭載し、ベース基板1の主面と対向するその裏面側に複数のバンプ電極4を格子状に配置する。   As shown in FIGS. 1, 2, 3, and 4, the semiconductor device has the semiconductor pellet 2 mounted on the pellet mounting region on the main surface of the base substrate 1, and its back surface facing the main surface of the base substrate 1. A plurality of bump electrodes 4 are arranged in a grid pattern on the side.

前記ベース基板1は、例えばプリント配線基板で構成される。プリント配線基板は、ガラス繊維に例えばエポキシ樹脂、ポリイミド樹脂、マレイミド樹脂等を含浸させたリジット基板の表面に配線を形成した構造で構成される。つまり、ベース基板1はリジット基板で構成される。リジット基板は、ポリエステルフィルム、ポリイミドフィルム等からなるフレキシブル基板に比べてヤング率が高く硬い。また、リジット基板は、フレキシブル基板に比べて平面方向の熱膨張係数が小さく、更にヤング率が高く曲がりにくい。例えば、ガラス繊維にエポキシ樹脂又はポリイミド樹脂を含浸させたリジット基板は、16〜22
[GPa]程度のヤング率を有し、10〜20×10-6[1/℃]程度の熱膨張係数を有する。なお、ポリエステルフィルム又はポリイミドフィルムからなるフレキシブル基板は、2〜5[GPa]程度のヤング率を有し、20〜25×10-6[1/℃]程度の熱膨張係数を有する。
The base substrate 1 is composed of, for example, a printed wiring board. The printed wiring board has a structure in which wiring is formed on the surface of a rigid board in which glass fiber is impregnated with, for example, epoxy resin, polyimide resin, maleimide resin or the like. That is, the base substrate 1 is constituted by a rigid substrate. A rigid substrate has a high Young's modulus and is harder than a flexible substrate made of a polyester film, a polyimide film, or the like. In addition, the rigid substrate has a smaller coefficient of thermal expansion in the plane direction than the flexible substrate, and has a higher Young's modulus and is difficult to bend. For example, a rigid substrate in which glass fiber is impregnated with epoxy resin or polyimide resin is 16-22.
It has a Young's modulus of about [GPa] and a thermal expansion coefficient of about 10 to 20 × 10 −6 [1 / ° C.]. In addition, the flexible substrate which consists of a polyester film or a polyimide film has a Young's modulus of about 2-5 [GPa], and has a thermal expansion coefficient of about 20-25 × 10 −6 [1 / ° C.].

前記ベース基板1の裏面には複数の第2電極パッド1A及び複数の第1電極パッド1Bが配置される。この第2電極パッド1A、第1電極パッド1Bの夫々は、ベース基板1の裏面に配置された配線1Bを介して電気的に接続される。第2電極パッド1A、第1電極パッド1B、配線1Bの夫々は例えばCu膜で形成される。 A plurality of second electrode pads 1 </ b> A and a plurality of first electrode pads 1 </ b> B are disposed on the back surface of the base substrate 1. The second electrode pad 1A, Each of the first electrode pads 1B, are electrically connected through a wiring 1B 1 disposed on the rear surface of the base substrate 1. Each of the second electrode pad 1A, the first electrode pad 1B, and the wiring 1B 1 is formed of, for example, a Cu film.

前記第1電極パッド1Bの表面には、バンプ電極4が電気的及び機械的に接続される。   A bump electrode 4 is electrically and mechanically connected to the surface of the first electrode pad 1B.

このバンプ電極4は例えばPb−Sn系の合金材で形成される。   The bump electrode 4 is made of, for example, a Pb—Sn alloy material.

前記半導体ペレット2は、その主面(図2、図3において下面)を下にしてベース基板1の主面のペレット搭載領域上に搭載される。つまり、半導体ペレット2は、ベース基板1の主面のペレット搭載領域上にフェースダウン方式で搭載される。半導体ペレット2の主面とベース基板1の主面のペレット搭載領域との間には絶縁層3が介在される。絶縁層3は例えばポリイミド系、エポキシ系又はシリコン系の低弾性樹脂で形成される。   The semiconductor pellet 2 is mounted on the pellet mounting region of the main surface of the base substrate 1 with its main surface (the lower surface in FIGS. 2 and 3) facing down. That is, the semiconductor pellet 2 is mounted on the pellet mounting region on the main surface of the base substrate 1 by a face-down method. An insulating layer 3 is interposed between the main surface of the semiconductor pellet 2 and the pellet mounting region on the main surface of the base substrate 1. The insulating layer 3 is formed of, for example, a polyimide, epoxy, or silicon low elastic resin.

前記半導体ペレット2は例えば平面が方形状に形成される。この半導体ペレット2は例えば単結晶珪素からなる半導体基板1Bを主体に構成される。半導体基板1Bの主面(素子形成面)には論理回路システム、記憶回路システム、或はそれらの混合回路システムが搭載される。また、半導体基板1Bの主面上には、方形状の各辺に沿って配列された複数の外部端子(ボンディングパッド)2Aが配置される。この外部端子2Aは、半導体基板2Bの主面上に形成された配線層のうち、最上層の配線層に形成される。つまり、半導体ペレット2の主面の外周囲には複数の外部端子2Aが各辺毎に配置される。   For example, the semiconductor pellet 2 is formed in a rectangular plane. The semiconductor pellet 2 is mainly composed of a semiconductor substrate 1B made of, for example, single crystal silicon. A logic circuit system, a memory circuit system, or a mixed circuit system thereof is mounted on the main surface (element formation surface) of the semiconductor substrate 1B. In addition, a plurality of external terminals (bonding pads) 2A arranged along each side of the rectangular shape are disposed on the main surface of the semiconductor substrate 1B. The external terminal 2A is formed in the uppermost wiring layer among the wiring layers formed on the main surface of the semiconductor substrate 2B. That is, a plurality of external terminals 2 </ b> A are arranged for each side on the outer periphery of the main surface of the semiconductor pellet 2.

前記半導体ペレット2の外部端子2Aと前記ベース基板1の第2電極パッド1Aとは、ベース基板1に形成されたスリット5を通してボンディングワイヤ6で電気的に接続される。ボンディングワイヤ6は、例えば金(Au)ワイヤ、銅(Cu)ワイヤ、アルミニウム(Al)ワイヤ、或は金属ワイヤの表面に絶縁性樹脂を被覆した被覆ワイヤ等で形成される。このボンディングワイヤ6は、例えば熱圧着に超音波振動を併用したボンディング法でボンディングされる。   The external terminal 2A of the semiconductor pellet 2 and the second electrode pad 1A of the base substrate 1 are electrically connected by a bonding wire 6 through a slit 5 formed in the base substrate 1. The bonding wire 6 is formed of, for example, a gold (Au) wire, a copper (Cu) wire, an aluminum (Al) wire, or a coated wire in which an insulating resin is coated on the surface of a metal wire. The bonding wire 6 is bonded by, for example, a bonding method in which ultrasonic vibration is used in combination with thermocompression bonding.

前記ベース基板1のスリット5は、半導体ペレット2の主面にその一辺に沿って複数配列された外部端子2Aの配列方向に沿って形成され、半導体ペレット2の各辺毎に配置される。つまり、本実施例のベース基板1は4本のスリット5を配置する。この4本のスリット5の夫々は半導体ペレット2の外部端子2A上に配置される。   The slits 5 of the base substrate 1 are formed along the arrangement direction of the external terminals 2 </ b> A arranged along the one side of the main surface of the semiconductor pellet 2, and are arranged for each side of the semiconductor pellet 2. That is, the base substrate 1 of the present embodiment is provided with four slits 5. Each of the four slits 5 is disposed on the external terminal 2 </ b> A of the semiconductor pellet 2.

前記ベース基板1の第2電極パッド1Aは、スリット5で仕切られたベース基板1の裏面の両脇の夫々の領域に配置される。スリット5で仕切られたベース基板1の裏面の一方の領域(半導体ペレット2に対して内側の領域)に配置される第2電極パッド1Aには電源として例えば動作電位(例えば3.3[V])、基準電位(例えば0V[V])等が印加される。スリット5で仕切られたベース基板1の裏面の他方の領域(半導体ペレット2に対して外側の領域)に配置される第2電極パッド1Aには信号として例えば入出力信号、制御信号等が印加される。   The second electrode pads 1 </ b> A of the base substrate 1 are disposed in respective regions on both sides of the back surface of the base substrate 1 partitioned by the slits 5. For example, an operating potential (for example, 3.3 [V]) is used as a power source for the second electrode pad 1A disposed in one region on the back surface of the base substrate 1 partitioned by the slit 5 (region inside the semiconductor pellet 2). ), A reference potential (for example, 0 V [V]) or the like is applied. For example, an input / output signal, a control signal, or the like is applied as a signal to the second electrode pad 1A disposed in the other region on the back surface of the base substrate 1 partitioned by the slit 5 (region outside the semiconductor pellet 2). The

前記半導体ペレット2において、外部端子2Aは半導体ペレット2の一辺に対して例えば100個ずつ配列され、その配列ピッチは例えば100[μm]程度に設定される。この外部端子2Aの数は、半導体ペレット2に搭載される回路システムの高集積化や動作速度の高速化に伴って増加される。   In the semiconductor pellet 2, for example, 100 external terminals 2A are arranged with respect to one side of the semiconductor pellet 2, and the arrangement pitch is set to about 100 [μm], for example. The number of external terminals 2A is increased as the circuit system mounted on the semiconductor pellet 2 is highly integrated and the operation speed is increased.

