JP2020176766A - Infrared detection unit and heating cooker - Google Patents

Infrared detection unit and heating cooker Download PDF

Info

Publication number
JP2020176766A
JP2020176766A JP2019079414A JP2019079414A JP2020176766A JP 2020176766 A JP2020176766 A JP 2020176766A JP 2019079414 A JP2019079414 A JP 2019079414A JP 2019079414 A JP2019079414 A JP 2019079414A JP 2020176766 A JP2020176766 A JP 2020176766A
Authority
JP
Japan
Prior art keywords
light receiving
infrared
determination
detection unit
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019079414A
Other languages
Japanese (ja)
Other versions
JP7269083B2 (en
Inventor
一浩 武蔵
Kazuhiro Musashi
一浩 武蔵
章 宮藤
Akira Miyato
章 宮藤
康平 田上
Kohei Tagami
康平 田上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mikuni Corp
Osaka Gas Co Ltd
Original Assignee
Mikuni Corp
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mikuni Corp, Osaka Gas Co Ltd filed Critical Mikuni Corp
Priority to JP2019079414A priority Critical patent/JP7269083B2/en
Publication of JP2020176766A publication Critical patent/JP2020176766A/en
Application granted granted Critical
Publication of JP7269083B2 publication Critical patent/JP7269083B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

To provide an infrared detection unit that can determine whether to correctly perform simplification of an assembly work, consolidation of components, downsizing and detection with infrared ray.SOLUTION: An infrared detection unit comprises: a housing H having a translucent window 30 oriented at an opening part 1a; a light receiving sensor 80 for determination, which is fixed to the inside of the housing and determines a closed state of the opening part and a dirty state of the translucent window; an infrared light source 100 which is fixed to the outside of the housing, and emits infrared ray toward the translucent window; and an optical element 90 for determination, which is fixed to the inside of the housing, guides infrared ray IR3 radiated from a heating source 4 and passed through the opening part 1a and the translucent window 30 to the light receiving sensor 80 for determination, and guides infrared ray IR4 radiated from the infrared light source 100 and passed through the translucent window 30 to the light receiving sensor 80 for determination.SELECTED DRAWING: Figure 2

Description

本発明は、赤外線を利用して被加熱物の温度を測定する際に適用される赤外線検出ユニットに関し、特に、ガスコンロ等の加熱調理装置において、鍋、フライパン等の被加熱物の温度を測定すると共に、温度測定用の赤外線を遮る汚れ等の状態を検出し得る赤外線検出ユニット及びそれを備えた加熱調理装置に関する。 The present invention relates to an infrared detection unit applied when measuring the temperature of an object to be heated by using infrared rays, and particularly measures the temperature of an object to be heated such as a pot and a frying pan in a heating cooking device such as a gas stove. At the same time, the present invention relates to an infrared detection unit capable of detecting a state such as dirt that blocks infrared rays for temperature measurement, and a cooking apparatus provided with the infrared detection unit.

従来の加熱調理装置として、天板上の五徳に載置された容器を加熱するバーナ、天板の開口部を塞ぐように固着された透光窓、筐体内において透光窓の直下に配置され透光窓を通して容器から放射される赤外線強度を検出する赤外線強度検出部、筐体内において透光窓の斜め下方に配置されバーナの火炎から放射される赤外線強度を検出する汚れ判定用受光手段等を備えたガスコンロが知られている(例えば、特許文献1)。 As a conventional cooking device, a burner that heats the container placed on Gotoku on the top plate, a translucent window fixed so as to close the opening of the top plate, and placed directly under the translucent window in the housing. An infrared intensity detector that detects the infrared intensity emitted from the container through the translucent window, a stain determination light receiving means that is placed diagonally below the transmissive window in the housing and detects the infrared intensity emitted from the flame of the burner, etc. A gas stove is known (for example, Patent Document 1).

このガスコンロにおいては、天板の開口部が透光窓により閉塞されているため、吹き零れた煮汁や固形物が筐体内に入り込むのを防止できるものの、透光窓が火炎に近いため、透光窓やその固着剤等の耐熱性及び耐久性等の点で改善の余地がある。
一方、透光窓を廃止して、天板の開口部を開放した状態にすると、吹き零れた煮汁や固形物が筐体内に入り込んで、赤外線強度検出部の表面が汚れる虞がある。この場合、赤外線強度検出部の表面の汚れ状態を検出することが必要になる。
また、開口部が固形物等により塞がれて、赤外線の光路が遮断される虞がある。この場合、開口部の塞がり状態を検出することが必要になる。
さらに、上記ガスコンロにおいては、汚れ判定用受光手段が、赤外線強度検出部とは別個に設けられているため、それぞれの配置スペースが必要になり、組付け作業の複雑化、作業工数の増加、筐体の大型化等を招く。
In this gas stove, since the opening of the top plate is closed by the translucent window, it is possible to prevent the boiled broth and solid matter from entering the housing, but since the translucent window is close to the flame, it is translucent. There is room for improvement in terms of heat resistance and durability of windows and their fixing agents.
On the other hand, if the translucent window is abolished and the opening of the top plate is opened, there is a risk that the boiled broth or solid matter may enter the housing and stain the surface of the infrared intensity detection unit. In this case, it is necessary to detect the dirty state of the surface of the infrared intensity detecting unit.
In addition, the opening may be blocked by a solid substance or the like, and the infrared optical path may be blocked. In this case, it is necessary to detect the closed state of the opening.
Further, in the gas stove, since the light receiving means for determining stains is provided separately from the infrared intensity detecting unit, each arrangement space is required, which complicates the assembly work, increases the work man-hours, and the housing. It causes the body to become larger.

特開2013−204918号公報Japanese Unexamined Patent Publication No. 2013-204918

本発明は、上記の事情に鑑みて成されたものであり、その目的とするところは、従来の問題点を解消して、組付け作業の簡素化、部品の集約化、小型化等を図り、赤外線による検出が正常に行える状態か否かを判定できる赤外線検出ユニット及び加熱調理装置を提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to solve the conventional problems, to simplify the assembly work, to consolidate parts, to reduce the size, and the like. An object of the present invention is to provide an infrared detection unit and a cooking device capable of determining whether or not detection by infrared rays can be normally performed.

本発明の赤外線検出ユニットは、所定の開口部に方向付けされる透光窓を有するハウジングと、ハウジングの内側に固定され開口部の塞がり状態及び透光窓の汚れ状態を判定するための判定用受光センサと、ハウジングの外側に固定され透光窓に向けて赤外線を放射する赤外光源と、ハウジングの内側に固定され加熱源から放射されて開口部及び透光窓を通過する赤外線を判定用受光センサに導くと共に赤外光源から放射されて透光窓を通過する赤外線を判定用受光センサに導く判定用光学要素と、を含む。 The infrared detection unit of the present invention is for determining a housing having a translucent window oriented to a predetermined opening, and a determination state fixed inside the housing to determine a closed state of the opening and a dirty state of the translucent window. For determining the light receiving sensor, the infrared light source fixed on the outside of the housing and emitting infrared rays toward the translucent window, and the infrared rays fixed on the inside of the housing and radiated from the heating source and passing through the opening and the translucent window. It includes a determination optical element that guides the infrared rays that are guided to the light receiving sensor and that are emitted from the infrared light source and pass through the translucent window to the judgment light receiving sensor.

上記赤外線検出ユニットにおいて、判定用光学要素は、加熱源から放射される赤外線を判定用受光センサに導く第1反射ミラーと、赤外光源から放射される赤外線を判定用受光センサに導く第2反射ミラーを含む、構成を採用してもよい。 In the infrared detection unit, the judgment optical elements include a first reflection mirror that guides infrared rays radiated from a heating source to a judgment light receiving sensor, and a second reflection that guides infrared rays radiated from an infrared light source to a judgment light receiving sensor. A configuration may be adopted that includes a mirror.

上記赤外線検出ユニットにおいて、第1反射ミラー及び第2反射ミラーは、単一部材として一体的に形成されている、構成を採用してもよい。 In the infrared detection unit, the first reflection mirror and the second reflection mirror may adopt a configuration in which they are integrally formed as a single member.

上記赤外線検出ユニットにおいて、ハウジングの内側に固定され加熱源により加熱される被加熱物の温度を測定するための測温用受光センサと、ハウジングの内側に固定され被加熱物から放射されて開口部及び透光窓を通過する赤外線を測温用受光センサに導く測温用光学要素をさらに含む、構成を採用してもよい。 In the infrared detection unit, a light receiving sensor for temperature measurement for measuring the temperature of an object to be heated fixed inside the housing and heated by a heating source, and an opening fixed inside the housing and radiated from the object to be heated. And a configuration may be adopted that further includes a temperature measuring optical element that guides infrared rays passing through the translucent window to the temperature measuring light receiving sensor.

上記赤外線検出ユニットにおいて、判定用受光センサと判定用光学要素の間の光軸は、測温用受光センサと測温用光学要素の間の光軸に対して、捻じれた位置に配置されている、構成を採用してもよい。 In the infrared detection unit, the optical axis between the light receiving sensor for judgment and the optical element for judgment is arranged at a twisted position with respect to the optical axis between the light receiving sensor for temperature measurement and the optical element for temperature measurement. Yes, the configuration may be adopted.

上記赤外線検出ユニットにおいて、ハウジングは、測温用受光センサ及び測温用光学要素が配置される第1領域と判定用受光センサ及び判定用光学要素が配置される第2領域とを仕切る仕切り壁と、加熱源から放射される赤外線及び赤外光源から放射される赤外線を第1領域から第2領域内の判定用光学要素に導くべく仕切り壁に開けられた貫通孔を含む、構成を採用してもよい。 In the infrared detection unit, the housing has a partition wall that separates a first region in which the temperature measuring light receiving sensor and the temperature measuring optical element are arranged and a second region in which the judgment light receiving sensor and the determination optical element are arranged. Adopting a configuration that includes a through hole in the partition wall to guide the infrared rays radiated from the heating source and the infrared rays radiated from the infrared light source from the first region to the determination optical element in the second region. May be good.

上記赤外線検出ユニットにおいて、測温用受光センサは、被加熱物から放射される第1波長領域の赤外線を受光する第1受光素子と、被加熱物から放射される第2波長領域の赤外線を受光する第2受光素子を含む、構成を採用してもよい。 In the infrared detection unit, the temperature measuring light receiving sensor receives the first light receiving element that receives the infrared rays in the first wavelength region radiated from the object to be heated and the infrared rays in the second wavelength region radiated from the object to be heated. A configuration may be adopted that includes a second light receiving element.

