JP2008270443A - Multilayer wiring board and manufacturing method thereof - Google Patents

Multilayer wiring board and manufacturing method thereof Download PDF

Info

Publication number
JP2008270443A
JP2008270443A JP2007110046A JP2007110046A JP2008270443A JP 2008270443 A JP2008270443 A JP 2008270443A JP 2007110046 A JP2007110046 A JP 2007110046A JP 2007110046 A JP2007110046 A JP 2007110046A JP 2008270443 A JP2008270443 A JP 2008270443A
Authority
JP
Japan
Prior art keywords
substrate
wiring
layer
semiconductor element
substrate material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007110046A
Other languages
Japanese (ja)
Other versions
JP5238182B2 (en
Inventor
Masahiro Okamoto
誠裕 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2007110046A priority Critical patent/JP5238182B2/en
Publication of JP2008270443A publication Critical patent/JP2008270443A/en
Application granted granted Critical
Publication of JP5238182B2 publication Critical patent/JP5238182B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/12105Bump connectors formed on an encapsulation of the semiconductor or solid-state body, e.g. bumps on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73267Layer and HDI connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multilayer wiring board which has a thinned semiconductor element maintaining planarity and is suitable to obtain an easily assembled thinned structure, and to provide a manufacturing method thereof. <P>SOLUTION: The multilayer wiring board has a structure in which a semiconductor element 3 is bonded between first and second substrate materials 1 and 2 which are face-to-face disposed. The first substrate material 1 is provided with a wiring board having a wiring layer 1b formed on one surface of an insulating substrate 1a, and a conductive paste-made through electrode 1c piercing through the insulating substrate and having one end connected to the wiring layer and the other end exposed to the other surface of the insulating substrate. The semiconductor element 3 is provided with an electrode pad 3b formed on one surface of the semiconductor substrate 3a, a protective insulating film 3c having a contact hole, a re-wiring layer 3e formed thereon and connected to the electrode pad, and a first insulating film 3d, 3f for forming the re-wiring layer, and a second insulating film 3h formed on the other surface of the semiconductor substrate. The other end of the through electrode 1c is connected to the re-wiring layer 3e. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は積層配線基板及びその製造方法に関し、特に、内蔵される半導体素子及びパッケージ基板の薄形化に好適な積層配線基板及びその製造方法に関する。   The present invention relates to a multilayer wiring board and a method for manufacturing the same, and more particularly to a multilayer wiring board suitable for reducing the thickness of a built-in semiconductor element and package substrate and a method for manufacturing the same.

プリント基板分野では、半導体IC/LSI素子のようなウエハプロセスで製造された素子に信号伝達や給電を行うために、素子と外部回路または機器とを電気的に接続するためのパッケージ基板が使用されている。従来のパッケージ基板には、個片化されたICチップを、再配線層が形成されたICチップよりも大きな回路基板上に搭載し、ワイヤボンディング接続したものが用いられてきた。そして、近年の携帯電子機器の多機能化に伴い、半導体デバイスにも更なる小形化が要求され、IC/LSIの高集積化要求にも増してパッケージの小形化に焦点が当てられてきている。   In the printed circuit board field, a package substrate for electrically connecting an element and an external circuit or device is used to transmit a signal or supply power to an element manufactured by a wafer process such as a semiconductor IC / LSI element. ing. A conventional package substrate has been used in which an individualized IC chip is mounted on a circuit substrate larger than the IC chip on which the rewiring layer is formed and wire-bonded. With the recent increase in the number of functions of portable electronic devices, further miniaturization of semiconductor devices is required, and the demand for higher integration of IC / LSI has been focused on miniaturization of packages. .

このような状況において、近年、究極的な小形パッケージとして、ビルトアップ法のみで構成されるウエハレベル・チップスケールパッケージ(WLCSP)が開発されている。このWLCSPは、Siウエハを土台として、IC上に直接的に配線をビルトアップする方法で、パッケージサイズがICチップサイズと同等程度に最小化される。しかし、実装基板の端子ピッチのルールによってパッケージ上に配置できる端子数が制約されるために、WLCSPの適用は、ピン数の少ない素子に限定される。   Under such circumstances, in recent years, a wafer level chip scale package (WLCSP) constituted only by a built-up method has been developed as an ultimate small package. This WLCSP is a method of building up wiring directly on an IC using a Si wafer as a base, and the package size is minimized to the same extent as the IC chip size. However, since the number of terminals that can be arranged on the package is restricted by the rule of the terminal pitch of the mounting board, the application of WLCSP is limited to an element having a small number of pins.

WLCSPの前記制約を解決する技術として、例えば特許文献1に開示されているようなEWLP(Embedded Wafer Level Package)というパッケージ基板技術が知られている。しかしながら、このEWLPは、レジストマスク及びメッキ等の繰返し工程によるビルトアップ法を使用するため、工程数が多く長時間となり製造コストが高く、多層化時に多数回の加熱プレス工程を要するために一部の絶縁基板樹脂層に多くの熱履歴が加わり樹脂劣化が生じ易いなどの問題がある。   As a technique for solving the restriction of WLCSP, for example, a package substrate technique called EWLP (Embedded Wafer Level Package) as disclosed in Patent Document 1 is known. However, this EWLP uses a built-up method based on repeated processes such as a resist mask and plating, which requires a large number of processes and a high manufacturing cost. There is a problem that a large amount of heat history is applied to the insulating substrate resin layer, and the resin is liable to deteriorate.

一方、特許文献2にみられるように、絶縁基板の両面に回路配線層及び接着層をそれぞれ設け、層間導通ビアとなる導電ペースト製の貫通電極を設けた配線基板を多数枚用意し、これらの配線基板を一括加熱圧着することによって多層配線基板構造を得る技術がある。   On the other hand, as seen in Patent Document 2, a circuit wiring layer and an adhesive layer are provided on both surfaces of an insulating substrate, and a large number of wiring substrates are provided with through electrodes made of conductive paste serving as interlayer conductive vias. There is a technique for obtaining a multilayer wiring board structure by batch-bonding the wiring boards by thermocompression bonding.

本発明者等は、このような導電ペースト製の貫通電極及び一括加熱圧着技術を利用した部品内蔵可能なパッケージタイプの配線基板の開発を行ってきている。その開発技術の一例を従来技術として図8に概略的に図示して説明する。   The present inventors have developed a package-type wiring board capable of incorporating components using such a conductive paste through electrode and a batch thermocompression bonding technique. An example of the developed technology is schematically illustrated in FIG.

この従来技術のパッケージタイプの配線基板において、上側の配線基板81は、絶縁基板81a、その上面の回路配線層81b、及び前記絶縁基板81aを貫通する導電ペースト製の貫通電極81cを有する。下側の配線基板82は、絶縁基板82a及びその下面の回路配線層82bを有する。前記上下両配線基板81、82間の半導体素子83は、前記貫通電極81cを通じて前記配線層81bに電気的に接続され、前記両配線基板間を接着する接着層84に埋め込まれている。   In this conventional package type wiring board, the upper wiring board 81 has an insulating substrate 81a, a circuit wiring layer 81b on the upper surface thereof, and a through electrode 81c made of a conductive paste that penetrates the insulating substrate 81a. The lower wiring substrate 82 includes an insulating substrate 82a and a circuit wiring layer 82b on the lower surface thereof. The semiconductor element 83 between the upper and lower wiring boards 81 and 82 is electrically connected to the wiring layer 81b through the through electrode 81c and embedded in an adhesive layer 84 that bonds the wiring boards.

前記半導体素子83は、広面積の半導体ウエハの上表面に、選択拡散技術などにより、前記半導体素子83に対応する素子領域を多数形成し、前記ウエハ裏面を研磨してウエハを薄形化した後、ダイシングして複数の個片化された状態で取り出される。このウエハ薄形化は、パッケージ基板の薄形化の市場要求に伴って不可欠な程に重要である。   The semiconductor element 83 is formed by forming a large number of element regions corresponding to the semiconductor element 83 on the upper surface of a large-area semiconductor wafer by selective diffusion technology, etc., and polishing the back surface of the wafer to thin the wafer. Then, it is diced and taken out in a plurality of pieces. This wafer thinning is as important as the market demand for package substrate thinning.

そして、前記半導体素子83は、前記ウエハ裏面の研磨によって薄形化された半導体基板83a、その一部上表面に形成された電極パット83b、半導体基板83aの上表面に被着され電極パット83bに対するコンタクト孔を有する酸化珪素や窒化珪素製の無機絶縁膜83cを有する。そして、前記絶縁膜83c上表面には前記パット83b用のコンタクト孔をする1層目の有機絶縁膜83dが形成されている。前記パット83b及び有機絶縁膜83d上には前記上側配線基板81の配線層81bと整合するパターンをもって再配線層83eが例えばセミアディティブ法によって形成されている。更に、前記再配線層83eの一部に対応するコンタクト孔を備えた2層目の有機絶縁膜83fが前記1層目の有機絶縁膜83d上に被着されている。前記各有機絶縁膜83f、83dは、前記再配線層83eのパターンニングやコンタクト孔を形成するに当たって、液状感光性ポリイミド前駆体をスピンコートしてフォトリソグラフィ処理を行った後、焼成して残存させることによって半導体基板83aの上表面に形成されている。   The semiconductor element 83 includes a semiconductor substrate 83a thinned by polishing the back surface of the wafer, an electrode pad 83b formed on a part of the upper surface, and an electrode pad 83b attached to the upper surface of the semiconductor substrate 83a. An inorganic insulating film 83c made of silicon oxide or silicon nitride having contact holes is provided. A first organic insulating film 83d that forms a contact hole for the pad 83b is formed on the surface of the insulating film 83c. A rewiring layer 83e is formed on the pad 83b and the organic insulating film 83d with a pattern matching the wiring layer 81b of the upper wiring substrate 81 by, for example, a semi-additive method. Further, a second organic insulating film 83f having a contact hole corresponding to a part of the rewiring layer 83e is deposited on the first organic insulating film 83d. The organic insulating films 83f and 83d are left to be baked after being subjected to photolithography processing by spin coating a liquid photosensitive polyimide precursor in patterning the rewiring layer 83e and forming contact holes. Thus, it is formed on the upper surface of the semiconductor substrate 83a.

ところで、前記半導体素子83を内蔵するパッケージ基板の組立工程図を省略するが、この組立工程の際には、マウンタ設備の真空チャックによって一つ一つピックアップされた各半導体素子83が、その再配線層83eを貫通電極81cに押し付けた状態(図8参照)で接着層材によって前記上側配線基板81に仮止めされる。その後、前記半導体素子83付の上側配線基板81を下側配線基板82上に、接着層84を介在させて位置合わせして積層し、この積層体を挟む方向に一括加熱圧着することによって、素子内蔵パッケージ基板が形成される。   By the way, although an assembly process diagram of the package substrate incorporating the semiconductor element 83 is omitted, in this assembly process, each semiconductor element 83 picked up one by one by the vacuum chuck of the mounter equipment is re-wired. The layer 83e is temporarily fixed to the upper wiring substrate 81 with an adhesive layer material in a state where the layer 83e is pressed against the through electrode 81c (see FIG. 8). Thereafter, the upper wiring substrate 81 with the semiconductor element 83 is aligned and laminated on the lower wiring substrate 82 with the adhesive layer 84 interposed therebetween, and the device is subjected to collective thermocompression bonding in a direction sandwiching the laminated body. A built-in package substrate is formed.

このような前記従来技術において、前記1、2層目の有機絶縁膜83d、83fは、再配線層のパターニングや外部からの押圧力に対する緩衝層等の役割をもち得る反面、これら有機絶縁膜の形成過程において硬化収縮を起こすため、前記半導体基板83aの上表面側に引張応力が発生する。従って、前記半導体基板83aは、十分に厚ければ前記引張応力に抗して平坦性を維持できるが、薄形化が進むと前記引張応力に耐えられずにチップ反りを生じ易い。   In the prior art as described above, the first and second organic insulating films 83d and 83f may have a role of a buffer layer or the like for patterning of the redistribution layer and external pressing force. In order to cause curing shrinkage during the formation process, tensile stress is generated on the upper surface side of the semiconductor substrate 83a. Therefore, if the semiconductor substrate 83a is sufficiently thick, it can maintain flatness against the tensile stress. However, if the semiconductor substrate 83a is thinned, the semiconductor substrate 83a cannot withstand the tensile stress and easily causes chip warpage.

