JP2008244454A - 半導体レーザ装置 - Google Patents

半導体レーザ装置 Download PDF

Info

Publication number
JP2008244454A
JP2008244454A JP2008039912A JP2008039912A JP2008244454A JP 2008244454 A JP2008244454 A JP 2008244454A JP 2008039912 A JP2008039912 A JP 2008039912A JP 2008039912 A JP2008039912 A JP 2008039912A JP 2008244454 A JP2008244454 A JP 2008244454A
Authority
JP
Japan
Prior art keywords
reflectance
film
semiconductor laser
laser device
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008039912A
Other languages
English (en)
Inventor
Akira Tanaka
明 田中
Makoto Okada
眞琴 岡田
Takayuki Matsuyama
隆之 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Electronic Device Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Discrete Semiconductor Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Discrete Semiconductor Technology Corp filed Critical Toshiba Corp
Priority to JP2008039912A priority Critical patent/JP2008244454A/ja
Priority to US12/035,959 priority patent/US7852893B2/en
Publication of JP2008244454A publication Critical patent/JP2008244454A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Head (AREA)
  • Semiconductor Lasers (AREA)

Abstract

【課題】発熱量を低減し、信頼性の改善が可能な半導体レーザ装置を提供する。
【解決手段】第1導電型の基板と、前記基板の上に設けられ、活性層と、リッジ形状の導波路を有する第2導電型のクラッド層と、を少なくとも含む窒化物系半導体の積層体と、前記積層体により構成される光共振器の一方の端面に設けられ、反射率が40%以上で60%以下である第1の膜と、前記光共振器の他方の端面に設けられ、前記第1の膜よりも高い反射率を有する第2の膜と、を備え、前記光共振器の長さは400μm以下であり、前記一方の端面が光出射面されたことを特徴とする半導体レーザ装置が提供される。
【選択図】図3