上記赤外線検出ユニットにおいて、測温用光学要素は、第1受光素子に対応する第1光学要素と、第2受光素子に対応する第2光学要素を含む、構成を採用してもよい。 In the infrared detection unit, the temperature measuring optical element may adopt a configuration including a first optical element corresponding to the first light receiving element and a second optical element corresponding to the second light receiving element.

上記赤外線検出ユニットにおいて、第1光学要素から第1受光素子に向かう赤外線と第2光学要素から第2受光素子に向かう赤外線との相互の干渉を防止するべく、ハウジングの内側に配置された遮光板をさらに含む、構成を採用してもよい。 In the infrared detection unit, a light shielding plate arranged inside the housing in order to prevent mutual interference between the infrared rays from the first optical element toward the first light receiving element and the infrared rays from the second optical element toward the second light receiving element. A configuration may be adopted that further includes.

上記赤外線検出ユニットにおいて、ハウジングは、判定用受光センサ、判定用光学要素、測温用受光センサ、及び測温用光学要素を保持するハウジングボデーと、透光窓及び赤外光源を保持する第1ハウジングカバーを含む、構成を採用してもよい。 In the infrared detection unit, the housing is a first that holds a light receiving sensor for judgment, an optical element for judgment, a light receiving sensor for temperature measurement, a housing body that holds the optical element for temperature measurement, a translucent window, and an infrared light source. A configuration may be adopted that includes a housing cover.

上記赤外線検出ユニットにおいて、ハウジングボデーは、測温用受光センサ及び測温用光学要素が配置される第1領域と、判定用受光センサ及び判定用光学要素が配置される第2領域とを画定し、第1ハウジングカバーは、第1領域を覆うようにハウジングボデーに組み付けられる、構成を採用してもよい。 In the infrared detection unit, the housing body defines a first region in which the temperature measurement light receiving sensor and the temperature measurement optical element are arranged and a second region in which the determination light receiving sensor and the determination optical element are arranged. , The first housing cover may adopt a configuration that is assembled to the housing body so as to cover the first region.

上記赤外線検出ユニットにおいて、ハウジングは、第2領域を覆うようにハウジングボデーに組み付けられる第2ハウジングカバーを含む、構成を採用してもよい。 In the infrared detection unit, the housing may adopt a configuration including a second housing cover assembled to the housing body so as to cover the second region.

上記赤外線検出ユニットにおいて、判定用受光センサの出力信号に基づき開口部の塞がり状態及び透光窓の汚れ状態を判定する判定部をさらに含み、判定部は、加熱源から放射される赤外線を受光した判定用受光センサの出力に基づいて、開口部の塞がり状態を判定する、構成を採用してもよい。 The infrared detection unit further includes a determination unit for determining the closed state of the opening and the dirty state of the translucent window based on the output signal of the light receiving sensor for determination, and the determination unit receives infrared rays radiated from the heating source. A configuration may be adopted in which the closed state of the opening is determined based on the output of the light receiving sensor for determination.

上記赤外線検出ユニットにおいて、判定部は、赤外光源のオン/オフにより判定用受光センサが出力する出力信号の差に基づいて、透光窓の汚れ状態を判定する、構成を採用してもよい。 In the infrared detection unit, the determination unit may adopt a configuration in which the determination unit determines the dirty state of the translucent window based on the difference in the output signals output by the determination light receiving sensor by turning on / off the infrared light source. ..

本発明の加熱調理装置は、所定の開口部を有する天板と、天板の上方に載置された被加熱物を加熱する加熱源と、天板の下方に配置され、被加熱物から放射されて開口部を通過する赤外線又は加熱源から放射されて開口部を通過する赤外線を検出する赤外線検出ユニットと、を備えた加熱調理装置であって、上記赤外線検出ユニットとして、上記構成のいずれかをなす赤外線検出ユニットを採用するものである。 The heating cooking apparatus of the present invention is arranged below a top plate having a predetermined opening, a heating source for heating an object to be heated placed above the top plate, and radiated from the object to be heated. A cooking apparatus including an infrared detection unit that detects infrared rays that pass through the opening or infrared rays that are radiated from a heating source and pass through the opening, and the infrared detection unit has any of the above configurations. The infrared detection unit that forms the above is adopted.

上記加熱調理装置において、赤外線検出ユニットの透光窓は、開口部の鉛直下方領域から外れた領域において、透光窓の中央を通る法線が開口部に向かうように傾斜した状態で配置される、構成を採用してもよい。 In the above-mentioned cooking apparatus, the translucent window of the infrared detection unit is arranged in a region deviating from the vertically downward region of the opening in a state in which the normal passing through the center of the transmissive window is inclined toward the opening. , The configuration may be adopted.

上記構成をなす赤外線検出ユニット及び加熱調理装置によれば、組付け作業の簡素化、部品の集約化、小型化等を達成でき、赤外線による検出が正常に行える状態か否かを判定することができる。 According to the infrared detection unit and the cooking device having the above configuration, it is possible to achieve simplification of assembling work, consolidation of parts, miniaturization, etc., and it is possible to determine whether or not infrared detection can be performed normally. it can.

本発明に係る赤外線検出ユニットを適用した加熱調理装置の一実施形態を示す外観斜視図である。It is an external perspective view which shows one Embodiment of the cooking apparatus to which the infrared ray detection unit which concerns on this invention is applied. 本発明に係る赤外線検出ユニットの一実施形態を示すものであり、図1に示す加熱調理装置の天板の開口部に対する配置関係を示す外観斜視図である。It shows one embodiment of the infrared ray detection unit which concerns on this invention, and is the external perspective view which shows the arrangement relation with respect to the opening of the top plate of the cooking apparatus shown in FIG. 図1に示す加熱調理装置において、天板上の被加熱物から放射される赤外線が開口部を通して赤外線検出ユニットに導かれる状態を示す部分側面図である。FIG. 5 is a partial side view showing a state in which infrared rays radiated from an object to be heated on a top plate are guided to an infrared ray detection unit through an opening in the cooking apparatus shown in FIG. 図1に示す加熱調理装置において、天板上の被加熱物から放射される赤外線が開口部を通して赤外線検出ユニットに導かれる状態を示す部分平面図である。FIG. 3 is a partial plan view showing a state in which infrared rays radiated from an object to be heated on a top plate are guided to an infrared ray detection unit through an opening in the cooking apparatus shown in FIG. 図1に示す加熱調理装置において、天板上の加熱源から放射される赤外線が開口部を通して赤外線検出ユニットに導かれる状態を示す部分側面図である。FIG. 5 is a partial side view showing a state in which infrared rays radiated from a heating source on a top plate are guided to an infrared ray detection unit through an opening in the cooking apparatus shown in FIG. 図1に示す加熱調理装置において、天板上の加熱源から放射される赤外線が開口部を通して赤外線検出ユニットに導かれる状態を示す部分平面図である。FIG. 3 is a partial plan view showing a state in which infrared rays radiated from a heating source on a top plate are guided to an infrared ray detection unit through an opening in the cooking apparatus shown in FIG. 図2に示す赤外線検出ユニットを分解して上方斜めから視た分解斜視図である。FIG. 5 is an exploded perspective view of the infrared detection unit shown in FIG. 2 disassembled and viewed from above. 図2に示す赤外線検出ユニットを分解して下方斜めから視た分解斜視図である。FIG. 5 is an exploded perspective view of the infrared detection unit shown in FIG. 2 disassembled and viewed from below. 図2に示す赤外線検出ユニットのハウジングを測温用受光センサを通る横面で切断して部分的に示した斜視断面図である。It is a perspective cross-sectional view partially shown by cutting the housing of the infrared ray detection unit shown in FIG. 2 on the side surface passing through the temperature measuring light receiving sensor. 図2に示す赤外線検出ユニットのハウジングを判定用受光センサを通る縦面で切断して部分的に示した斜視断面図である。It is a perspective cross-sectional view partially shown by cutting the housing of the infrared ray detection unit shown in FIG. 2 in the vertical plane passing through the light receiving sensor for judgment. 図2に示す赤外線検出ユニットのハウジングボデーを分解して下方斜めから視た分解斜視図である。It is an exploded perspective view which disassembled the housing body of the infrared ray detection unit shown in FIG. 2 and viewed from the lower oblique side. 図2に示す赤外線検出ユニットにおいて、被加熱物から放射される赤外線が、開口部、透光窓、測温用光学要素(第1光学要素、第2光学要素)を経て、測温用受光センサ(第1受光素子、第2受光素子)に導かれる状態を示す斜視図である。In the infrared detection unit shown in FIG. 2, infrared rays radiated from an object to be heated pass through an opening, a light-transmitting window, and an optical element for temperature measurement (first optical element, second optical element), and a light receiving sensor for temperature measurement. It is a perspective view which shows the state which is guided to (the 1st light receiving element, the 2nd light receiving element). 図2に示す赤外線検出ユニットにおいて、加熱源から放射される赤外線が、開口部、透光窓、判定用光学要素(第1反射ミラー)を経て、判定用受光センサに導かれる状態を示す斜視図である。In the infrared detection unit shown in FIG. 2, a perspective view showing a state in which infrared rays radiated from a heating source are guided to a light receiving sensor for judgment through an opening, a translucent window, and an optical element for judgment (first reflection mirror). Is. 図2に示す赤外線検出ユニットにおいて、赤外光源から照射される赤外線が、透光窓、判定用光学要素(第2反射ミラー)を経て、判定用受光センサに導かれる状態を示す斜視図である。In the infrared detection unit shown in FIG. 2, it is a perspective view showing a state in which infrared rays emitted from an infrared light source are guided to a light receiving sensor for judgment through a transparent window and an optical element for judgment (second reflection mirror). .. 図12に示す赤外線、図13に示す赤外線、図14に示す赤外線を一緒に表示した状態を示す斜視図である。It is a perspective view which shows the state which showed the infrared ray shown in FIG. 12, the infrared ray shown in FIG. 13, and the infrared ray shown in FIG. 14 together. 図15に示す状態を他の角度から視た斜視図である。It is a perspective view which looked at the state shown in FIG. 15 from another angle. 本発明に係る赤外線検出ユニットに含まれる回路基板のシステムを示すブロック図である。It is a block diagram which shows the system of the circuit board included in the infrared ray detection unit which concerns on this invention.

