JP2891426B2 - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP2891426B2
JP2891426B2 JP2309890A JP2309890A JP2891426B2 JP 2891426 B2 JP2891426 B2 JP 2891426B2 JP 2309890 A JP2309890 A JP 2309890A JP 2309890 A JP2309890 A JP 2309890A JP 2891426 B2 JP2891426 B2 JP 2891426B2
Authority
JP
Japan
Prior art keywords
resin
wiring
mold
diffusion plate
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2309890A
Other languages
Japanese (ja)
Other versions
JPH03227042A (en
Inventor
久夫 新井
憲司 坊野
幸治 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chichibu Fuji Co Ltd
Original Assignee
Chichibu Fuji Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chichibu Fuji Co Ltd filed Critical Chichibu Fuji Co Ltd
Priority to JP2309890A priority Critical patent/JP2891426B2/en
Publication of JPH03227042A publication Critical patent/JPH03227042A/en
Application granted granted Critical
Publication of JP2891426B2 publication Critical patent/JP2891426B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49109Connecting at different heights outside the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体装置、詳しくはQFP、SOP、SOJ、リー
デッドチップキャリア等のパッケージを有し、特にASI
C、マイコン等の多ピン、高速、高発熱で低コストな集
積回路のパッケージを有する半導体装置の改良に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention has a package of a semiconductor device, specifically, a QFP, SOP, SOJ, a lead chip carrier, etc.
The present invention relates to an improvement of a semiconductor device having a package of a multi-pin, high-speed, high-heat, low-cost integrated circuit such as a microcomputer and a microcomputer.

(従来技術とその技術的課題) 近年、集積回路の大規模化に伴い、信号数の増大が顕
著でかつ高速信号処理と高発熱の放散の要求特性を満足
する必要が出ている。一方において低コストでこれらの
要求に応える必要があり、外部導出入リードのピッチが
0.5mmの表面実装パッケージで特に、リードフレームの
エポキシ等のプラスチック樹脂によりモールド成形した
QFP、SOP、SOJ、リーデットチップキャリア等が有効な
パッケージとして考えられている。
(Prior Art and Its Technical Issues) In recent years, with the increase in the scale of integrated circuits, the number of signals has been remarkably increased, and it has become necessary to satisfy the required characteristics of high-speed signal processing and high heat dissipation. On the other hand, it is necessary to meet these demands at low cost,
Molded with a plastic resin such as epoxy for the lead frame, especially in a 0.5mm surface mount package
QFP, SOP, SOJ, lead chip carrier, etc. are considered as effective packages.

0.5mmリードピッチは表面実装のはんだ付けの限界で
あると言われている(日経エレクトロニクス、1988年12
月号P145〜158)。
It is said that 0.5mm lead pitch is the limit of surface mounting soldering (Nikkei Electronics, December 1988
Monthly publications P145-158).

0.5mmピッチを前提とすると多ピン化と共にパッケー
ジ本体の側辺長を長く取る必要があり、パッケージが大
形になる。これはパッケージ内の配線長の増大をきた
し、高速信号処理の妨げとなる。
Assuming a 0.5 mm pitch, it is necessary to increase the side length of the package body as well as increase the number of pins, resulting in a larger package. This increases the wiring length in the package and hinders high-speed signal processing.

従来より高速処理する必要がある集積回路にとって低
下する電気特性をもつパッケージとなることは大きな問
題となる。一方において集積回路の消費電力も1W以下か
ら2〜5Wクラスとなり、6〜25Wクラスのものまで開発
されつつあり、放熱構造を有するパッケージが必須とな
る問題解決のためにはもちろんリードピッチを0.4mm、
0.35mm、0.3mmと小さくすればよいが多ピン化の進歩も
また急激であり、高速信号処理と高効率放熱はパッケー
ジに課せられた大きな課題であることは明白である。
It is a serious problem for an integrated circuit that needs to be processed at a higher speed than in the past to have a package with reduced electrical characteristics. On the other hand, the power consumption of integrated circuits has also been reduced from 1W or less to 2-5W class, and is being developed to 6-25W class. ,
Although it may be as small as 0.35 mm and 0.3 mm, the progress of multi-pin is also rapid, and it is clear that high-speed signal processing and high-efficiency heat dissipation are the major tasks imposed on the package.