Description

本発明は、半導体レーザ装置に関する。
青紫色レーザ光を放射する窒化物系半導体は、融点及び窒素の平衡蒸気圧が高く、融液からのバルク結晶の成長が容易でない。このために発光層を含む窒化物系半導体の積層体をエピタキシャル成長させる場合大口径GaN基板を用いることが困難であり、ウェーハ当たりの半導体レーザ素子チップの収量は少ない。チップ収量を上げるにはチップサイズの縮小が必要であるが、単に光共振器長を短くするだけでは電流密度が増加し発熱などによる劣化が生じやすくなる。このためにしきい値電流の低減など電流密度の低減が必要になる。
発光層における光の閉じこめを効果的に行うことによりしきい値電流の低減化が図られた窒化物系半導体発光素子に関する技術開示例がある(特許文献1)。この技術開示例では、p型クラッド層の厚みを0.3μm未満とし垂直横モードにおける高次モードをカットオフし、しきい値電流の低減を図っている。
特開2002−94190号公報
発熱量を低減し、信頼性の改善が可能な半導体レーザ装置を提供する。
本発明の一態様によれば、第1導電型の基板と、前記基板の上に設けられ、活性層と、リッジ形状の導波路を有する第2導電型のクラッド層と、を少なくとも含む窒化物系半導体の積層体と、前記積層体により構成される光共振器の一方の端面に設けられ、反射率が40%以上で60%以下である第1の膜と、前記光共振器の他方の端面に設けられ、前記第1の膜よりも高い反射率を有する第2の膜と、を備え、前記光共振器の長さは400μm以下であり、前記一方の端面が光出射面とされたことを特徴とする半導体レーザ装置が提供される。
また、本発明の他の一態様によれば、活性層を含む窒化物系半導体の積層体と、前記積層体により構成される光共振器の光出射面に接触して設けられ、媒質内波長以上の厚さを有する窒化シリコンからなる第1の誘電体と、を備えたことを特徴とする半導体レーザ装置が提供される。
発熱量を低減し、信頼性の改善が可能な半導体レーザ装置が提供される。
以下、図面を参照しつつ本発明の実施の形態について説明する。図1は本発明の第1の実施形態にかかる半導体レーザ装置を表し、図1(a)は模式斜視図、図1(b)はA−A線に沿った模式断面図、図1(c)はB−B線に沿った模式断面図である。n型GaN基板12上にn型AlGaNクラッド層14、n型GaN光ガイド層16、活性層18、p型AlGaNからなるオーバーフロー防止層19、p型GaN光ガイド層20、p型AlGaNクラッド層22、p型GaNコンタクト層24をこの順序でエピタキシャル成長する。この窒化物系半導体の積層体は、例えばMOCVD(Metal Organic Chemical Vapor Deposition)法またはMBE(Molecular Beam Epitaxy)法を用いて形成することができる。
なお、本明細書において、窒化物系半導体とは、(Al1−xGaIn1−y−zN(0≦x≦1、0<y<1、0<z<1、y+z≦1)からなる半導体をいい、さらにV族元素としてAsやPなどを含むものや、p型あるいはn型の不純物を含むものも窒化物系半導体に包含されるものとする。
型GaNコンタクト層24及びp型AlGaNクラッド層22の中間までをストライプ状のリッジに形成した後、リッジの上部以外の表面を覆うようにSiOなどの絶縁膜23を形成する。リッジは幅がW、高さがHであるp型AlGaNクラッド層22からなる導波路26及び同じ幅Wであるp型GaNコンタクト層24を有する。
型GaNコンタクト層24の上部にはp側電極28、n型GaN基板12の下部にはn側電極10を設ける。p側電極28は、Pt、Pd、Ni、Auなどの単層、積層、またはこれらの合金とすることができる。また、n側電極10は、Ti、Pt、Au、Alなどの単層、積層、またはこれらの合金とすることができる。
さらに、ストライプが延在する方向と垂直な面でへきかいし、光共振器を形成する。へきかいにより窒化物系半導体の積層体の端面は、鏡面状となり光共振器とできる。この構造は、導波路26により水平横方向への光閉じこめが制御されたいわゆる実屈折率導波型半導体レーザ装置である。
光共振器の光出射面70には、屈折率の異なる2つの誘電体膜を交互に積層した第1の膜54が設けられる。2つの誘電体膜の厚みの和は1ペア当たり2分の1波長相当の長さとし、反射光が強め合うブラッグ反射器とする。なお、誘電体の媒質内波長λgはλ/n(但しnは屈折率)と短縮される。このために、それぞれの誘電体の厚みが媒質内波長で除算され、2つの和を2分の1となるように厚みが設定される。
本実施形態において、光出射面70の第1の膜54の反射率は40%以上かつ60%以下とする。光ビーム80は、光出射面70及び第1の膜54を通過後広がりながら放射される。また、光出射面70の反対側の光反射面72に形成される第2の膜64の反射率を60%よりも大きく、すなわち第1の膜54よりも高い高反射膜とする。