以下、本発明の実施形態について、添付図面を参照しつつ説明する。
一実施形態に係る加熱調理装置は、図1に示すように、開口部1aを画定する天板1、天板1により塞がれた筐体2、天板1の上面に配置され鍋等の被測定物Wを載置できる五徳3、ガスを燃焼させる加熱源としてのガスバーナ4、天板1の下方において筐体2内に配置される赤外線検出ユニットUを備えている。
さらに、加熱調理装置は、ガスバーナ4に燃料ガスと空気を混合して供給する供給管、供給管の上流側に設けられたガスノズル、ガスノズルに供給される燃料ガスの流量を調整する調整弁、調整弁を制御してガスバーナ4の燃焼量を調整する燃焼制御回路、種々の情報を表示及び報知する表示報知回路を備えている。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
As shown in FIG. 1, the cooking apparatus according to one embodiment includes a top plate 1 that defines an opening 1a, a housing 2 that is closed by the top plate 1, and a pot or the like that is arranged on the upper surface of the top plate 1. It includes a trivet 3 on which the object W to be measured can be placed, a gas burner 4 as a heating source for burning gas, and an infrared detection unit U arranged in a housing 2 below the top plate 1.
Further, the cooking apparatus includes a supply pipe that mixes and supplies fuel gas and air to the gas burner 4, a gas nozzle provided on the upstream side of the supply pipe, an adjustment valve that adjusts the flow rate of the fuel gas supplied to the gas nozzle, and adjustment. It is provided with a combustion control circuit that controls a valve to adjust the combustion amount of the gas burner 4, and a display notification circuit that displays and notifies various information.

天板1は、ステンレス等の金属材料により形成され、開口部1aは、天板1を円形状に打ち抜いて貫通させることにより形成されている。
ガスバーナ4は、ブンゼン燃焼式の外炎バーナであり、環状外向きに配列された複数の炎口から火炎4a(図5を参照)を噴出するようになっている。
The top plate 1 is formed of a metal material such as stainless steel, and the opening 1a is formed by punching the top plate 1 into a circular shape and penetrating it.
The gas burner 4 is a Bunzen combustion type external flame burner, and flames 4a (see FIG. 5) are ejected from a plurality of flame ports arranged outward in a ring shape.

赤外線検出ユニットUは、図2、図7、図8に示すように、ハウジングHとしてのハウジングボデー10及びハウジングカバー20、透光窓30、第1受光系40及び第2受光系50を含む測温用受光センサLS、第1光学要素60及び第2光学要素70を含む測温用光学要素LE、判定用受光センサ80、判定用光学要素90、赤外光源100、遮光板110、回路基板120を備えている。
そして、赤外線検出ユニットUは、図3、図4、図12に示すように、被加熱物Wから放射される赤外線強度に基づいて被加熱物Wの温度を測定し、図5、図6、図13に示すように、ガスバーナ4の火炎4aから放射される赤外線強度に基づいて開口部1aの塞がり状態を判定し、図14に示すように、赤外光源100から放射される赤外線強度に基づいて透光窓30の汚れ状態を判定するように機能する。
As shown in FIGS. 2, 7, and 8, the infrared detection unit U includes a housing body 10 and a housing cover 20 as a housing H, a translucent window 30, a first light receiving system 40, and a second light receiving system 50. Temperature light receiving sensor LS, temperature measurement optical element LE including first optical element 60 and second optical element 70, judgment light receiving sensor 80, judgment optical element 90, infrared light source 100, shading plate 110, circuit board 120 It has.
Then, as shown in FIGS. 3, 4, and 12, the infrared detection unit U measures the temperature of the object W to be heated based on the intensity of infrared rays radiated from the object W to be heated, and the infrared detection unit U measures the temperature of the object W to be heated. As shown in FIG. 13, the blocked state of the opening 1a is determined based on the infrared intensity emitted from the flame 4a of the gas burner 4, and as shown in FIG. 14, it is based on the infrared intensity emitted from the infrared light source 100. It functions to determine the dirty state of the translucent window 30.

ここで、赤外線検出ユニットUは、加熱調理装置の筐体2内に固定された状態で、図2に示すように、透過窓30が開口部1aの鉛直下方領域から外れた領域に配置され、透過窓30の中央を通る法線Nが開口部1aに向かうように、透光窓30が開口部1aに方向付けされて傾斜した状態で配置される。
このように、透光窓30が配置されることにより、吹き零れた煮汁や固形物等の異物が開口部1aから筐体2内に入り込んだとしても、異物が透光窓30上に直接落下するのを防止でき、仮に煮汁等が跳ねて透光窓30に付着してもその傾斜した表面に沿って自然に垂れ落ち、透光窓30の表面に固まって留まるのを抑制できる。
Here, in a state where the infrared detection unit U is fixed in the housing 2 of the cooking apparatus, as shown in FIG. 2, the transmission window 30 is arranged in a region outside the vertically lower region of the opening 1a. The translucent window 30 is arranged in an inclined state oriented toward the opening 1a so that the normal line N passing through the center of the transmissive window 30 faces the opening 1a.
By arranging the translucent window 30 in this way, even if foreign matter such as boiled broth or solid matter enters the housing 2 through the opening 1a, the foreign matter falls directly onto the translucent window 30. Even if the broth or the like splashes and adheres to the translucent window 30, it can be prevented from dripping naturally along the inclined surface and solidifying and staying on the surface of the translucent window 30.

ハウジングボデー10は、アルミニウム材料等により形成され、図7ないし図11に示すように、第1ハウジングボデー11、第2ハウジングボデー12により構成されている。
第1ハウジングボデー11は、内壁が黒色塗装され、第1受光系40を固定する多段状の嵌合孔11a、第2受光系50を固定する多段状の嵌合孔11b、第1光学要素60を固定する嵌合孔11c、第2光学要素70を固定する嵌合孔11d、回路基板120を固定するボス部11e、遮光板110を取り付ける凹部11f、接合面11g、カバー接合部11h,11i,11j、筐体2の脚部2aに固定される固定部11kを備えている。
第2ハウジングボデー12は、内壁が黒色塗装され、判定用受光センサ80を固定する多段状の嵌合孔12a、判定用光学要素90を固定するボス部12b、接合面12c、仕切り壁12d、仕切り壁12dに開けられた貫通孔12e、遮光板110を取り付ける凹部12f、カバー接合部12gを備えている。
The housing body 10 is formed of an aluminum material or the like, and is composed of a first housing body 11 and a second housing body 12 as shown in FIGS. 7 to 11.
The inner wall of the first housing body 11 is painted black, and the multi-stage fitting hole 11a for fixing the first light receiving system 40, the multi-stage fitting hole 11b for fixing the second light receiving system 50, and the first optical element 60. Fitting hole 11c for fixing, fitting hole 11d for fixing the second optical element 70, boss portion 11e for fixing the circuit board 120, recess 11f for attaching the light-shielding plate 110, joint surface 11g, cover joint portion 11h, 11i, 11j, a fixing portion 11k fixed to the leg portion 2a of the housing 2 is provided.
The inner wall of the second housing body 12 is painted black, and the multi-stage fitting hole 12a for fixing the judgment light receiving sensor 80, the boss portion 12b for fixing the judgment optical element 90, the joint surface 12c, the partition wall 12d, and the partition It is provided with a through hole 12e formed in the wall 12d, a recess 12f for attaching a light-shielding plate 110, and a cover joint portion 12g.

ここで、第2ハウジングボデー12が、接合面12cを接合面11gに接合させて、第1ハウジングボデー11にネジ等により組み付けられることにより、ハウジングボデー10が形成される。
そして、ハウジングボデー10は、仕切り壁12dを境として、測温用受光センサLS及び測温用光学要素LEが配置される第1領域A1と、判定用受光センサ80及び判定用光学要素90が配置される第2領域A2とを画定している。
また、貫通孔12eは、加熱源としてのガスバーナ4の火炎4aから放射される赤外線IR及び赤外光源100から放射される赤外線IRを第1領域A1から第2領A2域内の判定用光学要素90に導くように形成されている。
Here, the housing body 10 is formed by joining the joint surface 12c to the joint surface 11g and assembling the second housing body 12 to the first housing body 11 with screws or the like.
The housing body 10 has a first region A1 in which the temperature measuring light receiving sensor LS and the temperature measuring optical element LE are arranged, and the determination light receiving sensor 80 and the determination optical element 90 are arranged with the partition wall 12d as a boundary. It defines the second region A2 to be formed.
Further, the through hole 12e is an optical for determining the infrared IR 3 radiated from the flame 4a of the gas burner 4 as a heating source and the infrared IR 4 radiated from the infrared light source 100 in the first region A1 to the second region A2. It is formed to lead to element 90.

このように、ハウジングボデー10が、第1ハウジングボデー11と第2ハウジングボデー12の二分割構造をなすため、機械加工が容易であり、又、種々の部品の組付けも容易に行うことができる。
また、仕切り壁12dを設けて、測温用受光センサLS及び測温用光学要素LEが配置される第1領域A1と判定用受光センサ80及び判定用光学要素90が配置される第2領域A2とを区分けしたことにより、第1受光素子41及び第2受光素子51に入射する赤外線IR,IRと受光素子81に入射する赤外線IR,IRとの相互の干渉を確実に防止することができる。
As described above, since the housing body 10 has a two-divided structure of the first housing body 11 and the second housing body 12, machining is easy and various parts can be easily assembled. ..
Further, a partition wall 12d is provided, and a first region A1 in which the temperature measuring light receiving sensor LS and the temperature measuring optical element LE are arranged and a second region A2 in which the determination light receiving sensor 80 and the determination optical element 90 are arranged. By separating the above, the infrared IRs 1 and IR 2 incident on the first light receiving element 41 and the second light receiving element 51 and the infrared IRs 3 and IR 4 incident on the light receiving element 81 are surely prevented from interfering with each other. be able to.

ハウジングカバー20は、図7及び図8に示すように、第1ハウジングカバー21、第2ハウジングカバー22、第3ハウジングカバー23、第4ハウジングカバー24により構成されている。 As shown in FIGS. 7 and 8, the housing cover 20 is composed of a first housing cover 21, a second housing cover 22, a third housing cover 23, and a fourth housing cover 24.

第1ハウジングカバー21は、アルミニウム材料等により形成されて内壁が赤外線吸収加工され、例えば黒色塗装され、透光窓30を固定する矩形の縁部21a、赤外光線100を固定する固定部21b、第1ハウジングボデー11のカバー接合部11hに接合される接合面21cを備えている。
そして、第1ハウジングカバー21は、透光窓30が接着剤等により縁部21aに固着され、赤外光源100が固定部21bに固定された状態で、接合面21cがカバー接合部11hに接合され、第1領域A1を覆うように第1ハウジングボデー11にネジ等により組み付けられ、透光窓30の領域を除いて外部から第1領域A1内へ光が入り込むのを防止する。
The first housing cover 21 is formed of an aluminum material or the like, and its inner wall is infrared-absorbed, for example, painted black, and has a rectangular edge 21a for fixing the translucent window 30, and a fixing portion 21b for fixing the infrared ray 100. A joint surface 21c to be joined to the cover joint portion 11h of the first housing body 11 is provided.
Then, in the first housing cover 21, the joint surface 21c is joined to the cover joint portion 11h in a state where the translucent window 30 is fixed to the edge portion 21a by an adhesive or the like and the infrared light source 100 is fixed to the fixed portion 21b. Then, it is assembled to the first housing body 11 with screws or the like so as to cover the first region A1 to prevent light from entering the first region A1 from the outside except for the region of the translucent window 30.