このようなチップ反りがあると、前記パッケージ基板組立工程の際に前記真空チャックによる素子の吸着(ピックアップ)ができず、マウント作業に支障を来すケースが増加する虞がある。仮にピックアップできても、前述のように半導体素子83を貫通電極81cに位置合わせして押し付けてマウントする際に、その位置合わせ精度が低下したり、半導体素子83が押圧力で割れたりする虞がある。このように、半導体素子及びパッケージ基板の薄形化並びに確実かつ安定したマウント作業を共に得ることは困難な状況にある。
特開2004― 95836号特許公開公報 特開2003―318546号特許公開公報
If there is such a chip warp, the vacuum chuck cannot attract (pick up) the element during the package substrate assembling process, which may increase the number of cases that hinder the mounting operation. Even if it can be picked up, when the semiconductor element 83 is positioned and pressed against the through electrode 81c and mounted as described above, there is a possibility that the alignment accuracy may be lowered or the semiconductor element 83 may be broken by the pressing force. is there. As described above, it is difficult to obtain both a thin semiconductor device and a package substrate and a reliable and stable mounting operation.
Japanese Patent Laid-Open No. 2004-95836 Japanese Patent Laid-Open No. 2003-318546

本発明は、前記従来の問題点を解決するものであり、特に平坦性維持可能な薄形化された半導体素子を内蔵し、組み立て容易な薄形化されたパッケージ構造を得るのに好適な積層配線基板及びその製造方法を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and is particularly suitable for obtaining a thin package structure that incorporates a thin semiconductor element capable of maintaining flatness and is easy to assemble. An object of the present invention is to provide a wiring board and a manufacturing method thereof.

請求項1に記載の本発明は、対面配置された第1基板材と第2基板材との間に半導体素子を内蔵して接着封止した積層配線基板であって、前記第1基板材は、絶縁基板の一方の面に配線層が形成された配線基板と、前記絶縁基板を貫通し一端面が前記配線層に接続され他端面が前記絶縁基板の他方の面に露出する導電性ペーストからなる貫通電極とを備え、前記半導体素子は、半導体基板の一方の面に形成された電極パッド及び前記電極パッドに対するコンタクト孔を有する保護絶縁膜と、前記保護絶縁膜上に形成され前記電極パッドに接続された再配線層及び前記再配線層形成用の第1絶縁膜と、前記半導体基板の他方の面に形成された第2絶縁膜とを備え、前記貫通電極の前記他端面は前記再配線層に接続されていることを特徴とする。   The present invention according to claim 1 is a multilayer wiring board in which a semiconductor element is embedded and sealed between a first substrate material and a second substrate material that are arranged facing each other, wherein the first substrate material is A wiring substrate having a wiring layer formed on one surface of the insulating substrate, and a conductive paste that penetrates the insulating substrate, has one end surface connected to the wiring layer, and the other end surface exposed on the other surface of the insulating substrate. The semiconductor element includes an electrode pad formed on one surface of a semiconductor substrate, a protective insulating film having a contact hole for the electrode pad, and a protective insulating film formed on the protective insulating film. A re-wiring layer connected thereto; a first insulating film for forming the re-wiring layer; and a second insulating film formed on the other surface of the semiconductor substrate, the other end surface of the through electrode being the re-wiring It is connected to the layers.

請求項2に記載の本発明は、請求項1に記載の積層配線基板において、前記第1絶縁膜及び前記第2絶縁膜は、相互に同一種類の有機樹脂材料を用いて形成されていることを特徴とする。   According to a second aspect of the present invention, in the laminated wiring board according to the first aspect, the first insulating film and the second insulating film are formed using the same kind of organic resin material. It is characterized by.

請求項3に記載の本発明は、請求項1または請求項2に記載の積層配線基板において、前記第1基板材は、各々が絶縁基板の一方の面に配線層を有する複数の配線基板を積層した多層配線基板構造とされ、前記各配線基板には対応する配線層に接続されて前記絶縁基板を貫通する導電性ペーストからなる貫通電極が設けられ、前記半導体素子側の配線基板の貫通電極が前記半導体素子の再配線層に接続され、前記半導体素子から離隔する他の配線基板の貫通電極が隣接する配線基板の配線層に電気的に接続されていることを特徴とする。   According to a third aspect of the present invention, in the multilayer wiring board according to the first or second aspect, the first substrate material includes a plurality of wiring boards each having a wiring layer on one surface of the insulating substrate. Each of the wiring substrates is provided with a through electrode made of a conductive paste that is connected to a corresponding wiring layer and penetrates the insulating substrate, and the through electrode of the wiring substrate on the semiconductor element side Is connected to the rewiring layer of the semiconductor element, and the through electrode of another wiring board separated from the semiconductor element is electrically connected to the wiring layer of the adjacent wiring board.

請求項4に記載の本発明は、請求項1〜請求項3のうちいずれか一つの請求項に記載の積層配線基板において、前記絶縁基板の前記他方の面に接着層が形成され、前記貫通電極は前記絶縁基板及び接着層を貫通し、前記半導体素子は前記接着層中に埋め込まれていることを特徴とする。   According to a fourth aspect of the present invention, in the multilayer wiring board according to any one of the first to third aspects, an adhesive layer is formed on the other surface of the insulating substrate, and the penetration The electrode penetrates the insulating substrate and the adhesive layer, and the semiconductor element is embedded in the adhesive layer.

請求項5に記載の本発明は、請求項1〜請求項4のうちいずれか一つの請求項に記載の積層配線基板において、前記第1基板材と第2基板材との間に第3基板材が配置され、前記第3基板材は前記半導体素子が挿入される開口部を有するフィルム状のスペーサからなり、前記第1乃至第3基板材相互間及び前記開口部に接着層材が充填されていることを特徴とする。   According to a fifth aspect of the present invention, in the multilayer wiring board according to any one of the first to fourth aspects, a third substrate is provided between the first substrate material and the second substrate material. A plate material is disposed, and the third substrate material is formed of a film-like spacer having an opening into which the semiconductor element is inserted, and an adhesive layer material is filled between the first to third substrate materials and the opening. It is characterized by.

請求項6に記載の本発明は、請求項1〜請求項4のうちいずれか一つの請求項に記載の積層配線基板において、前記第1基板材と第2基板材との間に第3基板材が配置され、前記第3基板材は、絶縁基板の少なくとも一方の面に配線層を有する中間配線基板からなり、前記半導体素子が挿入される開口部を有し、前記第1乃至第3基板材相互間及び前記開口部に接着層材が充填されていることを特徴とする。   According to a sixth aspect of the present invention, in the multilayer wiring board according to any one of the first to fourth aspects, a third substrate is provided between the first substrate material and the second substrate material. A plate material is disposed, and the third substrate material is an intermediate wiring substrate having a wiring layer on at least one surface of an insulating substrate, has an opening into which the semiconductor element is inserted, and the first to third substrates An adhesive layer material is filled between the plate materials and in the opening.

請求項7に記載の本発明は、請求項1〜請求項6のうちいずれか一つの請求項に記載の積層配線基板において、前記第2基板材は、絶縁基板の少なくとも一方の面に形成された配線層を有する配線基板、前記絶縁基板を貫通して設けられ前記配線層に接続された導電性ペーストからなる貫通電極、及び前記絶縁基板の前記第1基板材側の面に少なくとも部分的に設けられた接着層を備えて構成されていることを特徴とする。   According to a seventh aspect of the present invention, in the multilayer wiring board according to any one of the first to sixth aspects, the second substrate material is formed on at least one surface of the insulating substrate. A wiring board having a wiring layer, a through electrode made of a conductive paste provided through the insulating substrate and connected to the wiring layer, and at least partially on a surface of the insulating substrate on the first substrate material side It is characterized by comprising an adhesive layer provided.

請求項8に記載の本発明の積層配線基板の製造方法は、(A)半導体基板の一方の面に形成された電極パッド及び前記電極パッドに対するコンタクト孔を有する保護絶縁膜と、前記保護絶縁膜上に形成され前記電極パッドに接続された再配線層及び前記再配線層形成用の第1絶縁膜と、前記半導体基板の他方の面に形成された第2絶縁膜とを備えた半導体素子を提供する工程と、(B)第1基板材を作成するために、絶縁基板の一方の面に配線層をパターンニング形成して配線基板を形成する工程と、(C)前記絶縁基板の他方の面に接着層を形成する工程と、(D)前記半導体素子の再配線層及び前記配線層の一部に対応する位置関係にあって前記絶縁基板及び接着層を貫通する貫通孔を形成する工程と、
(E)前記貫通孔に導電性ペーストを充填することによって、一端面が前記配線層に接続され他端面が前記絶縁基板の他方の面に露出された貫通電極を形成する工程と、(F)前記貫通電極の前記他端面を前記半導体素子の再配線層に位置合わせして接続し、前記半導体素子を前記接着層に仮止め接着して前記第1基板材と一体化する工程と、(G)前記第1基板材に対面させる第2基板材を提供する工程と、(H)前記第1基板材と一体化された前記半導体素子を前記第2基板材上に位置合わせして重ね合わせる工程と、(I)前記第1基板材と前記第2基板材とを重ね合わせ方向に一括加熱プレスし、前記接着層により前記半導体素子を囲み前記第1及び第2基板材を相互接着する工程と、を備えることを特徴とする。
The method for manufacturing a multilayer wiring board according to claim 8 includes: (A) a protective insulating film having an electrode pad formed on one surface of a semiconductor substrate and a contact hole for the electrode pad; and the protective insulating film A semiconductor device comprising: a redistribution layer formed on and connected to the electrode pad; a first insulation film for forming the redistribution layer; and a second insulation film formed on the other surface of the semiconductor substrate. (B) forming a wiring substrate by patterning a wiring layer on one surface of the insulating substrate to create a first substrate material; (C) forming the wiring substrate on the other surface of the insulating substrate; Forming a bonding layer on the surface; and (D) forming a through hole penetrating the insulating substrate and the bonding layer in a positional relationship corresponding to a part of the rewiring layer of the semiconductor element and the wiring layer. When,
(E) filling the through hole with a conductive paste to form a through electrode having one end surface connected to the wiring layer and the other end surface exposed on the other surface of the insulating substrate; (F) (G) aligning and connecting the other end surface of the through electrode to the rewiring layer of the semiconductor element, and temporarily bonding the semiconductor element to the adhesive layer to integrate with the first substrate material; ) Providing a second substrate material facing the first substrate material; and (H) aligning and superimposing the semiconductor element integrated with the first substrate material on the second substrate material. And (I) a step of collectively heating and pressing the first substrate material and the second substrate material in an overlapping direction, surrounding the semiconductor element with the adhesive layer, and bonding the first and second substrate materials to each other; It is characterized by providing.

本発明の積層配線基板の構造及び製造方法によれば、前記従来の問題点が解決され、特に平坦性を維持し薄形化された半導体素子を内蔵することができ組み立て容易な薄形化されたパッケージ構造を得ることができるという効果を奏することができる。   According to the structure and the manufacturing method of the multilayer wiring board of the present invention, the above-mentioned conventional problems are solved, and the thinned semiconductor element which can maintain the flatness and incorporate the thinned semiconductor element can be thinned easily. The package structure can be obtained.

以下、本発明の積層配線基板の第1の実施形態について、まず、図1を参照して説明する。   Hereinafter, a first embodiment of a multilayer wiring board according to the present invention will be described with reference to FIG.

パッケージタイプの積層配線基板の上面側を構成する第1基板材1は、例えばポリイミド樹脂フィルムからなる第1絶縁基板1a及びその一方の面(上面)にパターンニング形成された銅箔製の第1配線層1bを有する第1配線基板、及び前記第1絶縁基板1aを貫通して設けられ一端(上端)が第1配線層1bの一部に接続された導電性ペーストからなる複数の第1貫通電極1cを備えて構成されている。   The first substrate material 1 constituting the upper surface side of the package type laminated wiring substrate is a first insulating substrate 1a made of, for example, a polyimide resin film and a first copper foil patterning formed on one surface (upper surface) thereof. A first wiring board having a wiring layer 1b and a plurality of first through holes made of a conductive paste provided through the first insulating substrate 1a and having one end (upper end) connected to a part of the first wiring layer 1b. An electrode 1c is provided.

パッケージタイプの積層配線基板の下面側を構成する第2基板材2は、前記第1基板材1の下方に離間して対面配置され、例えばポリイミド樹脂フィルムからなる第2絶縁基板2a及びその一方の面(下面)にパターニング形成された銅箔製の第2配線層2bを有する第2配線基板、及び前記第2絶縁基板2aを貫通して設けられ一端(下端)が第2配線層2bの一部に接続された導電性ペーストからなる複数の第2貫通電極2cを備えて構成されている。   The second substrate material 2 constituting the lower surface side of the package type multilayer wiring board is disposed facing the lower side of the first substrate material 1 and is arranged to face each other, for example, a second insulating substrate 2a made of a polyimide resin film and one of them. A second wiring substrate having a second wiring layer 2b made of copper foil patterned on the surface (lower surface), and one end (lower end) of the second wiring layer 2b provided through the second insulating substrate 2a. A plurality of second through electrodes 2c made of a conductive paste connected to the portion are provided.

図中の左右中央に位置において、前記第1基板材1と第2基板材2との間に配置された半導体素子3は、例えばシリコン製の半導体基板3aの上表面部に形成された素子領域及び回路配線(図示せず)を備えた例えば半導体ICチップからなっている。前記半導体基板3aの上面には前記素子領域及び回路配線に接続された電極パッド3b、及び前記電極パッド3bに対するコンタクト孔を有する酸化珪素や窒化珪素製の無機絶縁物からなる表面保護絶縁膜3cが形成されている。   The semiconductor element 3 disposed between the first substrate material 1 and the second substrate material 2 at the center of the left and right in the figure is an element region formed on the upper surface portion of a semiconductor substrate 3a made of silicon, for example. And, for example, a semiconductor IC chip provided with circuit wiring (not shown). On the upper surface of the semiconductor substrate 3a, there is an electrode pad 3b connected to the element region and circuit wiring, and a surface protective insulating film 3c made of an inorganic insulator made of silicon oxide or silicon nitride having a contact hole for the electrode pad 3b. Is formed.