前記ベース基板1において、スリット5で仕切られたベース基板1の裏面の一方の領域に配置される第2電極パッド1Aは半導体ペレット2の一辺に対して例えば50個ずつ配列され、スリット5で仕切られたベース基板1の裏面の他方の領域に配置される第2電極パッド1Aは半導体ペレット2の一辺に対して例えば50個ずつ配列される。この第2電極パッド1Aは半導体ペレット2の外部端子2Aと同様に微細化することができないので、その配列ピッチは外部端子2Aの配列ピッチに比べて広く構成され、例えば200[μm]程度に設定される。つまり、ベース基板1の第2電極パッド1Aは半導体ペレット2の一辺に対して2列で配置されているので、ベース基板1の第2電極パッド1Aの配列ピッチを半導体ペレット2の外部端子2Aの配列ピッチに対して2倍に設定しても、半導体ペレット2の一辺に対する第2電極パッド1Aのパッド配列の長さを半導体ペレット2の一辺に配列された外部端子2Aの端子配列の長さとほぼ同一にすることができると共に、半導体ペレット2の外部端子2Aと対向する位置にベース基板1の第2電極パッド1Aを配置することができる。   In the base substrate 1, for example, 50 second electrode pads 1 </ b> A arranged in one region on the back surface of the base substrate 1 partitioned by the slit 5 are arranged with respect to one side of the semiconductor pellet 2. For example, 50 second electrode pads 1 </ b> A arranged in the other region of the back surface of the base substrate 1 are arranged with respect to one side of the semiconductor pellet 2. Since the second electrode pad 1A cannot be miniaturized similarly to the external terminal 2A of the semiconductor pellet 2, the arrangement pitch thereof is wider than the arrangement pitch of the external terminal 2A, and is set to, for example, about 200 [μm]. Is done. That is, since the second electrode pads 1A of the base substrate 1 are arranged in two rows with respect to one side of the semiconductor pellet 2, the arrangement pitch of the second electrode pads 1A of the base substrate 1 is set to the external terminal 2A of the semiconductor pellet 2. Even if it is set to be twice the arrangement pitch, the length of the pad arrangement of the second electrode pad 1A with respect to one side of the semiconductor pellet 2 is almost equal to the length of the terminal arrangement of the external terminals 2A arranged on one side of the semiconductor pellet 2. While being able to make it the same, the 2nd electrode pad 1A of the base substrate 1 can be arrange | positioned in the position facing the external terminal 2A of the semiconductor pellet 2. FIG.

前記ベース基板1の主面のペレット搭載領域を除くその周辺領域上は樹脂封止体7で覆われ、前記ボンディングワイヤ6は樹脂封止体7で封止される。つまり、樹脂封止体7はベース基板1の主面側及びその裏面側に形成される。樹脂封止体7は、低応力化を図る目的として、フェノール系硬化剤、シリコーンゴム及びフィラーが添加されたエポキシ系の樹脂7Aで形成される。   The peripheral region except the pellet mounting region on the main surface of the base substrate 1 is covered with a resin sealing body 7, and the bonding wire 6 is sealed with the resin sealing body 7. That is, the resin sealing body 7 is formed on the main surface side and the back surface side of the base substrate 1. The resin sealing body 7 is formed of an epoxy resin 7A to which a phenolic curing agent, silicone rubber, and filler are added for the purpose of reducing stress.

前記半導体ペレット2の主面と対向するその裏面はベース基板1の周辺領域上を覆う樹脂封止体7から露出される。   The back surface opposite to the main surface of the semiconductor pellet 2 is exposed from the resin sealing body 7 covering the peripheral region of the base substrate 1.

前記樹脂封止体7は、図5(要部断面図)に示す成形金型10を用いたトランスファモールド法で形成される。成形金型10は、上型10Aと下型10Bとで形成されるキャビティ11及びこのキャビティ11に連結される流入ゲート13を備え、更に、図示していないが、ポット、ランナーの夫々を備えている。ポットはランナー、流入ゲート13の夫々を通してキャビティ11に連結される。   The resin sealing body 7 is formed by a transfer molding method using a molding die 10 shown in FIG. The molding die 10 includes a cavity 11 formed by an upper mold 10A and a lower mold 10B, and an inflow gate 13 connected to the cavity 11, and further includes a pot and a runner, which are not shown. Yes. The pot is connected to the cavity 11 through the runner and the inflow gate 13.

前記キャビティ11は上型10Aに形成された凹部11Aと下型10Bに形成された凹部11Bとで構成される。凹部11Aにはポットからランナー、流入ゲート13の夫々を通して樹脂(7A)が供給される。凹部11Bにはベース基板1が装着される。   The cavity 11 includes a recess 11A formed in the upper mold 10A and a recess 11B formed in the lower mold 10B. Resin (7A) is supplied from the pot to the recess 11A through the runner and the inflow gate 13 respectively. The base substrate 1 is mounted in the recess 11B.

前記凹部11Bには凹部12が形成される。凹部12は、凹部11Bに装着されたベース基板1のスリット5と対向する位置に配置され、スリット5の延在方向に沿って形成される。凹部12には、半導体ペレット2の外部端子(2A)とベース基板1の第2電極パッド(1A)とを電気的に接続したボンディングワイヤ(6)の一部及びベース基板1の第2電極パッド(1A)が配置され、凹部11Aからベース基板1のスリット5を通して樹脂(7A)が供給される。   A recess 12 is formed in the recess 11B. The recess 12 is disposed at a position facing the slit 5 of the base substrate 1 mounted in the recess 11 </ b> B, and is formed along the extending direction of the slit 5. In the recess 12, a part of the bonding wire (6) that electrically connects the external terminal (2 A) of the semiconductor pellet 2 and the second electrode pad (1 A) of the base substrate 1 and the second electrode pad of the base substrate 1 (1A) is disposed, and the resin (7A) is supplied from the recess 11A through the slit 5 of the base substrate 1.

前記凹部12には、図示していないが、気泡の巻き込みによるボイドの発生を防止する目的として、ガス抜き孔が設けられる。   Although not shown, the recess 12 is provided with a vent hole for the purpose of preventing generation of voids due to entrainment of bubbles.

次に、前記半導体装置の製造方法について、図6乃至図9を用いて説明する。   Next, a method for manufacturing the semiconductor device will be described with reference to FIGS.

まず、リジット基板で構成されたベース基板1を用意する。ベース基板1にはスリット5が形成され、その裏面には第2電極パッド(1A)、第1電極パッド(1B)、配線(1B)の夫々が配置される。 First, a base substrate 1 composed of a rigid substrate is prepared. A slit 5 is formed in the base substrate 1, and the second electrode pad (1A), the first electrode pad (1B), and the wiring (1B 1 ) are arranged on the back surface thereof.

次に、図6(断面図)に示すように、前記ベース基板1の主面のペレット搭載領域上に半導体ペレット2を搭載する。半導体ペレット2はベース基板1の主面のペレット搭載領域上に絶縁層3を介在して固着される。   Next, as shown in FIG. 6 (cross-sectional view), the semiconductor pellet 2 is mounted on the pellet mounting region on the main surface of the base substrate 1. The semiconductor pellet 2 is fixed on the pellet mounting region on the main surface of the base substrate 1 with an insulating layer 3 interposed.

次に、ボンディングステージ(ヒートブロック)14上に前記半導体ペレット2を下にして前記ベース基板1を装着する。ボンディングステージ14には、半導体ペレット2を収納する凹部14Aが形成される。ベース基板1、半導体ペレット2の夫々はボンディングステージ14で200[℃]前後に加熱される。   Next, the base substrate 1 is mounted on the bonding stage (heat block) 14 with the semiconductor pellet 2 facing down. The bonding stage 14 is formed with a recess 14 </ b> A for housing the semiconductor pellet 2. Each of the base substrate 1 and the semiconductor pellet 2 is heated to about 200 [° C.] on the bonding stage 14.