第2ハウジングカバー22は、ポリアセタール等の樹脂材料により形成されて内壁が赤外線吸収加工され、例えば黒色塗装され、接合面22aを備えている。
そして、第2ハウジングカバー22は、判定用受光センサ80及び判定用光学要素90が組み付けられた状態で、接合面22aがカバー接合部12gに接合され、第2領域A2を覆うように第2ハウジングボデー12にネジ等により組み付けられ、外部から第2領域A2内へ光が入り込むのを防止する。
The second housing cover 22 is formed of a resin material such as polyacetal, and its inner wall is subjected to infrared absorption processing, is painted black, for example, and has a joint surface 22a.
Then, in the second housing cover 22, the joint surface 22a is joined to the cover joint portion 12g in a state where the judgment light receiving sensor 80 and the judgment optical element 90 are assembled, and the second housing covers the second region A2. It is attached to the body 12 with screws or the like to prevent light from entering the second region A2 from the outside.

第3ハウジングカバー23は、アルミニウム材料等により形成されて内壁が赤外線吸収加工され、例えば黒色塗装され、接合面23aを備えている。
そして、第3ハウジングカバー23は、第1光学要素60及び第2光学要素70が組み付けられた状態で、接合面23aがカバー接合部11iに接合されて第1ハウジングボデー11にネジ等により組み付けられ、外部からハウジングH内へ光が入り込むのを防止する。
The third housing cover 23 is formed of an aluminum material or the like, and its inner wall is subjected to infrared absorption processing, is painted black, for example, and has a joint surface 23a.
Then, in the third housing cover 23, with the first optical element 60 and the second optical element 70 assembled, the joint surface 23a is joined to the cover joint portion 11i and attached to the first housing body 11 with screws or the like. , Prevents light from entering the housing H from the outside.

第4ハウジングカバー24は、ポリアセタール等の樹脂材料により形成され、接合面24aを備えている。
そして、第4ハウジングカバー24は、第1受光系40及び第2受光系50並びに回路基板120が組み付けられた状態で、接合面24aがカバー接合部11jに接合されて第1ハウジングボデー11にネジ等により組み付けられ、内部の部品を覆って保護する。
The fourth housing cover 24 is formed of a resin material such as polyacetal and has a joint surface 24a.
Then, in the fourth housing cover 24, with the first light receiving system 40, the second light receiving system 50, and the circuit board 120 assembled, the joint surface 24a is joined to the cover joint portion 11j and screwed to the first housing body 11. It is assembled by such means as covering and protecting the internal parts.

透光窓30は、赤外光を透過させるシリコン等の赤外線透過材料を用いて、図2及び図7に示すように、略矩形の平板状に形成されている。
ここで、赤外線透過材料としては、被加熱物Wから放射される第1波長領域λ1及び第2波長領域λ2の赤外線、ガスバーナ4の火炎4a及び赤外光源100から放射される第3波長領域λ3の赤外線を少なくとも透過させる材料が適宜選択される。
そして、透過窓30は、外縁領域が縁部21aに嵌め込まれて、接着剤等により、第1ハウジングカバー21に固定されている。
The translucent window 30 is formed in a substantially rectangular flat plate shape as shown in FIGS. 2 and 7 by using an infrared transmissive material such as silicon that transmits infrared light.
Here, as the infrared transmitting material, the infrared rays in the first wavelength region λ1 and the second wavelength region λ2 radiated from the object W to be heated, the flame 4a of the gas burner 4 and the third wavelength region λ3 radiated from the infrared light source 100 A material that transmits at least the infrared rays of the above is appropriately selected.
The outer edge region of the transmission window 30 is fitted into the edge portion 21a and fixed to the first housing cover 21 with an adhesive or the like.

第1受光系40は、測温用受光センサLSの一部を構成するものであり、図9に示すように、第1受光素子41、第1フィルタ42、第1絞り部材43、第1口径部材44を備えている。
第1受光素子41は、例えばフォトダイオードやサーモパイル等であり、受光する赤外線の強度に応じた電気信号(電圧)を出力する。
第1フィルタ42は、第1受光素子41の上流側に配置され、被加熱物Wから放射される赤外線のうち第1波長領域λ1の赤外線を通すバンドパスフィルタである。
第1絞り部材43は、第1フィルタ42の上流側に配置され、赤外線を通すピンホールを備えている。
第1口径部材44は、第1絞り部材43の上流側に配置され、第1光学要素60により反射された赤外線のうち光軸L12に近い領域の赤外線を通すべく所定径の円形孔を備えている。
The first light receiving system 40 constitutes a part of the temperature measuring light receiving sensor LS, and as shown in FIG. 9, the first light receiving element 41, the first filter 42, the first diaphragm member 43, and the first aperture. It includes a member 44.
The first light receiving element 41 is, for example, a photodiode, a thermopile, or the like, and outputs an electric signal (voltage) according to the intensity of the infrared rays to be received.
The first filter 42 is a bandpass filter arranged on the upstream side of the first light receiving element 41 and passing infrared rays in the first wavelength region λ1 among the infrared rays radiated from the object to be heated W.
The first diaphragm member 43 is arranged on the upstream side of the first filter 42 and has a pinhole for passing infrared rays.
The first ring member 44 is disposed upstream of the first diaphragm member 43, a circular hole of a predetermined size to pass infrared region closer to the optical axis L 12 of the infrared rays reflected by the first optical element 60 ing.

第2受光系50は、測温用受光センサLSの一部を構成するものであり、図9に示すように、第2受光素子51、第2フィルタ52、第2絞り部材53、第2口径部材54を備えている。
第2受光素子51は、例えばフォトダイオードやサーモパイル等であり、受光する赤外線の強度に応じた電気信号(電圧)を出力する。
第2フィルタ52は、第2受光素子51の上流側に配置され、被加熱物Wから放射される赤外線のうち第1波長領域λ1とは異なる第2波長領域λ2の赤外線を通すバンドパスフィルタである。
第2絞り部材53は、第2フィルタ52の上流側に配置され、赤外線を通すピンホールを備えている。
第2口径部材54は、第2絞り部材53の上流側に配置され、第2光学要素70により反射された赤外線のうち光軸L22に近い領域の赤外線を通すべく所定径の円形孔を備えている。
The second light receiving system 50 constitutes a part of the temperature measuring light receiving sensor LS, and as shown in FIG. 9, the second light receiving element 51, the second filter 52, the second diaphragm member 53, and the second aperture. It includes a member 54.
The second light receiving element 51 is, for example, a photodiode, a thermopile, or the like, and outputs an electric signal (voltage) according to the intensity of the infrared rays to be received.
The second filter 52 is a bandpass filter arranged on the upstream side of the second light receiving element 51 and passing infrared rays in a second wavelength region λ2 different from the first wavelength region λ1 among the infrared rays radiated from the object W to be heated. is there.
The second diaphragm member 53 is arranged on the upstream side of the second filter 52 and has a pinhole for passing infrared rays.
The second aperture member 54 is arranged on the upstream side of the second diaphragm member 53, and includes a circular hole having a predetermined diameter so as to allow infrared rays in a region close to the optical axis L 22 of the infrared rays reflected by the second optical element 70 to pass through. ing.

第1光学要素60は、測温用光学要素LEの一部を構成する反射ミラーであり、ポリカーボネート等の樹脂材料を用いて、図9及び図10に示すように、一端側が塞がれた筒状に形成され、一端側の表面においてアルミ蒸着された反射面61を備えている。
反射面61は、図9及び図12に示すように、開口部1aの近傍に第1焦点f11及び第1フィルタ42の近傍に第2焦点f12を有する楕円を第1焦点f11及び第2焦点f12を通る軸線S1回りに回転させて画定される回転楕円面の一部をなす。
The first optical element 60 is a reflection mirror that forms a part of the temperature measuring optical element LE, and is a cylinder whose one end side is closed by using a resin material such as polycarbonate, as shown in FIGS. 9 and 10. The reflective surface 61 is formed in a shape and has aluminum vapor deposition on the surface on one end side.
As shown in FIGS. 9 and 12, the reflecting surface 61 has an ellipse having a first focal point f 11 in the vicinity of the opening 1a and a second focal point f 12 in the vicinity of the first filter 42, and the first focal point f 11 and the second. rotate the axis line S1 around through the bifocal f 12 forming part of the spheroid defined by.

そして、第1光学要素60は、図12に示すように、被加熱物Wの底領域W1から放射されて開口部1a及び透光窓30を通過する赤外線IRを光軸L11,L12を中心軸として、第1受光系40に導くように機能する。
このように、反射面61が回転楕円面の一部として形成されているため、赤外線IRを効果的に集光させて第1受光系40に導くことができる。
The first optical element 60, as shown in FIG. 12, the optical axis L 11 of the infrared IR 1 passing through the openings 1a and transparent window 30 is emitted from the bottom area W1 of the heated object W, L 12 Functions as a central axis to lead to the first light receiving system 40.
Since the reflecting surface 61 is formed as a part of the rotating ellipsoidal surface in this way, the infrared IR 1 can be effectively focused and guided to the first light receiving system 40.

第2光学要素70は、測温用光学要素LEの一部を構成する反射ミラーであり、ポリカーボネート等の樹脂材料を用いて、図9及び図10に示すように、一端側が塞がれた筒状に形成され、一端側の表面においてアルミ蒸着された反射面71を備えている。
反射面71は、図9及び図12に示すように、開口部1aの近傍に第1焦点f21及び第2フィルタ52の近傍に第2焦点f22を有する楕円を第1焦点f21及び第2焦点f22を通る軸線S2回りに回転させて画定される回転楕円面の一部をなす。
The second optical element 70 is a reflection mirror that forms a part of the temperature measuring optical element LE, and is a cylinder whose one end side is closed by using a resin material such as polycarbonate, as shown in FIGS. 9 and 10. It is formed in a shape and has a reflective surface 71 having aluminum vapor deposition on the surface on one end side.
The reflecting surface 71, as shown in FIGS. 9 and 12, near the the ellipse having a second focus f 22 in the vicinity of the first focal point f 21 and the second filter 52 and the first focal point f 21 the openings 1a rotate the axis line S2 around through the bifocal f 22 forming part of the spheroid defined by.