そして、前記絶縁膜3c上表面には前記パット3b用のコンタクト孔をする例えば10μm厚の1層目の有機絶縁膜3dが形成されている。前記パット3b及び有機絶縁膜3d上には、例えば銅めっき層からなる再配線層3eが、前記第1基板材1である上側配線基板の配線層1bや貫通電極1cと整合させるようなパターンをもって、例えばセミアディティブ法によって形成されている。ところで、前記保護絶縁膜3c上に1層目の有機絶縁膜3dを介して設けられた前記再配線層3eは、ICチップに既に形成されている前記回路配線に対して再配線されたものということができる。   A first organic insulating film 3d having a thickness of, for example, 10 μm is formed on the surface of the insulating film 3c to form a contact hole for the pad 3b. On the pad 3b and the organic insulating film 3d, there is a pattern in which a rewiring layer 3e made of, for example, a copper plating layer is aligned with the wiring layer 1b and the through electrode 1c of the upper wiring substrate which is the first substrate material 1. For example, it is formed by a semi-additive method. By the way, the rewiring layer 3e provided on the protective insulating film 3c via the first organic insulating film 3d is rewired with respect to the circuit wiring already formed on the IC chip. be able to.

更に、前記1層目の有機絶縁膜3d上には、2層目の有機絶縁膜3fが、例えば5μm厚で被着され、前記再配線層3eの一部に対応するコンタクト孔3gを有している。前記各有機絶縁膜3d、3fは、前記再配線層3eのパターンニングやコンタクト孔を形成する際に、例えば液状感光性ポリイミド前駆体をスピンコートしてフォトリソグラフィ処理を行った後、焼成して残存させることによって半導体素子3の上表面に形成されている。   Further, on the first organic insulating film 3d, a second organic insulating film 3f is deposited with a thickness of 5 μm, for example, and has a contact hole 3g corresponding to a part of the rewiring layer 3e. ing. Each of the organic insulating films 3d and 3f is formed by, for example, spin-coating a liquid photosensitive polyimide precursor and performing photolithography treatment when patterning or forming contact holes in the rewiring layer 3e. By remaining, it is formed on the upper surface of the semiconductor element 3.

一方、前記半導体基板3aの下表面(裏面)、即ち前記素子領域と反対の面には、裏面有機絶縁膜3hが、前記液状感光性ポリイミド前駆体をスピンコートし、焼成することによって、例えば15μmの厚さに形成されている。   On the other hand, on the lower surface (back surface) of the semiconductor substrate 3a, that is, the surface opposite to the element region, the back surface organic insulating film 3h is spin-coated with the liquid photosensitive polyimide precursor and baked, for example, 15 μm. It is formed in the thickness.

なお、本発明の説明においては、同一範疇を意味するものとして、前記1及び2層目の有機絶縁膜3d、3fを第1絶縁膜と表現し、前記裏面有機絶縁膜3hは第2絶縁膜と表現することがある。   In the description of the present invention, the first and second organic insulating films 3d and 3f are expressed as a first insulating film, and the back organic insulating film 3h is a second insulating film as meaning the same category. Sometimes expressed.

このように、前記半導体基板3aの上/下両表面に、前記第1絶縁膜(3d、3f)及び前記第2絶縁膜(3h)がそれぞれ形成されているために、前記第1及び第2絶縁膜の形成過程において硬化収縮を起こしても、前記半導体基板3aの両表面にそれぞれ生じる各引張応力が相互に均衡或いは相殺することによって前記半導体基板3aのチップ反りが抑制される。   As described above, the first and second insulating films (3d, 3f) and the second insulating film (3h) are formed on the upper and lower surfaces of the semiconductor substrate 3a, respectively. Even if hardening shrinkage occurs in the formation process of the insulating film, the respective chip stresses generated on both surfaces of the semiconductor substrate 3a balance or cancel each other, thereby suppressing the chip warpage of the semiconductor substrate 3a.

ところで、前記チップ反りを抑制乃至防止するためには、前記第1絶縁膜(3d、3f)及び第2絶縁膜(3h)は、前述のように相互に同一種類の材料、例えば有機樹脂材料を用いて形成されるのが最良である。そして、前記第1絶縁膜(3d、3f)の合計厚さと第2絶縁膜(3h)の厚さとは、前記両表面の引張応力が均衡するように相互に調整摺ることができる。このようにして前記半導体基板3aは、チップ反り無しに平坦性を維持することができるために、そのより一層の薄形化が可能であると共にパッケージ基板の薄形化を促進することができる。なお、前記半導体基板3aの所望の平坦性が維持できることを前提として、前記第1絶縁膜(3d、3f)及び第2絶縁膜(3h)の各材料の組み合わせが種々変更されてもよい。   By the way, in order to suppress or prevent the chip warp, the first insulating film (3d, 3f) and the second insulating film (3h) are made of the same kind of material as described above, for example, an organic resin material. It is best to form using. The total thickness of the first insulating films (3d, 3f) and the thickness of the second insulating film (3h) can be adjusted to each other so that the tensile stresses on both surfaces are balanced. Thus, since the semiconductor substrate 3a can maintain flatness without chip warpage, it is possible to further reduce the thickness of the semiconductor substrate 3a and promote the reduction of the thickness of the package substrate. The combination of the materials of the first insulating film (3d, 3f) and the second insulating film (3h) may be variously changed on the assumption that the desired flatness of the semiconductor substrate 3a can be maintained.

そして、前記第1基板材1の複数の第1貫通電極1cのうち図中左右中央部にある2つの第1貫通電極1cは、前記各再配線層3eにそれぞれ対向可能なピッチで配置されていて、その各下端部が前記各コンタクト孔3gを通じて前記各再配線層3e表面にそれぞれ接続されている。   Of the plurality of first through electrodes 1c of the first substrate material 1, two first through electrodes 1c at the left and right central portions in the figure are arranged at a pitch that can face the rewiring layers 3e, respectively. The lower end portions thereof are connected to the surfaces of the rewiring layers 3e through the contact holes 3g, respectively.

前記第1基板材1と第2基板材2との中間に配置された第3基板材4は、絶縁基板4aの両表面にそれぞれパターンニング形成された例えば銅箔製の配線層4b、4c、両配線層4b、4c相互間のスルーホール型の層間導電路4dを有する両面配線タイプの中間配線基板で構成されている。そして、前記第3基板材4(中間配線基板)は前記半導体素子3が挿入される開口部4eを有する。前記開口部4eは、前記半導体素子の外径よりもやや大きめの口径をもって前記絶縁基板4aに貫通して形成され、前記半導体素子の全側周との間に隙間をもって取り囲める形状及び寸法とされている。   The third substrate material 4 disposed between the first substrate material 1 and the second substrate material 2 is, for example, a wiring layer 4b, 4c made of copper foil, which is patterned on both surfaces of the insulating substrate 4a. The wiring layer 4b is composed of a double-sided wiring type intermediate wiring board having a through-hole type interlayer conductive path 4d between the wiring layers 4b and 4c. And the said 3rd board | substrate material 4 (intermediate wiring board) has the opening part 4e in which the said semiconductor element 3 is inserted. The opening 4e is formed so as to penetrate the insulating substrate 4a with a slightly larger diameter than the outer diameter of the semiconductor element, and to have a shape and size that surrounds the entire circumference of the semiconductor element with a gap. ing.

前記第1乃至第3基板材1、2、4相互間及び前記開口部4eの隙間に充填された接着層材5は、これらの部材1、2、4を接着して一体化するものであり、前記半導体素子3が前記接着層材5(素材や形成方法の詳細は後述する)に埋め込まれて封止されるようになっている。   The adhesive layer material 5 filled in the gaps between the first to third substrate materials 1, 2, 4 and the opening 4e is formed by bonding these members 1, 2, 4 together. The semiconductor element 3 is embedded and sealed in the adhesive layer material 5 (details of materials and forming methods will be described later).

前記第3基板材4(中間配線基板)の上下面の配線層4b及び4cは、図中の左右両側の位置において対向する前記第1基板材1の貫通電極1c及び前記第2基板材2の貫通電極2cにそれぞれ接続されている。   The wiring layers 4b and 4c on the upper and lower surfaces of the third substrate material 4 (intermediate wiring substrate) are formed on the through electrodes 1c of the first substrate material 1 and the second substrate material 2 which are opposed to each other at the left and right positions in the drawing. Each is connected to the through electrode 2c.

このようにして、前記第1乃至第3基板材1、2、4は、いずれも回路配線基板で構成され、前記第1及び第2基板材1、2は、パッケージタイプの積層配線基板内の半導体素子などを含む内部回路要素に対して、いずれも貫通電極1c、2cを通じて、パッケージ上下両面の配線層1b、2bへの層間導通ビアを構成することができる。従って、パッケージの薄形化及び小サイズ化を図ると共に、前記半導体素子の高機能化や内蔵素子数の増加などに伴う配線数の増加にも容易に対応できる。更に前記半導体素子3のチップ面積よりもできるだけ広めの面積を有する前記各絶縁基板を使用した場合、前記第1乃至第3基板材1、2、4の各配線層は、前記半導体素子3外側方向へ引き延ばせるので配線層間ピッチに余裕をもたせることができ、より一層前記高機能化や内蔵素子数の増加に対応し易い。   In this way, each of the first to third substrate materials 1, 2, and 4 is formed of a circuit wiring board, and the first and second substrate materials 1 and 2 are included in a package type multilayer wiring substrate. For internal circuit elements including semiconductor elements, interlayer conductive vias to the wiring layers 1b and 2b on the upper and lower surfaces of the package can be formed through the through electrodes 1c and 2c. Therefore, the package can be reduced in thickness and size, and can easily cope with an increase in the number of wirings accompanying an increase in the functionality of the semiconductor element and an increase in the number of built-in elements. Further, when each of the insulating substrates having an area that is as wide as possible than the chip area of the semiconductor element 3 is used, the wiring layers of the first to third substrate materials 1, 2, and 4 are arranged in the outer direction of the semiconductor element 3. Therefore, it is easy to cope with the higher functionality and the increase in the number of built-in elements.

また、前記第3基板材4は、その厚さが前記半導体素子3の厚さと同程度とされていて、後述する一括加熱圧着工程において、前記第1及び第2基板材1、2との平行性を保ちつつ接着層材5による接着を行うためのスペーサとしての役割を果たすこともできる。   The thickness of the third substrate material 4 is approximately the same as the thickness of the semiconductor element 3 and is parallel to the first and second substrate materials 1 and 2 in a batch thermocompression bonding process to be described later. It can also serve as a spacer for performing adhesion by the adhesive layer material 5 while maintaining the properties.

ところで、前記半導体素子3は、その内蔵素子数や回路機能数に応じてその電極パッド数が種々異なったものが存在する。従って、組込対象の半導体素子3の種類に対応して前記各基板材1、2、4に形成される前記各配線層は、その種類に応じて配線層数、配線ピッチ及び配線長などを定めて形成された再配線層と称することもできる。   By the way, the semiconductor element 3 has various electrode pads according to the number of built-in elements and the number of circuit functions. Therefore, each wiring layer formed on each of the substrate materials 1, 2, 4 corresponding to the type of the semiconductor element 3 to be incorporated has the number of wiring layers, the wiring pitch, the wiring length, etc. according to the type. It can also be referred to as a redistribution layer formed in a defined manner.

ところで、本発明の第1実施形態では、前記第1、第2基板材1、2をいわゆる片面配線基板で構成し、第3基板材4を両面配線基板で構成するが、前記第1、第2基板材1、2を両面配線基板としたり、第3基板材4を片面配線基板とするなど適宜変更してもよく、前記各基板材1、2、4は、いずれも絶縁基板の少なくとも一方の面に配線層が形成されていればよい。   By the way, in the first embodiment of the present invention, the first and second substrate materials 1 and 2 are constituted by so-called single-sided wiring substrates, and the third substrate material 4 is constituted by a double-sided wiring substrate. The two substrate materials 1 and 2 may be appropriately changed such as a double-sided wiring substrate, or the third substrate material 4 may be a single-sided wiring substrate, and each of the substrate materials 1, 2, and 4 is at least one of insulating substrates. A wiring layer may be formed on the surface.

また、図示していないが、前記第3基板材4は、その絶縁基板4aを、パッケージタイプの積層配線基板の外側方に長尺状に延長させた延長部を有する形状とし、この延長部にパッケージ内の配線層に接続された外部端子層を設けることによって、外部のコネクタなどと電気的に接続できる構造とすることもできる。この場合は、前記第3基板材4はパッケージ内回路構成用の中間配線基板としてのみではなく、電源供給端子や電子機器などの外部回路との入出力端子を備えたフラットケーブルとしての機能をも持つことができる。   Although not shown, the third substrate material 4 has a shape having an extended portion obtained by extending the insulating substrate 4a to the outside of the package type multilayer wiring board. By providing an external terminal layer connected to the wiring layer in the package, a structure that can be electrically connected to an external connector or the like can be provided. In this case, the third substrate material 4 functions not only as an intermediate wiring board for circuit configuration in the package, but also as a flat cable having input / output terminals for external circuits such as power supply terminals and electronic devices. Can have.