このために近年種々な対応案が考えられている。U.S.
P.4680613号明細書には、接地電位のパッケージ配線内
でのゆらぎによるノイズ発生防止に対して、グランドプ
レーンをリードフレーム配線層の下部に設け、多層リー
ド構造とする提案がある。
For this purpose, various measures have recently been considered. US
In the specification of P. 4680613, there is a proposal to provide a multi-layer lead structure by providing a ground plane below a lead frame wiring layer in order to prevent noise generation due to fluctuations in ground potential in package wiring.

又、U.S.P.4835120号明細書には、接地電位の他に電
源電位のゆらぎも改良するためパワープレーンを追加し
三層リードフレーム構造としたものが提案されている。
In addition, US Pat. No. 4,835,120 proposes a three-layer lead frame structure in which a power plane is added to improve fluctuations in power supply potential in addition to ground potential.

又、放熱構造については特開昭63-73541号、同59-283
64号公報、同48-22548号公報でヒートブロックがリード
フレームの下に挿入された2層構造を提案している。こ
の変形は日経マイクロデバイス誌1988年11月号P74〜75
に記載されており、プリント回路基板へ実装後の形で特
別の配慮をせず2〜3.5Wの放熱が可能であると指摘して
いる。
The heat dissipation structure is described in JP-A-63-73541 and JP-A-59-283.
No. 64 and No. 48-22548 propose a two-layer structure in which a heat block is inserted under a lead frame. This deformation is described in Nikkei Microdevices November 1988, pages 74-75.
And point out that heat dissipation of 2 to 3.5 W is possible without any special consideration after mounting on a printed circuit board.

多ピン化に際してはもう一つの問題がある。半導体チ
ップの電極は周辺より取り出しているがチップサイズが
小さく、多ピンの電極を接地しようとするとその電極間
ピッチはせまくなり、通常の金線ボールボンディングで
接続する限界ピッチ(φ32μmで130μmピッチ)より
小さくなる。
There is another problem in increasing the number of pins. The electrodes of the semiconductor chip are taken out from the periphery, but the chip size is small. When trying to ground a multi-pin electrode, the pitch between the electrodes becomes narrower, and the limit pitch for connection by normal gold wire ball bonding (130 μm pitch at φ32 μm) Smaller.

またチップ電極に対向したインナーリード先端ピッチ
も小さくしなければならない。前者に対してはテープキ
ャリアを使用したボンディングが提案されている。例え
ば特開昭60-241241号や同61-95539号がその例であり、
外部導出入リードをテープキャリアで兼ねた案が特開昭
61-242051号がある。後者に対してはリードフレームの
内部配線をメタライズした絶縁基板を介することによ
り、微細加工を達成している例が特開昭58-122765号に
見られる。
Also, the tip pitch of the inner leads facing the chip electrodes must be reduced. For the former, bonding using a tape carrier has been proposed. For example, JP-A-60-241241 and JP-A-61-95539 are examples thereof,
Japanese Patent Application Laid-Open No.
There is 61-242051. Japanese Patent Application Laid-Open No. 58-122765 discloses an example in which fine processing is achieved by using an insulating substrate in which the internal wiring of a lead frame is metallized.

以上の紹介した公知例は何れもモールド形パッケージ
を前提としたものである。
Each of the known examples introduced above is based on the premise that a molded package is used.