この場合、例えば、図1(c)において活性層18側から、窒化シリコン/酸化物の誘電体膜を交互に形成する。窒化シリコン50はSiN、Siなどとする。また酸化物52は、SiO、Al、ZrO、TiOなどとする。窒化シリコン及びSiOの厚みを共に4分の1波長とする場合、窒化シリコン及びSiOの屈折率は、それぞれ約2.0、約1.5であるので、厚みT1、T2をそれぞれ51、68nmとするとブラッグ反射器とできる。
図1(c)では合計7層の例を表し、最も外側である窒化シリコンは厚みT7を変えて第1の膜54の反射率を調整する。半導体レーザ素子が400〜410nmの波長範囲であれば、図1(c)のような構造により反射率を40〜60%の範囲内とすることができる。
また、第2の膜64の反射率は第1の膜54よりも高くし、光出射面70からの光出力を高める。例えば、8層以上の構成として90%以上の反射率とすることが好ましく、より多層として95%以上とするとより好ましい。図1(c)は8層の例を表し、光反射面72側から厚みS1の窒化シリコン50及び厚みS2のSiO52を交互に4分の1波長の厚みで積層し、最も外側のSiO52は厚みS8を変えて第2の膜64の反射率を調整する。
図2は、本実施形態にかかる半導体レーザ装置のシミュレーションによる光出力の電流依存性を表すグラフ図である。図2において、縦軸は光出射面70からの光出力(mW)、横軸は動作電流(mA)である。また第1の膜54の反射率は、20、30、40、50、60、70%と変えている。なお、光共振器長Lは400μm、第2の膜64の反射率を95%としている。しきい値電流は、反射率が20%の場合に約29mA、40%で約27.5mA、60%で約26.5mAと低下しほぼ飽和する。
他方、光出力が15mWとなる電流は、反射率が20%で約40mA、40%で約40.2mA、60%で約43mAと増大し、70%では約46.5mAとより急激に増大する。
図2から15mW出力における動作電流を低くするには低反射率が好ましいが、しきい値電流を低くするには高反射率が好ましいことになる。また本図から、発熱量は反射率によって変化することが理解できる。
図3はシミュレーションによる発熱量の反射率依存性を表すグラフ図である。
本図において、縦軸は光出力が10mWにおける単位面積当たりの発熱量(J/m)、横軸は反射率(%)である。光共振器長Lは、300、350、400、500、600μmと変えている。なお、図3の発熱量は、反転分布状態にしてレーザ発振を生じるまでに消費される電力量及び導波路23におけるジュール発熱からシミュレーションにより求めた。
光共振器長Lが短くなるにつれて、反射率依存性が強くなる。また、反射率が40%よりも低いまたは60%よりも高い場合発熱量の増加が急峻となるので、40〜60%の範囲が好ましい。特に、光共振器長Lが400μmでは反射率が45〜55%で発熱量が144.9J/mと略極小とできる。通常よく用いられる光出射面70の反射率は20%以下であり、Lが500μmかつ20%反射率の場合の発熱量は145.3J/mであるので本実施形態の方が低い。このために信頼性を保ちつつLを20%短く、すなわちチップ収量を25%多くできる。また光共振器長Lが350μmでは反射率が45〜55%で発熱量が148.1J/mと略極小とできる。この発熱量は、Lが500μmかつ10%反射率の場合よりも低い。このために信頼性を保ちつつLを30%短く、すなわちチップ収量を43%多くできる。
光共振器長Lが300μmでは、反射率が50〜55%で発熱量が152.3J/mと略極小とできる。すなわち、第1の膜54の反射率は40%以上かつ60%以下とすることが好ましく、反射率を45%以上かつ55%以下とするとより好ましい。本実施形態においては光出射面70の光反射率を40〜60%の間に制御することによりしきい値電流を低減し発熱を抑制している。
他方、光出射面70からの光出力を高くするために、反射率が20%以下の反射膜を用いる比較例において、単に光共振器長を短くしてチップサイズ縮小を行うと単位面積当たりの発熱量は大きくなる。例えば、光共振器長が300μmの場合、反射率を20%とすると発熱量は166.6J/mとなり、極小値の約109%となる。書き換え用途においては約5%の低反射率とする場合さらに発熱量が大きくなる。すなわち、反射率を低く保ったまま光共振器長を短くすると信頼性の低下を生じることがある。
ところで、次世代DVD再生専用の光ピックアップにおける半導体レーザ装置の最大定格光出力は15mWであり、図2において、反射率を40%以上かつ60%以下とすれば、約43mA以下の低い動作電流で15mW出力が実現できる。動作電流を増加すれば光出力をより大きくできるが、光ピックアップを低消費電力で動作させるには低電流動作がより好ましい。
また、図3は光共振器長Lを短くすると発熱量が増加することを表している。例えば光共振器長Lを300μm以下とすると、反射率を40%以上かつ60%以下の範囲としても単位面積当たりの発熱量は152.3J/mよりも大きくなる。この場合、光共振器長Lは発熱量の許容範囲に応じて決めるのがよい。すなわち、光ピックアップの光学系結合効率が高くできる場合、定格光出力が15mWより低くてもよく、光共振器長Lを300μmより短くしても信頼性を確保することが可能となる。