そして、第2光学要素70は、図12に示すように、被加熱物Wの底領域W2から放射されて開口部1a及び透光窓30を通過する赤外線IRを光軸L21,L22を中心軸として、第2受光系50に導くように機能する。
このように、反射面71が回転楕円面の一部として形成されているため、赤外線IRを効果的に集光させて第2受光系50に導くことができる。
Then, as shown in FIG. 12, the second optical element 70 transmits the infrared IR 2 radiated from the bottom region W2 of the object to be heated W and passes through the opening 1a and the translucent window 30, with the optical axes L 21 and L 22. Functions as a central axis to lead to the second light receiving system 50.
Since the reflecting surface 71 is formed as a part of the rotating ellipsoidal surface in this way, the infrared IR 2 can be effectively focused and guided to the second light receiving system 50.

判定用受光センサ80は、図10に示すように、受光素子81、フィルタ82、絞り部材83、口径部材84を備えている。
受光素子81は、例えばフォトダイオードやサーモパイル等であり、受光する赤外線の強度に応じた電気信号(電圧)を出力する。
フィルタ82は、受光素子81の上流側に配置され、加熱源としてのガスバーナ4の火炎4aから放射される赤外線のうち第3波長領域λ3の赤外線及び赤外光源100から放射される赤外線を通すバンドパスフィルタである。
絞り部材83は、フィルタ82の上流側に配置され、赤外線を通すピンホールを備えている。
口径部材84は、絞り部材83の上流側に配置され、判定用光学要素90により反射された赤外線のうち光軸L32及び光軸L42に近い領域の赤外線を通すべく所定径の円形孔を備えている。
As shown in FIG. 10, the determination light receiving sensor 80 includes a light receiving element 81, a filter 82, a diaphragm member 83, and a diameter member 84.
The light receiving element 81 is, for example, a photodiode, a thermopile, or the like, and outputs an electric signal (voltage) according to the intensity of the infrared rays to be received.
The filter 82 is arranged on the upstream side of the light receiving element 81, and is a band through which infrared rays radiated from the third wavelength region λ3 and infrared rays radiated from the infrared light source 100 among the infrared rays radiated from the flame 4a of the gas burner 4 as a heating source. It is a path filter.
The diaphragm member 83 is arranged on the upstream side of the filter 82 and has a pinhole for passing infrared rays.
The aperture member 84 is arranged on the upstream side of the diaphragm member 83, and has a circular hole having a predetermined diameter for passing infrared rays in a region close to the optical axis L 32 and the optical axis L 42 among the infrared rays reflected by the determination optical element 90. I have.

判定用光学要素90は、ポリカーボネート等の樹脂材料を用いて、図10及び図13に示すように、一端側が塞がれた筒状に形成され、一端側の表面においてアルミ蒸着された第1反射面ミラー91及び第2反射ミラー92を備えている。
第1反射ミラー91は、図10及び図13に示すように、火炎4aの近傍に第1焦点f31及びフィルタ82の近傍に第2焦点f32を有する楕円を第1焦点f31及び第2焦点f32を通る軸線S3回りに回転させて画定される回転楕円面の一部をなす反射面として形成されている。
第2反射ミラー92は、図10及び図14に示すように、赤外光源100の近傍に第1焦点f41及びフィルタ82の近傍に焦点f42(=f32)を有する楕円を第1焦点f41及び第2焦点f42を通る軸線S4回りに回転させて画定される回転楕円面の一部をなす反射面として形成されている。
As shown in FIGS. 10 and 13, the determination optical element 90 is formed in a tubular shape with one end closed by using a resin material such as polycarbonate, and the first reflection is aluminum-deposited on the surface of one end. It includes a surface mirror 91 and a second reflection mirror 92.
As shown in FIGS. 10 and 13, the first reflection mirror 91 has an ellipse having a first focus f 31 near the flame 4a and a second focus f 32 near the filter 82, and the first focus f 31 and the second. It is formed as a reflecting surface forming a part of the spheroid defined by rotating the axis line S3 around through the focus f 32.
As shown in FIGS. 10 and 14, the second reflection mirror 92 has an ellipse having a first focus f 41 in the vicinity of the infrared light source 100 and a focus f 42 (= f 32 ) in the vicinity of the filter 82 as the first focus. It is formed as a reflecting surface that forms a part of a rotating elliptical surface defined by rotating around the axis S4 passing through f 41 and the second focal point f 42 .

そして、判定用光学要素90は、図13に示すように、火炎4aから放射されて開口部1a及び透光窓30を通過する赤外線IRを光軸L31,L32を中心軸として、判定用受光センサ80に導くと共に、図14に示すように、赤外光源100から放射されて透光窓30を通過する赤外線IRを光軸L41,L42を中心軸として、判定用受光センサ80に導くように機能する。
このように、第1反射ミラー91及び第2反射ミラー92が、それぞれ回転楕円面の一部として形成されているため、赤外線IR,IRを効果的に集光させて判定用受光センサ80に導くことができる。
また、第1反射ミラー91及び第2反射ミラー92は、単一部材として一体的に形成されているため、別々に形成される場合に比べて、部品点数を削減でき、組付け時の光軸合わせ等の調整作業、組付け作業等を簡略化できる。
Then, as shown in FIG. 13, the determination optical element 90 determines the infrared IR 3 that is radiated from the flame 4a and passes through the opening 1a and the translucent window 30 with the optical axes L 31 and L 32 as the central axes. As shown in FIG. 14, the light receiving sensor for determination is guided to the light receiving sensor 80 for determination, and the infrared IR 4 radiated from the infrared light source 100 and passing through the translucent window 30 is centered on the optical axes L 41 and L 42. It works to lead to 80.
In this way, since the first reflection mirror 91 and the second reflection mirror 92 are each formed as a part of the rotating ellipsoidal surface, the infrared rays IR 3 and IR 4 are effectively focused and the light receiving sensor 80 for determination is used. Can lead to.
Further, since the first reflection mirror 91 and the second reflection mirror 92 are integrally formed as a single member, the number of parts can be reduced as compared with the case where they are formed separately, and the optical axis at the time of assembly can be reduced. Adjustment work such as alignment and assembly work can be simplified.

赤外光源100は、火炎4aと同様の第3波長領域λ3の赤外線を放射するフィラメント電球であり、第1ハウジングカバー21の外側の固定部21bに固定されている。
すなわち、赤外光源100は、ハウジングHの外側に固定され、透光窓30を通して、ハウジングH内に赤外線IRを放射するようになっている。
そして、駆動(オン)により、赤外光源100は透光窓30に向けて赤外線IRを放射し、非駆動(オフ)により、赤外光源100は赤外線IRの放射を停止する。
尚、上記の種々の波長領域の赤外線において、第1波長領域λ1としては、例えば3.5μm〜4.2μm、第2波長領域λ2としては、例えば8.0μm〜12.0μm、第3波長領域λ3としては、例えば4.0μm〜5.0μmが採用される。
The infrared light source 100 is a filament light bulb that radiates infrared rays in a third wavelength region λ3 similar to the flame 4a, and is fixed to a fixed portion 21b on the outside of the first housing cover 21.
That is, the infrared light source 100 is fixed to the outside of the housing H and radiates the infrared IR 4 into the housing H through the translucent window 30.
Then, when driven (on), the infrared light source 100 emits infrared IR 4 toward the translucent window 30, and when not driven (off), the infrared light source 100 stops emitting infrared IR 4 .
In the infrared rays in the various wavelength regions described above, the first wavelength region λ1 is, for example, 3.5 μm to 4.2 μm, the second wavelength region λ2 is, for example, 8.0 μm to 12.0 μm, and the third wavelength region. As λ3, for example, 4.0 μm to 5.0 μm is adopted.

遮光板110は、アルミニウム材料等を用いて略矩形状の平板に形成されて壁面が赤外線吸収加工され、例えば黒色塗装され、図7及び図8に示すように、凹部11fに嵌め込まれる凸部111、凹部12fに嵌め込まれる凸部112、切欠き部113を備えている。
そして、遮光板110は、ハウジングボデー10の第1領域A1に配置されて、図12に示すように、第1光学要素60から第1受光系40に向かう赤外線IRと第2光学要素70から第2受光系50に向かう赤外線IRとの相互の干渉を防止するように機能する。
また、遮光板110は、図10及び図14に示すように、切欠き部113を通して、赤外光源100から放射された赤外線IRが第1領域A1から貫通孔12eを経て第2領域A2内の判定用光学要素90(第2反射ミラー92)に導かれるように機能する。
これにより、第1受光素子41と第2受光素子51が、それぞれ赤外光線IR,IRの強度を高精度に検出することができ、又、受光素子81が赤外線IR,IRの強度を高精度に検出することができる。
The light-shielding plate 110 is formed of a substantially rectangular flat plate using an aluminum material or the like, and the wall surface is subjected to infrared absorption processing, is painted black, for example, and is fitted into the concave portion 11f as shown in FIGS. 7 and 8. , A convex portion 112 fitted into the concave portion 12f and a notch portion 113 are provided.
Then, the light-shielding plate 110 is arranged in the first region A1 of the housing body 10, and as shown in FIG. 12, from the infrared IR 1 and the second optical element 70 toward the first light receiving system 40 from the first optical element 60. It functions to prevent mutual interference with the infrared IR 2 directed toward the second light receiving system 50.
Further, in the light-shielding plate 110, as shown in FIGS. 10 and 14, the infrared IR 4 radiated from the infrared light source 100 passes through the notch 113 and enters the second region A2 from the first region A1 through the through hole 12e. It functions so as to be guided by the determination optical element 90 (second reflection mirror 92).
As a result, the first light receiving element 41 and the second light receiving element 51 can detect the intensities of the infrared rays IR 1 and IR 2 with high accuracy, respectively, and the light receiving element 81 has the infrared rays IR 3 and IR 4 . The intensity can be detected with high accuracy.