樹脂モールド形パッケージは単層のリードフレームに
チップを搭載しモールド工程を経て完成という単純な構
造由に低コスト化が達成できる。とろこが多ピン化に伴
う、大形化による樹脂モールド歪の増大を来たし、その
歪を吸収する構造や樹脂の選択、プロセスの最適化に多
くの改良を必要とし、コスト高となる。さらに上記した
ようなフレームの多層化や放熱構造は、この問題をさら
に複雑化すると共に構造を作るコストも高くなる。利点
であった構造プロセスの単純性はもはや無くなったとい
える。この対策として樹脂ポッティングタイプの構造が
各種考案されている。例えばIMC1986 Proceedings, Kob
e May 28〜30, P186〜193)、電子材料、1988年9月号P
59〜64、日経マイクロデバイス1989年9月号P68〜70及
び特開昭55-95348号があり、何れも多層構造を容易に作
れるポテンシャルをもっているがそれぞれについて欠点
が指摘できる。IMC1986の例はセラミック基板であり、
一般的に誘電率が樹脂の2倍以上高く、高速配線構造材
としては不適である。また放熱構造を取るためには高価
なシリコンカーバイトやアルミニウムナイトライドを使
用する必要がある。電子材料、1988.9の例ではプリント
基板をベースとした材料にチップを取り付ける構造であ
り、多層化は容易で、放熱構造も銅のヒートシンク付プ
リント基板を用意すれば良い等多くの利点があるが微細
ピッチの外部導出入リードを付けることは技術的に未完
成の分野であり、大面積を有する電極へのリードの接続
という形で比較的ピン数の少ない領域で使用されてい
る。日経マイクロデバイス1989.4, P68-70の例はテープ
キャリアをベースにし、ポッティングしたタイプでテー
プキャリアパッケージとして多ピン化に適した構造であ
る。但しテープキャリア技術(TAB)における多層化は
技術的に確率していない。200ピンの導出入力をもつTAB
でリードフレームと同等の単価であるが2層で3倍、3
層で5倍のコストになろうと考えられ、技術の未確立は
コスト高の原因となっている。以上チップまわりの配線
ピッチの微細化に対しても種々の欠点があり、多ピン
化、高速化、高電力消費化に伴うよいパッケージは提案
されていない。
The resin mold package can achieve cost reduction by a simple structure in which a chip is mounted on a single-layer lead frame and completed through a molding process. Along with the increase in the number of pins of the corn, distortion in the resin mold increases due to an increase in size, and a great deal of improvement is required in selecting a structure or resin that absorbs the distortion and in optimizing the process, resulting in an increase in cost. Further, the multi-layer structure and the heat dissipation structure as described above further complicate this problem and increase the cost of manufacturing the structure. The simplicity of the structural process, which was an advantage, is no longer there. As a countermeasure, various types of resin potting type structures have been devised. For example, IMC1986 Proceedings, Kob
e May 28-30, P186-193), Electronic Materials, September 1988, P
59-64, Nikkei Microdevices September 1989, pages 68-70, and JP-A-55-95348, all of which have the potential to easily form a multilayer structure, but each of which has disadvantages. An example of IMC1986 is a ceramic substrate,
Generally, the dielectric constant is twice or more higher than that of the resin, and is not suitable as a high-speed wiring structure material. In addition, it is necessary to use expensive silicon carbide or aluminum nitride to take a heat dissipation structure. In the case of electronic materials, 1988.9, the chip is attached to a material based on a printed circuit board.Multilayering is easy, and the heat dissipation structure has many advantages such as preparing a printed circuit board with a copper heat sink. The application of pitched lead-in / out leads is a technically unfinished field and is used in areas with relatively few pins in the form of connecting leads to large area electrodes. The example of Nikkei Micro Device 1989.4, P68-70 is based on a tape carrier and has a potted type structure suitable for multi-pin as a tape carrier package. However, multilayering in the tape carrier technology (TAB) has not been technically established. TAB with 200-pin derived input
Is the same unit price as the lead frame, but is tripled for two layers and three times
It is expected that the cost will be five times higher for each layer, and the unestablishment of technology is causing high costs. As described above, there are various disadvantages in miniaturization of the wiring pitch around the chip, and no good package has been proposed with the increase in the number of pins, the speed, and the power consumption.

而して本発明は前述の従来不具合を解消して、高速信
号伝播可能であり、かつ高放熱能力をもつ半導体装置を
低コストで提供することを目的とするものである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a semiconductor device capable of high-speed signal propagation and having high heat dissipation capability at a low cost by solving the above-mentioned conventional problems.