次に、本発明の一実施形態における前記積層配線基板の製造方法について、図2〜図5を参照して説明する。図2は前記半導体素子3の製造工程、図3は前記第1基板材1の製造工程、図4は前記第3基板材4の製造工程をそれぞれ示す断面図であり、図5は前記パッケージタイプの積層配線基板の組立方法を説明するための断面図である。   Next, the manufacturing method of the said multilayer wiring board in one Embodiment of this invention is demonstrated with reference to FIGS. 2 is a cross-sectional view illustrating the manufacturing process of the semiconductor element 3, FIG. 3 is a cross-sectional view illustrating the manufacturing process of the first substrate material 1, FIG. 4 is a cross-sectional view illustrating the manufacturing process of the third substrate material 4, and FIG. It is sectional drawing for demonstrating the assembly method of this multilayer wiring board.

まず、図2を参照して、前記半導体素子3の製造方法を説明すると、図2(a)の工程では、例えばシリコン製の半導体ウエハ3Aの上表面部に、選択拡散技術などにより、例えばIC/LSIなどの前記半導体素子3に対応する単位素子領域(図示略)を多数形成し、各素子領域毎に回路配線や複数ずつの素子用電極パッド3bを形成する。また、各電極パッド3bに対するコンタクト孔を有する酸化珪素や窒化珪素製の無機絶縁物である保護絶縁膜3cをウエハ3A上面に形成する。   First, the manufacturing method of the semiconductor element 3 will be described with reference to FIG. 2. In the step of FIG. 2A, for example, an IC is formed on the upper surface portion of a semiconductor wafer 3A made of silicon by, for example, selective diffusion technology. A large number of unit element regions (not shown) corresponding to the semiconductor elements 3 such as / LSI are formed, and circuit wiring and a plurality of element electrode pads 3b are formed for each element area. Further, a protective insulating film 3c, which is an inorganic insulator made of silicon oxide or silicon nitride, having contact holes for each electrode pad 3b is formed on the upper surface of the wafer 3A.

次に、図2(b)のように、前記ウエハ3A上表面に液状の感光性ポリイミド前駆体をスピンコートし、フォトリソグラフィーによって前記各パット3bを露出させるコンタクト孔3iを形成した後に、焼成して厚さ10μmの1層目の有機絶縁膜3dを、前記保護絶縁膜3c上に形成する。   Next, as shown in FIG. 2B, a liquid photosensitive polyimide precursor is spin-coated on the surface of the wafer 3A, and contact holes 3i exposing the pads 3b are formed by photolithography, followed by baking. A first organic insulating film 3d having a thickness of 10 μm is formed on the protective insulating film 3c.

そして、図2(c)のように、前記各電極パット3b及び1層目の有機絶縁膜3d上に、セミアディティブ法によって例えば銅めっき層によるパターン化された導体回路としての厚さ5μmの複数の再配線層3eを形成する。   Then, as shown in FIG. 2C, a plurality of 5 μm thick conductor circuits, for example, patterned by a copper plating layer on each electrode pad 3b and the first organic insulating film 3d by a semi-additive method, for example. The rewiring layer 3e is formed.

その後、図2(d)のように、前記ウエハ3Aの上表面全体に亘って、再び液状の感光性ポリイミド前駆体をスピンコートし、フォトリソグラフィにより前記各再配線層3eの一部表面を露出させるためのコンタクト孔3gを形成した後、焼成して厚さ5μmの2層目の有機絶縁膜3fを形成する。このように、前記有機絶縁膜3d、3fは前記各再配線層3e形成用の第1絶縁膜としての役割をもっている。   Thereafter, as shown in FIG. 2D, a liquid photosensitive polyimide precursor is spin-coated again over the entire upper surface of the wafer 3A, and a part of the surface of each rewiring layer 3e is exposed by photolithography. After forming the contact hole 3g for forming, a second organic insulating film 3f having a thickness of 5 μm is formed by baking. Thus, the organic insulating films 3d and 3f serve as first insulating films for forming the rewiring layers 3e.

次に、前記半導体素子3に対応する前記単位素子領域毎に、前記各再配線層3eを通じて、プロービング検査を行い電気的特性の良否を判別する。その判別結果は必要に応じてウエハ上にマーキング表示してチップの良否を分別し易くすることができる。   Next, for each unit element region corresponding to the semiconductor element 3, a probing inspection is performed through the rewiring layer 3e to determine whether the electrical characteristics are good or bad. The determination result can be marked on the wafer as necessary to facilitate the discrimination of the quality of the chip.

その後、薄形化された半導体基板3aを得るために、ウエハ3A裏面を、砥石による研磨や、機械的或いは化学的なポリッシングなどの方法などによって、チップ総厚が85μmとなるまでウエハ3Aを薄形化加工する。そして、前記半導体基板3aの下表面(裏面)、即ち前記素子領域と反対の面に、液状の感光性ポリイミド前駆体をスピンコートし、焼成して厚さ15μmの裏面有機絶縁膜からなる第2絶縁層3hを形成する。   Thereafter, in order to obtain a thinned semiconductor substrate 3a, the back surface of the wafer 3A is thinned by a method such as polishing with a grindstone or mechanical or chemical polishing until the total thickness of the chip reaches 85 μm. Shape and process. Then, a liquid photosensitive polyimide precursor is spin-coated on the lower surface (back surface) of the semiconductor substrate 3a, that is, the surface opposite to the element region, and baked to form a second organic insulating film having a thickness of 15 μm. An insulating layer 3h is formed.

上面側の前記第1絶縁層である有機絶縁膜3d、3f及び下面側の第2絶縁層である裏面有機絶縁膜3hの形成に際しては、他の感光性樹脂素材としてベンゾシクロブテン(BCB)やポリベンゾオキサゾール(PBO)などを用いることができる。また、感光性樹脂は、必ずしもスピンコートによって塗布される必要はなく、カーテンコートやスクリーン印刷、スプレーコートなどを用いてもよい。更に、感光性樹脂は液状に限定されることはなく、フィルム状の樹脂をラミネートしてもよい。いずれの樹脂素材を用いる場合においても、半導体基板3aの表裏両面には相互に同一種類の材料を用いて、第1及び第2絶縁層3d、3f、3hが形成されるのが最も望ましい。   In forming the organic insulating films 3d and 3f, which are the first insulating layers on the upper surface side, and the rear organic insulating film 3h, which is the second insulating layer on the lower surface side, benzocyclobutene (BCB) or other photosensitive resin material is used. Polybenzoxazole (PBO) or the like can be used. Further, the photosensitive resin is not necessarily applied by spin coating, and curtain coating, screen printing, spray coating, or the like may be used. Further, the photosensitive resin is not limited to liquid, and a film-like resin may be laminated. Whichever resin material is used, it is most preferable that the first and second insulating layers 3d, 3f, and 3h are formed on the front and back surfaces of the semiconductor substrate 3a using the same material.

その後、図2(e)に示すように、ダイシングして薄形化された半導体基板3aを有する複数の個片化された半導体素子3を取り出す。なお、前記半導体素子3は、半導体IC或いはLSIなど種々の半導体製品に適用可能であり、通常の導電用回路の他にインダクタ、キャパシタ、抵抗などの回路要素を含ませることができる。   Thereafter, as shown in FIG. 2E, a plurality of singulated semiconductor elements 3 having a semiconductor substrate 3a thinned by dicing are taken out. The semiconductor element 3 can be applied to various semiconductor products such as a semiconductor IC or LSI, and can include circuit elements such as an inductor, a capacitor, and a resistor in addition to a normal conductive circuit.

このように、前記半導体基板3aの両表面に、相互に同一種類の樹脂材料からなる前記第1絶縁膜(3d、3f)及び前記第2絶縁膜(3h)がそれぞれ形成されているために、前記各絶縁膜の形成過程において硬化収縮を起こしても、前記半導体基板3aの両表面にそれぞれ生じる各引張応力が相互に均衡或いは相殺することになる。従って、半導体素子3のチップ反りが抑制されて平坦性を維持することができるために、より一層の薄形化が可能である。   As described above, since the first insulating film (3d, 3f) and the second insulating film (3h) made of the same kind of resin material are formed on both surfaces of the semiconductor substrate 3a, Even if curing shrinkage occurs in the process of forming each insulating film, the tensile stresses generated on both surfaces of the semiconductor substrate 3a are balanced or offset each other. Therefore, since chip warpage of the semiconductor element 3 is suppressed and flatness can be maintained, further reduction in thickness is possible.

次に、第1基板材1の製造方法について、図3を参照して説明する。まず、図3(a)
に示す工程では、例えばポリイミド樹脂フィルムからなるフレキシブルな第1絶縁基板1aの一方の面(上面)に銅箔製の配線材料層1Bが設けられた片面銅張板(CCL)を用意する。前記第1絶縁基板1a及び配線材料層1Bにはそれぞれ厚さ25μm及び9μmのものを使用した。
Next, the manufacturing method of the 1st board | substrate material 1 is demonstrated with reference to FIG. First, FIG. 3 (a)
In the step shown in FIG. 1, for example, a single-sided copper-clad plate (CCL) in which a wiring material layer 1B made of copper foil is provided on one surface (upper surface) of a flexible first insulating substrate 1a made of a polyimide resin film is prepared. As the first insulating substrate 1a and the wiring material layer 1B, those having thicknesses of 25 μm and 9 μm were used, respectively.

また、前記CCLは、銅箔にポリイミドワニスを塗布してワニスを硬化させたいわゆるキャスティング法により作製したもの、或いは、ポリイミドフィルム上にめっきシード層をスパッタし、銅電解めっきを成長させたもの、他にも圧延や電解による銅箔とをポリイミドフィルムとを貼り合わせたものなどを使用することができる。前記第1絶縁基板1aは、ポリイミド樹脂に代えて、液晶ポリマーなどのプラスチックフィルムを使用することもできる。   The CCL is prepared by a so-called casting method in which a polyimide varnish is applied to a copper foil and the varnish is cured, or a copper seeding layer is sputtered on a polyimide film to grow a copper electrolytic plating, In addition, one obtained by bonding a copper foil by rolling or electrolysis with a polyimide film can be used. For the first insulating substrate 1a, a plastic film such as a liquid crystal polymer may be used instead of the polyimide resin.

図3(b)に示す工程では、前記配線材料層1B表面にフォトリソグラフィにより所望の回路パターンに対応するエッチングレジストパターン(エッチングマスク)を形成した後、前記配線材料層1Bに化学的選択エッチングを行うことによって、所望回路にパターンニングされた第1配線層1bを有する第1配線基板を得た。前記エッチングには、例えば塩化第二鉄を主成分とするエッチャントを用いたが、塩化第二銅を主成分とするエッチャントを用いることもできる。   In the step shown in FIG. 3B, an etching resist pattern (etching mask) corresponding to a desired circuit pattern is formed on the surface of the wiring material layer 1B by photolithography, and then chemical selective etching is performed on the wiring material layer 1B. By performing, the 1st wiring board which has the 1st wiring layer 1b patterned by the desired circuit was obtained. For the etching, for example, an etchant mainly containing ferric chloride is used, but an etchant mainly containing cupric chloride can also be used.

図3(c)に示す工程では、前記第1絶縁基板1aの第1配線層1bとは反対側となる他方の面(下面)に接着層5a及び樹脂フィルムFを順次重ねて加熱圧着により貼り合わせる。前記接着層5aには素材厚さ25μmのエポキシ系熱硬化性樹脂フィルム接着材を使用し、前記樹脂フィルムFには厚さ25μmのポリイミド樹脂フィルムを使用した。前記加熱圧着は、真空ラミネータを用い、減圧下の雰囲気中にて、前記接着材の硬化温度以下の温度で、0.3MPaの圧力によるプレスを行った。   In the step shown in FIG. 3C, the adhesive layer 5a and the resin film F are sequentially stacked on the other surface (lower surface) opposite to the first wiring layer 1b of the first insulating substrate 1a and bonded by thermocompression bonding. Match. An epoxy thermosetting resin film adhesive having a thickness of 25 μm was used for the adhesive layer 5a, and a polyimide resin film having a thickness of 25 μm was used for the resin film F. The thermocompression bonding was performed by using a vacuum laminator and pressing with a pressure of 0.3 MPa at a temperature equal to or lower than the curing temperature of the adhesive in an atmosphere under reduced pressure.

前記接着層5aの素材としては、前記エポキシ系熱硬化性樹脂に代えてアクリル系樹脂などの接着材、或いは熱可塑性ポリイミドに代表される熱可塑性接着材を使用することもできる。また、前記接着層5aは、フィルム状素材に代えて例えばワニス状の樹脂接着剤を前記第1絶縁基板1a下表面に塗布して形成することもできる。   As the material of the adhesive layer 5a, an adhesive such as an acrylic resin or a thermoplastic adhesive represented by thermoplastic polyimide can be used instead of the epoxy thermosetting resin. The adhesive layer 5a may be formed by applying a varnish-like resin adhesive on the lower surface of the first insulating substrate 1a instead of the film material.

