JP2008241617A - Infrared intensity detection device for cooker - Google Patents

Infrared intensity detection device for cooker Download PDF

Info

Publication number
JP2008241617A
JP2008241617A JP2007085565A JP2007085565A JP2008241617A JP 2008241617 A JP2008241617 A JP 2008241617A JP 2007085565 A JP2007085565 A JP 2007085565A JP 2007085565 A JP2007085565 A JP 2007085565A JP 2008241617 A JP2008241617 A JP 2008241617A
Authority
JP
Japan
Prior art keywords
infrared
optical filter
wavelength region
light
infrared rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007085565A
Other languages
Japanese (ja)
Other versions
JP5138257B2 (en
Inventor
Akira Miyato
章 宮藤
Katsuhiko Fukui
克彦 福井
Kenichiro Takahashi
健一郎 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mikuni Corp
Osaka Gas Co Ltd
Original Assignee
Mikuni Corp
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mikuni Corp, Osaka Gas Co Ltd filed Critical Mikuni Corp
Priority to JP2007085565A priority Critical patent/JP5138257B2/en
Publication of JP2008241617A publication Critical patent/JP2008241617A/en
Application granted granted Critical
Publication of JP5138257B2 publication Critical patent/JP5138257B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an infrared intensity detection device for a cooker capable of reducing an error generated when detecting the infrared intensity by avoiding a temperature rise of an optical filter. <P>SOLUTION: Optical filters 41a, 41b passable by an infrared ray having a specific wavelength band among infrared rays radiated from a cooking container heated by a heating means, and infrared receiving means 42a, 42b for detecting the intensity of the infrared ray passing the optical filters 41a, 41b are provided in an aligned state at an interval in the infrared radiation direction. An optically-transmissible member T passable by an infrared ray in a transmissible wavelength domain including a specific wavelength band is positioned on the cooking container side, and is provided in the aligned state with the optical filters 41a, 41b at an interval in the infrared radiation direction. The optical filters 41a, 41b are constituted so as to be transmissible by the infrared ray having the specific wavelength band in a state where a base material is formed of a material having a transmissible wavelength domain which is the same as the transmissible wavelength domain of the optically-transmissible member T. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、加熱手段にて加熱される調理用容器から放射された赤外線のうちの特定波長域の赤外線を透過させる光学フィルターと、その光学フィルターを透過した赤外線の強度を検出する赤外線受光手段とが、赤外線放射方向に間隔を隔てて並ぶ状態で備えられ、前記光学フィルターが、前記特定波長域を含む透過可能波長領域の赤外線を透過させる材質からなる基材の表面に前記特定波長域以外の波長域の赤外線を反射させる反射膜を備えて構成されている加熱調理器用の赤外線強度検出装置に関する。   The present invention relates to an optical filter that transmits infrared rays in a specific wavelength region among infrared rays radiated from a cooking container heated by a heating unit, and an infrared light receiving unit that detects the intensity of infrared rays transmitted through the optical filter; Is provided in a state in which the optical filter is arranged at intervals in the infrared radiation direction, and the optical filter has a surface other than the specific wavelength region on a surface of a base material made of a material that transmits infrared light in a transmissive wavelength region including the specific wavelength region. The present invention relates to an infrared intensity detecting device for a cooking device that includes a reflective film that reflects infrared rays in a wavelength range.

上記加熱調理器用の赤外線強度検出装置は、加熱手段により加熱される鍋等の調理用容器から放射された赤外線の強度を検出するようにしたものであり、その検出した赤外線の強度に基づいて、例えば、調理用容器の温度を検出して調理用容器の温度を設定温度に維持するように加熱手段の加熱量を調整する制御を行ったり、調理用容器の過度の温度上昇を回避させるために加熱手段の加熱作動を停止させる制御を行えるようにしたものであるが、このような加熱調理器用の赤外線強度検出装置において、従来では、次のように構成されたものがあった。   The infrared intensity detection device for a heating cooker is adapted to detect the intensity of infrared radiation emitted from a cooking container such as a pan heated by heating means, and based on the detected infrared intensity, For example, in order to detect the temperature of the cooking container and adjust the heating amount of the heating means so as to maintain the temperature of the cooking container at a set temperature, or to avoid an excessive temperature rise of the cooking container Although the control for stopping the heating operation of the heating means can be performed, such an infrared intensity detection device for a heating cooker has conventionally been configured as follows.

すなわち、調理用容器から放射された赤外線を透過させる光透過部材としてのカバー部材が前記光学フィルターよりも調理用容器に近い側に位置して光学フィルターに近接させた状態で備えられ、調理用容器から溢れ出した煮汁等の外物が光学フィルターに降りかかることを防止するようになっていた。そして、前記光透過部材及び前記光学フィルターの基材は、必要とする特定波長域の赤外線を通過させるような特性を満足するものであればよく、それら両者の材質については特に考慮されていないものであった(例えば、特許文献1参照。)。   That is, the cover member serving as a light transmitting member that transmits infrared rays radiated from the cooking container is provided on the side closer to the cooking container than the optical filter and is close to the optical filter. It was designed to prevent foreign objects such as boiled juice that overflowed from falling on the optical filter. And the base material of the said light transmissive member and the said optical filter should just satisfy the characteristic which permeate | transmits the infrared rays of the required specific wavelength range, and the material of those both is not considered in particular (For example, see Patent Document 1).

ちなみに、特許文献1に記載されるものは、前記光学フィルターとして、異なる2つの特定波長域の赤外線を通過させる2つの光学フィルターが備えられ、且つ、それら2つの光学フィルターに対応させる状態で2つの赤外線受光手段が備えられ、調理用容器から放射される赤外線のうちの異なる2つの波長域での赤外線強度を検出する構成として、それらの2つの赤外線強度の比に基づいて調理用容器の温度を検出することができるようにしたものである。   Incidentally, what is described in Patent Document 1 includes two optical filters that pass infrared rays in two different specific wavelength bands as the optical filter, and two optical filters that correspond to the two optical filters. Infrared light receiving means is provided, and as a configuration for detecting infrared intensities in two different wavelength ranges of infrared rays emitted from the cooking container, the temperature of the cooking container is determined based on the ratio of the two infrared intensities. It can be detected.

特開2006−207961号公報JP 2006-207961 A

上記従来構成では、前記光透過部材が前記光学フィルターに近接させた状態で備えられる構成となっており、しかも、前記光透過部材及び前記光学フィルターの基材の材質については特に考慮されていないものであることから、赤外線の強度検出の精度が低下するおそれがあった。以下、そのことについて説明を加える。   In the conventional configuration, the light transmission member is provided in a state of being close to the optical filter, and the material of the light transmission member and the base material of the optical filter is not particularly considered. Therefore, there is a possibility that the accuracy of detecting the intensity of infrared rays may be reduced. This will be described below.

先ず、前記光学フィルターの構成について説明する。
前記光学フィルターは、特定波長域の赤外線だけを透過させることを目的とするものであり、前記基材の表面に光透過部材を通過した赤外線のうちの一部の波長域の赤外線を反射させる反射膜を備えて前記特定波長域の赤外線を通過させるように構成されるものである。すなわち、前記光学フィルターは、基材の表面に例えば誘電体薄膜を蒸着処理によって多層状に形成することにより前記反射膜が構成されるものであるが、このような光学フィルターでは、入射する赤外線のうちで前記反射膜により反射させる対象となる赤外線の波長領域が広くなると、形成すべき薄膜の層の数が多くなるものであるから、それだけ作成の手間が多くコストも高くなる。そこで、光学フィルターの基材として、赤外線の全波長領域のうちで一部の波長域では赤外線を透過させるが他の一部の波長域では赤外線を透過させない性質を有する材質からなる基材を用いることで、基材自身により一部の波長領域の赤外線の透過を阻止することで、反射膜を構成するときに形成すべき薄膜の数を減らした状態で作成することがある。
First, the configuration of the optical filter will be described.
The optical filter is intended to transmit only infrared rays in a specific wavelength range, and reflects to reflect infrared rays in a part of the wavelength ranges of infrared rays that have passed through the light transmitting member on the surface of the base material. A film is provided so that infrared rays in the specific wavelength range can pass through. That is, the optical filter is configured such that the reflective film is formed by forming a dielectric thin film in a multilayer shape on the surface of the base material by vapor deposition, for example. Among them, when the wavelength region of infrared rays to be reflected by the reflective film is widened, the number of thin film layers to be formed increases, so that it takes much time to create and the cost increases. Therefore, as the base material of the optical filter, a base material made of a material having a property of transmitting infrared light in some wavelength regions but not transmitting infrared light in other partial wavelength regions is used. Thus, the base material itself may be formed in a state where the number of thin films to be formed when the reflective film is formed is reduced by blocking the transmission of infrared rays in some wavelength regions.

そして、前記光透過部材及び前記光学フィルターの基材として使用可能な材質としては、例えば、サファイヤ、シリコン(Si)、ゲルマニウム(Ge)等、種々のものが考えられるが、このような材質は全ての波長を透過するのではなく一部の波長領域の赤外線の通過を阻止するという性質を有する。
例えば、図8に、ラインL1にてサファイヤ、及び、ラインL2にてシリコン(Si)の夫々について、波長の変化に対する赤外線透過率の変化を示す波長対透過率特性を示している。図8から判るように、サファイヤは、約8μmよりも短波長側の赤外線を透過させるが、約8μmよりも長波長側の赤外線を透過させないので、透過可能波長領域が狭くなる性質を有している。一方、シリコンは、透過率の変動はあるものの透過可能波長領域がサファイヤよりも広くなる性質を有している。又、シリコンは、赤外線透過率がサファイヤの赤外線透過率よりも小さいという性質も有している。ちなみに、サファイヤの赤外線透過率は約90%程度であり、シリコンの赤外線透過率は50%〜60%程度である。
Various materials such as sapphire, silicon (Si), and germanium (Ge) are conceivable as materials that can be used as the light transmissive member and the base material of the optical filter. It has the property of blocking the passage of infrared rays in a part of the wavelength region rather than transmitting the wavelength of.
For example, FIG. 8 shows wavelength vs. transmittance characteristics indicating changes in infrared transmittance with respect to changes in wavelength for sapphire at line L1 and silicon (Si) at line L2. As can be seen from FIG. 8, sapphire transmits infrared light having a shorter wavelength than about 8 μm, but does not transmit infrared light having a longer wavelength than about 8 μm, and therefore has a property of narrowing the transmissive wavelength region. Yes. On the other hand, silicon has a property that the transmissible wavelength region is wider than that of sapphire, although the transmittance varies. Silicon also has a property that its infrared transmittance is smaller than that of sapphire. Incidentally, the infrared transmittance of sapphire is about 90%, and the infrared transmittance of silicon is about 50% to 60%.