次に、図7(要部断面図)に示すように、前記半導体ペレット2の主面に配置された外部端子2Aと前記ベース基板1の裏面に配置された第2電極パッド(1A)とをボンディングワイヤ6で電気的に接続する。ボンディングワイヤ6は、ベース基板1のスリット5を通して、半導体ペレット2の外部端子2A、ベース基板1の第2電極パッド(1A)の夫々に接続される。ボンディングワイヤ6の接続は、熱圧着に超音波振動を併用したボンディング法で行なわれる。この工程において、ベース基板1はフレキシブル基板に比べてヤング率が高く硬いリジット基板で構成されているので、第2電極パッド(1A)に加えるボンディング荷重がベース基板1に吸収されず、ボンディング荷重及び超音波振動を第2電極パッド(1A)に有効に伝えることができる。また、ベース基板1はフレキシブル基板に比べて平面方向の熱膨張係数が小さく、更にヤング率が高く曲がりにくいリジット基板で構成されているので、ベース基板1の熱膨張による第2電極パッド(1A)の位置及び半導体ペレット2の外部端子2Aの位置ずれを低減することができる。   Next, as shown in FIG. 7 (main part sectional view), external terminals 2A arranged on the main surface of the semiconductor pellet 2 and second electrode pads (1A) arranged on the back surface of the base substrate 1 are formed. Electrical connection is made by the bonding wire 6. The bonding wires 6 are connected to the external terminals 2A of the semiconductor pellet 2 and the second electrode pads (1A) of the base substrate 1 through the slits 5 of the base substrate 1, respectively. The bonding wire 6 is connected by a bonding method in which ultrasonic vibration is used in combination with thermocompression bonding. In this step, since the base substrate 1 is composed of a rigid substrate having a higher Young's modulus than the flexible substrate, the bonding load applied to the second electrode pad (1A) is not absorbed by the base substrate 1, and the bonding load and Ultrasonic vibration can be effectively transmitted to the second electrode pad (1A). In addition, the base substrate 1 is composed of a rigid substrate that has a smaller coefficient of thermal expansion in the plane direction than that of the flexible substrate and has a high Young's modulus and is difficult to bend. Therefore, the second electrode pad (1A) due to the thermal expansion of the base substrate 1 And the positional deviation of the external terminal 2A of the semiconductor pellet 2 can be reduced.

次に、図8(要部断面図)に示すように、成形金型10の上型10Aと下型10Bとで形成されるキャビティ11内に前記ベース基板1及び半導体ペレット2を配置すると共に、キャビティ11の凹部11Bにベース基板1を装着する。ボンディングワイヤ6の一部及びベース基板1の第2電極パッド(1A)は、凹部11Bに形成された凹部12に配置される。成形金型10は、キャビティ11内に供給される樹脂(7A)の流動性を高めるため、予め170〜180[℃]程度の温度に加熱される。この工程において、ベース基板1は成形金型10の加熱によって170〜180[℃]程度の温度に加熱されるが、ベース基板1はフレキシブル基板に比べて平面方向の熱膨張係数が小さく、更にヤング率が高く曲がりにくいリジット基板で構成されているので、成形金型10の加熱によるベース基板1の反り、ねじれ等の変形を防止することができる。   Next, as shown in FIG. 8 (main part sectional view), the base substrate 1 and the semiconductor pellet 2 are arranged in the cavity 11 formed by the upper mold 10A and the lower mold 10B of the molding die 10, The base substrate 1 is mounted in the recess 11 </ b> B of the cavity 11. A part of the bonding wire 6 and the second electrode pad (1A) of the base substrate 1 are disposed in the recess 12 formed in the recess 11B. The molding die 10 is heated to a temperature of about 170 to 180 [° C.] in advance in order to improve the fluidity of the resin (7A) supplied into the cavity 11. In this step, the base substrate 1 is heated to a temperature of about 170 to 180 [° C.] by heating the molding die 10, but the base substrate 1 has a smaller coefficient of thermal expansion in the plane direction than the flexible substrate, and is further Since it is composed of a rigid substrate that has a high rate and is difficult to bend, deformation of the base substrate 1 due to heating of the mold 10 can be prevented.

次に、前記成形金型10のポットに樹脂タブレットを投入する。樹脂タブレットは、予めヒータで加熱され、粘度を下げてからポットに投入される。ポットに投入された樹脂ダブレットは、成形金型10から熱を与えられ、更に粘度が下げられる。   Next, a resin tablet is put into the pot of the molding die 10. The resin tablet is heated by a heater in advance to lower the viscosity, and then is put into the pot. The resin doublet put in the pot is heated by the molding die 10 and the viscosity is further lowered.

次に、前記樹脂タブレットをトランスファモールド装置のプランジャで加圧し、ポットからランナー、流入ゲート13の夫々を通してキャビティ11の凹部11A内及び凹部12内に樹脂7Aを供給し、図9(要部断面図)に示すように、ベース基板1の主面の周辺領域上を覆い、半導体ペレット2の裏面を露出し、かつボンディングワイヤ6を封止する樹脂封止体7を形成する。凹部12の樹脂7Aは、凹部11Aからベース基板1のスリット5を通して供給される。この工程において、凹部11Aからスリット5を通して凹部12に供給される樹脂7Aはボンディングワイヤ6の一端側からその軸方向に即ち縦方向に流れるので、ベース基板1の平面方向に即ち横方向に樹脂が流れる場合に比べて、樹脂の流れによるボンディングワイヤ6の変形を防止することができる。   Next, the resin tablet is pressurized with a plunger of a transfer mold device, and the resin 7A is supplied from the pot into the recess 11A and the recess 12 of the cavity 11 through the runner and the inflow gate 13, respectively. ), A resin sealing body 7 that covers the peripheral region of the main surface of the base substrate 1, exposes the back surface of the semiconductor pellet 2, and seals the bonding wires 6 is formed. The resin 7 </ b> A in the recess 12 is supplied from the recess 11 </ b> A through the slit 5 in the base substrate 1. In this step, the resin 7A supplied from the recess 11A to the recess 12 through the slit 5 flows from one end side of the bonding wire 6 in the axial direction, that is, in the vertical direction. Compared to the case of flowing, deformation of the bonding wire 6 due to the flow of resin can be prevented.

次に、前記成形金型10からベース基板1を取り出し、ベース基板1の裏面の第1電極パッド1Bの表面にバンプ電極4を電気的及び機械的に接続することにより、図1、図2、図3及び図4に示す半導体装置がほぼ完成する。   Next, the base substrate 1 is taken out from the molding die 10 and the bump electrode 4 is electrically and mechanically connected to the surface of the first electrode pad 1B on the back surface of the base substrate 1 to obtain FIGS. The semiconductor device shown in FIGS. 3 and 4 is almost completed.

この後、半導体装置は製品として出荷される。製品として出荷された半導体装置は、図10(断面図)に示すように、実装基板15の実装面上に実装され、半導体装置のバンプ電極4は実装基板15の実装面に配置された電極パッド15Aに電気的及び機械的に接続される。半導体装置のバンプ電極4と実装基板15の電極パッド15Aとの接続は、バンプ電極4の材質によって異なるが、例えば210〜230[℃]程度のリフロー温度雰囲気中で行なわれる。この実装工程において、ベース基板1はフレキシブル基板に比べて平面方向の熱膨張係数が小さく、更にヤング率が高く曲がりにくいリジット基板で構成され
ているので、実装時のリフロー熱によるベース基板1の変形を防止することができる。
Thereafter, the semiconductor device is shipped as a product. As shown in FIG. 10 (cross-sectional view), the semiconductor device shipped as a product is mounted on the mounting surface of the mounting substrate 15, and the bump electrodes 4 of the semiconductor device are electrode pads arranged on the mounting surface of the mounting substrate 15. Electrically and mechanically connected to 15A. The connection between the bump electrode 4 of the semiconductor device and the electrode pad 15 </ b> A of the mounting substrate 15 is performed in a reflow temperature atmosphere of, for example, about 210 to 230 [° C.], depending on the material of the bump electrode 4. In this mounting process, the base substrate 1 is composed of a rigid substrate that has a smaller coefficient of thermal expansion in the plane direction than that of the flexible substrate, and has a high Young's modulus and is difficult to bend. Therefore, the base substrate 1 is deformed by reflow heat during mounting. Can be prevented.