前記樹脂フィルムFは、ポリイミドに代えてPETやPENなどのプラスチックフイルムを使用してもよく、前記接着層5aの表面にUV照射によって接着や剥離が可能なフイルムを被着形成してもよい。   As the resin film F, a plastic film such as PET or PEN may be used instead of polyimide, and a film that can be bonded or peeled off by UV irradiation may be formed on the surface of the adhesive layer 5a.

次に、図3(d)に示す工程では、前記第1絶縁基板1a、接着層5a及び樹脂フィルムFを下面側から貫通するようにYAGレ−ザで穿孔することによって、直径100μmのビアホールとしての複数の貫通孔1d(図中では4箇所)を形成する。その後、CF4及びO2混合ガスによるプラズマデスミア処理を施す。   Next, in the step shown in FIG. 3D, a via hole having a diameter of 100 μm is formed by drilling the first insulating substrate 1a, the adhesive layer 5a and the resin film F with a YAG laser so as to penetrate from the lower surface side. A plurality of through holes 1d (four places in the figure) are formed. Thereafter, plasma desmear treatment with a mixed gas of CF4 and O2 is performed.

前記レーザ加工時に、配線層1bのうち各貫通孔1dに対応する中央の部分に直径30μm程度の小孔(図示せず)を形成してもよい。前記貫通孔1dや小孔は、炭酸レーザやエキシマレーザなどによるレーザ加工或いはドリル加工や化学的エッチングによって形成することもできるし、ドリル加工や、化学的エッチングによって形成することもできる。   During the laser processing, a small hole (not shown) having a diameter of about 30 μm may be formed in the central portion corresponding to each through hole 1d in the wiring layer 1b. The through-hole 1d and the small hole can be formed by laser processing using a carbonic acid laser or excimer laser, drilling, or chemical etching, or can be formed by drilling or chemical etching.

また、前記プラズマデスミア処理は、使用ガスの種類として、CF4及びO2混合ガスに限定されず、Arなどの他の不活性ガスを使用することができるし、ドライ処理に代えてウエットデスミア処理を適用してもよい。   In addition, the plasma desmear process is not limited to CF4 and O2 mixed gas as the type of gas used, and other inert gas such as Ar can be used, and a wet desmear process is applied instead of the dry process. May be.

そして、図3(e)に示す工程では、前記各貫通孔1dに、スクリーン印刷法により導電性ペーストをそれぞれの前記貫通孔1dの空間を埋め尽くすまで充填することによって複数の貫通電極1cを形成する。その後、前記樹脂フィルムFを剥離する。その結果、前記各貫通電極1cの他端面(下面)の部分は、前記樹脂フィルムFの厚さ寸法分の高さをもって前記接着層5aの下面側に突出した状態で露出される。このように前記樹脂フィルムFは、その厚さを適宜選定することによって貫通電極の突出高さを調整し、前記貫通電極1cと半導体素子3の再配線層3dとの押し付け接続の際、これら相互の低抵抗接続及び素子ダメージ回避が得られるようにその押圧力を調整することができる。   In the step shown in FIG. 3E, a plurality of through electrodes 1c are formed by filling each through hole 1d with a conductive paste by screen printing until the space of each through hole 1d is filled. To do. Thereafter, the resin film F is peeled off. As a result, the portion of the other end surface (lower surface) of each through electrode 1c is exposed in a state of projecting to the lower surface side of the adhesive layer 5a with a height corresponding to the thickness dimension of the resin film F. Thus, the resin film F adjusts the protruding height of the through electrode by appropriately selecting the thickness thereof, and when the through electrode 1c and the rewiring layer 3d of the semiconductor element 3 are pressed and connected to each other, The pressing force can be adjusted so as to obtain a low resistance connection and avoidance of element damage.

特に、前記貫通孔1dに連通する前記小孔が前記第1配線層1bに形成されている場合は、前記貫通電極1cの一端面(上側)が前記第1配線層1bの内面(下面)及び前記小孔内壁に亘って比較的広面積をもって係合して、より一層強固に接続される。以上の工程を経て前記第1基板材1が形成される。   In particular, when the small hole communicating with the through hole 1d is formed in the first wiring layer 1b, one end surface (upper side) of the through electrode 1c is the inner surface (lower surface) of the first wiring layer 1b and Engaging with a relatively large area over the inner wall of the small hole, the connection is made even stronger. The first substrate material 1 is formed through the above steps.

ところで、前記貫通電極1cの導電ペーストは、ここでは、ニッケル、銀及び銅の群から選択された少なくとも1種類の低電気抵抗の金属粒子と、錫、ビスマス、インジウム及び鉛の群から選択された少なくとも1種類の低融点金属粒子とを含み、エポキシ樹脂を主成分とするバインダ成分を混合したペーストで構成した。また、前記バインダ成分の粘度等を調整することによって、前記貫通電極1cと再配線層3dとの押し付け接続の際、その接続抵抗を低くし、素子へのダメージを軽減できる。そして、前記導電ペーストは、接着層5aの硬化温度程度の低温で、前記金属粒子がその粒子同士で拡散接合できたり、前記再配線層3dの金属と拡散接合できたりして合金化し易い金属組成を用いることにより、バルクの金属やめっきによる層間接続と同等の接続信頼性を確保できる。なお、前記導電ペーストは熱伝導性にも優れているので、発生熱を外部へ熱伝導並びに放散させる効果を得ることもできる。   By the way, the conductive paste of the through electrode 1c is selected from the group of at least one kind of low electrical resistance metal particles selected from the group of nickel, silver and copper and the group of tin, bismuth, indium and lead. It comprised at least 1 type of low melting metal particle, and comprised with the paste which mixed the binder component which has an epoxy resin as a main component. Further, by adjusting the viscosity or the like of the binder component, when the through electrode 1c and the rewiring layer 3d are pressed and connected, the connection resistance can be lowered and damage to the element can be reduced. The conductive paste has a metal composition that is easy to be alloyed at a low temperature, such as the curing temperature of the adhesive layer 5a, so that the metal particles can be diffusion bonded to each other or diffusion bonded to the metal of the rewiring layer 3d. By using, it is possible to secure connection reliability equivalent to interlayer connection by bulk metal or plating. In addition, since the said electrically conductive paste is excellent also in heat conductivity, it can also acquire the effect which heat-generates and dissipates generated heat outside.

ところで、前記第2基板材2は、その製造方法について図示していないが、前記第1基板材1同様に、例えばポリイミド樹脂フィルムからなるフレキシブルな第2絶縁基板2aの一方の面(図1では下面)に銅箔製の第2配線層2b用の配線材料層を設けた片面銅張板(CCL)が使用される。そして、前記第2絶縁基板2aの他方の面(図1では上側)には、前記第1基板材1の接着層5a及び樹脂フィルムFと同様な接着層及び樹脂フィルムが貼り合わされている。更に、第2配線層2bのパターニング、貫通孔及び貫通電極2cの形成方法、更に各部材の使用素材は前記第1基板材1の場合と同様である。   By the way, although the manufacturing method of the second substrate material 2 is not shown, one surface of a flexible second insulating substrate 2a made of, for example, a polyimide resin film (in FIG. 1), like the first substrate material 1. A single-sided copper clad plate (CCL) provided with a wiring material layer for the second wiring layer 2b made of copper foil on the lower surface is used. An adhesive layer and a resin film similar to the adhesive layer 5a and the resin film F of the first substrate material 1 are bonded to the other surface (the upper side in FIG. 1) of the second insulating substrate 2a. Further, the patterning of the second wiring layer 2b, the method of forming the through hole and the through electrode 2c, and the materials used for each member are the same as in the case of the first substrate material 1.

次に、前記第3基板材4の製造方法について、図4を参照して説明する。まず、図4(a)に示す工程では、例えばポリイミド樹脂フイルムからなる絶縁基板4aの両面に銅箔製の配線材料層4B及び4Cがそれぞれ設けられた両面銅張板(CCL)を用意する。そこで、図4(b)に示すように、例えばドリルによって前記両面CCLを貫通するスルーホールTHを形成し、CF4及びO2混合ガスによるプラズマデスミア処理を施す。   Next, the manufacturing method of the said 3rd board | substrate material 4 is demonstrated with reference to FIG. First, in the step shown in FIG. 4A, for example, a double-sided copper clad plate (CCL) in which wiring material layers 4B and 4C made of copper foil are respectively provided on both sides of an insulating substrate 4a made of a polyimide resin film is prepared. Therefore, as shown in FIG. 4B, a through hole TH penetrating the double-sided CCL is formed by, for example, a drill, and a plasma desmear process using a CF4 and O2 mixed gas is performed.

その後、図4(c)に示すように、前記両面CCLの両表面及びスルーホールTH内壁に全体的に銅めっきを成長させて配線材料層4BCを形成する。このとき、スルーホールTH内壁に層間導電路(ビア)4dが形成される。   Thereafter, as shown in FIG. 4C, copper plating is grown on both surfaces of the double-sided CCL and the inner wall of the through hole TH to form a wiring material layer 4BC. At this time, an interlayer conductive path (via) 4d is formed on the inner wall of the through hole TH.

そして、図4(d)に示すように、前記両面CCLの両面において、前記第1基板材1の形成と同様な方法により、前記材料層4BCに回路パターンニングを施して、一方の配線層4b及び他方の配線層4cを絶縁基板4aの上下両面にそれぞれ形成する。このパターンニングの際に、前記絶縁板4aの中央部分4a1は、前記材料層4BCのうち前記半導体素子3と対応する部分が除去されて、両面とも露出されている。即ち、前記配線層4b及び配線層4cは、実装後の前記半導体素子3が接触しないようなピッチでパターンニングされている。   Then, as shown in FIG. 4D, circuit patterning is performed on the material layer 4BC on both surfaces of the double-sided CCL by the same method as the formation of the first substrate material 1, and one wiring layer 4b. The other wiring layer 4c is formed on both upper and lower surfaces of the insulating substrate 4a. During the patterning, the central portion 4a1 of the insulating plate 4a is exposed on both surfaces by removing the portion corresponding to the semiconductor element 3 in the material layer 4BC. That is, the wiring layer 4b and the wiring layer 4c are patterned at a pitch so that the semiconductor element 3 after mounting is not in contact.

次に、図4(e)に示すように、前記絶縁板4aの中央部分4a1に、例えばドリルによって貫通させた開口部4eを形成する。前記開口部4eは、前記半導体素子3の外側壁を離間して取り囲むように、前記半導体素子3の外径よりも一回り大きい形状/寸法とされている。   Next, as shown in FIG. 4E, an opening 4e that is penetrated by a drill, for example, is formed in the central portion 4a1 of the insulating plate 4a. The opening 4 e has a shape / dimension that is slightly larger than the outer diameter of the semiconductor element 3 so as to surround and surround the outer wall of the semiconductor element 3.

前記スルーホールTHや開口部4eは、YAGレーザ、炭酸レーザ或いはエキシマレーザによっても化学的エッチングによっても形成することができる。前記プラズマデスミア処理は、使用ガスの種類として、CF4及びO2混合ガスに限定されず、Arなどの他の不活性ガスを使用することができるし、ドライ処理に代えてウエットデスミア処理を適用してもよい。   The through hole TH and the opening 4e can be formed by YAG laser, carbonic acid laser, excimer laser or chemical etching. The plasma desmear process is not limited to CF4 and O2 mixed gas as the type of gas used, but other inert gases such as Ar can be used, and a wet desmear process can be applied instead of a dry process. Also good.

なお、前記第1〜第3基板材1、2、4は、半導体素子の検査選別と同様に、いずれも製造後、パッケージ組立部品として、品質検査などによって良否選別される。   The first to third substrate materials 1, 2, and 4 are subjected to quality screening as a package assembly part after manufacturing, by quality inspection, as in the case of inspection and selection of semiconductor elements.

次に、前記第1実施形態のパッケージタイプ配線基板の組立てに係わる製造方法について図5を参照して説明する。なお、図1〜図4に示された各部分と同一または同様な部分については、同一の引用符号を付し、その詳細な説明を省略する。   Next, a manufacturing method relating to the assembly of the package type wiring board of the first embodiment will be described with reference to FIG. In addition, about the part which is the same as that of each part shown by FIGS. 1-4, the same referential mark is attached | subjected and the detailed description is abbreviate | omitted.

まず、図5(a)に示す工程では、前述の図2(d)に係わる工程で検査選別された良品に相当する半導体素子(チップ)3を用意する。この良品チップ3は、前述の図3(e)に示す工程で製作された第1基板材(第1配線基板)1に、半導体素子チップ用マウンタで位置合わせして、前記接着層5aの材料及び貫通電極1cの導電性ペーストの硬化温度以下で加熱圧着することによって仮留め接着される。具体的には前記半導体素子3の再配線層3eが前記第1基板材の貫通電極1c及び前記接着層5aの下面に仮留め接着される。   First, in the process shown in FIG. 5A, a semiconductor element (chip) 3 corresponding to a non-defective product that has been inspected and selected in the process related to FIG. 2D is prepared. The non-defective chip 3 is aligned with the first substrate material (first wiring board) 1 manufactured in the process shown in FIG. 3E by the semiconductor element chip mounter, and the material of the adhesive layer 5a is obtained. Further, the adhesive paste is temporarily bonded by thermocompression bonding at a temperature equal to or lower than the curing temperature of the conductive paste of the through electrode 1c. Specifically, the rewiring layer 3e of the semiconductor element 3 is temporarily bonded to the through electrode 1c of the first substrate material and the lower surface of the adhesive layer 5a.