上記従来構成の加熱調理器用の赤外線強度検出装置において、例えば、光学フィルターの基材としてサファイヤを用い、光透過部材としてシリコンを用いる構成にすることが考えられる。そして、この場合には、光学フィルターの反射膜としては、サファイヤが通過を許容する約8μmよりも短波長側の波長領域のうちで前記特定波長域を除く他の波長域の赤外線を反射させる反射膜を形成することになる。   In the infrared intensity detection apparatus for a cooking device having the above-described conventional configuration, for example, it is conceivable to use sapphire as the base material of the optical filter and silicon as the light transmission member. In this case, the reflective film of the optical filter is a reflective film that reflects infrared rays in other wavelength ranges excluding the specific wavelength range within a wavelength range shorter than about 8 μm that sapphire allows to pass. A film will be formed.

この構成では、シリコンにて構成される光透過部材は広い波長範囲にわたり赤外線を透過させるが、基材がサファイヤにて構成される光学フィルターにおいては、光透過部材を透過した赤外線のうち約8μmよりも長波長側の赤外線は光学フィルターの基材を透過せずに、基材に吸収されて熱エネルギーに変換されることになる。そうすると、基材に赤外線が吸収されることにより光学フィルターの温度が上昇することになる。   In this configuration, the light transmitting member made of silicon transmits infrared rays over a wide wavelength range, but in the optical filter in which the base material is made of sapphire, from about 8 μm of the infrared light that has passed through the light transmitting member. However, the infrared rays on the long wavelength side do not pass through the base material of the optical filter, but are absorbed by the base material and converted into thermal energy. If it does so, the temperature of an optical filter will rise because infrared rays are absorbed by a base material.

又、シリコンにて構成される光透過部材は、サファイヤに比べて広い波長範囲にわたり赤外線を透過させるものの赤外線透過率は50%〜60%程度であるから、入射してくる赤外線のうちの50%〜60%程度の赤外線が透過するが、透過しない赤外線はその内部に吸収されて熱エネルギーに変換されることになるので、この光透過部材についても赤外線を吸収することによって温度が上昇することになる。又、上記従来構成では、光透過部材は光学フィルターに近接する状態で設けられているので、光透過部材の熱が光学フィルターに伝えられて光学フィルターの温度を上昇させるおそれがある。   The light transmitting member made of silicon transmits infrared rays over a wide wavelength range compared to sapphire, but the infrared transmittance is about 50% to 60%, so 50% of incident infrared rays. Although about 60% of infrared rays are transmitted, the infrared rays that are not transmitted are absorbed into the inside and converted into thermal energy, so that the temperature of the light transmitting member is also increased by absorbing the infrared rays. Become. Further, in the above-described conventional configuration, since the light transmission member is provided in the state of being close to the optical filter, the heat of the light transmission member may be transmitted to the optical filter and the temperature of the optical filter may be increased.

上述の説明では、光学フィルターの基材としてサファイヤを用い、光透過部材としてシリコンを用いる構成を例示したが、このような構成に限らず、前記光透過部材及び前記光学フィルターの基材の材質が適切でない場合であれば、そのことが原因で光学フィルターの温度を上昇させるおそれがある。又、そのことに加えて、光透過部材が光学フィルターに近接する状態で設けられる構成であれば、光透過部材の熱により光学フィルターの温度を上昇させるおそれがある。   In the above description, sapphire is used as the base material of the optical filter, and silicon is used as the light transmission member. However, the present invention is not limited to this configuration, and the material of the light transmission member and the optical filter base material is not limited thereto. If it is not appropriate, this may cause the temperature of the optical filter to increase. In addition, if the configuration is such that the light transmission member is provided close to the optical filter, the temperature of the optical filter may be increased by the heat of the light transmission member.

その結果、従来構成においては、光学フィルターの温度が上昇して、その熱に基づく赤外線が光学フィルターの近くに配備される赤外線受光手段に入射されることになる。そして、赤外線受光手段の検出する赤外線強度が上昇することに起因して検出誤差が大きくなるおそれがある。   As a result, in the conventional configuration, the temperature of the optical filter rises, and the infrared rays based on the heat are incident on the infrared light receiving means disposed near the optical filter. And there exists a possibility that a detection error may become large due to the increase in the infrared intensity detected by the infrared light receiving means.

本発明の目的は、光学フィルターの温度が上昇することを抑制して検出誤差を少なくすることが可能となる加熱調理器用の赤外線強度検出装置を提供する点にある。   An object of the present invention is to provide an infrared intensity detection device for a cooking device that can suppress an increase in the temperature of an optical filter and reduce detection errors.

本発明に係る加熱調理器用の赤外線強度検出装置は、加熱手段にて加熱される調理用容器から放射された赤外線のうちの特定波長域の赤外線を透過させる光学フィルターと、その光学フィルターを透過した赤外線の強度を検出する赤外線受光手段とが、赤外線放射方向に間隔を隔てて並ぶ状態で備えられ、
前記光学フィルターが、前記特定波長域を含む透過可能波長領域の赤外線を透過させる材質からなる基材の表面に前記特定波長域以外の波長域の赤外線を反射させる反射膜を備えて構成されているものであって、
その第1特徴構成は、前記特定波長域を含む透過可能波長領域の赤外線を透過させる光透過部材が、前記光学フィルターよりも前記調理用容器に近い側に位置して、前記赤外線放射方向に沿って前記光学フィルターと間隔を隔てて並ぶ状態で設けられ、
前記光学フィルターが、前記基材を前記光透過部材の前記透過可能波長領域と同じ又はそれよりも広い透過可能波長領域を備える材質にて形成する状態で、且つ、前記反射膜にて前記光透過部材を透過した赤外線のうちの前記特定波長域以外の波長域の赤外線を反射させる状態で構成されている点にある。
An infrared intensity detection device for a cooking device according to the present invention transmits an optical filter that transmits infrared rays in a specific wavelength region of infrared rays radiated from a cooking container heated by a heating means, and transmits the optical filter. Infrared light receiving means for detecting the intensity of the infrared is provided in a state of being arranged at intervals in the infrared radiation direction,
The optical filter includes a reflective film that reflects infrared light in a wavelength region other than the specific wavelength region on a surface of a base material made of a material that transmits infrared light in a transmissive wavelength region including the specific wavelength region. And
The first characteristic configuration is that a light transmitting member that transmits infrared light in a transmissive wavelength region including the specific wavelength region is positioned closer to the cooking container than the optical filter, and extends along the infrared radiation direction. And arranged in a state of being spaced apart from the optical filter,
The optical filter is in a state in which the substrate is formed of a material having a transmissive wavelength region that is the same as or wider than the transmissive wavelength region of the light transmissive member, and the light transmission is performed by the reflective film. It exists in the point comprised in the state which reflects the infrared rays of wavelength ranges other than the said specific wavelength range among the infrared rays which permeate | transmitted the member.

第1特徴構成によれば、調理用容器から放射された赤外線が光透過部材を通過したのちに、光学フィルターに向けて照射されるが、光透過部材を透過した赤外線のうち特定波長域を除く他の波長領域の赤外線が光学フィルターにおける前記反射膜にて反射されて、前記特定波長域の赤外線だけが光学フィルターを透過して前記赤外線受光手段に向けて照射されることになる。   According to the first characteristic configuration, after the infrared rays radiated from the cooking container pass through the light transmission member, the infrared rays are emitted toward the optical filter, but the specific wavelength region is excluded from the infrared rays transmitted through the light transmission member. Infrared rays in other wavelength regions are reflected by the reflective film in the optical filter, and only infrared rays in the specific wavelength region are transmitted through the optical filter and irradiated toward the infrared light receiving means.

そして、前記光学フィルターの基材が前記光透過部材の前記透過可能波長領域と同じ又はそれよりも広い透過可能波長領域を備える材質にて形成されているので、基材における透過可能波長領域のうちで前記光透過部材を透過しない波長領域の赤外線については、光学フィルターに至るまでの間に光透過部材の内部で吸収され、光学フィルターに向けて照射されることがない。又、基材における透過可能波長領域のうちで前記光透過部材を透過する波長領域の赤外線については、上述したようにその波長領域のうちの特定波長域を除く他の波長領域の赤外線は反射膜にて反射されるから基材にまで到達することがない。つまり、基材は特定波長域の赤外線だけが透過することになるから、基材に赤外線が吸収されることによる温度上昇のおそれが少なく、光学フィルター自身が赤外線の吸収によって温度上昇することが抑制される。   And since the base material of the optical filter is formed of a material having a transmissive wavelength region that is the same as or wider than the transmissive wavelength region of the light transmitting member, among the transmissive wavelength regions in the base material Thus, the infrared light in the wavelength region that does not pass through the light transmitting member is absorbed inside the light transmitting member before reaching the optical filter and is not irradiated toward the optical filter. Moreover, as for the infrared rays in the wavelength region that passes through the light transmitting member in the transmissive wavelength region in the base material, the infrared rays in other wavelength regions other than the specific wavelength region in the wavelength region are reflective films as described above. It will not reach the base material because it is reflected at. In other words, since the base material transmits only infrared light in a specific wavelength range, there is little risk of temperature increase due to absorption of infrared light by the base material, and the optical filter itself is suppressed from temperature increase due to absorption of infrared light. Is done.

上述したように調理用容器から放射された赤外線のうち光透過部材の透過可能波長領域以外の波長領域の赤外線は光透過部材に吸収されることになり、光透過部材の温度が上昇することがあるが、この光透過部材は、赤外線放射方向に沿って光学フィルターとは間隔を隔てる状態で備えられるので、光透過部材が温度上昇することがあっても、その熱が光学フィルターに伝わるおそれが少ない。   As described above, infrared rays in a wavelength region other than the transmissive wavelength region of the light transmitting member among infrared rays radiated from the cooking container are absorbed by the light transmitting member, and the temperature of the light transmitting member may increase. However, since the light transmission member is provided in a state spaced apart from the optical filter along the infrared radiation direction, even if the temperature of the light transmission member may increase, the heat may be transmitted to the optical filter. Few.

その結果、光学フィルターは、基材に赤外線が吸収されることによる温度上昇が抑制され且つ光透過部材から熱が伝わるおそれも少ないので、光学フィルターの温度上昇による熱に基づく赤外線が光学フィルターの近くに配備される赤外線受光手段に入射されることがなく、そのことに起因して赤外線受光手段の検出する赤外線強度が上昇することが抑制されることになる。
又、前記光透過部材を、前記特定波長域以外の波長域のうちのできるだけ広い波長域の赤外線を透過させない材質にて構成することにより、光学フィルターの製作の容易化を図ることができる。
As a result, the optical filter suppresses the increase in temperature due to the absorption of infrared rays by the base material and reduces the possibility of heat being transmitted from the light transmitting member, so that the infrared rays based on the heat due to the temperature increase of the optical filter are near the optical filter. Therefore, it is possible to prevent the infrared light intensity detected by the infrared light receiving means from increasing.
In addition, it is possible to facilitate the manufacture of the optical filter by configuring the light transmitting member with a material that does not transmit infrared rays in a wavelength range as wide as possible among the wavelength ranges other than the specific wavelength range.

従って、第1特徴構成によれば、光学フィルターの温度が上昇することを抑制して検出誤差を少なくすることが可能となる加熱調理器用の赤外線強度検出装置を提供できるに至った。   Therefore, according to the 1st characteristic composition, it came to be able to provide the infrared intensity detection device for cooking-by-heating equipment which can control that the temperature of an optical filter rises, and can reduce detection error.