さらに、図2に表されるように、光出力を大きくしていくと、反射率の増大に対して動作電流が急激に増大するようになり、発熱量も急激に増大するようになる。従って、40%以上かつ60%以下の反射率であっても光出力が15mW以下で使用することが好ましい。
ここで、図1(b)に表す断面構造についてより詳細に説明する。n型AlGa1−xN(0≦x≦0.1)クラッド層14の厚みは、例えば1.5μmとし、n型GaN光ガイド層16の厚みは、例えば0.07μmとする。活性層18は、InGa1−wN(0.06≦w≦0.2)からなる井戸層及びInGa1−bN(0.01≦b≦0.05)からなる障壁層から構成される単一または多重量子井戸構造とする。量子井戸構造とすると、キャリアが井戸内に閉じこめられ易くなり発光効率が改善され、発熱が抑制される。
p型GaN光ガイド層20の厚みを、例えば0.03μmとし、p型AlGaNクラッド層22のAlGa1−yN(0≦y≦0.1)からなる導波路23における高さHを、例えば0.45μmとする。また、p型GaNコンタクト層24の厚みを、例えば0.1μmとする。
さらに、活性層18及びp型GaN光ガイド層20の間に設けられるオーバーフロー防止層19はAlGa1−zN(y<z)からなり、厚みを、例えば0.01μmとする。もし、キャリアのオーバーフローが多く活性層18での再結合が起こりにくければ、しきい値電流を低下させ発熱を抑制することが困難となる。本実施形態では反射率を40%以上かつ60%以下としてしきい値を低減するので、オーバーフロー防止層19によりキャリアを活性層18内に効率よく閉じこめることが好ましい。
例えば、オーバーフロー防止層19のアルミニウム組成比zをp型AlGaNクラッド層22における組成比yより大きい0.2程度とすることによりバンドギャップが広くできてキャリアの漏れを低減できる。さらにp型アクセプタ濃度を、例えば1×1020cm−3以上とすることにより、活性層18の界面の伝導帯側ヘテロ障壁を大きくする。このために電子のオーバーフローを一層抑制でき好ましい。
また、光出力が15mW以下であると電流分布を均一とすることが容易となり、横方向モードの高次モード発生が抑制される。この結果、100mW以上の光出力の場合のようなキンクが生じにくいので導波路26の幅Wを1.5〜2.5μmと広くできる。
本実施形態によれば、15mW光出力における動作電流を低くでき、光ピックアップの半導体レーザ駆動回路を低消費電力かつ小型とできる。また、発熱量を低減しつつ光共振器長Lを短くできる。すなわち、信頼性を保ちつつチップサイズの縮小が可能となる。このために、ウェーハサイズを大きくするのが困難であるGaN基板を用いてもチップ収量を多くでき、特に再生用途の次世代DVDの拡大する用途への対応が容易となる。例えばHDTV(High Definition television)画像記録、コンピュータの大容量記録、アミューズメントなどの再生用途への応用が広がる。
図4は、本発明の第2の実施形態を説明するため、光出射面70の発光点近傍を拡大した模式断面図を表す。n型GaN光ガイド層16及びp型GaN光ガイド層20は、単一または多重量子井戸構造である活性層18の両側に設けられ、薄い活性層18からの光を活性層18に対して垂直な方向に広げている。例えば、n型GaN光ガイド層16の厚みは70nm、p型GaN光ガイド層20の厚みは30nmの厚みとされる。
本実施形態において、光出射面70に接触して窒化シリコン50からなる第1の誘電体が設けられる。窒化シリコン50の厚みT1を媒質内波長(λg1)の1波長以上とする。窒化シリコンの屈折率を2.08とし、窒化物系半導体レーザ装置の発光波長を405nmとすると、λg1は194nmとなるのでT1は194nm以上となる。
窒化シリコン50からなる第1の誘電体の上には、第2の誘電体である酸化物層52及び第3の誘電体である窒化シリコン51が交互に積層され、反射波を強め合うブラッグ反射器が構成される。図4では4分の1波長の厚みの酸化物52及び窒化シリコン51がペアで2組積層されている。酸化物52を屈折率が1.5である二酸化シリコンとすれば、405nmにおける媒質内波長λg2は270nmとなる。このために、4分の1波長は、酸化物52の厚みT2で68nm、窒化シリコン51の厚みT3で49nmとなり、このペアが2組のブラッグ反射器を構成する。
なお、酸化物52及び窒化シリコン51の厚みの和(T2+T3)が2分の1波長に相当したブラッグ反射器であっても、低屈折率から高屈折率への境界面での180度の位相変化に、反射波間の光路差による180度の位相変化が加算されて各境界面での反射波面を同位相とし反射率を高めることができる。
最も外側の酸化物52の厚みT6をλg2/3とすれば反射率を40%、λg2/2とすれば反射率を50%とできるように最も外側の誘電体の厚みにより第1の膜(反射層)55全体の反射率を制御できる。光出射面70側の反射率を変化させると、しきい値電流が低減され単位面積あたりの発熱が抑制され、信頼性を改善できる。