(課題を解決するための手段) 斯る本発明の半導体装置は、配線構造体の片面に半導
体チップを搭載した熱拡散板を設け、他面に樹脂モール
ド部を設けたパッケージ構造を有することを基本構成と
し、前記樹脂モールド部に複数の窪みを設けたことを基
本構成とする。
(Means for Solving the Problems) The semiconductor device of the present invention has a package structure in which a heat diffusion plate on which a semiconductor chip is mounted is provided on one surface of a wiring structure, and a resin mold portion is provided on the other surface. The basic configuration is such that a plurality of depressions are provided in the resin mold portion.

そして、上記基本構成において、前記配線構造体及び
熱拡散板を貫通する通孔を穿孔し該通孔が前記窪みに開
口連通している構成(請求項第1項)、前記請求項1項
記載において、前記通孔にモールド材が充填封孔されて
いる構成(請求項第2項)、前記請求項第3項記載にお
いて、さらに配線構造体と熱拡散板とに貫通し、かつ前
記窪みに開口しない通孔を有し該通孔にモールド材が充
填されている構成(請求項第3項)を特徴とする。
In the basic configuration, a through hole is formed through the wiring structure and the heat diffusion plate, and the through hole is in open communication with the recess. In the configuration, the through hole is filled and sealed with a molding material (Claim 2). In the constitution according to Claim 3, the molding material further penetrates the wiring structure and the heat diffusion plate, and is formed in the depression. It is characterized by having a through hole that does not open and having the through hole filled with a mold material (claim 3).

(作用) 本発明によれば、その基本構成において熱拡散板に半
導体チップを直接に搭載されているため、高出力の半導
体チップの搭載が可能であるとともに配線構造体を多層
配線構造に配置可能であるため高速信号伝播に適した配
線構造が用意される。
(Function) According to the present invention, since the semiconductor chip is directly mounted on the heat diffusion plate in the basic configuration, a high-output semiconductor chip can be mounted and the wiring structure can be arranged in a multilayer wiring structure. Therefore, a wiring structure suitable for high-speed signal propagation is prepared.

そして、上記基本構成は配線構造体の一面側にのみモ
ールド部が形成されない構造であり、配線構造体に応力
的アンバランスが生じて、反りや配線構造体とモールド
材(レジン)との剥離が起るが、前記モールド部の窪み
によりその不具合を解決できる。
The above-described basic configuration is a structure in which the mold portion is not formed only on one surface side of the wiring structure, and a stress imbalance occurs in the wiring structure, and warpage or peeling of the wiring structure from the molding material (resin) occurs. However, the problem can be solved by the depression of the mold part.

又、配線構造体及び熱拡散板を貫通する通孔にモール
ド材を充填封孔することによって、モールド材のアンカ
ー効果及び接合面積の増大により配線構造体とモールド
部との接合強度を高める。
Further, by filling and sealing the through-hole penetrating the wiring structure and the heat diffusion plate with the molding material, the bonding strength between the wiring structure and the molding portion is increased by increasing the anchoring effect of the molding material and the bonding area.

さらに、表面実装時のはんだリフローの急加熱でレジ
ン中の水分が半導体チップとレジン界面、配線構造体と
レジン界面で水蒸気化し、その圧力でレジンクラックの
発生が問題となるが、前記窪みに開口した通孔により、
レジンや配線構造体の水分が拡散放出される経路が得ら
れ、該経路を通して水分の放出が行なわれることで、前
記レジンクラックの発生を防止し得る。
Furthermore, due to rapid heating of the solder reflow during surface mounting, moisture in the resin is turned into steam at the interface between the semiconductor chip and the resin, and at the interface between the wiring structure and the resin, which causes a problem of resin cracking. Through holes
A route through which the moisture of the resin and the wiring structure is diffused and released is obtained, and the release of the moisture through the route can prevent the occurrence of the resin crack.