本発明の第2特徴構成は、第1特徴構成に加えて、前記光学フィルターにおける前記基材が、前記光透過部材の前記透過可能波長領域に対応する波長領域における赤外線透過率が前記光透過部材の赤外線透過率よりも大きい材質にて形成されている点にある。   According to a second characteristic configuration of the present invention, in addition to the first characteristic configuration, the base material of the optical filter has an infrared transmittance in a wavelength region corresponding to the transmissive wavelength region of the light transmitting member. It is in the point formed with the material larger than the infrared transmittance of.

第2特徴構成によれば、前記光透過部材の前記透過可能波長領域に対応する波長領域、言い換えると、光透過部材を透過することが可能な波長領域において、光学フィルターにおける基材の赤外線透過率が光透過部材の赤外線透過率よりも大きいものとなる。   According to the second characteristic configuration, in the wavelength region corresponding to the transmissive wavelength region of the light transmitting member, in other words, in the wavelength region capable of transmitting the light transmitting member, the infrared transmittance of the base material in the optical filter Is larger than the infrared transmittance of the light transmitting member.

説明を加えると、物質の赤外線透過率は0%〜100%の範囲内で規定され、一般的に用いられる材質のものでは、前記透過可能波長領域においても赤外線透過率が100%よりも小さい値であり、前記透過可能波長領域であっても赤外線透過率が100%よりも小さい分だけ赤外線の一部が物質の内部で吸収されることになる。   In other words, the infrared transmittance of a substance is defined within a range of 0% to 100%, and in the case of a commonly used material, the infrared transmittance is a value smaller than 100% even in the transmissive wavelength region. Even in the transmissive wavelength region, a part of infrared rays is absorbed inside the substance by the amount of infrared transmittance smaller than 100%.

つまり、赤外線が光透過部材を透過するとき、及び、赤外線が光学フィルターの基材を通過するときのいずれの場合にも赤外線の一部が吸収されることになるが、光透過部材を透過することが可能な波長領域において、光学フィルターの基材の赤外線透過率が光透過部材の赤外線透過率よりも大きいので、光学フィルターの基材においては、透過可能波長領域を透過する赤外線のうちで吸収されることになる赤外線の割合が少ないものになって、光学フィルターが温度上昇することを一層抑制し易いものになる。   That is, when infrared rays pass through the light transmitting member and when infrared rays pass through the base material of the optical filter, a part of the infrared rays are absorbed, but pass through the light transmitting member. Since the infrared transmittance of the base material of the optical filter is larger than the infrared transmittance of the light transmitting member in the wavelength range where the optical filter base material can absorb, the optical filter base material absorbs the infrared light transmitted through the transmittable wavelength range. As a result, the ratio of infrared rays to be reduced becomes small, and the temperature rise of the optical filter can be further suppressed.

従って、第2特徴構成によれば、光学フィルターの温度上昇をより一層抑制し易いものになり、赤外線強度を精度よく検出することが可能となる。   Therefore, according to the second characteristic configuration, the temperature increase of the optical filter can be more easily suppressed, and the infrared intensity can be accurately detected.

本発明の第3特徴構成は、第1特徴構成又は第2特徴構成に加えて、前記光学フィルターにおける前記基材が前記光透過部材と同じ材質にて構成され、且つ、前記光透過部材の厚みが前記光学フィルターにおける前記基材の厚みよりも大となるように構成されている点にある。   In the third feature configuration of the present invention, in addition to the first feature configuration or the second feature configuration, the base material in the optical filter is made of the same material as the light transmitting member, and the thickness of the light transmitting member is Is configured to be larger than the thickness of the substrate in the optical filter.

第3特徴構成によれば、光学フィルターにおける基材が光透過部材と同じ材質にて構成されるから、光透過部材を透過した赤外線は略そのまま光学フィルターの基材を透過することになるが、赤外線を透過する一般的な材質においては、同じ材質であれば、厚みが大であるほど赤外線を透過し難い特性であることから、光学フィルターの温度上昇をより的確に回避し易いものになるのである。   According to the third characteristic configuration, since the base material in the optical filter is made of the same material as the light transmitting member, the infrared light that has passed through the light transmitting member passes through the base material of the optical filter almost as it is. In general materials that transmit infrared light, the same material is more difficult to transmit infrared light as the thickness is larger, so it becomes easier to avoid the temperature rise of the optical filter more accurately. is there.

具体例で説明すると、図10に、厚みを種々変化させた場合におけるサファイヤの波長の変化に対する赤外線透過率の変化を示す波長対透過率特性を示しており、図11には、厚みを種々変化させた場合のシリコンの波長の変化に対する赤外線透過率の変化を示す波長対透過率特性を示している。図10から判るように、サファイヤでは厚みが大きいほど、赤外線を透過させる領域と透過させない領域との境界が短波長側に位置が変化する性質を備えており、図11から判るように、シリコンでは、所定の波長領域においては、厚みが大きいほど赤外線透過率が減少するという性質を備えている。このように赤外線を透過する材質においては同じ材質であれば厚みが大であるほど赤外線を透過し難い特性を備えている。又、サファイアやシリコンに限らず、他の材質においても、これらと同様な性質を有している。   As a specific example, FIG. 10 shows a wavelength-to-transmittance characteristic showing a change in infrared transmittance with respect to a change in wavelength of sapphire when the thickness is changed variously, and FIG. 11 shows various changes in thickness. The wavelength vs. transmittance characteristic showing the change of the infrared transmittance with respect to the change of the wavelength of the silicon in the case of being made is shown. As can be seen from FIG. 10, as the thickness of sapphire increases, the boundary between the region that transmits infrared light and the region that does not transmit light has a property of changing to the short wavelength side. In the predetermined wavelength region, the infrared transmittance decreases as the thickness increases. As described above, the same material that transmits infrared rays has a characteristic that the greater the thickness, the more difficult it is to transmit infrared rays. In addition to sapphire and silicon, other materials have similar properties.

そこで、同じ材質にて構成される光透過部材と光学フィルターの基材について、光透過部材の厚みが光学フィルターの厚みよりも大となるように構成されているから、光透過部材を透過した赤外線が光学フィルターの基材によって吸収されることが少なく、光学フィルターが赤外線を吸収することにより、温度上昇することをより一層的確に回避し易いものとなる。   Therefore, since the light transmitting member and the optical filter base material made of the same material are configured such that the thickness of the light transmitting member is larger than the thickness of the optical filter, the infrared light transmitted through the light transmitting member. Is less absorbed by the base material of the optical filter, and the optical filter absorbs infrared rays, so that the temperature rise can be more easily avoided.

従って、第3特徴構成によれば、光学フィルターの温度上昇をより的確に回避し易いものとなって赤外線強度を精度よく検出することが可能となる。   Therefore, according to the third characteristic configuration, it becomes easy to avoid the temperature increase of the optical filter more accurately, and the infrared intensity can be accurately detected.

本発明の第4特徴構成は、第1特徴構成〜第3特徴構成のいずれかに加えて、前記調理用容器から放射された赤外線を前記赤外線受光手段に案内する筒状の案内部材が備えられ、この案内部材の内部に、前記赤外線放射方向に沿って間隔を隔てて並べる状態で、前記光透過部材、前記光学フィルター及び前記赤外線受光手段が組み付けられている点にある。   In addition to any of the first to third feature configurations, the fourth feature configuration of the present invention is provided with a cylindrical guide member that guides infrared rays emitted from the cooking container to the infrared light receiving means. The light transmitting member, the optical filter, and the infrared light receiving means are assembled inside the guide member in a state where the light transmitting member, the optical filter, and the infrared light receiving unit are arranged at intervals along the infrared radiation direction.

第4特徴構成によれば、筒状の案内部材の内部に、赤外線放射方向に沿って間隔を隔てて並べる状態で光透過部材、光学フィルター及び赤外線受光手段が組み付けられているから、加熱調理器用の赤外線強度検出装置を加熱調理器に設置するときには、各部材が組み付けられている状態でそのまま設置させることで対応できるから、前記各部材を各別に加熱調理器に設置する場合に比べて設置作業を容易に行うことができる。   According to the fourth characteristic configuration, the light transmitting member, the optical filter, and the infrared light receiving means are assembled in the cylindrical guide member in a state of being arranged at intervals along the infrared radiation direction. When installing the infrared intensity detector in the heating cooker, it can be handled by installing the components as they are, so that the installation work can be performed as compared with the case where each member is installed separately in the heating cooker. Can be easily performed.

従って、第4特徴構成によれば、加熱調理器に設置するときにおいて、設置作業を容易に行うことが可能となる加熱調理器用の赤外線強度検出装置を提供できるに至った。   Therefore, according to the 4th characteristic structure, when installing in a heating cooker, it came to be able to provide the infrared intensity detection apparatus for heating cookers which can perform installation work easily.

本発明の第5特徴構成は、第4特徴構成に加えて、前記赤外線受光手段が前記赤外線放射方向と交差する方向に並ぶ状態で複数備えられ、且つ、前記光透過部材を透過した赤外線のうちの異なる波長域の赤外線を透過させる形態で複数の赤外線受光手段に対応させて各別に前記光学フィルターが備えられている点にある。   In addition to the fourth feature configuration, the fifth feature configuration of the present invention includes a plurality of the infrared light receiving means arranged in a state intersecting with the infrared radiation direction, and among infrared rays transmitted through the light transmitting member. The optical filter is provided separately for each of the plurality of infrared light receiving means in the form of transmitting infrared rays having different wavelength ranges.

第5特徴構成によれば、光透過部材を通過した赤外線のうちで異なる波長域の赤外線が複数の光学フィルターを各別に通過して、赤外線放射方向と交差する方向に並ぶ状態で備えられた複数の赤外線受光手段にて受光されることになる。つまり、調理用容器から放射された赤外線のうちの複数の波長域の赤外線の強度を複数の赤外線受光手段にて各別に検出することができる。   According to the fifth characteristic configuration, a plurality of infrared rays having different wavelength ranges among the infrared rays that have passed through the light transmitting member are individually arranged through the plurality of optical filters and aligned in a direction intersecting with the infrared radiation direction. It is received by the infrared light receiving means. That is, it is possible to detect the intensities of infrared rays in a plurality of wavelength ranges among the infrared rays radiated from the cooking container, using the plurality of infrared light receiving means.

そして、光透過部材、複数の光学フィルター及び複数の赤外線受光手段が、筒状の案内部材の内部に組み付けられるので、調理用容器から放射された赤外線のうちの複数の波長域の赤外線の強度を検出することが可能なものでありながら、加熱調理器用の赤外線強度検出装置を加熱調理器に設置するときに、前記各部材を各別に加熱調理器に設置する場合に比べて設置作業を容易に行うことができる。   And since the light transmission member, the plurality of optical filters, and the plurality of infrared light receiving means are assembled inside the cylindrical guide member, the intensity of the infrared rays in a plurality of wavelength ranges among the infrared rays radiated from the cooking container is increased. Although it is possible to detect, when installing an infrared intensity detection device for a heating cooker in a heating cooker, it is easier to install than in the case where each member is installed in a heating cooker. It can be carried out.