上記構成において、図10、図12ないし図14に示すように、判定用受光センサ80と判定用光学要素90の間の光軸L32,L42は、測温用受光センサLS(第1受光系40,第2受光系50)と測温用光学要素LE(第1光学要素60,第2光学要素70)の間の光軸L12,L22に対して、伸長方向が略90度だけ捻じれた位置に配置されている。
このように、光軸L32,L42が捻じれた位置に配置されることで、図15及び図16に示すように、光軸L11,L12、光軸L21,L22、光軸L31,L32、光軸L41,L42の各々の光軸が重ならないように配置して赤外線IR,IR,IR,IRの相互の干渉を防止しつつ、部品を集約して配置でき、ハウジングHの小型化、赤外線検出ユニットU全体の小型化を達成することができる。
尚、捻じれの角度は、90度に限るものではなく、その他の角度でもよい。
In the above configuration, as shown in FIGS. 10, 12 to 14, the optical axes L 32 and L 42 between the determination light receiving sensor 80 and the determination optical element 90 are the temperature measuring light receiving sensor LS (first light receiving sensor). The extension direction is only about 90 degrees with respect to the optical axes L 12 and L 22 between the system 40, the second light receiving system 50) and the temperature measuring optical element LE (first optical element 60, second optical element 70). It is placed in a twisted position.
By arranging the optical axes L 32 and L 42 at twisted positions in this way, as shown in FIGS. 15 and 16, the optical axes L 11 , L 12 , the optical axes L 21 , L 22 , and the light The optical axes of the axes L 31 , L 32 , and the optical axes L 41 , and L 42 are arranged so that they do not overlap with each other, and the components are arranged while preventing mutual interference between the infrared IR 1 , IR 2 , IR 3 , and IR 4. It can be arranged collectively, and the housing H can be downsized and the infrared detection unit U as a whole can be downsized.
The twisting angle is not limited to 90 degrees, and may be any other angle.

回路基板120は、第1受光素子41、第2受光素子51、受光素子81、赤外光源100の駆動制御、検出信号の処理、演算処理、判定処理等を行う種々の電子部品及び回路が実装されたものであり、第1ハウジングボデー11のボス部11eにネジ等により固定された状態で、第4ハウジングカバー24により覆われて保護されるようになっている。 The circuit board 120 is mounted with various electronic components and circuits that perform drive control of the first light receiving element 41, the second light receiving element 51, the light receiving element 81, and the infrared light source 100, detection signal processing, arithmetic processing, determination processing, and the like. The first housing body 11 is fixed to the boss portion 11e with a screw or the like, and is covered with the fourth housing cover 24 to be protected.

ここで、回路基板120には、図17に示すように、種々の演算、駆動制御、判定等の処理を司るCPU121、第1受光素子41の駆動回路122及び信号検出回路123、第2受光素子51の駆動回路124及び信号検出回路125、受光素子81の駆動回路126及び信号検出回路127、赤外光源100のオン/オフを制御する駆動回路128、種々の情報を記憶する記憶部129、加熱調理装置の燃焼制御回路等との間で種々の信号の入力及び出力を行うインターフェース回路130を備えている。 Here, as shown in FIG. 17, the circuit board 120 includes a CPU 121 that controls various calculations, drive controls, determinations, and the like, a drive circuit 122 of the first light receiving element 41, a signal detection circuit 123, and a second light receiving element. 51 drive circuit 124 and signal detection circuit 125, light receiving element 81 drive circuit 126 and signal detection circuit 127, drive circuit 128 for controlling on / off of infrared light source 100, storage unit 129 for storing various information, heating It is provided with an interface circuit 130 that inputs and outputs various signals to and from a combustion control circuit of a cooking device.

CPU121は、判定用受光センサ80の出力信号に基づいて、開口部1aの塞がり状態及び透光窓30の汚れ状態を判定する判定部としても機能する。
すなわち、判定部は、加熱源としてのガスバーナ4の火炎4aから放射される赤外線IRを受光した判定用受光センサ80の出力に基づいて開口部1aの塞がり状態を判定し、又、赤外光源100のオン/オフ(赤外線IRの受光の有無)の各状態において判定用受光センサ80が出力する出力信号の差に基づいて透光窓30の汚れ状態を判定する。
The CPU 121 also functions as a determination unit for determining the closed state of the opening 1a and the dirty state of the translucent window 30 based on the output signal of the determination light receiving sensor 80.
That is, the determination unit determines the blocked state of the opening 1a based on the output of the determination light receiving sensor 80 that has received the infrared IR 3 radiated from the flame 4a of the gas burner 4 as a heating source, and also an infrared light source. The dirty state of the translucent window 30 is determined based on the difference in the output signals output by the determination light receiving sensor 80 in each state of 100 on / off (presence or absence of light reception of infrared IR 4 ).

記憶部129には、予め実験等により求められた種々の情報が記憶されている。
例えば、測温用受光センサLS(第1受光素子41、第2受光素子51)の出力信号に基づいて被加熱物Wの温度を算出するために、被加熱物Wからの赤外線の放射を受けて測温用受光センサLSにより出力される第1波長領域λ1に対応する出力値及び第2波長領域λ2に対応する出力値の比と被加熱物Wの温度との関係を示すデータが記憶されている。
また、判定用受光センサ80の出力信号に基づいて開口部1aの塞がり状態を判定するために、開口部1aの塞がり状態の程度に応じてガスバーナ4の火炎4aからの赤外線の放射を受けて判定用受光センサ80により出力される出力値及び出力値に基づいて正常か否か、すなわち、測温を正常に行えるか否かを判定する閾値に関するデータが記憶されている。
さらに、判定用受光センサ80の出力信号に基づいて透光窓30の汚れ状態を判定するために、透光窓30の汚れ状態の程度に応じて赤外光源100からの赤外線の放射を受けて判定用受光センサ80により出力される出力値及び出力値に基づいて正常か否か、すなわち、測温を正常に行えるか否かを判定する閾値に関するデータが記憶されている。
The storage unit 129 stores various information previously obtained by experiments or the like.
For example, in order to calculate the temperature of the object to be heated W based on the output signals of the resistance temperature sensor LS (first light receiving element 41, second light receiving element 51), infrared rays are emitted from the object to be heated W. Data indicating the relationship between the ratio of the output value corresponding to the first wavelength region λ1 and the output value corresponding to the second wavelength region λ2 and the temperature of the object to be heated W output by the resistance temperature sensor LS is stored. ing.
Further, in order to determine the blocked state of the opening 1a based on the output signal of the light receiving sensor 80 for determination, the determination is made by receiving infrared radiation from the flame 4a of the gas burner 4 according to the degree of the blocked state of the opening 1a. Data on a threshold value for determining whether or not the temperature is normal, that is, whether or not the temperature can be measured normally is stored based on the output value output by the light receiving sensor 80 and the output value.
Further, in order to determine the dirty state of the translucent window 30 based on the output signal of the light receiving sensor 80 for determination, infrared rays are radiated from the infrared light source 100 according to the degree of the dirty state of the translucent window 30. Data on a threshold value for determining whether or not the temperature is normal, that is, whether or not the temperature can be measured normally is stored based on the output value output by the determination light receiving sensor 80 and the output value.

次に、上記加熱調理装置における赤外線検出ユニットUの検出動作及び判定動作について説明する。
加熱調理装置において、点火操作が行われると、その動作に連動して又はその後適時に、第1受光素子41、第2受光素子51、及び受光素子81が駆動される。
そして、第1受光素子41及び第2受光素子51は、被加熱物から放射される赤外線IR,IRの強度に応じて信号を出力する。
そして、第1受光素子41及び第2受光素子51の出力信号に基づいて、被加熱物Wの温度が算出される。この測温処理は加熱調理装置の稼働中において持続され、被加熱物Wの加熱状態が監視される。
Next, the detection operation and the determination operation of the infrared detection unit U in the cooking apparatus will be described.
When the ignition operation is performed in the cooking apparatus, the first light receiving element 41, the second light receiving element 51, and the light receiving element 81 are driven in conjunction with the operation or in a timely manner thereafter.
Then, the first light receiving element 41 and the second light receiving element 51 output a signal according to the intensity of the infrared rays IR 1 and IR 2 radiated from the object to be heated.
Then, the temperature of the object to be heated W is calculated based on the output signals of the first light receiving element 41 and the second light receiving element 51. This temperature measurement process is continued during the operation of the cooking apparatus, and the heating state of the object to be heated W is monitored.

また、受光素子81は、ガスバーナ4の火炎4aから放射される赤外線IRの強度に応じて信号Vを出力する。
そして、出力信号Vの値が所定の閾値Vthと比較され、出力信号Vの値が閾値Vth以上であれば、開口部1aは塞がっておらず正常であると判定され、一方、出力信号Vの値が閾値Vthよりも小さいと、開口部1aが塞がった状態にあり異常であると判定される。
この判定処理は、加熱調理装置の稼働中において持続され、開口部1aの塞がり状態が監視される。
Further, the light receiving element 81 outputs a signal V according to the intensity of the infrared IR 3 radiated from the flame 4a of the gas burner 4.
Then, the value of the output signal V is compared with the predetermined threshold value Vth, and if the value of the output signal V is equal to or higher than the threshold value Vth, it is determined that the opening 1a is not blocked and is normal, while the output signal V is determined to be normal. When the value is smaller than the threshold value Vth, the opening 1a is in a closed state and is determined to be abnormal.
This determination process is continued during the operation of the cooking apparatus, and the closed state of the opening 1a is monitored.

そして、赤外線検出ユニットUで得られた測温結果や判定結果は、インターフェース回路130から加熱調理装置の燃焼制御回路や表示報知回路等に出力される。
ここで、測温結果に異常が生じた場合又は開口部1aの塞がり状態の判定結果に異常が生じた場合は、燃料ガスの供給を遮断して燃焼を停止させる制御動作、又は、表示報知回路により適宜異常を知らせる報知動作が行われる。
Then, the temperature measurement result and the determination result obtained by the infrared detection unit U are output from the interface circuit 130 to the combustion control circuit, the display notification circuit, and the like of the cooking device.
Here, if an abnormality occurs in the temperature measurement result or an abnormality occurs in the determination result of the closed state of the opening 1a, a control operation for shutting off the supply of fuel gas to stop combustion, or a display notification circuit A notification operation for notifying an abnormality is performed as appropriate.

一方、加熱調理装置の停止動作が行われると、受光素子81は、赤外光源100が非駆動(オフ)の状態において、加熱調理装置が置かれた雰囲気の自然界から開口部1aを通して放射される赤外線の強度に応じて信号Vを出力する。
続いて、赤外光源100が駆動(オン)され、赤外光源100から透光窓30に向けて赤外線IRが放射される。
そして、受光素子81は、自然界からの赤外線及び赤外光源100からの赤外線強度に応じて信号Vを出力する。
その後、赤外光源100が非駆動とされる。
On the other hand, when the heating / cooking apparatus is stopped, the light receiving element 81 is radiated from the natural world of the atmosphere in which the cooking apparatus is placed through the opening 1a in a state where the infrared light source 100 is not driven (off). and outputs a signal V 1 depending on the intensity of the infrared ray.
Subsequently, the infrared light source 100 is driven (on), and the infrared IR 4 is emitted from the infrared light source 100 toward the translucent window 30.
Then, the light receiving element 81 outputs the signal V 2 according to the infrared rays from the natural world and the infrared intensity from the infrared light source 100.
After that, the infrared light source 100 is not driven.