(実施例) 本発明の実施例を図面により説明すれば、第1図及び
第2図において半導体チップ1は、熱伝導度がよくコス
トの安い銅又は銅系合金の熱拡散板3に熱伝導度を考慮
した接着剤19で接合される。熱拡散板3にはトリアジン
又はポリイミド又はマレイミド材からなるプリント配線
基板2があらかじめ接着剤17で接合されている。また、
外部導出入用リード・フレーム4またはあらかじめ金属
ろう材又ははんだ材11で配線基板外周部の電極に接合さ
れている。さらに熱拡散板3と配線基板2を貫通する通
孔7及び8があらかじめ穿孔されている。チップ1を搭
載後、チップ1と配線基板2の電極同志を適切なるボン
ディング手段、例えば、ワイヤボンディング9で接続す
る。
(Embodiment) An embodiment of the present invention will be described with reference to the drawings. In FIG. 1 and FIG. 2, a semiconductor chip 1 is thermally conductive to a heat diffusion plate 3 made of copper or a copper-based alloy having good thermal conductivity and low cost. Bonded with adhesive 19 considering the degree. The printed wiring board 2 made of a triazine, polyimide or maleimide material is bonded to the heat diffusion plate 3 with an adhesive 17 in advance. Also,
External lead-in / out lead frame 4 or a metal brazing material or solder material 11 is previously joined to electrodes on the outer peripheral portion of the wiring board. Further, through holes 7 and 8 penetrating the heat diffusion plate 3 and the wiring board 2 are formed in advance. After the chip 1 is mounted, the electrodes of the chip 1 and the wiring board 2 are connected by an appropriate bonding means, for example, a wire bonding 9.

その後、モールド型20に上記組立て構造体に入れる
(第3図)。型20のチップ側に設けたエジェクターピン
23がモールド後の窪み6の雄型になるよう設計されてい
る。この型にシリカガラス球フィラー入りのシリコーン
変成エポキシをモールドし、モールド部5を形成する。
上型21と下型22のエジェクターピン23により、通孔7に
はレジンが充填されない。しかしエジェクターピン23が
押し当てられていない通孔8にはレジンが充填される。
第2図により通孔7,8の配置がよく理解されよう。窪み
6や通孔7,8の位置は一例を示すもので大きさ、数、場
所に対しては適宜変更可能である。
Thereafter, the assembly structure is put into the mold 20 (FIG. 3). Ejector pin provided on the tip side of mold 20
23 is designed to be the male type of the recess 6 after molding. This mold is molded with a modified silicone epoxy containing a silica glass sphere filler to form a mold portion 5.
The resin is not filled in the through hole 7 by the ejector pins 23 of the upper mold 21 and the lower mold 22. However, resin is filled in the through holes 8 to which the ejector pins 23 are not pressed.
The arrangement of the through holes 7, 8 will be better understood from FIG. The positions of the depressions 6 and the through holes 7 and 8 are merely examples, and the size, number, and location can be changed as appropriate.

その後、リードフレーム4のタイバー部(図示せず)
を切断し、プレス成形し第1図のような形状とする。も
ちろんリード4のモールドされていない部分ははんだ付
けに適した表面処理を施こし、又、内部側のボンディン
グ部はボンディングにふさわしい表面処理がされている
ことはいうまでもない。
Then, a tie bar portion (not shown) of the lead frame 4
Is cut and press-formed into a shape as shown in FIG. Of course, the unmolded portion of the lead 4 is subjected to a surface treatment suitable for soldering, and the inner bonding portion is, of course, subjected to a surface treatment suitable for bonding.

第4図は第2の実施例である。型30のエジェクターピ
ン33が第3図のように配線基板2に突き当てる形となら
ず、すき間をあけた状態でモールドした例である(第5
図)。通孔7′がレジンで充填されることが特徴であ
る。
FIG. 4 shows a second embodiment. This is an example in which the ejector pins 33 of the mold 30 do not abut against the wiring board 2 as shown in FIG. 3, but are molded with a gap therebetween (FIG. 5).
Figure). It is characterized in that the through holes 7 'are filled with resin.