前記半導体素子3は、既に説明したように平坦な形状をもって製作されているので、前記第1基板材1へのマウントに際しては、真空チャックによって確実にピックアップされ、前記再配線層3dと貫通電極1cとの位置合わせ精度が高い状態で前記第1基板材1に確実にマウント(一体化)される。   Since the semiconductor element 3 is manufactured with a flat shape as described above, when mounted on the first substrate material 1, the semiconductor element 3 is surely picked up by a vacuum chuck, and the rewiring layer 3d and the through electrode 1c. Are mounted (integrated) securely on the first substrate material 1 in a state where the alignment accuracy is high.

そして、図5(b)に示す工程では、第2基板材(第2配線基板)2を、その貫通電極2c及び接着層5bを上方に向けて配置し、その上に第3基板材(中間配線基板)4を位置合わせして重ね合わせる。このとき、図中左右位置の前記貫通電極2cの上端面には、前記第3基板材2下面の配線層4cの一部が重なる。   In the step shown in FIG. 5B, the second substrate material (second wiring substrate) 2 is disposed with the through electrode 2c and the adhesive layer 5b facing upward, and the third substrate material (intermediate) is disposed thereon. The wiring board 4 is aligned and overlapped. At this time, a part of the wiring layer 4c on the lower surface of the third substrate material 2 overlaps the upper end surface of the through electrode 2c at the left and right positions in the drawing.

次に、前記第1基板材(第1配線基板)1に一体化された前記半導体素子3を、前記第3基板材4の開口部4eに位置合わせして挿入すると共に、前記第1基板材1を、前記第3基板材4上に重ね合わせる。このとき、前記半導体素子3は、その半導体基板3aの全外側周が前記開口部4eの内壁との間に隙間を保ち、前記第3基板材4の配線層4b、4cと接触しないように配置される。また、前記第1基板材1の図中左右位置の貫通電極1c下端面は、前記第2基板材2の一部の貫通電極2cと対向して、前記第3基板材4上面の配線層4bの一部に重なる。このようにして、前記第1乃至第3基板材基板材1、2、4及び半導体素子3の積層体が構成される。   Next, the semiconductor element 3 integrated with the first substrate material (first wiring substrate) 1 is inserted in alignment with the opening 4e of the third substrate material 4, and the first substrate material 1 is superposed on the third substrate material 4. At this time, the semiconductor element 3 is arranged so that the entire outer periphery of the semiconductor substrate 3a maintains a gap with the inner wall of the opening 4e and does not contact the wiring layers 4b and 4c of the third substrate material 4. Is done. In addition, the lower end surface of the through electrode 1c at the left and right positions of the first substrate material 1 is opposed to a part of the through electrode 2c of the second substrate material 2, and the wiring layer 4b on the upper surface of the third substrate material 4 is disposed. Overlapping part of In this manner, a stacked body of the first to third substrate materials, the substrate materials 1, 2, 4 and the semiconductor element 3 is configured.

そして、前記積層体を、真空キュアプレス機を用いて、1kPa以下の減圧雰囲気中で積層方向に加熱圧着することによって、図1に示すような一括多層化されたパッケージタイプ配線基板を完成する。この工程において、前記第1及び第2基板材1、2の各接着層5a及び5bは、加熱加圧により塑性流動して前記各基板材相互間、第3基板材4の開口部4eと半導体素子3の側周との間の隙間、及びスルーホールTHを埋め尽くし、図1のように単一層化された接着層材5になって最終的に熱硬化する。その結果、半導体素子3を前記接着層材5内に埋め込んだパッケージ接着封止が簡単に得られる。この段階では、前記パッケージ封止に並行して前記導電ペーストの硬化及び金属成分の合金化が行なわれる。その結果、前記各貫通電極が1cと半導体素子3の再配線層3eとの押し付け接続に際しても素子へのダメージが避けられ低抵抗接続が得られる。   Then, the laminated body is thermocompression-bonded in a laminating direction in a reduced pressure atmosphere of 1 kPa or less using a vacuum cure press machine, thereby completing a package type wiring board having a multi-layered structure as shown in FIG. In this step, the adhesive layers 5a and 5b of the first and second substrate materials 1 and 2 are plastically flowed by heating and pressurizing, and the openings 4e of the third substrate material 4 and the semiconductor are formed between the substrate materials. The gap between the side periphery of the element 3 and the through hole TH are filled, and the adhesive layer material 5 is formed into a single layer as shown in FIG. As a result, a package adhesive seal in which the semiconductor element 3 is embedded in the adhesive layer material 5 can be easily obtained. At this stage, the conductive paste is hardened and the metal component is alloyed in parallel with the package sealing. As a result, even when each through electrode is pressed between 1c and the rewiring layer 3e of the semiconductor element 3, damage to the element is avoided and a low resistance connection is obtained.

このような第1実施形態に係る製造方法によれば、前記第1及び第2基板材1、2は、片面CCLのような金属箔張配線基板材を用い、層間接続のための前記第1、第2貫通電極1c、2cは導電ペーストの印刷充填で簡単に形成することができる。従って、前述した従来のビルトアップ方式(特許文献1参照)に比べて、全パッケージ組み立て工程を通じて、めっき工程を排除することができ、生産時間及び生産コストを大幅に低減できる。   According to the manufacturing method according to the first embodiment, the first and second substrate materials 1 and 2 use a metal foil-clad wiring substrate material such as a single-sided CCL, and the first and second layers for interlayer connection. The second through electrodes 1c and 2c can be easily formed by printing and filling with a conductive paste. Therefore, compared with the above-described conventional built-up method (see Patent Document 1), the plating process can be eliminated through the entire package assembly process, and the production time and production cost can be greatly reduced.

また、一括熱プレス工程によって、第1〜3基板材1、2、4が各接着層5a、5bを介して、相互に接着固定されてパッケージ基板積層構造が1回のプレスで得られるために、前記ビルトアップ方式に比較して、これら積層部材にかかる熱履歴並びに同部材の劣化を著しく低減できる。   In addition, since the first to third substrate materials 1, 2, and 4 are bonded and fixed to each other through the adhesive layers 5a and 5b by the collective heat pressing process, the package substrate laminated structure can be obtained by one press. Compared with the built-up system, the heat history applied to these laminated members and the deterioration of the members can be significantly reduced.

更に、第1〜第3基板材1、2、4及び半導体素子3は、予め別々の工程ラインで製造されるので、製造工程毎にそれぞれの組み立て部材に不良が生じても、その都度不良品を排除することができ、歩留まり悪化の累積を避けることができる。   Furthermore, since the first to third substrate materials 1, 2, 4 and the semiconductor element 3 are manufactured in advance in separate process lines, even if a failure occurs in each assembly member for each manufacturing process, it is a defective product each time. Can be eliminated, and accumulation of yield deterioration can be avoided.

次に、半導体素子の他の2種類の実施形態について、図6(a)及び図6(b)を参照して説明する。ここで、図1などに示された半導体素子3と同じ構成部分については同一符号を付し、その詳細説明を省略する。即ち、図6(a)に示された半導体素子30は、図1の第1実施形態における1層目の有機絶縁膜3dを省略し、2層目の有機絶縁膜3fを保護絶縁膜3c上に直接形成した例であり、半導体基板3aの上表面側の第1絶縁膜が有機絶縁膜3fにより構成されている。図6(b)に示された半導体素子31は、図1の第1実施形態における2層目の有機絶縁膜3fを省略した例であり、半導体基板3aの上表面側の第1絶縁膜が有機絶縁膜3dにより構成されている。   Next, two other embodiments of the semiconductor element will be described with reference to FIGS. 6 (a) and 6 (b). Here, the same components as those of the semiconductor element 3 shown in FIG. 1 and the like are denoted by the same reference numerals, and detailed description thereof is omitted. That is, in the semiconductor element 30 shown in FIG. 6A, the first organic insulating film 3d in the first embodiment of FIG. 1 is omitted, and the second organic insulating film 3f is placed on the protective insulating film 3c. The first insulating film on the upper surface side of the semiconductor substrate 3a is composed of the organic insulating film 3f. The semiconductor element 31 shown in FIG. 6B is an example in which the second-layer organic insulating film 3f in the first embodiment of FIG. 1 is omitted, and the first insulating film on the upper surface side of the semiconductor substrate 3a is formed. The organic insulating film 3d is used.

前記他の各実施形態によれば、前記各有機絶縁膜3d、3fのいずれかを省略することによって、各半導体素子30、31のその分の工程数が低減される。また、前記半導体基板3aの上面側における有機絶縁膜の厚さや占有量が減じられるので、前記半導体基板3aの下面(裏面)側の第2絶縁膜を構成する有機絶縁膜3hの厚さを薄くすることも可能であり、半導体素子を更に薄形化できる。   According to each of the other embodiments, by omitting one of the organic insulating films 3d and 3f, the number of steps corresponding to the semiconductor elements 30 and 31 can be reduced. Further, since the thickness and the occupation amount of the organic insulating film on the upper surface side of the semiconductor substrate 3a are reduced, the thickness of the organic insulating film 3h constituting the second insulating film on the lower surface (back surface) side of the semiconductor substrate 3a is reduced. It is also possible to further reduce the thickness of the semiconductor element.

次に、本発明の積層配線基板に係る第2の実施形態について図7を参照して説明する。ここでは、図6(a)に示された半導体素子30を組み込んだ例で示されている。そして、図1〜図6に示された各部分と同一または同様な部分については、同一の引用符号を付しその詳細な説明を省略する。   Next, a second embodiment according to the multilayer wiring board of the present invention will be described with reference to FIG. Here, an example in which the semiconductor element 30 shown in FIG. And about the part which is the same as that of each part shown by FIGS. 1-6, or the same part, the same referential mark is attached | subjected and the detailed description is abbreviate | omitted.

第1基板材1xは多層配線基板構造で構成されている。即ち、第1基板材1xは、第1絶縁基板1a、第1配線層1b及び導電ペースト製の貫通電極1cを有する下側配線基板(半導体素子30側)の上に、上側配線基板を積層して形成されている。前記上側配線基板は、他の絶縁基板1dの上面にパターン化された他の配線層1f及び前記他の絶縁基板1dを貫通する他の導電ペースト製の複数の貫通電極1g(図中4箇所)を有していて、接着層1eによって、前記第1配線層1b及び第1絶縁基板1a上に接着されている。   The first substrate material 1x has a multilayer wiring board structure. That is, the first substrate material 1x is formed by laminating the upper wiring substrate on the lower wiring substrate (semiconductor element 30 side) having the first insulating substrate 1a, the first wiring layer 1b, and the through electrode 1c made of conductive paste. Is formed. The upper wiring substrate includes another wiring layer 1f patterned on the upper surface of another insulating substrate 1d and a plurality of through electrodes 1g made of other conductive paste that penetrates the other insulating substrate 1d (four locations in the figure). It is adhered to the first wiring layer 1b and the first insulating substrate 1a by the adhesive layer 1e.

前記各貫通電極1gは、その一端面(上端)が前記他の配線層1fの内面に接続され、他端面(下端)が前記第1配線層1bに熱圧着して接続されている。前記貫通電極1c及び1gは、図7から分かるように、いずれも凸形状を有し貫通電極本体部分よりも径小な各突端部が、各々対応する配線層1e及び1fに予め形成された小孔に充填かつ係合されている。   Each through electrode 1g has one end surface (upper end) connected to the inner surface of the other wiring layer 1f and the other end surface (lower end) connected to the first wiring layer 1b by thermocompression bonding. As can be seen from FIG. 7, the through-electrodes 1c and 1g are small protrusions each having a convex shape and having a diameter smaller than that of the through-electrode main body portion formed in advance on the corresponding wiring layers 1e and 1f, respectively. The hole is filled and engaged.

このような形状の前記貫通電極1c、1g及び配線層1e、1fの小孔形成は、前記第1実施形態における貫通電極1c、2c及び配線層1b、2bにも適用することができる。   Formation of small holes in the through electrodes 1c and 1g and the wiring layers 1e and 1f having such a shape can be applied to the through electrodes 1c and 2c and the wiring layers 1b and 2b in the first embodiment.

前記他の絶縁基板1d及び他の配線層1f上には、ソルダーレジスト6が被着されている。前記ソルダーレジスト6は、前記各貫通電極1gに対応する他の配線層1fの各部分を露出させる複数のコンタクト孔を有し、前記上側配線基板上面に、はんだペーストをパターン印刷し、リフローさせることによって、ボール状のはんだバンプからなる複数の外部端子電極7が形成されている。前記外部端子電極7は、前記ボールバンプに限らず、搭載する電子機器等の接続端子構造などに応じて、例えばビームリードタイプなど他の外部端子構造を採用することも可能である。   A solder resist 6 is deposited on the other insulating substrate 1d and the other wiring layer 1f. The solder resist 6 has a plurality of contact holes that expose portions of the other wiring layers 1f corresponding to the through electrodes 1g, and a solder paste is printed on the upper surface of the upper wiring board and reflowed. Thus, a plurality of external terminal electrodes 7 made of ball-shaped solder bumps are formed. The external terminal electrode 7 is not limited to the ball bump, but may adopt another external terminal structure such as a beam lead type according to a connection terminal structure of an electronic device to be mounted.