このように、本実施例によれば、以下の作用効果が得られる。
(1)ベース基板1の主面のペレット搭載領域上に半導体ペレット2が搭載され、前記半導体ペレット2の主面に配置された外部端子2Aに前記ベース基板1の裏面に配置された第1電極パッド1Bが電気的に接続される半導体装置において、前記ベース基板1をリジット基板で構成し、前記ベース基板1の第1電極パッド1Bをその裏面に配置された第2電極パッド1Aに電気的に接続し、前記半導体ペレット2をその主面を下にして前記ベース基板1の主面のペレット搭載領域上に搭載し、前記半導体ペレット2の外部端子2Aと前記ベース基板1の第2電極パッド1Aとを前記ベース基板1に形成されたスリット5を通してボンディングワイヤ6で電気的に接続する。この構成により、半導体ペレット2の外部端子2Aとベース基板1の電極パッド1Bとをボンディングワイヤ6、電極パッド1Aの夫々を介して電気的に接続することができるので、第2電極パッド1Aと第1電極パッド1Bとを電気的に接続するスルーホール配線を廃止することができる。この結果、スルーホール配線の占有面積(ランド領域の面積)に相当する分、ベース基板1の外形サイズを縮小することができるので、半導体装置の小型化を図ることができる。
Thus, according to the present embodiment, the following effects can be obtained.
(1) The semiconductor pellet 2 is mounted on the pellet mounting region on the main surface of the base substrate 1, and the first electrode disposed on the back surface of the base substrate 1 on the external terminal 2 </ b> A disposed on the main surface of the semiconductor pellet 2. In the semiconductor device to which the pad 1B is electrically connected, the base substrate 1 is composed of a rigid substrate, and the first electrode pad 1B of the base substrate 1 is electrically connected to the second electrode pad 1A disposed on the back surface thereof. The semiconductor pellet 2 is mounted on the pellet mounting region on the main surface of the base substrate 1 with its main surface facing down, and the external terminal 2A of the semiconductor pellet 2 and the second electrode pad 1A of the base substrate 1 are mounted. Are electrically connected by a bonding wire 6 through a slit 5 formed in the base substrate 1. With this configuration, the external terminal 2A of the semiconductor pellet 2 and the electrode pad 1B of the base substrate 1 can be electrically connected via the bonding wire 6 and the electrode pad 1A, respectively. The through-hole wiring that electrically connects the one-electrode pad 1B can be eliminated. As a result, the outer size of the base substrate 1 can be reduced by an amount corresponding to the area occupied by the through-hole wiring (area of the land region), so that the semiconductor device can be downsized.

また、スルーホール配線の占有面積に相当する分、第1電極パッド1Bを第2電極パッド1Aに近づけることができるので、第2電極パッド1Aと第1電極パッド1Bとを電気的に接続するベース基板1の配線1Bの長さを短くすることができる。この結果、インダクタンスを低減することができるので、半導体装置の動作速度の高速化を図ることができる。 In addition, since the first electrode pad 1B can be brought closer to the second electrode pad 1A by an amount corresponding to the area occupied by the through-hole wiring, the base for electrically connecting the second electrode pad 1A and the first electrode pad 1B. it is possible to shorten the length of wiring 1B 1 of the substrate 1. As a result, the inductance can be reduced, so that the operation speed of the semiconductor device can be increased.

また、リジット基板はフレキシブル基板に比べてヤング率が高く硬いので、半導体ペレット2の主面に配置された外部端子2Aとベース基板1の裏面に配置された第2電極パッド1Aとをボンディングワイヤ6で電気的に接続する際、第2電極パッド1Aに加えるボンディング荷重がベース基板1に吸収されず、ボンディング荷重、超音波振動が第2電極パッド1Aに有効に伝わる。この結果、ボンディングワイヤ6と第2電極パッド1Aとの接続強度を高めることができるので、ボンディングワイヤ6の接続不良を防止でき、半導体装置の電気的信頼性を高めることができる。   Further, since the rigid substrate has a higher Young's modulus and is harder than the flexible substrate, the external terminal 2A disposed on the main surface of the semiconductor pellet 2 and the second electrode pad 1A disposed on the back surface of the base substrate 1 are bonded to the bonding wire 6. When the electrical connection is made, the bonding load applied to the second electrode pad 1A is not absorbed by the base substrate 1, and the bonding load and ultrasonic vibration are effectively transmitted to the second electrode pad 1A. As a result, since the connection strength between the bonding wire 6 and the second electrode pad 1A can be increased, connection failure of the bonding wire 6 can be prevented, and the electrical reliability of the semiconductor device can be increased.

また、リジット基板はフレキシブル基板に比べて平面方向の熱膨張係数が小さく、更にヤング率が高く曲がりにくいので、実装基板15の実装面上に半導体装置を実装する際、実装時のリフロー熱によるベース基板1の変形(反り、ねじれ等)を防止することができる。この結果、実装基板15の実装面に対するベース基板1の裏面の平坦度を確保することができるので、半導体装置の実装精度を高めることができる。   In addition, the rigid substrate has a smaller coefficient of thermal expansion in the plane direction than the flexible substrate, and has a high Young's modulus and is difficult to bend. Therefore, when mounting a semiconductor device on the mounting surface of the mounting substrate 15, the base due to reflow heat during mounting is used. Deformation (warping, twisting, etc.) of the substrate 1 can be prevented. As a result, since the flatness of the back surface of the base substrate 1 with respect to the mounting surface of the mounting substrate 15 can be ensured, the mounting accuracy of the semiconductor device can be increased.

また、リジット基板はフレキシブル基板に比べて平面方向の熱膨張係数が小さく、更にヤング率が高く曲がりにくいので、電極パッド1Bの数の増加に伴ってベース基板1の外形サイズが増加しても、ベース基板1の反りを100[μm]以内に抑えることができる。   In addition, since the rigid substrate has a smaller coefficient of thermal expansion in the plane direction than the flexible substrate, and has a high Young's modulus and is difficult to bend, even if the outer size of the base substrate 1 increases as the number of electrode pads 1B increases, The warp of the base substrate 1 can be suppressed within 100 [μm].

また、ベース基板1の反りを100[μm]以内に抑えることができるので、ベース基板1の反りを防止する目的で設けられる補強基板を廃止することができる。この結果、補強基板を設けた半導体装置に比べて半導体装置の製造コストを低減することができる。   In addition, since the warp of the base substrate 1 can be suppressed within 100 [μm], the reinforcing substrate provided for the purpose of preventing the warp of the base substrate 1 can be eliminated. As a result, the manufacturing cost of the semiconductor device can be reduced as compared with the semiconductor device provided with the reinforcing substrate.

また、リジット基板の裏面に第2電極パッド1A、第1電極パッド1B、配線1Bの夫々を配置した単層構造のプリント配線基板でベース基板1を構成することができるので、リジット基板の主面及び裏面に配置した2層構造のプリント配線基板で構成されるベース基板に比べてベース基板1の部品コストを低減することができる。この結果、半導体装置の製造コストを低減することができる。
(2)前記スリット5を前記半導体ペレット2の主面に複数配列された外部端子2Aの配列方向に沿って形成し、かつ前記半導体ペレット2の外部端子2A上に配置する。この構成により、スリット5は半導体ペレット2の専有面積内に配置されるので、スリット5の専有面積に相当するベース基板1の外形サイズの大型化を抑制することができる。
(3)前記電極パッド1Aを前記スリット5で仕切られたベース基板1の裏面の両脇の夫々の領域に配置する。この構成により、半導体ペレット2の外部端子2Aとベース基板1の第2電極パッド1Aとを電気的に接続する電源経路を増加することができるので、信号の同時切り替え時に発生する電源ノイズを低減することができ、半導体装置の誤動作を防止できる。
Further, since the base substrate 1 can be constituted by a printed wiring board having a single layer structure in which the second electrode pad 1A, the first electrode pad 1B, and the wiring 1B 1 are arranged on the back surface of the rigid board, The component cost of the base substrate 1 can be reduced as compared with a base substrate composed of a printed wiring board having a two-layer structure arranged on the front and back surfaces. As a result, the manufacturing cost of the semiconductor device can be reduced.
(2) The slits 5 are formed along the arrangement direction of the external terminals 2 </ b> A arranged on the main surface of the semiconductor pellet 2 and disposed on the external terminals 2 </ b> A of the semiconductor pellet 2. With this configuration, since the slit 5 is disposed within the exclusive area of the semiconductor pellet 2, it is possible to suppress an increase in the outer size of the base substrate 1 corresponding to the exclusive area of the slit 5.
(3) The electrode pads 1A are arranged in the respective regions on both sides of the back surface of the base substrate 1 partitioned by the slits 5. With this configuration, it is possible to increase the power supply path for electrically connecting the external terminal 2A of the semiconductor pellet 2 and the second electrode pad 1A of the base substrate 1, thereby reducing the power supply noise generated at the time of simultaneous signal switching. And malfunction of the semiconductor device can be prevented.

また、半導体ペレット2の外部端子2Aの配列ピッチに対してベース基板1の第2電極パット1Aの配列ピッチを広く構成しても、半導体ペレット2の一辺に対する第2電極パッド1Aのパッド配列の長さを半導体ペレット2の一辺に配列された外部端子2Aの端子配列の長さとほぼ同一にすることができるので、第2電極パッド1Aのパッド配列の長さに起因するボンディングワイヤ6のワイヤ長の増加を防止することができ、トランスファモールド法に基づいてボンディングワイヤ6を封止体7で封止する際、樹脂の流動によるボンディングワイヤ6のワイヤ流れを防止することができる。   Even if the arrangement pitch of the second electrode pads 1A of the base substrate 1 is made wider than the arrangement pitch of the external terminals 2A of the semiconductor pellet 2, the length of the pad arrangement of the second electrode pads 1A with respect to one side of the semiconductor pellet 2 Since the length of the external terminal 2A arranged on one side of the semiconductor pellet 2 can be made substantially the same as the length of the terminal arrangement of the bonding electrode 6 due to the length of the pad arrangement of the second electrode pad 1A. The increase can be prevented, and when the bonding wire 6 is sealed with the sealing body 7 based on the transfer molding method, the wire flow of the bonding wire 6 due to the flow of the resin can be prevented.