そして、出力信号の差V−Vの値が所定の閾値Vthと比較され、出力信号の差V−Vの値が閾値Vth以上であれば、透光窓30は汚れておらず正常であると判定され、一方、出力信号の差V−Vの値が閾値Vthよりも小さいと、透光窓30は汚れた状態にあり異常であると判定される。
その後、異常と判定された場合は、その情報がインターフェース回路130から加熱調理装置の表示報知回路等に出力され、表示報知回路により異常を知らせる報知動作が行われる。
尚、上記検出動作及び判定動作のシーケンスは、一例であって、これに限られるものではない。
Then, the value of the difference V 2 -V 1 of the output signal is compared with a predetermined threshold value Vth, if the value of the difference V 2 -V 1 of the output signal is threshold Vth or more, light-transmissive window 30 is not dirty it is determined to be normal, whereas the value of the difference V 2 -V 1 of the output signal when less than the threshold value Vth, it is determined that the transparent window 30 is abnormal in a state where dirty.
After that, when it is determined that there is an abnormality, the information is output from the interface circuit 130 to the display notification circuit of the cooking apparatus or the like, and the display notification circuit performs a notification operation to notify the abnormality.
The sequence of the detection operation and the determination operation is an example, and is not limited to this.

以上述べたように、上記構成をなす赤外線検出ユニットUによれば、一つの判定用受光センサ80により、加熱源(ガスバーナ4)から放射される赤外線IRと、赤外光源100から放射される赤外線IRを検出するため、二つの受光センサを設ける場合に比べて、部品点数の削減、低コスト化、組付け時の光軸合わせ作業の簡素化等を達成できる。
また、一つのハウジングHに対して、測温用受光センサLS及び測温用光学要素LEと、判定用受光センサ80及び判定用光学要素90とが組み込まれているため、別々にユニット化される場合に比べて、筐体2内における配置スペースを狭くでき、加熱調理装置を小型化できる。
さらに、一つの赤外線検出ユニットUを筐体2内に取り付けるだけで、フェールセーフのための測温機能と判定機能を得ることができるため、取付け作業及び取付け時の光軸合わせ作業等も簡素化できる。
As described above, according to the infrared detection unit U having the above configuration, the infrared IR 3 radiated from the heating source (gas burner 4) and the infrared light source 100 are radiated by one determination light receiving sensor 80. Since the infrared IR 4 is detected, the number of parts can be reduced, the cost can be reduced, and the optical axis alignment work at the time of assembly can be simplified as compared with the case where two light receiving sensors are provided.
Further, since the temperature measuring light receiving sensor LS and the temperature measuring optical element LE and the judgment light receiving sensor 80 and the judgment optical element 90 are incorporated in one housing H, they are unitized separately. Compared with the case, the arrangement space in the housing 2 can be narrowed, and the cooking apparatus can be miniaturized.
Further, since the temperature measurement function and the determination function for fail-safe can be obtained only by mounting one infrared detection unit U inside the housing 2, the mounting work and the optical axis alignment work at the time of mounting are simplified. it can.

上記実施形態においては、ハウジングHがハウジングボデー10及びハウジングカバー20により構成される場合を示したが、これに限定されるものではなく、機械加工性及び組付け性を確保できる限りにおいて、一箇所だけカバーを設けたようなハウジングを採用してもよい。
上記実施形態においては、ハウジングボデーとして、第1ハウジングボデー11及び第2ハウジングボデー12の二分割構造をなすハウジングボデー10を示したが、これに限定されるものではなく、機械加工性及び組付け性を確保できる限りにおいて、一体型のハウジングボデーを採用してもよい。
In the above embodiment, the case where the housing H is composed of the housing body 10 and the housing cover 20 is shown, but the present invention is not limited to this, and one place is provided as long as machinability and assembling property can be ensured. You may adopt the housing which provided only the cover.
In the above embodiment, as the housing body, the housing body 10 having a two-divided structure of the first housing body 11 and the second housing body 12 is shown, but the present invention is not limited to this, and the machinability and assembly are not limited thereto. An integrated housing body may be adopted as long as the property can be ensured.

上記実施形態においては、判定用光学要素として、第1反射ミラー91及び第2反射ミラー92が一体的に形成された判定用光学要素90を示したが、これに限定されるものではなく、別々に形成された二つの反射ミラーからなる判定用光学要素を採用してもよい。
上記実施形態においては、第1反射ミラー91、第2反射ミラー92として、回転楕円面の一部をなす反射面を有するもの示したが、これに限定されるものではなく、加熱源から放射される赤外線及び赤外光源から放射される赤外線を判定用受光センサ80に導くものであれば、その他の形態をなす光学要素を採用してもよい。
In the above embodiment, as the determination optical element, the determination optical element 90 in which the first reflection mirror 91 and the second reflection mirror 92 are integrally formed is shown, but the present invention is not limited to this, and the determination optical elements 90 are separately formed. A determination optical element composed of two reflection mirrors formed in may be adopted.
In the above embodiment, the first reflection mirror 91 and the second reflection mirror 92 are shown to have a reflection surface forming a part of the rotating elliptical surface, but the present invention is not limited to this, and is emitted from a heating source. An optical element having another form may be adopted as long as it guides the infrared rays emitted from the infrared rays and the infrared rays emitted from the infrared light source to the light receiving sensor 80 for determination.

上記実施形態においては、測温用光学要素LEとして、第1光学要素60及び第2光学要素70を採用したが、これに限定されるものではなく、第1受光系40及び第2受光系50に赤外線を導く一つの光学要素を採用してもよい。
上記実施形態においては、測温用受光センサLSとして、第1受光系40及び第2受光系50を採用した場合を示したが、これに限定されるものではなく、一つの受光素子を採用し、二つのバンドバスフィルタがレボルバー機構の如く選択的に入れ替えて配置されるようにした構成を採用してもよい。
上記実施形態においては、加熱源として、ガスバーナ4を示したが、これに限定されるものではなく、電気加熱式のヒータ等を採用してもよい。
In the above embodiment, the first optical element 60 and the second optical element 70 are adopted as the temperature measuring optical element LE, but the present invention is not limited thereto, and the first light receiving system 40 and the second light receiving system 50 are used. One optical element that guides infrared rays may be adopted.
In the above embodiment, the case where the first light receiving system 40 and the second light receiving system 50 are adopted as the temperature measuring light receiving sensor LS is shown, but the present invention is not limited to this, and one light receiving element is adopted. , The configuration in which the two bandpass filters are selectively interchanged and arranged like the revolver mechanism may be adopted.
In the above embodiment, the gas burner 4 is shown as the heating source, but the present invention is not limited to this, and an electric heating type heater or the like may be adopted.

以上述べたように、本発明の赤外線検出ユニット及び加熱調理装置によれば、組付け作業の簡素化、部品の集約化、小型化等を達成しつつ、赤外線による検出が正常に行える状態か否かを判定することができるため、ガスコンロ、電気コンロ等の加熱調理装置に利用できるのは勿論のこと、その他の分野においても有用である。 As described above, according to the infrared detection unit and the cooking apparatus of the present invention, whether or not the infrared detection can be performed normally while achieving simplification of assembly work, consolidation of parts, miniaturization, and the like. Since it can be determined, it can be used for cooking equipment such as gas stoves and electric stoves, and is also useful in other fields.

1 天板
1a 開口部
4 ガスバーナ(加熱源)
W 被加熱物
H ハウジング
10 ハウジングボデー(ハウジング)
20 ハウジングカバー(ハウジング)
A1 第1領域
A2 第2領域
30 透光窓
N 法線
LS 測温用受光センサ
41 第1受光素子
51 第2受光素子
LE 測温用光学要素
60 第1光学要素
70 第2光学要素
80 判定用受光センサ
90 判定用光学要素
91 第1反射ミラー
92 第2反射ミラー
32,L42 光軸
12,L22 光軸
100 赤外光源
110 遮光板
120 回路基板
121 CPU(判定部)
1 Top plate 1a Opening 4 Gas burner (heating source)
W Heated object H Housing 10 Housing body (housing)
20 Housing cover (housing)
A1 1st area A2 2nd area 30 Translucent window N Normal LS Temperature measurement light receiving sensor 41 1st light receiving element 51 2nd light receiving element LE Temperature measurement optical element 60 1st optical element 70 2nd optical element 80 For judgment Light receiving sensor 90 Judgment optical element 91 1st reflection mirror 92 2nd reflection mirror L 32 , L 42 Optical axis L 12 , L 22 Optical axis 100 Infrared light source 110 Light shielding plate 120 Circuit board 121 CPU (judgment unit)

Claims (16)