前記第1基板材1xは、他の配線基板を更に積層して2層以上に多層化することができ、前記半導体素子3の多機能/高機能化に応じて、所望複数の配線基板を積層した多層配線基板構造を提供することによって、高機能化する電子機器への搭載対応が自在に行える。   The first substrate material 1x can be laminated with two or more layers by further stacking other wiring substrates, and a plurality of desired wiring substrates can be stacked according to the multi-function / high functionality of the semiconductor element 3. By providing such a multilayer wiring board structure, it is possible to freely mount on a highly functional electronic device.

第2基板材2xは、この例では、前記第1基板材1xや半導体素子30等に対する支持板としてフレキシブルな例えばポリイミド樹脂フィルムによって構成されている。支持板としての前記第2基板材2xは、PENやPETなどの絶縁フィルム、リジッドなガラスエポキシ樹脂絶縁板或いは銅箔などの金属板などを用いて形成してもよい。   In this example, the second substrate material 2x is made of a flexible polyimide resin film as a support plate for the first substrate material 1x, the semiconductor element 30, and the like. The second substrate material 2x as a support plate may be formed using an insulating film such as PEN or PET, a rigid glass epoxy resin insulating plate, or a metal plate such as copper foil.

また、前記第2基板材2xは、良導熱性の材料、例えば銅箔などで構成すれば、前記支持板の役割のみならず、半導体素子30からの熱を外部に効果的に放熱させることができ、素子30の電気的動作を安定化させることができる。その場合は、従来技術では内蔵することが不可能であった発熱量の大きい半導体素子でも実装可能となり、種々の半導体素子に対するパッケージ基板の適用範囲を拡大できる。   Further, if the second substrate material 2x is made of a material with good heat conductivity, such as copper foil, it can effectively dissipate not only the role of the support plate but also the heat from the semiconductor element 30 to the outside. The electrical operation of the element 30 can be stabilized. In that case, it is possible to mount even a semiconductor element having a large calorific value, which could not be incorporated in the prior art, and the application range of the package substrate to various semiconductor elements can be expanded.

第3基板材4xは、専らスペーサの役割を果たすためのもので、半導体素子30と同程度の厚さで、その側周を隙間をもって囲む開口部4eを有する例えばポリイミド樹脂フィルムが使用されている。このような第3基板材4xは、前記第1基板材1x及び第2基板材2x相互を接着層材5を介して加熱圧着する際の接着層材の不所望な流動変形を抑制し、基板材1xと2xとの平行性や前記半導体素子3の位置精度を高めることができる。   The third substrate material 4x is exclusively for the role of a spacer, and is made of, for example, a polyimide resin film having the same thickness as the semiconductor element 30 and having an opening 4e surrounding the side periphery with a gap. . Such a third substrate material 4x suppresses undesired flow deformation of the adhesive layer material when the first substrate material 1x and the second substrate material 2x are thermocompression bonded to each other via the adhesive layer material 5, The parallelism between the plate materials 1x and 2x and the positional accuracy of the semiconductor element 3 can be improved.

ところで、前記第1実施形態の第1〜第3基板材1、2、4と第2実施形態の第1〜第3基板材1x、2x、4xとの間で各部材の交換組み合わせしてもよい。例えば、前記第1実施形態において、その第1基板材1の代わりに第2実施形態の第1基板材1xを使用したり、前記第3基板材4の代わりに第3基板材4xを使用してもよい。このように前記第1及び第2実施形態の各第1〜第3基板材を適宜組み合わせることによって、前記半導体素子30の多機能/高機能化に応じた種々の形態のパッケージタイプの積層配線基板を提供することができる。   By the way, even if each member is exchanged and combined between the first to third substrate materials 1, 2, 4 of the first embodiment and the first to third substrate materials 1x, 2x, 4x of the second embodiment. Good. For example, in the first embodiment, the first substrate material 1x of the second embodiment is used instead of the first substrate material 1, or the third substrate material 4x is used instead of the third substrate material 4. May be. As described above, by appropriately combining the first to third substrate materials of the first and second embodiments, various types of package-type multilayer wiring boards according to the multi-function / high functionality of the semiconductor element 30 are obtained. Can be provided.

また、前記第2実施形態におけるソルダーレジスト及びはんだボールバンプからなる複数の外部端子電極の技術を、前記第1実施形態にも適用することが可能である。即ち、前記第1実施形態における前記第1基板材1の上面及び第2基板材2の下面に、このようなソルダーレジスト及び複数の外部端子電極を形成することができる。   Further, the technique of a plurality of external terminal electrodes composed of solder resist and solder ball bumps in the second embodiment can be applied to the first embodiment. That is, such a solder resist and a plurality of external terminal electrodes can be formed on the upper surface of the first substrate material 1 and the lower surface of the second substrate material 2 in the first embodiment.

ところで、前記第1及び第2実施形態の積層配線基板のいずれにおいても、前記第3基板材4、4xを省略して、前記第1基板材1、1xと第2基板材2、2xとを接着層材5のみによって接着し、パッケージをより一層薄形化することも可能である。このようなことは、例えば、半導体素子の機能数やその電極パッド数が比較的少なく、チップサイズや厚さが小さい場合や前記第1基板材1、1xの配線層数、配線層ピッチ及び配線層長等並びに絶縁基板面積(サイズ)を小さくできる場合や前記接着層材5の層厚を半導体素子の厚さに比して充分に厚くした場合などにおいて実施できる。なお、第2基板材2、2xに予め設けられる接着層は、必ずしも第2基板材2、2xの全面に設ける必要はなく、例えば、半導体素子に対応する部分を避けた周囲に限定して設けるなど、少なくとも部分的に設けておけばよい。   By the way, in any of the multilayer wiring boards of the first and second embodiments, the third substrate material 4, 4x is omitted, and the first substrate material 1, 1x and the second substrate material 2, 2x are used. It is possible to further reduce the thickness of the package by bonding only with the adhesive layer material 5. This is because, for example, the number of functions of semiconductor elements and the number of electrode pads thereof are relatively small, the chip size and the thickness are small, the number of wiring layers of the first substrate material 1, 1x, the wiring layer pitch, and the wiring This can be carried out when the layer length or the like and the insulating substrate area (size) can be reduced, or when the thickness of the adhesive layer material 5 is sufficiently larger than the thickness of the semiconductor element. Note that the adhesive layer provided in advance on the second substrate materials 2 and 2x is not necessarily provided on the entire surface of the second substrate materials 2 and 2x. For example, the adhesive layer is provided only on the periphery avoiding the portion corresponding to the semiconductor element. Etc., at least partially.

また、前記各実施形態において、前記半導体素子の底面に銅箔などの良導熱層を形成しておくことによって、半導体素子の放熱効果を向上することができる。更には、前記第2基板材2xが良導熱性材料である場合、第2基板材2xに、前記半導体素子底面の良導熱層を、接着層を介せず直接的に接触させれば、前記放熱効果はより一層向上する。   Moreover, in each said embodiment, the heat dissipation effect of a semiconductor element can be improved by forming good heat conductive layers, such as copper foil, in the bottom face of the said semiconductor element. Further, when the second substrate material 2x is a good heat conductive material, the good heat conductive layer on the bottom surface of the semiconductor element is brought into direct contact with the second substrate material 2x without an adhesive layer. The heat dissipation effect is further improved.

本発明の第1実施形態に係る積層配線基板を示す断面図である。1 is a cross-sectional view showing a multilayer wiring board according to a first embodiment of the present invention. 本発明の第1実施形態に係る半導体素子の製造方法を説明するための図であり、(a)〜(d)はその工程別断面図である。、It is a figure for demonstrating the manufacturing method of the semiconductor element which concerns on 1st Embodiment of this invention, (a)-(d) is sectional drawing according to the process. , 本発明の第1実施形態に係る第1基板材の製造方法を説明するための図であり、(a)〜(e)はその工程別断面図である。It is a figure for demonstrating the manufacturing method of the 1st board | substrate material which concerns on 1st Embodiment of this invention, (a)-(e) is sectional drawing according to the process. 本発明の第1実施形態に係る第3基板材の製造方法を説明するための図であり、(a)〜(e)はその工程別断面図である。It is a figure for demonstrating the manufacturing method of the 3rd board | substrate material which concerns on 1st Embodiment of this invention, (a)-(e) is sectional drawing according to the process. 本発明の第1実施形態に係る積層配線基板の組立方法を説明するための図であり、(a)及び(b)はその工程別断面図である。It is a figure for demonstrating the assembly method of the multilayer wiring board which concerns on 1st Embodiment of this invention, (a) And (b) is sectional drawing according to the process. 本発明に係わる半導体素子の他の実施形態を2種類について示す図であり、(a)及び(b)はその各例の断面図である。It is a figure which shows other embodiment of the semiconductor element concerning this invention about two types, (a) And (b) is sectional drawing of each example. 本発明の第2実施形態に係る積層配線基板を示す断面図である。It is sectional drawing which shows the laminated wiring board which concerns on 2nd Embodiment of this invention. 従来技術における積層配線基板の要部を示す断面図である。It is sectional drawing which shows the principal part of the multilayer wiring board in a prior art.

符号の説明Explanation of symbols

1、1x 第1基板材
1a、1d、2a、4a 絶縁基板
1b、1f、2b、4b、4c、 配線層
1c、1g、2c、 貫通電極
2、2x 第2基板材
3、30、31 半導体素子
3a 半導体基板
3b 電極パツト
3c 保護絶縁膜
3d、3f 有機絶縁膜(第1絶縁層)
3e 再配線層
3h 裏面有機絶縁膜(第2絶縁層)
4、4x 第3基板材
5 接着層材5
1e、5a、5b、 接着層
DESCRIPTION OF SYMBOLS 1, 1x 1st board | substrate material 1a, 1d, 2a, 4a Insulation board | substrate 1b, 1f, 2b, 4b, 4c, Wiring layer 1c, 1g, 2c, Through electrode 2, 2x 2nd board | substrate material 3, 30, 31 Semiconductor element 3a Semiconductor substrate 3b Electrode pad 3c Protective insulating film 3d, 3f Organic insulating film (first insulating layer)
3e Rewiring layer 3h Back side organic insulating film (second insulating layer)
4, 4x Third substrate material 5 Adhesive layer material 5
1e, 5a, 5b, adhesive layer

Claims (8)