従って、第5特徴構成によれば、調理用容器から放射された赤外線のうちの複数の波長域の赤外線の強度を検出することが可能なものでありながら、加熱調理器に設置するときにおいて、設置作業を容易に行うことが可能となる加熱調理器用の赤外線強度検出装置を提供できるに至った。   Therefore, according to the fifth feature configuration, when it is possible to detect the intensity of infrared rays in a plurality of wavelength regions among the infrared rays emitted from the cooking container, It came to be able to provide the infrared intensity detection apparatus for heating cookers which can perform installation work easily.

以下、図面に基づいて、本発明に係る加熱調理器用の赤外線強度検出装置の実施形態を加熱調理器としてのコンロに適用した場合について説明する。
図1に示すように、コンロは、円形の加熱用の開口1aを有する平板状の天板1、開口1aの上方に離間させて鍋等の調理用容器Nを載置可能な五徳2、その五徳2上に載置される調理用容器Nを加熱する加熱手段としてのバーナ30、そのバーナ30の作動を制御する燃焼制御部3等を備えて構成されている。
Hereinafter, the case where the embodiment of the infrared intensity detection device for a heating cooker according to the present invention is applied to a stove as a heating cooker will be described based on the drawings.
As shown in FIG. 1, the stove has a flat top plate 1 having a circular heating opening 1 a, a virtues 2 on which a cooking container N such as a pan can be placed spaced above the opening 1 a, It comprises a burner 30 as a heating means for heating the cooking container N placed on the virtues 2, a combustion control unit 3 for controlling the operation of the burner 30, and the like.

前記バーナ30は、ブンゼン燃焼式の内炎式バーナであり、燃料供給路5を通じて供給される燃料ガスGを噴出するガスノズル31、そのガスノズル31から燃料ガスGが噴出されると共に、その燃料ガスGの噴出に伴う吸引作用により燃焼用空気Aが供給される混合管32、及び、内周部に混合気を噴出する複数の炎口33を備えて、前記混合管32から混合気が供給される環状のバーナ本体34等を備えて構成され、前記バーナ30は、前記開口1aの下方に位置させて設けている。   The burner 30 is a Bunsen combustion type internal flame type burner. The gas nozzle 31 ejects the fuel gas G supplied through the fuel supply passage 5, the fuel gas G is ejected from the gas nozzle 31, and the fuel gas G The mixing tube 32 to which the combustion air A is supplied by the suction action accompanying the ejection of the gas and the plurality of flame ports 33 for ejecting the air-fuel mixture to the inner peripheral portion are provided, and the air-fuel mixture is supplied from the mixing tube 32. An annular burner main body 34 and the like are provided, and the burner 30 is provided below the opening 1a.

このバーナ30においては、混合管32からバーナ本体34内に供給された燃料ガスGと空気Aとの混合気が炎口33からバーナ本体34の中心に向けて略水平方向に噴出され、その噴出された燃料ガスGと空気Aとの混合気が燃焼して、火炎Fが前記開口1aを通って上向きに形成される。   In the burner 30, the mixture of the fuel gas G and air A supplied from the mixing pipe 32 into the burner body 34 is ejected in a substantially horizontal direction from the flame port 33 toward the center of the burner body 34. The mixture of the fuel gas G and air A thus burned burns, and a flame F is formed upward through the opening 1a.

燃料供給路5には、ガスノズル31への燃料ガスGの供給を断続する燃料供給断続弁6と、ガスノズル31への燃料ガスGの供給量を調節する燃料供給量調節弁7とが設けられ、バーナ30のバーナ本体34内の下方には、開口1aを介して落下した煮零れ等を受けるための汁受皿8が設けられる。   The fuel supply path 5 is provided with a fuel supply intermittent valve 6 for intermittently supplying the fuel gas G to the gas nozzle 31, and a fuel supply amount adjusting valve 7 for adjusting the supply amount of the fuel gas G to the gas nozzle 31, Below the burner main body 34 of the burner 30, a juice receiving tray 8 is provided for receiving boiled food that has fallen through the opening 1a.

さらに、このコンロには、天板1の下方側に位置し且つ汁受皿8の中央部に位置して調理用容器Nから放射された赤外線の強度を検出する赤外線強度検出装置としての赤外線強度検出部40と、その赤外線強度検出部40により検出された赤外線の強度に基づいて調理用容器Nの温度を検出する温度検出手段としての温度検出部50とが設けられている。   Further, the stove has an infrared intensity detection device as an infrared intensity detection device that is located on the lower side of the top plate 1 and located in the center of the soup pan 8 and detects the intensity of infrared rays emitted from the cooking container N. The temperature detection part 50 as a temperature detection means which detects the temperature of the container N for cooking based on the intensity | strength of the infrared rays detected by the part 40 and the infrared intensity detection part 40 is provided.

前記赤外線強度検出部40は、調理用容器Nから放射される赤外線における異なる2つの特定波長域夫々についての赤外線強度を検出するように構成され、前記温度検出部50が、赤外線強度検出部40にて検出される2つの特定波長域夫々についての赤外線強度の比に基づいて調理用容器Nの温度を検出するように構成されている。
さらに、赤外線強度検出部40は、赤外線の波長範囲のうちのバーナ30の火炎からの放射強度が少ない範囲内に設定された波長域の赤外線強度を検出するように構成されている。
The infrared intensity detection unit 40 is configured to detect the infrared intensity for each of two different specific wavelength ranges in the infrared rays emitted from the cooking container N, and the temperature detection unit 50 is connected to the infrared intensity detection unit 40. The temperature of the cooking container N is detected on the basis of the ratio of the infrared intensity for each of the two specific wavelength regions detected.
Furthermore, the infrared intensity detection unit 40 is configured to detect the infrared intensity in a wavelength region set within a range where the radiation intensity from the flame of the burner 30 is small in the infrared wavelength range.

図2に示すように、前記赤外線強度検出部40は、調理用容器Nから放射された赤外線のうちの特定波長域の赤外線を通過させる光学フィルター41a,41bと、その光学フィルター41a,41bを通過した赤外線の強度を検出する赤外線受光手段としての赤外線受光素子42a,42bとが赤外線放射方向に間隔を隔てて並ぶ状態で備えられ、特定波長域を含む透過可能波長領域の赤外線の通過を許容する光透過部材Tとしての窓部材46が、光学フィルター41a,41bよりも調理用容器N側に位置して赤外線放射方向に間隔を隔てて光学フィルター41a,41bと並ぶ状態で備えられる構成となっている。   As shown in FIG. 2, the infrared intensity detector 40 passes through optical filters 41 a and 41 b that pass infrared rays in a specific wavelength region of infrared rays emitted from the cooking container N, and the optical filters 41 a and 41 b. Infrared light receiving elements 42a and 42b as infrared light receiving means for detecting the intensity of the infrared light are provided in a state of being arranged at intervals in the infrared radiation direction, and allow passage of infrared light in a transmissive wavelength region including a specific wavelength region. The window member 46 as the light transmissive member T is disposed on the cooking container N side with respect to the optical filters 41a and 41b and is arranged in a state of being aligned with the optical filters 41a and 41b with an interval in the infrared radiation direction. Yes.

又、調理用容器Nから放射された赤外線を赤外線受光素子42a,42bに案内する筒状の案内部材47が備えられ、この案内部材47の内部に、赤外線放射方向に沿って間隔を隔てて並べる状態で前記窓部材46、前記光学フィルター41a,41b及び前記赤外線受光素子42a,42bが組み付けられている。しかも、前記赤外線受光素子42a,42bが前記赤外線放射方向と交差する方向に並ぶ状態で2つ備えられ、且つ、窓部材46を通過した赤外線のうちで異なる波長域の赤外線を通過させる形態で2つの赤外線受光素子42a,42bに対応させて各別に光学フィルター41a,41bが備えられている。   Further, a cylindrical guide member 47 for guiding the infrared rays radiated from the cooking container N to the infrared light receiving elements 42a and 42b is provided, and the guide members 47 are arranged at intervals along the infrared radiation direction. In the state, the window member 46, the optical filters 41a and 41b, and the infrared light receiving elements 42a and 42b are assembled. In addition, two infrared light receiving elements 42a and 42b are provided in a state of being arranged in a direction intersecting with the infrared radiation direction, and two infrared rays having different wavelength ranges among the infrared rays having passed through the window member 46 are passed. Optical filters 41a and 41b are provided separately for the two infrared light receiving elements 42a and 42b.

説明を加えると、図2に示すように、光入射用の開口部44を備え且つその開口部44以外は周囲を囲うように遮光性の部材にて構成されるケーシング43内に、前記開口部44を通じて入射する赤外線を検出可能なように、前記2個の赤外線検出素子42a,42bが台座48上に並べて設けられ、一方の赤外線検出素子42aに対して赤外線が入射する部分に一方の光学フィルター41aが設けられ、他方の赤外線検出素子42bに対して赤外線が入射する部分に他方の光学フィルター41bが設けられている。又、ケーシング43内には、前記2個の赤外線検出素子42a,42bの出力信号を処理する信号処理部45が設けられている。   In other words, as shown in FIG. 2, the opening is provided in a casing 43 that includes a light incident opening 44 and is configured by a light-shielding member so as to surround the periphery except for the opening 44. The two infrared detection elements 42a and 42b are arranged side by side on the pedestal 48 so that the infrared rays incident through 44 can be detected, and one optical filter is provided at a portion where the infrared rays are incident on the one infrared detection element 42a. 41a is provided, and the other optical filter 41b is provided in a portion where infrared rays are incident on the other infrared detection element 42b. In the casing 43, a signal processing unit 45 for processing output signals of the two infrared detection elements 42a and 42b is provided.

そして、ケーシング43における開口部44の上方側を囲うように、遮光性部材にて中空の筒状に形成された外側筒部材47Aが設けられ、この外側筒部材47Aの内部及びケーシング43における開口部44に嵌り合うとともに、前記2個の赤外線検出素子42a,42bに向けて赤外線を各別に案内するための2つの案内路Q1、Q2を形成する内側筒部材47Bが設けられている。そして、外側筒部材47Aと内側筒部材47Bとで前記案内部材47が構成されている。   An outer cylindrical member 47A formed in a hollow cylindrical shape with a light-shielding member is provided so as to surround the upper side of the opening 44 in the casing 43. The inside of the outer cylindrical member 47A and the opening in the casing 43 are provided. 44, and an inner cylinder member 47B is provided which forms two guide paths Q1 and Q2 for guiding the infrared rays toward the two infrared detection elements 42a and 42b separately. The outer cylinder member 47A and the inner cylinder member 47B constitute the guide member 47.

前記外側筒部材47Aの上端部にその外側筒部材47Aの筒内部を覆う状態で窓部材46が設けられている。この窓部材46は、調理用容器Nから放射された赤外線を外側筒部材47Aの内部に透過させるように構成されている。又、煮汁やその他の他物が光学フィルター41a,41bに降りかかることを防止して保護する機能も備えている。   A window member 46 is provided at the upper end portion of the outer cylindrical member 47A so as to cover the inside of the outer cylindrical member 47A. The window member 46 is configured to transmit infrared rays radiated from the cooking container N into the outer cylindrical member 47A. It also has a function to prevent and protect boiled juice and other things from falling on the optical filters 41a and 41b.