ここで、1層目の窒化シリコン50の厚みと反射率の関係について説明する。図4の構造において、窒化シリコン50の厚みを、λg1/4、3λg1/4、7λg1/4と変える。また、2層目をλg2/4の厚みの二酸化シリコン52、3層目をλg1/4の厚みの窒化シリコン51、4層目をλg2/4の厚みの二酸化シリコン52、5層目をλg1/4の厚みの窒化シリコン51、6層目をλg2/4の厚みの二酸化シリコン52とする。光反射面72側の第2の膜64の反射率を90%以上とするが、本発明はこれに限定されない。
図5は、λg1/4の厚みの窒化シリコン50を含む6層の第1の膜55における反射率を表すグラフ図であり、図5(a)は波長390〜420nmにおける反射率(%)の波長依存性、図5(b)は光出射面70からの距離X(nm)における反射率である。図5の構造は4分の1波長の窒化シリコン及び二酸化シリコンが交互に積層されたブラッグ反射器を含む。第1の膜55の6層合計の厚みは348nmである。また、窒化物系半導体の積層体15の屈折率は2.5〜2.7であるがここでは2.5として反射率のシミュレーションを行っている。
積層体15が誘電体を介さず直接空気と接触している場合、反射率は約18%となり1、2層中で距離Xとともに低下し、2層及び3層の境界面で約2%と極小となる。3層及び4層の境界面で約30%と極大となり、さらに4層及び5層の境界面で約53%と極大となる。このために図5(b)のように、2〜53%の範囲の反射率を実現できる。
図6は3λg1/4の厚みの窒化シリコン50を含む6層の第1の膜55における反射率を表すグラフ図である。第1の膜55の6層合計の厚みは442nmとなる。図6(b)のように、3λg1/4の厚みの中に約18%の反射率極大点が2つでき、2〜53%の範囲の反射率が実現できる。
図7はλg1の厚みの窒化シリコン50を含む6層の第1の膜55における反射率を表すグラフ図である。第1の膜55の6層合計の厚みは492nmとなる。図7(b)のように、λg1の厚みの中に約18%の反射率極大点が3つでき、0〜65%の範囲の反射率が実現できる。この場合、5層目までの厚みをそれぞれの媒質内波長で除算した総和が2になり、6層目の厚みをゼロより大きくλg2/4以下とすると反射率を38〜65%の範囲で調整することができる。
図8は7λg1/4の厚みの窒化シリコン50を含む6層の第1の膜55における反射率を表すグラフ図である。第1の膜55の6層合計の厚みは638nmとなる。図8(b)のように、7λg1/4の窒化シリコン50の中に約18%の反射率極大点が4つでき、2〜54%の範囲の反射率が実現できる。また、図7(a)及び図8(a)に表すように、第1の誘電体である窒化シリコン50の厚みがλg1以上と厚くても390〜420nmの範囲の波長変動に対して反射率変動を小さくできている。
ところで、膜が薄い方が膜形成時間を短くできるので、所望の反射率とする場合、窒化シリコン50を図5(b)または図6(b)のように薄くするのが一般的である。しかしながら、窒化物系半導体レーザ装置においては第1の膜55が薄いと信頼性が不十分となることがある。
図9は平均寿命を説明する図である。本図において、縦軸は高温通電試験により半導体レーザ装置の光出力を一定とするための動作電流が初期値の130%となる時間を寿命と定義し、求めた全数の平均寿命を表す。横軸は窒化物層50をλg1/4で正規化した厚みを表す。窒化シリコン層50の厚みが(λg1/4)×4では平均寿命が約100時間であり、厚みが大きくなるに従い平均寿命が改善される。 他方、窒化シリコン50の厚みがλg1よりも小さくなると劣化の進行が早い。
図10は、高温通電試験における動作電流を表し、図10(a)は第2の実施形態、図10(b)は比較例である。縦軸は動作電流(mA)、横軸は通電時間(h)を表す。なお、ケース温度(Tc)は75℃であり、0〜5時間は光出力が50mW、5時間以降は光出力が80mWである。また、反射率は約7%である。本実施形態の第1の膜55において、窒化シリコン50の厚みを7λg1/4とし、その上にλg2/2の二酸化シリコンを設けている。また、比較例において、窒化シリコンの厚みは3λg1/4とし、その上に0.04λg2の二酸化シリコンを設けている。
比較例の場合、動作電流は次第に増加し平均寿命は約60時間であり次世代DVDには不十分である。これに対して、第2の実施形態において動作電流の変動は小さく平均寿命は約800時間(Tc=75℃)となり、次世代DVDに用いることができる。
第2の実施形態は、図1の構造を有し窒化シリコン50の厚みT1をλg1以上とする。すなわち、図7及び図8に表す反射率に対応している。さらに、窒化シリコン50の上にブラッグ反射器を設けると、光出射面70が空気に接している場合の約18%よりも高い反射率に制御できしきい値電流を低減できる。このため、単位面積あたりの発熱量を低減でき、信頼性をより高めることができる。