第6図は配線基板2′を多層状とし、かつリードフレ
ーム4′取付け構造の変形例を示す部分拡大断面図を示
すもので配線基板2′に多層構造の銅配線12,13がさ
れ、ビアホール14により層間接合されている。ここで18
はソルダレジストである。また第6はリード4′の配線
基板2′への接続の補強方法の一例が併せて説明されて
いる。配線基板の電極部分とリードの接合部分に通孔1
5,16があげられ、そこにろう材又ははんだ材11′が充填
されている。
FIG. 6 is a partially enlarged cross-sectional view showing a modification of the mounting structure of the lead frame 4 'in which the wiring board 2' has a multilayer structure. The layers 14 are bonded together. Where 18
Is a solder resist. The sixth also describes an example of a method of reinforcing the connection of the lead 4 'to the wiring board 2'. Through hole 1 at the junction between the electrode part of the wiring board and the lead
5 and 16, which are filled with a brazing or solder material 11 '.

而して以上の実施例によれば、熱拡散板3にチップ1
の熱が伝えられ、熱拡散板の表面は露出しており、この
表面より熱が次の冷却手段へ逃がすことが可能となる。
尚次の冷却構造としてアルミニウムフィン、水冷、液冷
ヒートシンク接触、ヒートパイプ接触、単なる空気流等
あるゆる冷却手段が取れるため、低熱抵抗のパッケージ
となる。
Thus, according to the above embodiment, the chip 1 is
Is transmitted, and the surface of the heat diffusion plate is exposed, and the heat can be released from the surface to the next cooling means.
As the next cooling structure, aluminum fins, water cooling, liquid cooling heat sink contact, heat pipe contact, simple air flow, and any other cooling means can be taken, so that the package has a low thermal resistance.

配線基板2′は多層構造となっており、電気特性のよ
い配線が提供できることはいうまでもない。この基板は
ガラス繊維入有機レジンのいわゆるプリント基板でも、
フレキシブル基板でもTAB基板でもセラミック基板でも
よい。第1図の窪み6及び通孔7は配線基板2の水分吸
収、モールドレジン5の水分吸収を逃がすための経路を
構成する。第4図の窪み6′であっても無いものに比べ
効果的である。
Needless to say, the wiring board 2 'has a multilayer structure, and can provide wiring with good electrical characteristics. This board is a so-called printed board made of organic resin containing glass fiber,
A flexible substrate, a TAB substrate, or a ceramic substrate may be used. The recess 6 and the through hole 7 in FIG. 1 constitute a path for releasing the moisture absorption of the wiring board 2 and the moisture absorption of the mold resin 5. It is more effective than the one without the depression 6 'in FIG.

第1図、第4図の窪み6及び6′は熱拡散板3と配線
基板2とモールドレジン5の熱的、機械的不整合をその
空間により緩和できるものであることも理解できる。要
すればもっと多くの面積の開孔を行ってもよい。尚、配
線10は第1図の場合露出するためソルダーレジスト18の
保護がなされている。また通孔7,8は配線10(内層も含
む)を切断するものでないことはいうまでもない。
It can be understood that the recesses 6 and 6 'in FIGS. 1 and 4 can alleviate the thermal and mechanical mismatch between the heat diffusion plate 3, the wiring board 2 and the mold resin 5 by the space. More areas may be drilled if desired. Note that the wiring 10 is exposed in the case of FIG. 1, so that the solder resist 18 is protected. Needless to say, the through holes 7 and 8 do not cut the wiring 10 (including the inner layer).

モールドレジンの充填された通孔8及び7′は配線基
板2とモールドレジン5を機械的アンカー効果で強固に
接合一体化する手段を与えていることも容易に理解され
よう。
It will be easily understood that the through holes 8 and 7 'filled with the mold resin provide a means for firmly joining and integrating the wiring board 2 and the mold resin 5 by a mechanical anchor effect.