対面配置された第1基板材と第2基板材との間に半導体素子を内蔵して接着封止した積層配線基板であって、前記第1基板材は、絶縁基板の一方の面に配線層が形成された配線基板と、前記絶縁基板を貫通し一端面が前記配線層に接続され他端面が前記絶縁基板の他方の面に露出する導電性ペーストからなる貫通電極とを備え、前記半導体素子は、半導体基板の一方の面に形成された電極パッド及び前記電極パッドに対するコンタクト孔を有する保護絶縁膜と、前記保護絶縁膜上に形成され前記電極パッドに接続された再配線層及び前記再配線層形成用の第1絶縁膜と、前記半導体基板の他方の面に形成された第2絶縁膜とを備え、前記貫通電極の前記他端面は前記再配線層に接続されていることを特徴とする積層配線基板。   A laminated wiring board in which a semiconductor element is embedded and bonded and sealed between a first substrate material and a second substrate material arranged facing each other, wherein the first substrate material has a wiring layer on one surface of an insulating substrate. And a through electrode made of a conductive paste that penetrates the insulating substrate, has one end surface connected to the wiring layer, and the other end surface exposed on the other surface of the insulating substrate. A protective insulating film having an electrode pad formed on one surface of a semiconductor substrate and a contact hole for the electrode pad, a rewiring layer formed on the protective insulating film and connected to the electrode pad, and the rewiring A first insulating film for forming a layer; and a second insulating film formed on the other surface of the semiconductor substrate, wherein the other end surface of the through electrode is connected to the rewiring layer. Laminated wiring board. 前記第1絶縁膜及び前記第2絶縁膜は、相互に同一種類の有機樹脂材料を用いて形成されていることを特徴とする請求項1に記載の積層配線基板。   2. The multilayer wiring board according to claim 1, wherein the first insulating film and the second insulating film are formed using the same kind of organic resin material. 前記第1基板材は、各々が絶縁基板の一方の面に配線層を有する複数の配線基板を積層した多層配線基板構造とされ、前記各配線基板には対応する配線層に接続されて前記絶縁基板を貫通する導電性ペーストからなる貫通電極が設けられ、前記半導体素子側の配線基板の貫通電極が前記半導体素子の再配線層に接続され、前記半導体素子から離隔する他の配線基板の貫通電極が隣接する配線基板の配線層に電気的に接続されていることを特徴とする請求項1または請求項2に記載の積層配線基板。   The first substrate material has a multilayer wiring substrate structure in which a plurality of wiring substrates each having a wiring layer on one surface of an insulating substrate is laminated, and each of the wiring substrates is connected to a corresponding wiring layer to form the insulating layer. A through electrode made of a conductive paste penetrating the substrate is provided, and the through electrode of the wiring board on the semiconductor element side is connected to the rewiring layer of the semiconductor element, and the through electrode of another wiring board separated from the semiconductor element The multilayer wiring board according to claim 1, wherein the wiring board is electrically connected to a wiring layer of an adjacent wiring board. 前記絶縁基板の前記他方の面に接着層が形成され、前記貫通電極は前記絶縁基板及び接着層を貫通し、前記半導体素子は前記接着層中に埋め込まれていることを特徴とする請求項1〜請求項3のうちいずれか一つの請求項に記載の積層配線基板。   The adhesive layer is formed on the other surface of the insulating substrate, the through electrode penetrates the insulating substrate and the adhesive layer, and the semiconductor element is embedded in the adhesive layer. The laminated wiring board according to any one of claims 3 to 3. 前記第1基板材と第2基板材との間に第3基板材が配置され、前記第3基板材は前記半導体素子が挿入される開口部を有するフィルム状のスペーサからなり、前記第1乃至第3基板材相互間及び前記開口部に接着層材が充填されていることを特徴とする請求項1〜請求項4のうちいずれか一つの請求項に記載の積層配線基板。   A third substrate material is disposed between the first substrate material and the second substrate material, and the third substrate material comprises a film-like spacer having an opening into which the semiconductor element is inserted. The laminated wiring board according to any one of claims 1 to 4, wherein an adhesive layer material is filled between third substrate materials and in the opening. 前記第1基板材と第2基板材との間に第3基板材が配置され、前記第3基板材は、絶縁基板の少なくとも一方の面に配線層を有する中間配線基板からなり、前記半導体素子が挿入される開口部を有し、前記第1乃至第3基板材相互間及び前記開口部に接着層材が充填されていることを特徴とする請求項1〜請求項4のうちいずれか一つの請求項に記載の積層配線基板。   A third substrate material is disposed between the first substrate material and the second substrate material, and the third substrate material comprises an intermediate wiring substrate having a wiring layer on at least one surface of an insulating substrate, and the semiconductor element 5. An adhesive layer material is filled between the first to third substrate materials and in the opening. 5. The laminated wiring board according to one claim. 前記第2基板材は、絶縁基板の少なくとも一方の面に形成された配線層を有する配線基板、前記絶縁基板を貫通して設けられ前記配線層に接続された導電性ペーストからなる貫通電極、及び前記絶縁基板の前記第1基板材側の面に少なくとも部分的に設けられた接着層を備えて構成されていることを特徴とする請求項1〜請求項6のうちいずれか一つの請求項に記載の積層配線基板。   The second substrate material includes a wiring substrate having a wiring layer formed on at least one surface of an insulating substrate, a through electrode made of a conductive paste provided through the insulating substrate and connected to the wiring layer, and The structure according to any one of claims 1 to 6, further comprising an adhesive layer provided at least partially on a surface of the insulating substrate on the first substrate material side. The laminated wiring board described. (A)半導体基板の一方の面に形成された電極パッド及び前記電極パッドに対するコンタクト孔を有する保護絶縁膜と、前記保護絶縁膜上に形成され前記電極パッドに接続された再配線層及び前記再配線層形成用の第1絶縁膜と、前記半導体基板の他方の面に形成された第2絶縁膜とを備えた半導体素子を提供する工程と、
(B)第1基板材を作成するために、絶縁基板の一方の面に配線層をパターンニング形成して配線基板を形成する工程と、
(C)前記絶縁基板の他方の面に接着層を形成する工程と、
(D)前記半導体素子の再配線層及び前記配線層の一部に対応する位置関係にあって前記絶縁基板及び接着層を貫通する貫通孔を形成する工程と、
(E)前記貫通孔に導電性ペーストを充填することによって、一端面が前記配線層に接続され他端面が前記絶縁基板の他方の面に露出された貫通電極を形成する工程と、
(F)前記貫通電極の前記他端面を前記半導体素子の再配線層に位置合わせして接続し、前記半導体素子を前記接着層に仮止め接着して前記第1基板材と一体化する工程と、
(G)前記第1基板材に対面させる第2基板材を提供する工程と、
(H)前記第1基板材と一体化された前記半導体素子を前記第2基板材上に位置合わせして重ね合わせる工程と、
(I)前記第1基板材と前記第2基板材とを重ね合わせ方向に一括加熱プレスし、前記接着層により前記半導体素子を囲み前記第1及び第2基板材を相互接着する工程と、
を備えることを特徴とする積層配線基板の製造方法。
(A) a protective insulating film having an electrode pad formed on one surface of a semiconductor substrate and a contact hole for the electrode pad; a rewiring layer formed on the protective insulating film and connected to the electrode pad; Providing a semiconductor element comprising a first insulating film for forming a wiring layer and a second insulating film formed on the other surface of the semiconductor substrate;
(B) forming a wiring substrate by patterning a wiring layer on one surface of the insulating substrate to form a first substrate material;
(C) forming an adhesive layer on the other surface of the insulating substrate;
(D) forming a through hole penetrating the insulating substrate and the adhesive layer in a positional relationship corresponding to a part of the rewiring layer of the semiconductor element and the wiring layer;
(E) filling the through hole with a conductive paste to form a through electrode having one end surface connected to the wiring layer and the other end surface exposed on the other surface of the insulating substrate;
(F) a step of aligning and connecting the other end surface of the through electrode to the rewiring layer of the semiconductor element, and temporarily bonding the semiconductor element to the adhesive layer to integrate with the first substrate material; ,
(G) providing a second substrate material facing the first substrate material;
(H) aligning and superimposing the semiconductor element integrated with the first substrate material on the second substrate material;
(I) a step of collectively heating and pressing the first substrate material and the second substrate material in an overlapping direction, surrounding the semiconductor element by the adhesive layer, and bonding the first and second substrate materials;
A method of manufacturing a laminated wiring board, comprising:
JP2007110046A 2007-04-19 2007-04-19 Manufacturing method of multilayer wiring board Active JP5238182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007110046A JP5238182B2 (en) 2007-04-19 2007-04-19 Manufacturing method of multilayer wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007110046A JP5238182B2 (en) 2007-04-19 2007-04-19 Manufacturing method of multilayer wiring board

Publications (2)

Publication Number Publication Date
JP2008270443A true JP2008270443A (en) 2008-11-06
JP5238182B2 JP5238182B2 (en) 2013-07-17

Family

ID=40049575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007110046A Active JP5238182B2 (en) 2007-04-19 2007-04-19 Manufacturing method of multilayer wiring board

Country Status (1)

Country Link
JP (1) JP5238182B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010103695A1 (en) * 2009-03-09 2010-09-16 株式会社村田製作所 Method for manufacturing module with built-in component and module with built-in component
KR101004216B1 (en) 2009-08-31 2010-12-24 주식회사 심텍 Method for fabricating printed curcit board of chip embedded type joined with ultra-silm printed curcit board
JP2013041926A (en) * 2011-08-12 2013-02-28 Fujikura Ltd Manufacturing method of component built-in substrate
WO2014065430A1 (en) * 2012-10-26 2014-05-01 Jx日鉱日石金属株式会社 Copper foil with carrier, copper-clad laminate using copper foil with carrier, printed wiring board, printed circuit board, and printed wiring board production method
US8766440B2 (en) 2010-03-04 2014-07-01 Nec Corporation Wiring board with built-in semiconductor element
KR20210081378A (en) * 2018-10-23 2021-07-01 주식회사 다이셀 Semiconductor device manufacturing method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001044641A (en) * 1999-07-30 2001-02-16 Kyocera Corp Wiring board incorporating semiconductor element and its manufacture
JP2002093945A (en) * 2000-09-18 2002-03-29 Iep Technologies:Kk Semiconductor device and its manufacturing method
JP2003017859A (en) * 2001-07-04 2003-01-17 Denso Corp Manufacturing method of printed circuit board and printed circuit board formed thereby
JP2004111518A (en) * 2002-09-17 2004-04-08 Denso Corp Printed wiring board and printed wiring board management system
WO2005045925A1 (en) * 2003-11-07 2005-05-19 Shinko Electric Industries Co., Ltd. Electronic device and process for manufacturing same
JP2005191156A (en) * 2003-12-25 2005-07-14 Mitsubishi Electric Corp Wiring plate containing electric component, and its manufacturing method
JP2006253328A (en) * 2005-03-09 2006-09-21 Fujikura Ltd Manufacturing method of multilayer wiring board
JP2006310532A (en) * 2005-04-28 2006-11-09 Casio Comput Co Ltd Semiconductor device and its manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001044641A (en) * 1999-07-30 2001-02-16 Kyocera Corp Wiring board incorporating semiconductor element and its manufacture
JP2002093945A (en) * 2000-09-18 2002-03-29 Iep Technologies:Kk Semiconductor device and its manufacturing method
JP2003017859A (en) * 2001-07-04 2003-01-17 Denso Corp Manufacturing method of printed circuit board and printed circuit board formed thereby
JP2004111518A (en) * 2002-09-17 2004-04-08 Denso Corp Printed wiring board and printed wiring board management system
WO2005045925A1 (en) * 2003-11-07 2005-05-19 Shinko Electric Industries Co., Ltd. Electronic device and process for manufacturing same
JP2005191156A (en) * 2003-12-25 2005-07-14 Mitsubishi Electric Corp Wiring plate containing electric component, and its manufacturing method
JP2006253328A (en) * 2005-03-09 2006-09-21 Fujikura Ltd Manufacturing method of multilayer wiring board
JP2006310532A (en) * 2005-04-28 2006-11-09 Casio Comput Co Ltd Semiconductor device and its manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010103695A1 (en) * 2009-03-09 2010-09-16 株式会社村田製作所 Method for manufacturing module with built-in component and module with built-in component
JP5163806B2 (en) * 2009-03-09 2013-03-13 株式会社村田製作所 Manufacturing method of component built-in module and component built-in module
KR101004216B1 (en) 2009-08-31 2010-12-24 주식회사 심텍 Method for fabricating printed curcit board of chip embedded type joined with ultra-silm printed curcit board
US8766440B2 (en) 2010-03-04 2014-07-01 Nec Corporation Wiring board with built-in semiconductor element
JP2013041926A (en) * 2011-08-12 2013-02-28 Fujikura Ltd Manufacturing method of component built-in substrate
WO2014065430A1 (en) * 2012-10-26 2014-05-01 Jx日鉱日石金属株式会社 Copper foil with carrier, copper-clad laminate using copper foil with carrier, printed wiring board, printed circuit board, and printed wiring board production method
KR20210081378A (en) * 2018-10-23 2021-07-01 주식회사 다이셀 Semiconductor device manufacturing method
KR102489414B1 (en) 2018-10-23 2023-01-19 주식회사 다이셀 Semiconductor device manufacturing method

Also Published As

Publication number Publication date
JP5238182B2 (en) 2013-07-17

Similar Documents

Publication Publication Date Title
JP4431123B2 (en) Electronic device substrate and manufacturing method thereof, and electronic device and manufacturing method thereof
US7640655B2 (en) Electronic component embedded board and its manufacturing method
TWI415542B (en) A printed wiring board, and a printed wiring board
JP4950743B2 (en) Multilayer wiring board and manufacturing method thereof
US7619317B2 (en) Carrier structure for semiconductor chip and method for manufacturing the same
JP2005327984A (en) Electronic component and method of manufacturing electronic-component mounting structure
JP2005294547A (en) Semiconductor device and manufacturing method thereof
JP2006019368A (en) Interposer, its manufacturing method, and semiconductor device
US20100190294A1 (en) Methods for controlling wafer and package warpage during assembly of very thin die
JP5238182B2 (en) Manufacturing method of multilayer wiring board
US8143099B2 (en) Method of manufacturing semiconductor package by etching a metal layer to form a rearrangement wiring layer
US10129980B2 (en) Circuit board and electronic component device
US11410933B2 (en) Package structure and manufacturing method thereof
JP2009016377A (en) Multilayer wiring board and multilayer wiring board manufacturing method
JP2009146940A (en) Laminated wiring board and manufacturing method therefor
JP5285385B2 (en) Manufacturing method of multilayer wiring board
JPWO2020090601A1 (en) Manufacturing method of wiring board for semiconductor package and wiring board for semiconductor package
JP4324732B2 (en) Manufacturing method of semiconductor device
JPH10335528A (en) Semiconductor package and manufacture thereof
JP5097006B2 (en) Printed wiring board and manufacturing method thereof
JP2008205124A (en) Electronic component built-in wiring board and its manufacturing method
JP6062884B2 (en) Component-embedded substrate, manufacturing method thereof, and mounting body
JP2001223289A (en) Lead frame, its manufacturing method, semiconductor integrated circuit device and its manufacturing method
TWI420989B (en) Printed circuit board and method of manufacturing the same
JP2007129148A (en) Method of manufacturing electronic component packaging structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130401

R151 Written notification of patent or utility model registration

Ref document number: 5238182

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250