前記外側筒部材47Aは、調理用容器Nから放射されて窓部材46を透過した赤外線をケーシング43内部に導入し、横外側方から光が入り込まないようにケーシング43の開口部44に対して接続される構成となっている。そして、調理用容器N以外の他物、すなわち、五徳2やバーナ本体34から放射される赤外線がケーシング43内部に向けて導入され難いように上下方向に沿って長尺状に設けられている。   The outer cylindrical member 47A introduces infrared rays radiated from the cooking container N and transmitted through the window member 46 into the casing 43, and is connected to the opening 44 of the casing 43 so that light does not enter from the lateral outer side. It becomes the composition which is done. And other than cooking container N, ie, the infrared rays radiated from Gotoku 2 and burner main body 34, are provided in a long shape along the vertical direction so that it is difficult to be introduced toward the inside of casing 43.

前記内側筒部材47Bは、その上部水平面部分に左右一対の光導入口49が形成されており、前記外側筒部材47Aを通して案内される赤外線を一方の赤外線検出素子42aに向けて案内するための第1の案内路Q1が形成され、その第1の案内路Q1に位置させて一方の光学フィルター41aを内装する状態で支持する構成となっている。又、前記外側筒部材47Aを通して案内される赤外線を他方の赤外線検出素子42bに向けて案内するための第2の案内路Q2が形成され、その第2の案内路Q2に位置させて他方の光学フィルター41bを内装する状態で支持する構成となっている。   The inner cylindrical member 47B has a pair of left and right light inlets 49 formed in the upper horizontal plane portion, and a first infrared ray guided through the outer cylindrical member 47A is guided to one infrared detecting element 42a. One guide path Q1 is formed, and is positioned in the first guide path Q1 so as to support the optical filter 41a in a state where it is housed. Further, a second guide path Q2 for guiding the infrared guided through the outer cylindrical member 47A toward the other infrared detecting element 42b is formed, and the second optical path Q2 is positioned on the second guide path Q2 so as to guide the other optical. The filter 41b is supported in a built-in state.

前記外側筒部材47A及び前記内側筒部材47Bは、遮光性部材にて構成され、外部からの赤外線の進入が阻止される構成となっているが、窓部材46を透過した赤外線を吸収してそのことにより温度上昇することがないように、外側筒部材47Aの内周面並びに内側筒部材47Bにおける光導入口49が形成される上部水平面部分等は、赤外線を反射させるように高反射率の面となるように構成されている。   The outer cylindrical member 47A and the inner cylindrical member 47B are made of a light-shielding member, and are configured to prevent the entry of infrared rays from the outside. In order to prevent the temperature from rising, the inner peripheral surface of the outer cylindrical member 47A and the upper horizontal surface portion where the light inlet 49 in the inner cylindrical member 47B is formed have a highly reflective surface so as to reflect infrared rays. It is comprised so that.

この赤外線強度検出部40は、前記ケーシング43に対して、前記外側筒部材47A、前記内側筒部材47B、前記窓部材46、前記各光学フィルター41a,41b、及び、前記各赤外線受光素子42a,42bの夫々が組み付けられて構成されており、この赤外線強度検出部40をコンロに設置するときは、前記各物品が予めユニット状に組み付けられた状態で設置されることになる。   The infrared intensity detection unit 40 is configured such that the outer cylinder member 47A, the inner cylinder member 47B, the window member 46, the optical filters 41a and 41b, and the infrared light receiving elements 42a and 42b are connected to the casing 43. When the infrared intensity detector 40 is installed on a stove, the articles are installed in a state of being assembled in a unit shape in advance.

図1に示すように、この赤外線強度検出部40は汁受皿8に形成された開口を通して上下方向に挿通する状態で設けられるが、汁受皿8からの熱が伝わり難くなるように、汁受皿に対して断熱材Dを介して装着される構成となっている。尚、前記各赤外線受光素子42a,42bが温度上昇しないように冷却ファン等の温度上昇抑制手段を設けるようにしてもよい。   As shown in FIG. 1, the infrared intensity detection unit 40 is provided in a state of being vertically inserted through an opening formed in the soup pan 8, but the soup pan is difficult to transmit heat from the soup pan 8. On the other hand, it becomes the structure with which the heat insulating material D is mounted | worn. In addition, a temperature rise suppression means such as a cooling fan may be provided so that the infrared light receiving elements 42a and 42b do not rise in temperature.

そして、前記光学フィルター41a,41bが、前記基材Kを前記窓部材46の透過可能波長領域と同じ透過可能波長領域を備える材質にて形成する状態で特定波長域の赤外線を透過させるように構成されている。具体的には、光学フィルター41a,41bの基材Kが窓部材46と同じ材質にて構成され、且つ、図2に示すように、窓部材46の厚みが光学フィルター41a,41bにおける基材Kの厚みよりも大となるように構成されている。   The optical filters 41a and 41b are configured to transmit infrared rays in a specific wavelength region in a state where the base material K is formed of a material having the same transmissive wavelength region as the transmissive wavelength region of the window member 46. Has been. Specifically, the base material K of the optical filters 41a and 41b is made of the same material as the window member 46, and as shown in FIG. 2, the thickness of the window member 46 is the base material K of the optical filters 41a and 41b. It is comprised so that it may become larger than the thickness of.

そして、この実施形態では、前記各赤外線受光素子42a,42bにて検出される特定波長域の1つとして、8.0μm以上且つ12.0μm以下の範囲内の波長域を検出対象とする構成としており、光学フィルター41a,41bの基材K及び窓部材46の材質として、シリコン(Si)を用いるようにしている。このようにシリコンを用いるようにしたのは、シリコンであれば、8.0μm以上且つ12.0μm以下の範囲内の波長域の赤外線を透過させるからである。   In this embodiment, as one of the specific wavelength ranges detected by each of the infrared light receiving elements 42a and 42b, a wavelength range within the range of 8.0 μm to 12.0 μm is set as a detection target. In addition, silicon (Si) is used as the material of the base material K and the window member 46 of the optical filters 41a and 41b. The reason why silicon is used in this way is that if it is silicon, it transmits infrared rays in a wavelength range of 8.0 μm or more and 12.0 μm or less.

そして、光学フィルター41a,41bの基材Kとして、シリコンを用いる場合、シリコンは、図11の波長対透過率特性に示すように、所定の波長領域においては、厚みが大きいほど赤外線透過率が減少するという性質を備えている。従って、光学フィルター41a,41bの基材K及び窓部材46の材質としてシリコンを用いる場合、光透過部材Tの厚みを基材Kの厚みより大にすると、窓部材46を透過した赤外線が光学フィルター41a,41bの基材Kによって吸収されるおそれが少なく、光学フィルター41a,41bが赤外線を吸収することにより温度上昇することを的確に回避し易いものとなる。   When silicon is used as the base material K of the optical filters 41a and 41b, as shown in the wavelength-to-transmittance characteristics of FIG. 11, silicon has a lower infrared transmittance as the thickness increases in a predetermined wavelength region. It has the property of doing. Accordingly, when silicon is used as the material of the base material K and the window member 46 of the optical filters 41a and 41b, if the thickness of the light transmitting member T is made larger than the thickness of the base material K, the infrared light transmitted through the window member 46 is transmitted to the optical filter. There is little risk of being absorbed by the base material K of 41a and 41b, and it becomes easy to avoid the temperature rise due to the optical filters 41a and 41b absorbing infrared rays.

そこで、光学フィルター41a,41bの基材K及び窓部材46の材質として、シリコンを用い、且つ、窓部材46の厚みを基材Kの厚みより大に設定する構成としている。   Therefore, silicon is used as the material of the base material K and the window member 46 of the optical filters 41a and 41b, and the thickness of the window member 46 is set larger than the thickness of the base material K.

又、前記光学フィルター41a,41bは、図7に示すように、上述したようにして選択された材質からなる特定波長域の赤外線を通過させる材質からなる基材Kの表面に、窓部材46を通過した赤外線のうちの特定波長域以外の赤外線を反射させる反射膜hを備えて特定波長域の赤外線を通過させるように構成されている。前記反射膜hは、例えば誘電体薄膜を蒸着処理によって多層状に形成して所定の波長域の赤外線を反射するものである。そして、このような構成の光学フィルター41a,41bは、例えば、図9に示すように、特定波長域の赤外線だけを透過させる構成となる。   Further, as shown in FIG. 7, the optical filters 41a and 41b are provided with a window member 46 on the surface of a base material K made of a material that transmits infrared rays in a specific wavelength range made of a material selected as described above. A reflection film h that reflects infrared rays other than the specific wavelength region out of the transmitted infrared rays is provided, and the infrared rays in the specific wavelength region are allowed to pass. The reflection film h is formed by, for example, forming a dielectric thin film in a multilayer shape by vapor deposition and reflecting infrared rays in a predetermined wavelength range. The optical filters 41a and 41b having such a configuration are configured to transmit only infrared rays in a specific wavelength region, for example, as illustrated in FIG.

前記各赤外線受光素子42a,42bにて検出される特定波長域の1つとして、8.0μmよりも短波長側の波長域、例えば、2.0μm以上且つ2.4μm以下の範囲、及び、3.1μm以上且つ4.2μm以下の範囲内に設定するような場合であれば、光学フィルター41a,41bの基材K及び窓部材46の材質として、サファイアを用いることも可能である。   As one of the specific wavelength ranges detected by each of the infrared light receiving elements 42a and 42b, a wavelength range shorter than 8.0 μm, for example, a range of 2.0 μm to 2.4 μm, and 3 If the thickness is set in the range of 1 μm or more and 4.2 μm or less, sapphire can be used as the material of the base material K and the window member 46 of the optical filters 41a and 41b.

サファイヤを用いる場合であれば、サファイヤは、シリコンと同様に図10の波長対透過率特性に示すように厚みが大きいほど、赤外線を透過させる領域と透過させない領域との境界が短波長側に位置が変化する性質を備えているから、シリコンの場合と同様に、窓部材46の厚みを基材Kの厚みより大に設定する構成とすることで、窓部材46を透過した赤外線が光学フィルター41a,41bの基材Kによって吸収されるおそれが少なく、光学フィルター41a,41bが赤外線を吸収することにより温度上昇することを的確に回避し易いものにすることができる。   In the case of using sapphire, as shown in the wavelength-to-transmittance characteristics of FIG. Since the thickness of the window member 46 is set to be larger than the thickness of the base material K as in the case of silicon, the infrared light transmitted through the window member 46 is transmitted to the optical filter 41a. , 41b is less likely to be absorbed by the base material K, and the optical filter 41a, 41b can easily avoid an increase in temperature by absorbing infrared rays.