また、半導体ペレット2の外部端子2Aと対向する位置にベース基板1の第2電極パッド1Aを配置することができるので、ボンディングワイヤ6の長さを均一にすることができ、半導体ペレット2の外部端子2Aとベース基板1の第2電極パッド1Aとの間における信号経路のインダクタンスを均一にすることができる。
(4)前記半導体ペレット2の主面と対向するその裏面を前記ベース基板1の主面の周辺領域上を覆う樹脂封止体7から露出させる。この構成により、半導体ペレット2に搭載された回路システムの動作で発生する熱を半導体ペレット2の裏面から外部に放出することができるので、半導体装置の放熱効率を高めることができる。
In addition, since the second electrode pad 1A of the base substrate 1 can be disposed at a position facing the external terminal 2A of the semiconductor pellet 2, the length of the bonding wire 6 can be made uniform, and the outside of the semiconductor pellet 2 The inductance of the signal path between the terminal 2A and the second electrode pad 1A of the base substrate 1 can be made uniform.
(4) The back surface opposite to the main surface of the semiconductor pellet 2 is exposed from the resin sealing body 7 covering the peripheral region of the main surface of the base substrate 1. With this configuration, heat generated by the operation of the circuit system mounted on the semiconductor pellet 2 can be released to the outside from the back surface of the semiconductor pellet 2, so that the heat dissipation efficiency of the semiconductor device can be increased.

また、ベース基板1の機械的強度を樹脂封止体7の機械的強度で補うことができるので、実装時のリフロー熱によるベース基板1の変形(反り、ねじれ等)を防止することができる。
(5)前記ボンディングワイヤ6を樹脂封止体7で封止する。この構成により、外部からの衝撃や接触によるボンディングワイヤ6の変形を防止することができるので、半導体装置の電気的信頼性を高めることができる。
(6)樹脂封止体7をベース基板1の主面側及びその裏面側に形成する。この構成により、温度サイクル試験時やバンプ電極4の接続時に発生する熱ストレスでベース基板1から樹脂封止体7が剥がれるのを防止することができるので、半導体装置の信頼性を高めることができる。
(7)ベース基板1の主面のペレット搭載領域上に半導体ペレット2が搭載され、前記半導体ペレット2の主面に配置された外部端子2Aに前記ベース基板1の裏面に配置された第1電極パッド1Bが電気的に接続される半導体装置の製造方法において、リジット基板で構成されたベース基板1の主面のペレット搭載領域上に半導体ペレット2をその主面を下にして搭載する工程と、前記半導体ペレット2の外部端子2Aと、前記ベース基板1の第1電極パッド1Bに電気的に接続され、かつ前記ベース基板1の裏面に配置された第2電極パッド1Aとを前記ベース基板1に形成されたスリット5を通してボンディングワイヤ6で電気的に接続する工程とを備える。これにより、半導体ペレット2の外部端子2Aとベース基板1の第1電極パッド1Bとをボンディングワイヤ6、第2電極パッド1Aの夫々を介して電気的に接続するので、第2電極パッド1Aと第1電極パッド1Bとを電気的に接続するスルーホール配線(1C)が廃止され、このスルーホール配線の占有面積に相当する分、外形サイズが縮小されたベース基板1を使用することができる。この結果、外形サイズの小さい半導体装置を製造することができる。
In addition, since the mechanical strength of the base substrate 1 can be supplemented by the mechanical strength of the resin sealing body 7, deformation (warping, twisting, etc.) of the base substrate 1 due to reflow heat during mounting can be prevented.
(5) The bonding wire 6 is sealed with a resin sealing body 7. With this configuration, it is possible to prevent the bonding wire 6 from being deformed due to an external impact or contact, so that the electrical reliability of the semiconductor device can be improved.
(6) The resin sealing body 7 is formed on the main surface side and the back surface side of the base substrate 1. With this configuration, it is possible to prevent the resin sealing body 7 from being peeled off from the base substrate 1 due to thermal stress that occurs during a temperature cycle test or when the bump electrodes 4 are connected, so that the reliability of the semiconductor device can be improved. .
(7) The semiconductor pellet 2 is mounted on the pellet mounting region on the main surface of the base substrate 1, and the first electrode disposed on the back surface of the base substrate 1 on the external terminal 2 </ b> A disposed on the main surface of the semiconductor pellet 2. In the method of manufacturing a semiconductor device in which the pad 1B is electrically connected, a step of mounting the semiconductor pellet 2 on the pellet mounting region of the main surface of the base substrate 1 constituted by a rigid substrate with the main surface facing down; An external terminal 2A of the semiconductor pellet 2 and a second electrode pad 1A electrically connected to the first electrode pad 1B of the base substrate 1 and disposed on the back surface of the base substrate 1 are connected to the base substrate 1. Electrically connecting with the bonding wire 6 through the formed slit 5. As a result, the external terminal 2A of the semiconductor pellet 2 and the first electrode pad 1B of the base substrate 1 are electrically connected via the bonding wire 6 and the second electrode pad 1A, respectively. The through-hole wiring (1C) that electrically connects the one-electrode pad 1B is abolished, and the base substrate 1 having a reduced external size corresponding to the occupied area of the through-hole wiring can be used. As a result, a semiconductor device with a small outer size can be manufactured.

また、半導体ペレット2の外部端子2Aとベース基板1の第1電極パッド1Bとをボンディングワイヤ6、第2電極パッド1Aの夫々を介して電気的に接続するので、第2電極パッド1Aと第1電極パッド1Bとを電気的に接続するスルーホール配線(1C)が廃止され、このスルーホール配線の占有面積に相当する分、第2電極パッド1Aと第1電極パッド1Bとを電気的に接続する配線1Bの長が短いベース基板1を使用することができる。この結果、動作速度が速い半導体装置を製造することができる。 Further, since the external terminal 2A of the semiconductor pellet 2 and the first electrode pad 1B of the base substrate 1 are electrically connected through the bonding wire 6 and the second electrode pad 1A, the second electrode pad 1A and the first electrode pad 1B are electrically connected. The through-hole wiring (1C) for electrically connecting the electrode pad 1B is eliminated, and the second electrode pad 1A and the first electrode pad 1B are electrically connected by an amount corresponding to the occupied area of the through-hole wiring. The base substrate 1 having a short length of the wiring 1B 1 can be used. As a result, a semiconductor device having a high operating speed can be manufactured.

フレキシブル基板に比べてヤング率が高く硬いリジット基板で構成されたベース基板1を使用しているので、半導体ペレット2の主面に配置された外部端子2Aとベース基板1の裏面に配置された第2電極パッド1Aとをボンディングワイヤ6で電気的に接続する際、第2電極パッド1Aに加えるボンディング荷重がベース基板1に吸収されず、ボンディング荷重、超音波振動が第2電極パッド1Aに有効に伝わる。この結果、ボンディングワイヤ6と第2電極パッド1Aとの接続強度を高めることができるので、電気的信頼性の高い半導体装置を製造することができる。   Since the base substrate 1 made of a rigid substrate having a higher Young's modulus than the flexible substrate is used, the external terminals 2A arranged on the main surface of the semiconductor pellet 2 and the second terminals arranged on the back surface of the base substrate 1 are used. When the two-electrode pad 1A is electrically connected by the bonding wire 6, the bonding load applied to the second electrode pad 1A is not absorbed by the base substrate 1, and the bonding load and ultrasonic vibration are effectively applied to the second electrode pad 1A. It is transmitted. As a result, since the connection strength between the bonding wire 6 and the second electrode pad 1A can be increased, a semiconductor device with high electrical reliability can be manufactured.

また、フレキシブル基板に比べて平面方向の熱膨張係数が小さく、更にヤング率が高く曲がりにくいリジット基板で構成されたベース基板1を使用しているので、実装基板15の実装面上に半導体装置を実装する際、実装時のリフロー熱によるベース基板1の変形(反り、ねじれ等)を防止することができる。この結果、実装基板15の実装面に対するベース基板1の裏面の平坦度を確保することができるので、実装精度の高い半導体装置を製造することができる。
(8)前記ボンディングワイヤ6で電気的に接続する工程の後に、前記ベース基板1の主面の周辺領域上を覆い、かつ前記ボンディングワイヤ6を封止する樹脂封止体7をトランスファモールド法で形成する工程を備える。これにより、フレキシブル基板に比べて平面方向の熱膨張係数が小さく、更に、ヤング率が高く曲がりにくいリジット基板で構成されたベース基板1を使用しているので、成形金型10の加熱によるベース基板1の反り、ねじれ等の変形を防止することができる。
In addition, since the base substrate 1 made of a rigid substrate having a smaller coefficient of thermal expansion in the planar direction than that of the flexible substrate and having a high Young's modulus and is difficult to bend is used, the semiconductor device is mounted on the mounting surface of the mounting substrate 15. When mounting, deformation (warp, twist, etc.) of the base substrate 1 due to reflow heat during mounting can be prevented. As a result, since the flatness of the back surface of the base substrate 1 with respect to the mounting surface of the mounting substrate 15 can be ensured, a semiconductor device with high mounting accuracy can be manufactured.
(8) After the step of electrically connecting with the bonding wire 6, the resin sealing body 7 covering the peripheral region of the main surface of the base substrate 1 and sealing the bonding wire 6 is formed by a transfer mold method. Forming. As a result, the base substrate 1 made of a rigid substrate having a smaller coefficient of thermal expansion in the planar direction than that of the flexible substrate and having a high Young's modulus and is difficult to bend is used. It is possible to prevent deformation such as warping and twisting.