また、窒化シリコン50は光出射面70に接触して設けられている。窒化シリコンの線膨張係数は約3.2×10―6/℃であり、GaNの3.17×10―6/℃と近い。これに対して、二酸化シリコンでは7.0×10―6/℃、酸化アルミニウムでは6.7×10―6/℃であり、酸化物の線膨張係数はGaNの2倍以上と大きい。このために、製造プロセス、動作状態における膨張及び収縮に対して窒化シリコン50及び光出射面70の境界は物理的に安定しており、剥離や歪みの抑制が可能である。さらに、窒化シリコン50が厚いほど線膨張係数の大きい酸化物52と光出射面70との間隔を広げることができ、窒化シリコン50及び光出射面70の界面をより安定にできる。このため平均寿命を高めることができる。
また、第2の実施形態では、窒化シリコン50及び活性層18の界面が共に窒素を含有しており、ダングリング・ボンドが少なく非発光再結合中心の密度を低減できる。このために、光吸収及び温度上昇の連鎖的正帰還を低減し、COD(Catastrophic Optical Damage)低下を抑制できる。
さらに、窒化シリコン及び酸化物などの誘電体は光ビーム放射領域近傍に誘電分極を生じている。他方、半導体レーザ装置の製造工程において用いられる、例えばシリコーン系材料などが分解し、光ビーム及び熱を伴う化学反応により生成物を生じやすくなる。このため、例えばシリコン酸化物などを生じ、光ビーム放射領域近傍において誘電分極を生じた誘電体表面に堆積しやすくなる。この堆積物は、反射率を変化させ、FFP(Far Field Pattern)を乱し、光出力低下など特性変化を生じる。
ところで、光ビームは垂直かつ水平方向に広がる。図4において、垂直方向の広がり角Fvは、例えば15〜30度である。活性層18、これを挟むp型GaN光ガイド層20及びn型GaN光ガイド層16の厚みの和を、100〜200nmとすると、光ビーム80は上下に広がって進むので、光出射面70から離れるほど光密度を低減できる。また、光出射面70に近いほど高温である。このため、窒化シリコン50が厚いほど化学反応を抑制し堆積を抑制できる。このように1波長よりも厚い窒化シリコン50を光出射面70に接触させた第2の実施形態により、信頼性が改善された半導体レーザ装置が提供される。
以上は、反射層が6層の場合について説明した。しかし本発明はこれに限定されない。誘電体を多層とするとより高い反射率を得ることができる。また、18%よりも低い反射率とする場合、第1の窒化シリコン50をλg1以上とし、2層目の二酸化シリコン52の厚みを0より大きく、λg2/4より小さい範囲で調整することにより反射率を0〜18%の間に制御することができる。さらに、窒化シリコン50のみの反射層において、厚みT1をλg1以上とすると、7〜18%の範囲で反射率を制御できる。このような低反射層を備えた半導体レーザ装置は書き換え用の次世代DVD用途に有用である。
さらに、第2の実施形態における第1の膜55の構成を用いると、第1の実施形態にかかる半導体レーザ装置の信頼性をより改善できる。すなわち、光出射面70に接触する窒化シリコン50の厚みを媒質内波長以上とするので動作電流の変動を抑制し平均寿命を満たすことが容易となる。
また、図7の構成とすれば、6層目となる二酸化シリコンの厚みT6を450〜480nmの間で変化すると反射率を40〜60%の間で制御でき、455〜475nmの間で変化すると反射率を45〜55%の間で制御できる。さらに、図8の構成とすれば、6層目となる二酸化シリコンの厚みT6を575〜610nmの間で変化すると反射率を40〜54%の間で制御することができる。このため、単位面積当たりの発熱量の低減が容易となり、信頼性を保ちつつチップサイズを縮小できる。すなわち、次世代DVDの特性要求を満たし、量産性に富む半導体レーザ装置を提供することができる。
以上、図面を参照しつつ本発明の実施形態について説明した。しかし、本発明はこれら実施形態に限定されない。半導体レーザ装置を構成するエピタキシャル成長半導体積層体、基板、誘電体、絶縁膜、導波路、電極、光共振器などの材質、形状、サイズ、配置などに関して、当業者が設計変更を行ったものであっても本発明の主旨を逸脱しない限り本発明に包含される。
第1の実施形態にかかる半導体レーザ装置の模式図。 第1の実施形態にかかる半導体レーザ装置の光出力の動作電流依存性を表すグラフ図。 第1の実施形態にかかる半導体レーザ装置の発熱量の反射率依存性を表すグラフ図。 第2の実施形態にかかる半導体レーザ装置の発光点近傍を拡大した模式断面図。 反射率を表すグラフ図。 反射率を表すグラフ図。 第2の実施形態の反射率を表すグラフ図。 第2の実施形態の反射率を表すグラフ図。 平均寿命の窒化シリコン膜厚依存性を表すグラフ図。 高温動作試験の動作電流を表すグラフ図。
符号の説明
12 n型GaN基板、18 活性層、19 オーバーフロー防止層、22 p型AlGaNクラッド層、23 絶縁膜、26 導波路、50 窒化シリコン、52 酸化物、54、55 第1の膜、64 第2の膜、70 光出射面、72 光反射面