尚、前記光学フィルター41a,41bの基材K及び窓部材46として使用可能な材質としては、シリコンやサファイヤ以外にも、例えば、ゲルマニウム(Ge)、CaF2(フッ化カルシウム)、MgF2(フッ化マグネシウム)、ZnSe(セレン化亜鉛)、Y23(酸化イットリウム)、SiO2(合成石英)等の種々の材質を用いることが可能である。 In addition to silicon and sapphire, examples of materials that can be used as the base material K and the window member 46 of the optical filters 41a and 41b include germanium (Ge), CaF 2 (calcium fluoride), and MgF 2 (fluorine). Various materials such as magnesium halide), ZnSe (zinc selenide), Y 2 O 3 (yttrium oxide), and SiO 2 (synthetic quartz) can be used.

次に、前記2つの波長域の設定の仕方について説明する。
図3には、金属の表面に黒色塗装した標準的な調理用容器Nについて、常温(25℃)から300℃程度の範囲で加熱したときに、温度が変化したときの赤外線放射強度の分光スペクトルデータを示している。この図から明らかなように、バーナ30が燃焼しているときの温度、例えば、常温〜300℃程度において、1.5μm以上且つ数十μm以下の範囲内の波長領域において赤外線が放射しており、例えば、3.5μm以上且つ15μm以下の範囲内において各種の赤外線センサにて検出可能な充分な放射強度を有している。
Next, how to set the two wavelength ranges will be described.
FIG. 3 shows a spectral spectrum of the infrared radiation intensity when the temperature changes when a standard cooking container N painted black on a metal surface is heated in the range from room temperature (25 ° C.) to about 300 ° C. Data are shown. As is apparent from this figure, infrared rays are radiated in the wavelength range of 1.5 μm or more and several tens of μm or less at the temperature when the burner 30 is burning, for example, from room temperature to 300 ° C. For example, it has sufficient radiation intensity that can be detected by various infrared sensors within a range of 3.5 μm or more and 15 μm or less.

図4には、実際のバーナ30にて形成される火炎から放射される赤外線の放射強度スペクトル分布を示す。この図から明らかなように、赤外線の波長範囲のうち、1.5μm以上且つ1.8μm以下の範囲、2.0μm以上且つ2.4μm以下の範囲、3.1μm以上且つ4.2μm以下の範囲、及び、8.0μm以上且つ12.0μm以下の範囲では、火炎からの赤外線の放射が少ない。
従って、前記2つの波長域を、赤外線の波長範囲のうちの前記バーナ30の火炎からの赤外線の放射が少ない範囲内に設定すると、火炎からの赤外線による影響が少ない状態で調理用容器Nから放射される赤外線の強度を精度よく検出することができる。
FIG. 4 shows the infrared radiation intensity spectrum distribution emitted from the flame formed by the actual burner 30. As is clear from this figure, the infrared wavelength range is 1.5 μm or more and 1.8 μm or less, 2.0 μm or more and 2.4 μm or less, 3.1 μm or more and 4.2 μm or less. In the range of 8.0 μm or more and 12.0 μm or less, there is little infrared radiation from the flame.
Therefore, if the two wavelength ranges are set within a range in which the infrared radiation from the flame of the burner 30 is small in the infrared wavelength range, the radiation from the cooking container N is less affected by the infrared radiation from the flame. It is possible to accurately detect the intensity of infrared rays.

上記のような波長域の赤外線強度を検出する2個の赤外線検出素子42a,42bとしては、Ge若しくはInGaAsを赤外線セルとして用いたもの、PbS若しくはPbSeを赤外線セルとして用いたもの、また、HgCdTeを赤外線セルとして用いたもの等、種々のものを利用することができる。また、上記の材料以外にも昇電素子やサーモパイル等を用いることもできる。   As the two infrared detecting elements 42a and 42b for detecting the infrared intensity in the wavelength range as described above, Ge or InGaAs is used as an infrared cell, PbS or PbSe is used as an infrared cell, and HgCdTe is used. Various things, such as what was used as an infrared cell, can be utilized. In addition to the above materials, a power raising element, a thermopile, or the like can be used.

次に、前記温度検出部50により調理用容器Nの温度を求める処理について説明する。尚、以下の説明では、前記2つの波長域をλ1,λ2にて示す。ちなみに、波長域λ2の方が波長域λ1よりも長波長側になる。
図5に、予め実験により求めた被加熱物(調理用容器N)の温度と前記赤外線強度検出部40における前記2つの波長域λ1,λ2夫々についての出力値(赤外線強度に対応する)との関係を示す。ちなみに、この図4に示す関係は、放射率(輻射率)が0.92の被加熱物を用いて得たものである。
Next, a process for obtaining the temperature of the cooking container N by the temperature detection unit 50 will be described. In the following description, the two wavelength regions are denoted by λ1 and λ2. Incidentally, the wavelength region λ2 is longer than the wavelength region λ1.
FIG. 5 shows the temperature of the object to be heated (cooking container N) obtained in advance by experiment and the output values (corresponding to the infrared intensity) for each of the two wavelength regions λ1 and λ2 in the infrared intensity detector 40. Show the relationship. Incidentally, the relationship shown in FIG. 4 is obtained by using a heated object having an emissivity (radiation rate) of 0.92.

又、図6に、被加熱物(調理用容器N)の温度と赤外線強度検出部40における波長域λ1に対応する出力値と波長域λ2に対応する出力値との比である出力比(前記赤外線強度比に対応する)との関係(以下、温度対赤外線強度比の関係と記載する場合がある)を示す。ちなみに、この図6に示す温度対赤外線強度比の関係は、以下のようにして求めたものである。   FIG. 6 shows an output ratio (the aforementioned ratio) between the temperature of the object to be heated (cooking container N) and the output value corresponding to the wavelength region λ1 and the output value corresponding to the wavelength region λ2 in the infrared intensity detection unit 40. (Corresponding to the infrared intensity ratio) (hereinafter may be referred to as a relationship between temperature and infrared intensity ratio). Incidentally, the relationship between the temperature and the infrared intensity ratio shown in FIG. 6 is obtained as follows.

即ち、放射率の異なる複数の調理用容器夫々について、調理用容器の温度を複数の温度に異ならせて、複数の温度夫々について前記出力比を得る。そして、そのように放射率εの異なる複数の調理用容器について得たデータに基づいて、温度と出力比との関係の近似式を求めて、その求めた近似式を温度対赤外線強度比の関係としている。
従って、放射率εが種々に異なる調理用容器N夫々の温度対赤外線強度比の関係を、共通の1つの温度対赤外線強度比の関係とすることができるのである。又、上述のように求めた図6に示す如き温度対赤外線強度比の関係が温度検出部50の記憶部(図示省略)に記憶されることになる。
That is, for each of a plurality of cooking containers having different emissivities, the temperature of the cooking container is varied to a plurality of temperatures, and the output ratio is obtained for each of the plurality of temperatures. Then, based on the data obtained for a plurality of cooking containers having different emissivities ε, an approximate expression of the relationship between the temperature and the output ratio is obtained, and the obtained approximate expression is expressed as a relationship between the temperature and the infrared intensity ratio. It is said.
Therefore, the relationship between the temperature-to-infrared intensity ratios of the respective cooking containers N having different emissivities ε can be made into one common temperature-to-infrared intensity ratio relationship. Further, the relationship of the temperature to infrared intensity ratio as shown in FIG. 6 obtained as described above is stored in the storage unit (not shown) of the temperature detection unit 50.

そして、前記温度検出部50は、赤外線強度検出部40における波長域λ1に対応する出力値と波長域λ2に対応する出力値との出力比(前記赤外線強度比に対応する)を求め、記憶している温度対赤外線強度比の関係から調理用容器Nの温度を求める。このような出力値の比をとることで調理用容器Nの温度をその調理用容器Nの放射率に依存することなく正確に検出することができる。   Then, the temperature detection unit 50 obtains and stores an output ratio (corresponding to the infrared intensity ratio) between the output value corresponding to the wavelength region λ1 and the output value corresponding to the wavelength region λ2 in the infrared intensity detection unit 40. The temperature of the cooking container N is determined from the relationship between the temperature and the infrared intensity ratio. By taking such a ratio of output values, the temperature of the cooking container N can be accurately detected without depending on the emissivity of the cooking container N.

前記温度検出部50にて求められた温度の情報は前記燃焼制御部3に出力され、燃焼制御部3は、この温度検出部50にて求められる温度に基づいて、前記燃料供給断続弁6、前記燃料供給量調節弁7等を制御することにより、例えば調理用容器Nの温度を設定温度に維持するようにバーナ30の燃焼量を調整すべく燃料供給量調節弁7を制御したり、調理用容器Nの過度の温度上昇を回避させるためにバーナ30の加熱作動を停止させるべく燃料供給断続弁6を作動させる等の処理を行うことになる。   Information on the temperature obtained by the temperature detection unit 50 is output to the combustion control unit 3, and the combustion control unit 3 performs the fuel supply intermittent valve 6, based on the temperature obtained by the temperature detection unit 50, By controlling the fuel supply amount adjusting valve 7 or the like, for example, the fuel supply amount adjusting valve 7 is controlled to adjust the combustion amount of the burner 30 so that the temperature of the cooking container N is maintained at a set temperature, or cooking. In order to avoid an excessive temperature rise of the container N, processing such as operating the fuel supply intermittent valve 6 to stop the heating operation of the burner 30 is performed.

〔別実施形態〕
次に別実施形態を説明する。
[Another embodiment]
Next, another embodiment will be described.

(1)上記実施形態では、前記光学フィルターにおける前記基材が前記光透過部材と同じ材質にて構成され、且つ、前記光透過部材の厚みが前記光学フィルターの前記基材の厚みよりも大となるように構成されているものを例示したが、このような構成に限らず、前記光学フィルターが、前記基材を前記光透過部材の前記透過可能波長領域よりも広い透過可能波長領域を備える材質にて形成するものでもよい。   (1) In the said embodiment, the said base material in the said optical filter is comprised with the same material as the said light transmissive member, and the thickness of the said light transmissive member is larger than the thickness of the said base material of the said optical filter. However, the present invention is not limited to such a configuration, and the optical filter has a material having a transmissive wavelength region wider than the transmissive wavelength region of the light transmissive member. It may be formed by.

このように前記光学フィルターの基材を光透過部材の透過可能波長領域よりも広い透過可能波長領域を備える材質にて形成する構成とする場合、図12に示すように、前記光学フィルターにおける前記基材が、前記光透過部材の前記透過可能波長領域に対応する波長領域における赤外線透過率が前記光透過部材の赤外線透過率よりも大きい材質にて構成されるものでもよい。つまり、図12のラインL3で示す波長対透過率特性を備える光透過部材に対して、図12のラインL4で示す波長対透過率特性を備える基材にて構成されるものである。   When the base material of the optical filter is formed of a material having a transmissive wavelength region wider than the transmissive wavelength region of the light transmissive member in this manner, as shown in FIG. The material may be made of a material whose infrared transmittance in a wavelength region corresponding to the transmissive wavelength region of the light transmitting member is larger than the infrared transmittance of the light transmitting member. That is, the light transmitting member having the wavelength-to-transmittance characteristic indicated by the line L3 in FIG. 12 is configured by the base material having the wavelength-to-transmittance characteristic indicated by the line L4 in FIG.