また、凹部11Aからスリット5を通して凹部12に供給される樹脂7Aはボンディングワイヤ6の一端側からその軸方向に即ち縦方向に流れるので、ベース基板1の平面方向に即ち横方向に樹脂が流れる場合に比べて、樹脂7Aの流れによるボンディングワイヤ6の変形を防止することができる。   Further, since the resin 7A supplied from the recess 11A to the recess 12 through the slit 5 flows in the axial direction, that is, in the vertical direction from one end side of the bonding wire 6, the resin flows in the plane direction of the base substrate 1, that is, in the lateral direction. In comparison with this, deformation of the bonding wire 6 due to the flow of the resin 7A can be prevented.

なお、前記樹脂封止体7は、図11(断面図)に示すように、第2電極パッド1A、第1電極パッド1Bの夫々の表面上を除くベース基板1の裏面上に形成してもよい。この場合、ベース基板1を樹脂封止体7で挾み込む形状になるので、ベース基板1の反りを防止することができる。   As shown in FIG. 11 (cross-sectional view), the resin sealing body 7 may be formed on the back surface of the base substrate 1 except on the surfaces of the second electrode pad 1A and the first electrode pad 1B. Good. In this case, since the base substrate 1 is shaped so as to be swollen with the resin sealing body 7, the warp of the base substrate 1 can be prevented.

また、前記ベース基板1は、図示していないが、リジット基板を複数枚積み重ねた積層構造で構成してもよい。この場合、フレキシブル基板を複数枚積み重ねて形成した積層構造のベース基板に比べて、半導体装置の製造コストを低減することができる。   Further, although not shown, the base substrate 1 may have a laminated structure in which a plurality of rigid substrates are stacked. In this case, the manufacturing cost of the semiconductor device can be reduced as compared with a base substrate having a stacked structure formed by stacking a plurality of flexible substrates.

(実施例2)
本発明の実施例2であるBGA構造を採用する半導体装置の概略構成を図12(断面図)及び図13(裏面側の樹脂封止体を除去した状態を示す裏面側の要部拡大平面図)に示す。
(Example 2)
12 (cross-sectional view) and FIG. 13 (enlarged plan view of the main part on the back surface side showing the state where the resin sealing body on the back surface side is removed) showing a schematic configuration of the semiconductor device adopting the BGA structure which is Embodiment 2 of the present invention. ).

図12及び図13に示すように、半導体装置は、ベース基板1の主面のペレット搭載領域上に絶縁層3を介在して半導体ペレット2をフェースダウン方式で搭載し、ベース基板1の裏面側に複数のバンプ電極4を格子状に配置する。   As shown in FIGS. 12 and 13, the semiconductor device mounts the semiconductor pellet 2 in a face-down manner on the pellet mounting region of the main surface of the base substrate 1 with the insulating layer 3 interposed therebetween, and the back surface side of the base substrate 1. A plurality of bump electrodes 4 are arranged in a grid pattern.

前記半導体ペレット2の主面の中央部には、その長辺に沿って配列された複数の外部端子2Aが配置される。この複数の外部端子2Aの夫々は、ベース基板1の裏面に配置された複数の第2電極パッド1Aの夫々に、ベース基板1に形成されたスリット5を通してボンディングワイヤ6で電気的に接続される。複数の第2電極パッド1Aの夫々はベース基板1の裏面に配置された複数の第1電極パッド1Bの夫々に配線1Bを介して電気的に接続される。この複数の第1電極パッド1Bの夫々の表面にはバンプ電極4が電気的かつ機械的に接続される。つまり、半導体ペレット2の外部端子2Aは、ボンディングワイヤ6、第2電極パッド1A、配線1Bの夫々を介して第1電極パッド1Bに電気的に接続される。 In the central portion of the main surface of the semiconductor pellet 2, a plurality of external terminals 2A arranged along the long side thereof are arranged. Each of the plurality of external terminals 2 </ b> A is electrically connected to each of the plurality of second electrode pads 1 </ b> A disposed on the back surface of the base substrate 1 through bonding wires 6 through slits 5 formed in the base substrate 1. . Each of the plurality of second electrode pads 1A are electrically connected through a wiring 1B 1 to each of the plurality of first electrode pads 1B disposed on the back surface of the base substrate 1. Bump electrodes 4 are electrically and mechanically connected to the respective surfaces of the plurality of first electrode pads 1B. That is, the external terminal 2A of the semiconductor pellet 2, the bonding wires 6, the second electrode pads 1A, is electrically connected to the first electrode pad 1B through the respective wire 1B 1.

前記ベース基板1のスリット5は、半導体ペレット2の主面の中央部にその長辺に沿って配列された複数の外部端子2Aの配列方向に沿って形成される。また、スリット5は、ベース基板1の裏面側の開口寸法に比べてその主面側の開口寸法を小さくしたテーパ形状で構成される。   The slit 5 of the base substrate 1 is formed in the central portion of the main surface of the semiconductor pellet 2 along the arrangement direction of the plurality of external terminals 2A arranged along the long side. Further, the slit 5 has a tapered shape in which the opening size on the main surface side is smaller than the opening size on the back surface side of the base substrate 1.

このように、本実施例によれば、前述の実施例1と同様の作用効果が得られると共に、スリット5をテーパ形状に構成することにより、半導体ペレット2の外部端子2Aにボンディングワイヤ6の一端をボンディングする際、ベース基板1とボンディングツールとの接触を防止することができるので、ボンディング工程における半導体装置の組立て歩留まりを高めることができる。   As described above, according to the present embodiment, the same effects as those of the first embodiment can be obtained, and the slit 5 can be formed into a tapered shape so that one end of the bonding wire 6 is connected to the external terminal 2A of the semiconductor pellet 2. Since the contact between the base substrate 1 and the bonding tool can be prevented when bonding, the assembly yield of the semiconductor device in the bonding process can be increased.

(実施例3)
本発明の実施例3であるBGA構造を採用する半導体装置の概略構成を図14(裏面側の樹脂封止体を除去した状態を示す裏面側の要部平面図)に示す。
(Example 3)
FIG. 14 (plan view of the main part on the back side showing the state where the resin sealing body on the back side is removed) shows a schematic configuration of a semiconductor device adopting the BGA structure which is Embodiment 3 of the present invention.

図14に示すように、半導体装置は、ベース基板1の主面のペレット搭載領域上に絶縁層(3)を介在して半導体ペレット2をフェースダウン方式で搭載し、ベース基板1の裏面側に複数のバンプ電極4を格子状に配置する。   As shown in FIG. 14, the semiconductor device mounts the semiconductor pellet 2 in a face-down manner on the pellet mounting region on the main surface of the base substrate 1 with an insulating layer (3) interposed therebetween. A plurality of bump electrodes 4 are arranged in a grid pattern.

前記半導体ペレット2の主面の外周囲には、その各辺に沿って配列された複数の外部端子2Aが配置される。また、半導体ペレット2の主面の中央部には、その長辺若しくは短辺に沿って配列された複数の外部端子2Aが配置される。この複数の外部端子2Aの夫々は、ベース基板1の裏面に配置された複数の第2電極パッド1Aの夫々に、ベース基板1に形成されたスリット5を通してボンディングワイヤ6で電気的に接続される。複数の第2電極パッド1Aの夫々は、ベース基板1の裏面に配置された複数の第1電極パッド1Bの夫々に配線(1B)を介して電気的に接続される。この複数の第1電極パッド1Bの夫々の表面上にはバンプ電極4が電気的及び機械的に接続される。つまり、半導体ペレット2の外部端子2Aは、ボンディングワイヤ6、第2電極パッド1A、配線1Bの夫々を介して第1電極パッド1Bに電気的に接続される。 Around the outer periphery of the main surface of the semiconductor pellet 2, a plurality of external terminals 2A arranged along each side are arranged. In addition, a plurality of external terminals 2 </ b> A arranged along the long side or the short side are arranged at the center of the main surface of the semiconductor pellet 2. Each of the plurality of external terminals 2 </ b> A is electrically connected to each of the plurality of second electrode pads 1 </ b> A disposed on the back surface of the base substrate 1 through bonding wires 6 through slits 5 formed in the base substrate 1. . Each of the plurality of second electrode pads 1A is electrically connected to each of the plurality of first electrode pads 1B disposed on the back surface of the base substrate 1 via wiring (1B 1 ). A bump electrode 4 is electrically and mechanically connected to the surface of each of the plurality of first electrode pads 1B. That is, the external terminal 2A of the semiconductor pellet 2, the bonding wires 6, the second electrode pads 1A, is electrically connected to the first electrode pad 1B through the respective wire 1B 1.