Claims (5)

  1. 第1導電型の基板と、
    前記基板の上に設けられ、活性層と、リッジ形状の導波路を有する第2導電型のクラッド層と、を少なくとも含む窒化物系半導体の積層体と、
    前記積層体により構成される光共振器の一方の端面に設けられ、反射率が40%以上で60%以下である第1の膜と、
    前記光共振器の他方の端面に設けられ、前記第1の膜よりも高い反射率を有する第2の膜と、
    を備え、
    前記光共振器の長さは400μm以下であり、
    前記一方の端面が光出射面とされたことを特徴とする半導体レーザ装置。
  2. 前記第1の膜は、前記一方の端面に接触して設けられ、媒質内波長以上の厚みの窒化シリコンを有することを特徴とする請求項1記載の半導体レーザ装置。
  3. 前記第1の膜の反射率は、45%以上で55%以下であることを特徴とする請求項1または2に記載の半導体レーザ装置。
  4. 前記第1及び第2の膜は、屈折率の異なる2種類の誘電体を含むブラッグ反射器を有することを特徴とする請求項1〜3のいずれか1つに記載の半導体レーザ装置。
  5. 活性層を含む窒化物系半導体の積層体と、
    前記積層体により構成された光共振器の光出射面に接触して設けられ、媒質内波長以上の厚みを有する窒化シリコンからなる第1の誘電体と、
    を備えたことを特徴とする半導体レーザ装置。
JP2008039912A 2007-02-26 2008-02-21 半導体レーザ装置 Pending JP2008244454A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008039912A JP2008244454A (ja) 2007-02-26 2008-02-21 半導体レーザ装置
US12/035,959 US7852893B2 (en) 2007-02-26 2008-02-22 Semiconductor laser device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007044955 2007-02-26
JP2007050499 2007-02-28
JP2008039912A JP2008244454A (ja) 2007-02-26 2008-02-21 半導体レーザ装置