(2)上記実施形態では、前記光透過部材Tとして、赤外線をそのまま透過させる窓部材46にて構成するものを示したが、このような構成に代えて、図13に示すように、調理用容器から放射される赤外線を集光して前記各赤外線受光素子に向けて案内する集光レンズ60にて前記光透過部材Tを構成するものでもよい。   (2) In the above embodiment, the light transmitting member T is configured by the window member 46 that transmits infrared light as it is, but instead of such a configuration, as shown in FIG. The light transmitting member T may be configured by a condensing lens 60 that condenses infrared light emitted from the container and guides the infrared light toward the infrared light receiving elements.

(3)上記実施形態では、前記温度検出手段により温度を求める処理として、調理用容器の温度を2つの波長域夫々についての赤外線強度の比に基づいて求める構成としたが、このような構成に代えて次のように構成してもよい。
例えば、予め、放射率の異なる複数の調理用容器を用いて、調理用容器の温度を複数の温度に異ならせて、複数の温度夫々について、前記複数の波長域夫々についての赤外線強度を得て、そのように得た前記複数の波長域夫々についての赤外線強度を、前記複数の温度夫々に対応させた状態でマップデータにして記憶させておく。そして、前記マップデータから、前記赤外線強度検出手段にて検出される前記複数の波長域夫々についての赤外線強度の関係に一致する又は類似する赤外線強度の関係を求めると共に、その求めた赤外線強度の関係に対応する温度を求め、その求めた温度を調理用容器の温度とするように構成する。ちなみに、この場合は、前記複数の波長域としては、上記の各実施形態のように2つの波長域でも良いし、3つ以上の波長域でも良い。
(3) In the above embodiment, as the process for obtaining the temperature by the temperature detection means, the temperature of the cooking container is obtained based on the ratio of the infrared intensity for each of the two wavelength ranges. Instead, it may be configured as follows.
For example, by using a plurality of cooking containers having different emissivities, the temperature of the cooking container is changed to a plurality of temperatures, and the infrared intensity for each of the plurality of wavelength ranges is obtained for each of a plurality of temperatures. The infrared intensity for each of the plurality of wavelength ranges thus obtained is stored as map data in a state corresponding to each of the plurality of temperatures. Then, from the map data, an infrared intensity relationship that matches or is similar to the infrared intensity relationship for each of the plurality of wavelength ranges detected by the infrared intensity detection means, and the determined infrared intensity relationship The temperature corresponding to is obtained, and the obtained temperature is set as the temperature of the cooking container. Incidentally, in this case, the plurality of wavelength ranges may be two wavelength ranges as in the above embodiments, or may be three or more wavelength ranges.

又、前記波長域として1つの波長域を設定して、その波長域についての赤外線強度を複数の温度に対応させた状態でマップデータにて記憶させておき、このマップデータと前記波長域での赤外線強度の検出値とから調理用容器の温度を求める構成としてもよい。   In addition, one wavelength range is set as the wavelength range, and the infrared intensity for the wavelength range is stored in map data in a state corresponding to a plurality of temperatures. It is good also as a structure which calculates | requires the temperature of the container for cooking from the detected value of infrared intensity.

(4)上記実施形態では、赤外線強度検出手段が、2個の光学フィルター41a,41bを通過した赤外線を各別に検出する2個の赤外線検出素子42a,42bを備えて、調理用容器Nから放射される赤外線における互いに異なる2つの波長域夫々についての赤外線強度を検出するように構成したが、このような構成に代えて、1つの赤外線検出素子に対して2個の光学フィルターが交互に作用するように位置を切り換えて、その切り換えた状態の夫々における赤外線検出素子の検出値を用いて、互いに異なる波長域の赤外線強度を検出する構成としてもよい。又、赤外線検出素子及び光学フィルターを3個以上並べて備える構成として、3つ以上の異なる特定波長域の赤外線を各別に検出して、それらの検出情報に基づいて調理用容器の温度を検出する構成としてもよい。   (4) In the above embodiment, the infrared intensity detection means includes two infrared detection elements 42a and 42b that individually detect the infrared rays that have passed through the two optical filters 41a and 41b, and radiates from the cooking container N. However, in place of such a configuration, two optical filters act alternately on one infrared detection element. Thus, the positions may be switched, and the infrared intensity in different wavelength ranges may be detected using the detection value of the infrared detection element in each of the switched states. Further, as a configuration comprising three or more infrared detection elements and optical filters arranged side by side, a configuration in which infrared rays in three or more different specific wavelength ranges are detected separately and the temperature of the cooking container is detected based on the detection information It is good.

(5)上記実施形態では、前記加熱手段として、混合気を環状のバーナ本体から内向きに噴出させて燃焼させる内炎式バーナにて構成するものを示したが、混合気を外向き上方に噴出させるブンゼン燃焼式のバーナを備えたコンロとして構成してもよい。
つまり、図14に示すように、バーナ30が、天板1に形成された開口部1aの下方に、混合気を外向き上方に噴出させて燃焼させる炎口33を備える状態で設けられ、そのバーナ30の外周部には環状の汁受皿8が設けられ、汁受皿8の外側の上方に傾斜した部位に第1実施形態と同様な構成の赤外線強度検出部40が断熱材Dを介して設けられる構成としてもよい。
(5) In the above embodiment, the heating means is constituted by an internal flame type burner that injects and burns the air-fuel mixture inward from the annular burner body, but the air-fuel mixture is directed upward and outward. You may comprise as a stove provided with the bunsen combustion type burner to eject.
That is, as shown in FIG. 14, the burner 30 is provided below the opening 1 a formed in the top plate 1 in a state having a flame port 33 for injecting the air-fuel mixture upward and burning it, An annular juice receiving tray 8 is provided on the outer peripheral portion of the burner 30, and an infrared intensity detection unit 40 having the same configuration as that of the first embodiment is provided via a heat insulating material D in a portion inclined upward and outside the juice receiving tray 8. It is good also as a structure to be made.

(6)上記実施形態では、前記赤外線強度検出手段が、前記天板に形成された加熱用の開口を通して調理用容器から放射された赤外線の強度を検出するように構成されるものを例示したが、このような構成に限らず、前記加熱用の開口の横側方において前記天板に光透過用の窓部を形成して、前記赤外線強度検出手段がこの光透過用の窓部を通して調理用容器から放射されて光学フィルターを透過した赤外線の強度を検出するように構成としてもよい。従って、この構成では、天板に形成される光透過用の窓部が光透過部材に対応するものとなる。   (6) In the above embodiment, the infrared intensity detecting means is configured to detect the intensity of infrared rays emitted from the cooking container through the heating opening formed in the top plate. In addition to such a configuration, a light transmitting window is formed on the top plate at the side of the heating opening, and the infrared intensity detecting means is used for cooking through the light transmitting window. It is good also as a structure so that the intensity | strength of the infrared rays radiated | emitted from the container and permeate | transmitted the optical filter may be detected. Therefore, in this configuration, the light transmitting window formed on the top plate corresponds to the light transmitting member.

(7)上記実施形態では、前記加熱手段としてガス燃焼式のバーナにて構成したが、加熱手段はバーナに限定されるものではなく、例えば赤熱発光するハロゲンランプを用いたもの、電気抵抗線を内蔵したシーズヒータを用いたもの、又は、電磁誘導加熱(通常、「IH」と呼ばれる)を行う磁界発生コイルを用いたもの等、電気式加熱部にて構成しても良い。   (7) In the above embodiment, a gas combustion burner is used as the heating means. However, the heating means is not limited to a burner. For example, a heating lamp using a halogen lamp that emits red heat, an electric resistance wire is used. You may comprise by an electric heating part, such as a thing using the built-in sheathed heater or a thing using a magnetic field generating coil which performs electromagnetic induction heating (usually called "IH").

コンロの概略構成図Schematic configuration diagram of the stove 赤外線強度検出手段の縦断面図Longitudinal sectional view of infrared intensity detection means 調理用容器から放射される赤外線放射強度の分光スペクトルデータを示す図The figure which shows the spectrum data of the infrared radiation intensity radiated | emitted from the container for cooking 火炎から放射される赤外線の放射強度スペクトル分布を示す図Figure showing the infrared radiation intensity spectrum distribution emitted from the flame 被加熱物の温度と赤外線強度検出部の出力との関係を示す図The figure which shows the relationship between the temperature of a to-be-heated material, and the output of an infrared intensity detection part 被加熱物の温度と赤外線強度検出部の出力比との関係を示す図The figure which shows the relationship between the temperature of to-be-heated material and the output ratio of an infrared intensity detection part 光学フィルターの断面図Cross section of optical filter サファイヤとシリコンの波長対透過率特性を示す図Diagram showing transmittance versus wavelength characteristics of sapphire and silicon 光学フィルターの波長対透過率特性を示す図The figure which shows the wavelength vs. transmittance characteristic of the optical filter サファイヤの波長対透過率特性を示す図Diagram showing transmittance characteristics of sapphire versus wavelength シリコンの波長対透過率特性を示す図Diagram showing transmittance versus wavelength characteristics of silicon 別実施形態の波長対透過率特性を示す図The figure which shows the wavelength versus the transmittance | permeability characteristic of another embodiment 別実施形態の赤外線強度検出手段の縦断面図Vertical sectional view of infrared intensity detecting means of another embodiment 別実施形態のコンロの概略構成図Schematic configuration diagram of a stove according to another embodiment

符号の説明Explanation of symbols

41a,41b 光学フィルター
42a,42b 赤外線受光手段
47 案内部材
N 調理用容器
T 光透過部材
41a, 41b Optical filters 42a, 42b Infrared light receiving means 47 Guide member N Cooking container T Light transmitting member

Claims (5)