前記ベース基板1のスリット5は、半導体ペレット2の各辺毎に配置されると共に、半導体ペレット2の中央部の位置に配置される。つまり、本実施例のベース基板1は5本のスリット5を配置する。この5本のスリット5の夫々は半導体ペレット2の外部端子2A上に配置される。   The slits 5 of the base substrate 1 are arranged for each side of the semiconductor pellet 2 and are arranged at the center of the semiconductor pellet 2. That is, the base substrate 1 of the present embodiment has five slits 5 disposed therein. Each of the five slits 5 is disposed on the external terminal 2 </ b> A of the semiconductor pellet 2.

このように、本実施例によれば、前述の実施例1と同様の作用効果が得られる。また、スリット5を半導体ペレット2の各辺毎及び半導体ペレット2の中央部の位置に配置することにより、半導体ペレット2の主面に配置される外部端子2Aの数を増加することができると共に、ベース基板1の裏面に配置される第2電極パッド1Aの数を増加することができるので、半導体ペレット2の外部端子2Aとベース基板1の電極パッド1Aとを電気的に接続する電源経路を増加することができ、出力信号の同時切り替え時に発生する電源ノイズを更に低減することができる。また、半導体ペレット2の外部端子2Aとベース基板1の第2電極パッド1Aとを電気的に接続する信号経路を増加することができ、外部端子2Aの数で律則される半導体ペレット2の外形サイズを縮小することができる。   Thus, according to the present embodiment, the same operational effects as those of the first embodiment can be obtained. In addition, by arranging the slits 5 at each side of the semiconductor pellet 2 and at the position of the central portion of the semiconductor pellet 2, the number of external terminals 2A arranged on the main surface of the semiconductor pellet 2 can be increased, Since the number of second electrode pads 1A arranged on the back surface of the base substrate 1 can be increased, the number of power supply paths for electrically connecting the external terminals 2A of the semiconductor pellet 2 and the electrode pads 1A of the base substrate 1 is increased. Therefore, it is possible to further reduce the power supply noise generated when the output signals are switched simultaneously. In addition, the number of signal paths for electrically connecting the external terminals 2A of the semiconductor pellet 2 and the second electrode pads 1A of the base substrate 1 can be increased, and the outer shape of the semiconductor pellet 2 regulated by the number of external terminals 2A. The size can be reduced.

なお、本実施例は、半導体ペレット2の中央部の位置にスリット5を1本配置した構成で説明したが、半導体ペレット2の中央部の位置にスリット5を平行若しくは交差するように複数本配置し、スリット5の本数を増加することにより、ベース基板1の第2電極パッド1Aの数及び半導体ペレット2の外部端子2Aの数を更に増加することができる。   In addition, although the present Example demonstrated by the structure which arrange | positioned one slit 5 in the position of the center part of the semiconductor pellet 2, two or more slits 5 are arrange | positioned so that the position of the center part of the semiconductor pellet 2 may be parallel or cross | intersected. Then, by increasing the number of slits 5, the number of second electrode pads 1A of the base substrate 1 and the number of external terminals 2A of the semiconductor pellet 2 can be further increased.

(実施例4)
本発明の実施例4であるBGA構造を採用する半導体装置の概略構成を図15(裏面側の樹脂封止体を除去した状態を示す裏面側の要部平面図)に示す。
Example 4
A schematic configuration of a semiconductor device adopting the BGA structure which is Embodiment 4 of the present invention is shown in FIG. 15 (plan view of the main part on the back side showing a state where the resin sealing body on the back side is removed).

図15に示すように、半導体装置は、ベース基板1の主面のペレット搭載領域上に絶縁層(3)を介在して半導体ペレット2をフェースダウン方式で搭載し、ベース基板1の裏面側に複数のバンプ電極4を格子状に配置する。ベース基板1は例えば3層配線構造のプリント配線基板で構成される。   As shown in FIG. 15, the semiconductor device has the semiconductor pellet 2 mounted in a face-down manner on the pellet mounting region on the main surface of the base substrate 1 with an insulating layer (3) interposed therebetween. A plurality of bump electrodes 4 are arranged in a grid pattern. The base substrate 1 is composed of a printed wiring board having a three-layer wiring structure, for example.

前記半導体ペレット2の主面の外周囲には、その各辺に沿って配列された複数の外部端子2Aが配置される。この複数の外部端子2Aの夫々は、ベース基板1の裏面に配置された複数の第2電極パッド1Aの夫々に、ベース基板1に形成されたスリット5を通してボンディングワイヤ6で電気的に接続される。   Around the outer periphery of the main surface of the semiconductor pellet 2, a plurality of external terminals 2A arranged along each side are arranged. Each of the plurality of external terminals 2 </ b> A is electrically connected to each of the plurality of second electrode pads 1 </ b> A disposed on the back surface of the base substrate 1 through bonding wires 6 through slits 5 formed in the base substrate 1. .

前記複数の第2電極パッド1Aのうち、電極パッド1Aは電極プレート8Aと一体に形成される。この電極プレート8Aはスルーホール配線(図示せず)及びベース基板1の内部配線(図示せず)を介して他の電極プレート8Aに電気的に接続される。電極プレート8Aには電源として例えば基準電位(例えば0[V])が印加される。前記複数の第2電極パッド1Aのうち、電極パッド1Aは電極プレート8Bと一体に形成される。この電極プレート8Aには、電源として例えば動作電位(例えば3.3[V])が印加される。 Among the plurality of second electrode pads 1A, the electrode pads 1A 2 is formed integrally with the electrode plate 8A. The electrode plate 8A is electrically connected to another electrode plate 8A via a through-hole wiring (not shown) and an internal wiring (not shown) of the base substrate 1. For example, a reference potential (for example, 0 [V]) is applied to the electrode plate 8A as a power source. Among the plurality of second electrode pads 1A, the electrode pads 1A 3 is formed integrally with the electrode plate 8B. For example, an operating potential (for example, 3.3 [V]) is applied to the electrode plate 8A as a power source.

このように、本実施例によれば、ベース基板1の主面に配置された第2電極パッド(1A)とその裏面に配置された第1電極パッド1Bとを電気的に接続するスルーホール配線(1C)の廃止によって電極プレート8A、電極プレート8Bの夫々をベース基板1の裏面側に配置することができるので、バンプ電極4の配置を自由に設定でき、半導体ペレット2の外部端子2Aとバンプ電極4との距離を短くすることができる。この結果、インダクタンスを低減することができるので、半導体装置の動作速度の高速化を図ることができる。   Thus, according to the present embodiment, the through-hole wiring for electrically connecting the second electrode pad (1A) disposed on the main surface of the base substrate 1 and the first electrode pad 1B disposed on the back surface thereof. By eliminating (1C), each of the electrode plate 8A and the electrode plate 8B can be arranged on the back side of the base substrate 1, so that the arrangement of the bump electrodes 4 can be freely set, and the external terminals 2A and bumps of the semiconductor pellet 2 can be set. The distance from the electrode 4 can be shortened. As a result, the inductance can be reduced, so that the operation speed of the semiconductor device can be increased.

以上、本発明者によってなされた発明を、前記実施例に基づき具体的に説明したが、本発明は、前記実施例に限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることは勿論である。   As mentioned above, the invention made by the present inventor has been specifically described based on the above embodiments. However, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the invention. Of course.