Publications (1)

Publication Number Publication Date
JP2008244454A true JP2008244454A (ja) 2008-10-09

Family

ID=39915345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008039912A Pending JP2008244454A (ja) 2007-02-26 2008-02-21 半導体レーザ装置

Country Status (1)

Country Link
JP (1) JP2008244454A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013172070A1 (ja) * 2012-05-18 2013-11-21 住友電気工業株式会社 Iii族窒化物半導体レーザ素子
JP2021132088A (ja) * 2020-02-19 2021-09-09 ウシオ電機株式会社 半導体レーザ装置
WO2021200328A1 (ja) * 2020-03-30 2021-10-07 ヌヴォトンテクノロジージャパン株式会社 窒化物半導体レーザ素子
WO2024204536A1 (ja) * 2023-03-30 2024-10-03 ヌヴォトンテクノロジージャパン株式会社 半導体装置および半導体装置の製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013172070A1 (ja) * 2012-05-18 2013-11-21 住友電気工業株式会社 Iii族窒化物半導体レーザ素子
US8908732B2 (en) 2012-05-18 2014-12-09 Sumitomo Electric Industries, Ltd. Group-III nitride semiconductor laser device
JP2021132088A (ja) * 2020-02-19 2021-09-09 ウシオ電機株式会社 半導体レーザ装置
JP7371522B2 (ja) 2020-02-19 2023-10-31 ウシオ電機株式会社 半導体レーザ装置
WO2021200328A1 (ja) * 2020-03-30 2021-10-07 ヌヴォトンテクノロジージャパン株式会社 窒化物半導体レーザ素子
WO2024204536A1 (ja) * 2023-03-30 2024-10-03 ヌヴォトンテクノロジージャパン株式会社 半導体装置および半導体装置の製造方法

Similar Documents

Publication Publication Date Title
JP4370911B2 (ja) 半導体レーザ素子
KR100689782B1 (ko) 반도체 발광 소자 및 그 제조 방법
JP2007109737A (ja) 窒化物半導体レーザ装置及びその製造方法
JP2007266575A (ja) 半導体レーザ素子及び半導体レーザ装置
JPH05275798A (ja) レーザダイオード
JP2002319744A (ja) 窒化物半導体レーザ素子およびそれを用いた光学式情報再生装置
JP2007214557A (ja) 窒化物系半導体レーザダイオード
JP2006135221A (ja) 半導体発光素子
US7852893B2 (en) Semiconductor laser device
JP2002374035A (ja) 半導体レーザ素子及びその製造方法
JP2006228826A (ja) 半導体レーザ
JP2010016281A (ja) 半導体レーザの製造方法
JPH1168256A (ja) 窒化物半導体レーザ素子
JP2008244454A (ja) 半導体レーザ装置
JPH09270569A (ja) 半導体レーザ装置
JP2015226045A (ja) 半導体装置および半導体装置の製造方法
JP2006351966A (ja) 多波長半導体レーザ素子
JP2003078208A (ja) 半導体レーザ装置及びその製造方法
JP5223531B2 (ja) 半導体レーザ素子
JP2010278136A (ja) 半導体レーザ
JP2010034221A (ja) 端面発光型半導体レーザおよびその製造方法
JP2010258296A (ja) 窒化物系半導体光素子およびその製造方法
JP4286683B2 (ja) 半導体レーザ
JP2004111997A (ja) 半導体レーザ素子
JP2007005720A (ja) 半導体レーザ装置