第4図の窪み6″は型30のエジェクターピン33とチッ
プ1にすき間があるためチップを破壊するものではな
く、チップの不整合応力緩和とレジン水分の放出に効果
的であることが判明する。それぞれの窪み、通孔はあら
ゆる組合せが可能で必要に応じて適宜削除追加が可能で
あることはいうまでもない。
The recess 6 "in FIG. 4 does not break the chip because there is a gap between the ejector pin 33 of the mold 30 and the chip 1, but it is found to be effective in relieving the mismatching stress of the chip and releasing the resin moisture. It goes without saying that each of the depressions and through holes can be combined in any combination and can be appropriately deleted and added as needed.

また第3図の場合エジェクターピンで配線基板2を上
型に押し上げ熱拡散板3の表面にモールド時レジンが廻
り込むのを防ぐ効果がある。従って第5図にもこのよう
なピン配置を部分的に行うことも可能である。
In addition, in the case of FIG. 3, there is an effect that the resin is pushed up to the surface of the heat diffusion plate 3 by pushing up the wiring board 2 with the ejector pins, and the resin is prevented from flowing around at the time of molding. Therefore, it is also possible to partially perform such a pin arrangement in FIG.

(効果) 本発明は上述の基本構成により、放熱作用が高く多層
配線構造を可能ならしめたことによって高速信号伝播が
可能な、しかも高出力な半導体装置を提供するとともに
モールド部に窪みを設けたことでモールド時における配
線構造体の応力的アンバランスや反りの発生を防止して
配線構造体とモールド材との剥離を防ぎ、その接合強度
を高めることができる。
(Effects) The present invention provides a high-output semiconductor device capable of high-speed signal propagation by providing a multilayer wiring structure with a high heat dissipation effect by the above-described basic configuration and providing a recess in a mold portion. This can prevent the occurrence of stress imbalance and warpage of the wiring structure during molding, prevent separation of the wiring structure from the molding material, and increase the bonding strength.

そして、請求項第1〜3項の特徴的構成を採用するこ
とで、配線構造体とモールド部との接合強度をさらに高
めるとともにモールド部のクラック発生を防止し、耐久
性、信頼性の高い半導体装置を提供することきができ
る。
By adopting the characteristic structure of claims 1 to 3, the bonding strength between the wiring structure and the mold portion is further increased, and the occurrence of cracks in the mold portion is prevented. Equipment can be provided.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明半導体装置の断面図、第2図はその一部
切欠せる底面図、第3図はモールド工程を示す断面図、
第4図は第2実施例の断面正面図、第5図はそのモール
ド工程の断面図、第6図は配線構造体及びリードフレー
ムの取付け構造の変形例を示す部分拡大断面図である。 図中、1……半導体チップ、2,2′……配線基板、3…
…熱拡散板、4……リードフレーム、5……モールド部
(レジン)、6,6′6″……窪み 7,7′8……通孔
1 is a cross-sectional view of the semiconductor device of the present invention, FIG. 2 is a partially cutaway bottom view, FIG. 3 is a cross-sectional view showing a molding process,
FIG. 4 is a cross-sectional front view of the second embodiment, FIG. 5 is a cross-sectional view of the molding step, and FIG. 6 is a partially enlarged cross-sectional view showing a modification of the wiring structure and the lead frame mounting structure. In the figure, 1 ... semiconductor chip, 2,2 '... wiring board, 3 ...
... heat diffusion plate, 4 ... lead frame, 5 ... molded part (resin), 6, 6'6 "... recess 7,7'8" ... through hole

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 実開 昭60−33449(JP,U) 実開 昭62−131449(JP,U) 実開 昭53−66171(JP,U) (58)調査した分野(Int.Cl.6,DB名) H01L 23/28,23/36 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References Japanese Utility Model Showa 60-33449 (JP, U) Japanese Utility Model Showa 62-131449 (JP, U) Japanese Utility Model Showa 53-66171 (JP, U) (58) Survey Field (Int.Cl. 6 , DB name) H01L 23 / 28,23 / 36