本発明の実施例1であるBGA構造を採用する半導体装置の主面側の平面図。1 is a plan view of a main surface side of a semiconductor device that employs a BGA structure that is Embodiment 1 of the present invention. 図1に示すA−A線の位置で切った断面図。Sectional drawing cut in the position of the AA line shown in FIG. 図2の要部拡大断面図。The principal part expanded sectional view of FIG. 前記半導体装置の裏面側の樹脂封止体を除去した状態を示す裏面側の要部拡大平面図。The principal part enlarged plan view of the back surface side which shows the state which removed the resin sealing body of the back surface side of the said semiconductor device. 前記半導体装置の樹脂封止体を形成する成形金型の要部断面図。The principal part sectional drawing of the shaping die which forms the resin sealing body of the said semiconductor device. 前記半導体装置の製造方法を説明するための断面図。Sectional drawing for demonstrating the manufacturing method of the said semiconductor device. 前記半導体装置の製造方法を説明するための要部断面図。FIG. 6 is an essential part cross-sectional view for explaining the method for manufacturing the semiconductor device. 前記半導体装置の製造方法を説明するための要部断面図。FIG. 6 is an essential part cross-sectional view for explaining the method for manufacturing the semiconductor device. 前記半導体装置の製造方法を説明するための要部断面図。FIG. 6 is an essential part cross-sectional view for explaining the method for manufacturing the semiconductor device. 前記半導体装置を実装基板に実装した状態を示す要部断面図。FIG. 3 is a main part cross-sectional view showing a state where the semiconductor device is mounted on a mounting substrate. 前記半導体装置の変形例を示す断面図。Sectional drawing which shows the modification of the said semiconductor device. 本発明の実施例2であるBGA構造を採用する半導体装置の断面図。Sectional drawing of the semiconductor device which employ | adopts the BGA structure which is Example 2 of this invention. 前記半導体装置の裏面側の樹脂封止体を除去した状態を示す裏面側の要部拡大平面図。The principal part enlarged plan view of the back surface side which shows the state which removed the resin sealing body of the back surface side of the said semiconductor device. 本発明の実施例3であるBGA構造を採用する半導体装置の裏面側の樹脂封止体を除去した状態を示す裏面側の要部平面図。The principal part top view on the back surface side which shows the state which removed the resin sealing body by the side of the back surface of the semiconductor device which employ | adopts the BGA structure which is Example 3 of this invention. 本発明の実施例4であるBGA構造を採用する半導体装置の裏面側の樹脂封止体を除去した状態を示す裏面側の要部平面図。The principal part top view on the back surface side which shows the state which removed the resin sealing body by the side of the back surface of the semiconductor device which employ | adopts the BGA structure which is Example 4 of this invention. 従来のBGA構造を採用する半導体装置の要部断面図。Sectional drawing of the principal part of the semiconductor device which employ | adopts the conventional BGA structure.

符号の説明Explanation of symbols

1:ベース基板
1A:電極パッド
1B:電極パッド
2:半導体ペレット
2A:外部端子
3:絶縁層
4:バンプ電極
5:スリット
6:ボンディングワイヤ
7:樹脂封止体
7A:樹脂
8A,8B:電極プレート
10:成形金型
10A:上型
10B:下型
11:キャビティ
11A,11B,12:凹部
13:流入ゲート
14:ヒートステージ
14A:凹部
15:実装基板
15A:電極パッド
1: Base substrate 1A: Electrode pad 1B: Electrode pad 2: Semiconductor pellet 2A: External terminal 3: Insulating layer 4: Bump electrode 5: Slit 6: Bonding wire 7: Resin sealing body 7A: Resin 8A, 8B: Electrode plate 10: Molding die 10A: Upper mold 10B: Lower mold 11: Cavity 11A, 11B, 12: Recess 13: Inflow gate 14: Heat stage 14A: Recess 15: Mounting substrate 15A: Electrode pad

Claims (4)

第1主面、前記第1主面とは反対側の第2主面、前記第1主面から前記第2主面に貫通する複数のスリット、及び前記第2主面上に形成された複数の電極パッドを有するベース基板と、
複数の外部端子が形成された主面を有し、前記主面が前記ベース基板の前記第1主面と対向し、かつ、前記複数の外部端子が前記複数のスリットの内側にそれぞれ平面的に位置し、かつ、前記複数のスリットのそれぞれの一部が前記主面の外側に平面的に位置するように、前記ベース基板の前記第1主面上に搭載された半導体ペレットと、
前記半導体ペレットの前記複数の外部端子と前記ベース基板の前記複数の電極パッドとを、それぞれ電気的に接続する複数のボンディングワイヤと、
前記ベース基板の前記第1主面及び前記第2主面のそれぞれを覆うように前記ベース基板の前記第1主面及び前記第2主面の両側に形成され、前記複数の電極パッド、前記複数の外部端子及び前記複数のボンディングワイヤを封止する樹脂封止体と、
前記ベース基板の前記第2主面上に形成され、前記複数の電極パッドとそれぞれ電気的に接続された複数のバンプ電極と、
を含むことを特徴とする半導体装置。
A first main surface, a second main surface opposite to the first main surface, a plurality of slits penetrating from the first main surface to the second main surface, and a plurality formed on the second main surface A base substrate having a plurality of electrode pads;
The main surface has a plurality of external terminals, the main surface is opposed to the first main surface of the base substrate, and the plurality of external terminals are planarly arranged inside the plurality of slits. And a semiconductor pellet mounted on the first main surface of the base substrate so that a part of each of the plurality of slits is planarly positioned outside the main surface;
A plurality of bonding wires for electrically connecting the plurality of external terminals of the semiconductor pellet and the plurality of electrode pads of the base substrate;
The plurality of electrode pads and the plurality of electrode pads are formed on both sides of the first main surface and the second main surface of the base substrate so as to cover each of the first main surface and the second main surface of the base substrate. A resin sealing body for sealing the external terminals and the plurality of bonding wires;
A plurality of bump electrodes formed on the second main surface of the base substrate and electrically connected to the plurality of electrode pads,
A semiconductor device comprising:
請求項1において、
前記半導体ペレットの平面形状は方形状から成り、
前記複数の外部端子は、前記半導体ペレットの前記主面の各辺に沿って形成されていることを特徴とする半導体装置。
In claim 1,
The planar shape of the semiconductor pellet is a square shape,
The plurality of external terminals are formed along each side of the main surface of the semiconductor pellet.
請求項1において、
前記複数のボンディングワイヤは、前記複数のスリットを通して、前記半導体ペレットの前記複数の外部端子と前記ベース基板の前記複数の電極パッドとをそれぞれ電気的に接続していることを特徴とする半導体装置。
In claim 1,
The plurality of bonding wires electrically connect the plurality of external terminals of the semiconductor pellet and the plurality of electrode pads of the base substrate through the plurality of slits, respectively.
請求項1において、
前記ベース基板の前記第1主面を覆うように形成された前記樹脂封止体と、前記ベース基板の前記第2主面を覆うように形成された前記樹脂封止体は、前記複数のスリットのそれぞれの前記一部を介して一体に形成されていることを特徴とする半導体装置。
In claim 1,
The resin sealing body formed so as to cover the first main surface of the base substrate and the resin sealing body formed so as to cover the second main surface of the base substrate include the plurality of slits. A semiconductor device characterized in that it is integrally formed through each of the parts.
JP2008214075A 1994-12-20 2008-08-22 Semiconductor device Pending JP2008277872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008214075A JP2008277872A (en) 1994-12-20 2008-08-22 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP31644494 1994-12-20
JP2008214075A JP2008277872A (en) 1994-12-20 2008-08-22 Semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006118151A Division JP4528977B2 (en) 1994-12-20 2006-04-21 Manufacturing method of semiconductor device

Publications (1)

Publication Number Publication Date
JP2008277872A true JP2008277872A (en) 2008-11-13

Family

ID=40055363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008214075A Pending JP2008277872A (en) 1994-12-20 2008-08-22 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2008277872A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010274495A (en) * 2009-05-28 2010-12-09 Towa Corp Mold for resin sealing of electronic component and resin sealing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6481330A (en) * 1987-09-24 1989-03-27 Nec Corp Film carrier semiconductor device
JPH06295935A (en) * 1993-04-07 1994-10-21 Hitachi Ltd Semiconductor package

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6481330A (en) * 1987-09-24 1989-03-27 Nec Corp Film carrier semiconductor device
JPH06295935A (en) * 1993-04-07 1994-10-21 Hitachi Ltd Semiconductor package

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010274495A (en) * 2009-05-28 2010-12-09 Towa Corp Mold for resin sealing of electronic component and resin sealing method

Similar Documents

Publication Publication Date Title
JP3487524B2 (en) Semiconductor device and manufacturing method thereof
JP5467959B2 (en) Semiconductor device
KR19990067623A (en) Semiconductor device, manufacturing method and mounting board
JPH11135560A (en) Resin-sealed ball grid array ic package and manufacture thereof
JP2000236040A (en) Semiconductor device
JP2006245076A (en) Semiconductor device
JPH04280458A (en) Semiconductor integrated circuit device, and its manufacture and mounting structure
JP3883531B2 (en) Semiconductor device
JPH1187556A (en) Semiconductor device
JP3938783B2 (en) Semiconductor device
JP3938784B2 (en) Semiconductor device
JP2008277872A (en) Semiconductor device
JP4528977B2 (en) Manufacturing method of semiconductor device
JP2803656B2 (en) Semiconductor device
JPH0637233A (en) Semiconductor integrated circuit device and its manufacturing method
JP2891426B2 (en) Semiconductor device
JPH08148608A (en) Semiconductor device, its manufacture and substrate for semiconductor device
JP2006319354A (en) Semiconductor device
JP3968321B2 (en) Semiconductor device and manufacturing method thereof
JP3314574B2 (en) Method for manufacturing semiconductor device
JP2000216282A (en) Area array electrode type device, wiring board structure implementing the same, circuit board implementing body, and method for implementing the same
US6875639B2 (en) Semiconductor device and method of manufacturing the same
JPH08153826A (en) Semiconductor integrated circuit device
JP2005311099A (en) Semiconductor device and its manufacturing method
JP2008300390A (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080822

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111018