加熱手段にて加熱される調理用容器から放射された赤外線のうちの特定波長域の赤外線を透過させる光学フィルターと、その光学フィルターを透過した赤外線の強度を検出する赤外線受光手段とが、赤外線放射方向に間隔を隔てて並ぶ状態で備えられ、
前記光学フィルターが、前記特定波長域を含む透過可能波長領域の赤外線を透過させる材質からなる基材の表面に前記特定波長域以外の波長域の赤外線を反射させる反射膜を備えて構成されている加熱調理器用の赤外線強度検出装置であって、
前記特定波長域を含む透過可能波長領域の赤外線を透過させる光透過部材が、前記光学フィルターよりも前記調理用容器に近い側に位置して、前記赤外線放射方向に沿って前記光学フィルターと間隔を隔てて並ぶ状態で設けられ、
前記光学フィルターが、前記基材を前記光透過部材の前記透過可能波長領域と同じ又はそれよりも広い透過可能波長領域を備える材質にて形成する状態で、且つ、前記反射膜にて前記光透過部材を透過した赤外線のうちの前記特定波長域以外の波長域の赤外線を反射させる状態で構成されている加熱調理器用の赤外線強度検出装置。
An optical filter that transmits infrared rays in a specific wavelength region out of infrared rays radiated from the cooking container heated by the heating means, and an infrared light receiving means that detects the intensity of the infrared rays that have passed through the optical filter are infrared radiation. It is provided in a state of being lined up at intervals in the direction,
The optical filter includes a reflective film that reflects infrared light in a wavelength region other than the specific wavelength region on a surface of a base material made of a material that transmits infrared light in a transmissive wavelength region including the specific wavelength region. An infrared intensity detection device for a cooking device,
A light transmissive member that transmits infrared light in a transmissive wavelength region including the specific wavelength region is positioned closer to the cooking container than the optical filter, and is spaced from the optical filter along the infrared radiation direction. Provided in a state of being lined up apart,
The optical filter is in a state in which the substrate is formed of a material having a transmissive wavelength region that is the same as or wider than the transmissive wavelength region of the light transmissive member, and the light transmission is performed by the reflective film. An infrared intensity detection device for a heating cooker configured to reflect infrared light in a wavelength region other than the specific wavelength region out of infrared light transmitted through a member.
前記光学フィルターにおける前記基材が、前記光透過部材の前記透過可能波長領域に対応する波長領域における赤外線透過率が前記光透過部材の赤外線透過率よりも大きい材質にて形成されている請求項1記載の加熱調理器用の赤外線強度検出装置。   The base material of the optical filter is formed of a material having an infrared transmittance greater than that of the light transmissive member in a wavelength region corresponding to the transmissive wavelength region of the light transmissive member. An infrared intensity detecting device for a cooking device as described. 前記光学フィルターにおける前記基材が前記光透過部材と同じ材質にて構成され、且つ、前記光透過部材の厚みが前記光学フィルターにおける前記基材の厚みよりも大となるように構成されている請求項1又は2記載の加熱調理器用の赤外線強度検出装置。   The base material in the optical filter is made of the same material as the light transmissive member, and the thickness of the light transmissive member is larger than the thickness of the base material in the optical filter. Item 3. An infrared intensity detection device for a cooking device according to item 1 or 2. 前記調理用容器から放射された赤外線を前記赤外線受光手段に案内する筒状の案内部材が備えられ、この案内部材の内部に、前記赤外線放射方向に沿って間隔を隔てて並べる状態で、前記光透過部材、前記光学フィルター及び前記赤外線受光手段が組み付けられている請求項1〜3のいずれか1項に記載の加熱調理器用の赤外線強度検出装置。   A cylindrical guide member is provided for guiding the infrared radiation radiated from the cooking container to the infrared light receiving means, and the light is arranged inside the guide member at intervals along the infrared radiation direction. The infrared intensity detection device for a heating cooker according to any one of claims 1 to 3, wherein the transmission member, the optical filter, and the infrared light receiving means are assembled. 前記赤外線受光手段が前記赤外線放射方向と交差する方向に並ぶ状態で複数備えられ、且つ、前記光透過部材を透過した赤外線のうちの異なる波長域の赤外線を透過させる形態で複数の赤外線受光手段に対応させて各別に前記光学フィルターが備えられている請求項4記載の加熱調理器用の赤外線強度検出装置。   A plurality of infrared light receiving means are provided in a state in which the infrared light receiving means are arranged in a direction intersecting with the infrared radiation direction, and the infrared light receiving means is configured to transmit infrared rays having different wavelength ranges among infrared rays transmitted through the light transmitting member. The infrared intensity detecting device for a cooking device according to claim 4, wherein the optical filter is provided separately for each.
JP2007085565A 2007-03-28 2007-03-28 Infrared intensity detector for cooking appliances Active JP5138257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007085565A JP5138257B2 (en) 2007-03-28 2007-03-28 Infrared intensity detector for cooking appliances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007085565A JP5138257B2 (en) 2007-03-28 2007-03-28 Infrared intensity detector for cooking appliances

Publications (2)

Publication Number Publication Date
JP2008241617A true JP2008241617A (en) 2008-10-09
JP5138257B2 JP5138257B2 (en) 2013-02-06

Family

ID=39913139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007085565A Active JP5138257B2 (en) 2007-03-28 2007-03-28 Infrared intensity detector for cooking appliances

Country Status (1)

Country Link
JP (1) JP5138257B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010175347A (en) * 2009-01-28 2010-08-12 Mikuni Corp Apparatus for infrared temperature measurement
JP2013205216A (en) * 2012-03-28 2013-10-07 Osaka Gas Co Ltd Temperature measuring device and heating cooker
CN103822253A (en) * 2012-11-17 2014-05-28 广东节王电气科技有限公司 Structure of direct-injection biomass gas cooker
WO2014160234A3 (en) * 2013-03-14 2014-11-13 Pressco Ip Llc Cookware and cook-packs for narrowband irradiation cooking and systems and methods thereof
JP2015084306A (en) * 2013-10-25 2015-04-30 三菱電機株式会社 Heating cooker
US9332877B2 (en) 2010-06-11 2016-05-10 Pressco Ip Llc Cookware and cook-packs for narrowband irradiation cooking and systems and methods thereof
US9357877B2 (en) 2010-06-11 2016-06-07 Pressco Ip Llc Cookware and cook-packs for narrowband irradiation cooking and systems and methods thereof
KR20190048705A (en) * 2017-10-31 2019-05-09 주식회사 템퍼스 Apparatus for measuring temperature of glass transmission type and induction range having the same
US10687391B2 (en) 2004-12-03 2020-06-16 Pressco Ip Llc Method and system for digital narrowband, wavelength specific cooking, curing, food preparation, and processing
JP2020176766A (en) * 2019-04-18 2020-10-29 株式会社ミクニ Infrared detection unit and heating cooker

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62255829A (en) * 1986-04-28 1987-11-07 Mitsubishi Electric Corp Near infrared illuminator and near infrared image pickup device
JPS63208727A (en) * 1987-02-25 1988-08-30 Mitsubishi Electric Corp Infrared-ray detector
JPH03243834A (en) * 1990-02-21 1991-10-30 Fujitsu Ltd Infrared detector
JP2002243544A (en) * 2001-02-21 2002-08-28 Horiba Ltd Photodetector
JP2004063451A (en) * 2002-06-07 2004-02-26 Ishizuka Electronics Corp Radiation temperature detecting device for induction heating cooker and operating device for the same
JP2004095314A (en) * 2002-08-30 2004-03-25 Matsushita Electric Ind Co Ltd Induction heating cooker
JP2004095313A (en) * 2002-08-30 2004-03-25 Matsushita Electric Ind Co Ltd Induction heating cooker
JP2006207961A (en) * 2005-01-31 2006-08-10 Osaka Gas Co Ltd Cooking stove
JP2006317232A (en) * 2005-05-11 2006-11-24 Matsushita Electric Works Ltd Infrared sensor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62255829A (en) * 1986-04-28 1987-11-07 Mitsubishi Electric Corp Near infrared illuminator and near infrared image pickup device
JPS63208727A (en) * 1987-02-25 1988-08-30 Mitsubishi Electric Corp Infrared-ray detector
JPH03243834A (en) * 1990-02-21 1991-10-30 Fujitsu Ltd Infrared detector
JP2002243544A (en) * 2001-02-21 2002-08-28 Horiba Ltd Photodetector
JP2004063451A (en) * 2002-06-07 2004-02-26 Ishizuka Electronics Corp Radiation temperature detecting device for induction heating cooker and operating device for the same
JP2004095314A (en) * 2002-08-30 2004-03-25 Matsushita Electric Ind Co Ltd Induction heating cooker
JP2004095313A (en) * 2002-08-30 2004-03-25 Matsushita Electric Ind Co Ltd Induction heating cooker
JP2006207961A (en) * 2005-01-31 2006-08-10 Osaka Gas Co Ltd Cooking stove
JP2006317232A (en) * 2005-05-11 2006-11-24 Matsushita Electric Works Ltd Infrared sensor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10687391B2 (en) 2004-12-03 2020-06-16 Pressco Ip Llc Method and system for digital narrowband, wavelength specific cooking, curing, food preparation, and processing
JP2010175347A (en) * 2009-01-28 2010-08-12 Mikuni Corp Apparatus for infrared temperature measurement
US9357877B2 (en) 2010-06-11 2016-06-07 Pressco Ip Llc Cookware and cook-packs for narrowband irradiation cooking and systems and methods thereof
US9332877B2 (en) 2010-06-11 2016-05-10 Pressco Ip Llc Cookware and cook-packs for narrowband irradiation cooking and systems and methods thereof
US10882675B2 (en) 2010-06-11 2021-01-05 Pressco Ip Llc Cookware and cook-packs for narrowband irradiation cooking and systems and methods thereof
US11034504B2 (en) 2010-06-11 2021-06-15 Pressco Ip Llc Cookware and cook-packs for narrowband irradiation cooking and systems and methods thereof
JP2013205216A (en) * 2012-03-28 2013-10-07 Osaka Gas Co Ltd Temperature measuring device and heating cooker
CN103822253A (en) * 2012-11-17 2014-05-28 广东节王电气科技有限公司 Structure of direct-injection biomass gas cooker
WO2014160234A3 (en) * 2013-03-14 2014-11-13 Pressco Ip Llc Cookware and cook-packs for narrowband irradiation cooking and systems and methods thereof
JP2015084306A (en) * 2013-10-25 2015-04-30 三菱電機株式会社 Heating cooker
KR20190048705A (en) * 2017-10-31 2019-05-09 주식회사 템퍼스 Apparatus for measuring temperature of glass transmission type and induction range having the same
KR102003224B1 (en) 2017-10-31 2019-10-01 주식회사 템퍼스 Apparatus for measuring temperature of glass transmission type and induction range having the same
JP2020176766A (en) * 2019-04-18 2020-10-29 株式会社ミクニ Infrared detection unit and heating cooker
JP7269083B2 (en) 2019-04-18 2023-05-08 株式会社ミクニ Infrared detection unit and cooking device

Also Published As

Publication number Publication date
JP5138257B2 (en) 2013-02-06

Similar Documents

Publication Publication Date Title
JP5138257B2 (en) Infrared intensity detector for cooking appliances
JP4422943B2 (en) Stove
JP4557736B2 (en) Stove
JP4989265B2 (en) Temperature detection device for cooking device
JP6198411B2 (en) Temperature measuring device
JP2010199000A (en) Induction heating cooker
JP4530894B2 (en) Stove
JP2006220395A (en) Cooking stove
JP4989273B2 (en) Cooker
JP4557732B2 (en) Stove
JP4989264B2 (en) Temperature detection device for cooking device
JP6037854B2 (en) Stove, operating method of stove, estimation method of heating container material used on stove, and estimation method of heating container material
JP5791682B2 (en) Cooker
JP5875921B2 (en) Stove
JP4628118B2 (en) Stove
JP2006275466A (en) Composite sensor and combustion device
JP5149538B2 (en) Cooker
JP5711012B2 (en) Combustion heating device
JP5459080B2 (en) Induction heating cooker
JP5921283B2 (en) Temperature measuring device and cooking device
JP2016091868A (en) Induction heating cooker
JP4557733B2 (en) Stove
JP5351995B2 (en) Cooker
JP5674894B2 (en) Induction heating cooker
CN106471346A (en) lamp and temperature control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5138257

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250