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】配線構造体の片面に半導体チップを搭載し
た熱拡散板を設け、他面に樹脂モールド部を設けたパッ
ケージ構造を有し、前記樹脂モールド部に複数の窪みを
形成してなる半導体装置において、配線構造体及び熱拡
散板を貫通する通孔を穿孔し該通孔が前記窪みに開口し
ていることを特徴とする半導体装置。
1. A package structure in which a heat diffusion plate having a semiconductor chip mounted thereon is provided on one surface of a wiring structure and a resin mold portion is provided on the other surface, and a plurality of recesses are formed in the resin mold portion. In a semiconductor device, a through hole penetrating a wiring structure and a heat diffusion plate is formed, and the through hole is opened in the recess.
【請求項2】請求項第1項記載において、前記通孔にモ
ールド部のモールド材と同質のモールド材が充填封孔さ
れていることを特徴とする半導体装置。
2. The semiconductor device according to claim 1, wherein a mold material of the same quality as the mold material of the mold portion is filled and sealed in said through hole.
【請求項3】請求項第2項記載において、さらに配線構
造体及び熱拡散板を貫通し、かつ前記窪みに開口しない
通孔を有し該通孔にモールド部のモールド材と同質のモ
ールド材が充填されていることを特徴とする半導体装
置。
3. The molding material according to claim 2, further comprising a through hole penetrating through the wiring structure and the heat diffusion plate and not opening in the recess. A semiconductor device characterized by being filled with:
JP2309890A 1990-01-31 1990-01-31 Semiconductor device Expired - Fee Related JP2891426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2309890A JP2891426B2 (en) 1990-01-31 1990-01-31 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2309890A JP2891426B2 (en) 1990-01-31 1990-01-31 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH03227042A JPH03227042A (en) 1991-10-08
JP2891426B2 true JP2891426B2 (en) 1999-05-17

Family

ID=12100975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2309890A Expired - Fee Related JP2891426B2 (en) 1990-01-31 1990-01-31 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2891426B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06163812A (en) * 1992-11-26 1994-06-10 Seiko Epson Corp Semiconductor device and manufacture thereof
GB2355116B (en) * 1999-10-08 2003-10-08 Nokia Mobile Phones Ltd An antenna assembly and method of construction
US7214566B1 (en) 2000-06-16 2007-05-08 Micron Technology, Inc. Semiconductor device package and method
JP5108457B2 (en) * 2007-11-02 2012-12-26 アスモ株式会社 Resin-sealed electronic component device
JP4766162B2 (en) * 2009-08-06 2011-09-07 オムロン株式会社 Power module

Also Published As

Publication number Publication date
JPH03227042A (en) 1991-10-08

Similar Documents

Publication Publication Date Title
KR100310398B1 (en) Pad Array Semiconductor Device with Thermal Conductor and Manufacturing Method Thereof
US6528882B2 (en) Thermal enhanced ball grid array package
JP3578770B2 (en) Semiconductor device
US6563212B2 (en) Semiconductor device
JP3466785B2 (en) Semiconductor device and method of forming the same
KR100694739B1 (en) Ball grid array package with multiple power/ground planes
KR100698526B1 (en) Substrate having heat spreading layer and semiconductor package using the same
JP3066579B2 (en) Semiconductor package
US7679176B2 (en) Semiconductor device and electronic control unit using the same
US6819565B2 (en) Cavity-down ball grid array semiconductor package with heat spreader
JP2891426B2 (en) Semiconductor device
JPS61137335A (en) Semiconductor device
JP2958380B2 (en) Semiconductor device
KR100203932B1 (en) BGA package having thermal emissive substrate attached to chip
JP3314574B2 (en) Method for manufacturing semiconductor device
JP3684517B2 (en) Semiconductor device
JP3561671B2 (en) Semiconductor device
JPH11186440A (en) Semiconductor device
JPH10209321A (en) Semiconductor integrated circuit device
JP3127149B2 (en) Semiconductor device
KR100218633B1 (en) Ball grid array package having a carrier frame
JP2004072113A (en) Thermally strengthened integrated circuit package
JPH11274360A (en) Semiconductor device and its manufacture
JP3238906B2 (en) Semiconductor device
JPH11135562A (en) Bga semiconductor package

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20080226

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090226

LAPS Cancellation because of no payment of annual fees