所定の開口部に方向付けされる透光窓を有するハウジングと、
前記ハウジングの内側に固定され、前記開口部の塞がり状態及び前記透光窓の汚れ状態を判定するための判定用受光センサと、
前記ハウジングの外側に固定され、前記透光窓に向けて赤外線を放射する赤外光源と、
前記ハウジングの内側に固定され、加熱源から放射されて前記開口部及び前記透光窓を通過する赤外線を前記判定用受光センサに導くと共に、前記赤外光源から放射されて前記透光窓を通過する赤外線を前記判定用受光センサに導く判定用光学要素と、
を含む、赤外線検出ユニット。
A housing with a translucent window oriented into a given opening,
A light receiving sensor for determination, which is fixed to the inside of the housing and for determining the closed state of the opening and the dirty state of the translucent window.
An infrared light source fixed to the outside of the housing and radiating infrared rays toward the translucent window,
Infrared rays fixed inside the housing and radiated from the heating source and passed through the opening and the translucent window are guided to the determination light receiving sensor, and are radiated from the infrared light source and passed through the translucent window. A judgment optical element that guides infrared rays to the judgment light receiving sensor,
Infrared detection unit, including.
前記判定用光学要素は、前記加熱源から放射される赤外線を前記判定用受光センサに導く第1反射ミラーと、前記赤外光源から放射される赤外線を前記判定用受光センサに導く第2反射ミラーと、を含む、
ことを特徴とする請求項1に記載の赤外線検出ユニット。
The determination optical element includes a first reflection mirror that guides infrared rays radiated from the heating source to the determination light receiving sensor, and a second reflection mirror that guides infrared rays radiated from the infrared light source to the determination light receiving sensor. And, including
The infrared detection unit according to claim 1.
前記第1反射ミラー及び前記第2反射ミラーは、単一部材として一体的に形成されている、
ことを特徴とする請求項2に記載の赤外線検出ユニット。
The first reflection mirror and the second reflection mirror are integrally formed as a single member.
The infrared detection unit according to claim 2.
前記ハウジングの内側に固定され、前記加熱源により加熱される被加熱物の温度を測定するための測温用受光センサと、
前記ハウジングの内側に固定され、前記被加熱物から放射されて前記開口部及び前記透光窓を通過する赤外線を前記測温用受光センサに導く測温用光学要素と、をさらに含む、
ことを特徴とする請求項1又は2に記載の赤外線検出ユニット。
A temperature-measuring light-receiving sensor fixed to the inside of the housing and for measuring the temperature of the object to be heated by the heating source.
Further includes a temperature measuring optical element fixed inside the housing and guiding infrared rays radiated from the object to be heated and passing through the opening and the translucent window to the temperature measuring light receiving sensor.
The infrared detection unit according to claim 1 or 2.
前記判定用受光センサと前記判定用光学要素の間の光軸は、前記測温用受光センサと前記測温用光学要素の間の光軸に対して、捻じれた位置に配置されている、
ことを特徴とする請求項4に記載の赤外線検出ユニット。
The optical axis between the determination light receiving sensor and the determination optical element is arranged at a twisted position with respect to the optical axis between the temperature measurement light receiving sensor and the temperature measurement optical element.
The infrared detection unit according to claim 4.
前記ハウジングは、
前記測温用受光センサ及び前記測温用光学要素が配置される第1領域と前記判定用受光センサ及び前記判定用光学要素が配置される第2領域とを仕切る仕切り壁と、
前記加熱源から放射される赤外線及び前記赤外光源から放射される赤外線を前記第1領域から前記第2領域内の前記判定用光学要素に導くべく、前記仕切り壁に開けられた貫通孔と、を含む、
ことを特徴とする請求項4又は5に記載の赤外線検出ユニット。
The housing is
A partition wall that separates the first region where the temperature measuring light receiving sensor and the temperature measuring optical element are arranged and the second region where the determination light receiving sensor and the determination optical element are arranged.
A through hole formed in the partition wall so as to guide infrared rays radiated from the heating source and infrared rays radiated from the infrared light source from the first region to the determination optical element in the second region. including,
The infrared detection unit according to claim 4 or 5.
前記測温用受光センサは、前記被加熱物から放射される第1波長領域の赤外線を受光する第1受光素子と、前記被加熱物から放射される第2波長領域の赤外線を受光する第2受光素子と、を含む、
ことを特徴とする請求項4ないし6いずれか一つに記載の赤外線検出ユニット。
The resistance temperature sensor has a first light receiving element that receives infrared rays in a first wavelength region radiated from the object to be heated and a second light receiving element that receives infrared rays in a second wavelength region radiated from the object to be heated. Including the light receiving element,
The infrared detection unit according to any one of claims 4 to 6, wherein the infrared detection unit is characterized.
前記測温用光学要素は、前記第1受光素子に対応する第1光学要素と、前記第2受光素子に対応する第2光学要素と、を含む、
ことを特徴とする請求項7に記載の赤外線検出ユニット。
The temperature measuring optical element includes a first optical element corresponding to the first light receiving element and a second optical element corresponding to the second light receiving element.
The infrared detection unit according to claim 7.
前記第1光学要素から前記第1受光素子に向かう赤外線と前記第2光学要素から前記第2受光素子に向かう赤外線との相互の干渉を防止するべく、前記ハウジングの内側に配置された遮光板をさらに含む、
ことを特徴とする請求項8に記載の赤外線検出ユニット。
A light-shielding plate arranged inside the housing is provided in order to prevent mutual interference between the infrared rays from the first optical element toward the first light receiving element and the infrared rays from the second optical element toward the second light receiving element. Including more,
The infrared detection unit according to claim 8.
前記ハウジングは、前記判定用受光センサ、前記判定用光学要素、前記測温用受光センサ、及び前記測温用光学要素を保持するハウジングボデーと、前記透光窓及び前記赤外光源を保持する第1ハウジングカバーと、を含む、
ことを特徴とする請求項4ないし9いずれか一つに記載の赤外線検出ユニット。
The housing holds the determination light receiving sensor, the determination optical element, the temperature measurement light receiving sensor, the housing body holding the temperature measurement optical element, the translucent window, and the infrared light source. 1 Housing cover, including,
The infrared detection unit according to any one of claims 4 to 9.
前記ハウジングボデーは、前記測温用受光センサ及び前記測温用光学要素が配置される第1領域と、前記判定用受光センサ及び前記判定用光学要素が配置される第2領域とを画定し、
前記第1ハウジングカバーは、前記第1領域を覆うように、前記ハウジングボデーに組み付けられる、
ことを特徴とする請求項10に記載の赤外線検出ユニット。
The housing body defines a first region in which the temperature measuring light receiving sensor and the temperature measuring optical element are arranged, and a second region in which the determination light receiving sensor and the determination optical element are arranged.
The first housing cover is assembled to the housing body so as to cover the first area.
The infrared detection unit according to claim 10.
前記ハウジングは、前記第2領域を覆うように、前記ハウジングボデーに組み付けられる第2ハウジングカバーを含む、
ことを特徴とする請求項11に記載の赤外線検出ユニット。
The housing includes a second housing cover that is assembled to the housing body so as to cover the second area.
The infrared detection unit according to claim 11.
前記判定用受光センサの出力信号に基づき前記開口部の塞がり状態及び前記透光窓の汚れ状態を判定する判定部をさらに含み、
前記判定部は、前記加熱源から放射される赤外線を受光した前記判定用受光センサの出力に基づいて、前記開口部の塞がり状態を判定する、
ことを特徴とする請求項1ないし13いずれか一つに記載の赤外線検出ユニット。
A determination unit for determining the closed state of the opening and the dirty state of the translucent window based on the output signal of the light receiving sensor for determination is further included.
The determination unit determines the closed state of the opening based on the output of the determination light receiving sensor that receives infrared rays radiated from the heating source.
The infrared detection unit according to any one of claims 1 to 13.
前記判定部は、前記赤外光源のオン/オフにより前記判定用受光センサが出力する出力信号の差に基づいて、前記透光窓の汚れ状態を判定する、
ことを特徴とする請求項13に記載の赤外線検出ユニット。
The determination unit determines a dirty state of the translucent window based on the difference in output signals output by the determination light receiving sensor depending on whether the infrared light source is turned on or off.
The infrared detection unit according to claim 13.
所定の開口部を有する天板と、
前記天板の上方に載置された被加熱物を加熱する加熱源と、
前記天板の下方に配置され、前記被加熱物から放射されて前記開口部を通過する赤外線又は前記加熱源から放射されて前記開口部を通過する赤外線を検出する赤外線検出ユニットと、を備えた加熱調理装置であって、
前記赤外線検出ユニットは、請求項1ないし14いずれか一つに記載の赤外線検出ユニットである、
ことを特徴とする加熱調理装置。
A top plate with a predetermined opening and
A heating source that heats the object to be heated placed above the top plate,
It is provided with an infrared detection unit arranged below the top plate and detecting infrared rays radiated from the object to be heated and passing through the opening or infrared rays radiated from the heating source and passing through the opening. It ’s a cooking device,
The infrared detection unit is the infrared detection unit according to any one of claims 1 to 14.
A cooking device characterized by that.
前記赤外線検出ユニットの透光窓は、前記開口部の鉛直下方領域から外れた領域において、前記透光窓の中央を通る法線が前記開口部に向かうように傾斜した状態で配置される、
ことを特徴とする請求項15に記載の加熱調理装置。

The translucent window of the infrared detection unit is arranged in a region outside the vertically downward region of the opening in a state in which a normal passing through the center of the transmissive window is inclined toward the opening.
The cooking apparatus according to claim 15.

JP2019079414A 2019-04-18 2019-04-18 Infrared detection unit and cooking device Active JP7269083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019079414A JP7269083B2 (en) 2019-04-18 2019-04-18 Infrared detection unit and cooking device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019079414A JP7269083B2 (en) 2019-04-18 2019-04-18 Infrared detection unit and cooking device

Publications (2)

Publication Number Publication Date
JP2020176766A true JP2020176766A (en) 2020-10-29
JP7269083B2 JP7269083B2 (en) 2023-05-08

Family

ID=72936450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019079414A Active JP7269083B2 (en) 2019-04-18 2019-04-18 Infrared detection unit and cooking device

Country Status (1)

Country Link
JP (1) JP7269083B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002340339A (en) * 2001-03-16 2002-11-27 Osaka Gas Co Ltd Cooking stove
JP2008241617A (en) * 2007-03-28 2008-10-09 Osaka Gas Co Ltd Infrared intensity detection device for cooker
JP2008298627A (en) * 2007-05-31 2008-12-11 Mikuni Corp Infrared sensor
JP2011003391A (en) * 2009-06-18 2011-01-06 Toshiba Corp Induction heating cooker
JP2012202675A (en) * 2011-03-28 2012-10-22 Osaka Gas Co Ltd Cooking stove
JP2013004328A (en) * 2011-06-17 2013-01-07 Hitachi Appliances Inc Induction heating cooker
JP2013205215A (en) * 2012-03-28 2013-10-07 Osaka Gas Co Ltd Infrared temperature measuring device
JP2013204918A (en) * 2012-03-28 2013-10-07 Osaka Gas Co Ltd Cooking stove
US20180320904A1 (en) * 2015-11-17 2018-11-08 BSH Hausgeräte GmbH Gas cooker and cooking hob arrangement

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002340339A (en) * 2001-03-16 2002-11-27 Osaka Gas Co Ltd Cooking stove
JP2008241617A (en) * 2007-03-28 2008-10-09 Osaka Gas Co Ltd Infrared intensity detection device for cooker
JP2008298627A (en) * 2007-05-31 2008-12-11 Mikuni Corp Infrared sensor
JP2011003391A (en) * 2009-06-18 2011-01-06 Toshiba Corp Induction heating cooker
JP2012202675A (en) * 2011-03-28 2012-10-22 Osaka Gas Co Ltd Cooking stove
JP2013004328A (en) * 2011-06-17 2013-01-07 Hitachi Appliances Inc Induction heating cooker
JP2013205215A (en) * 2012-03-28 2013-10-07 Osaka Gas Co Ltd Infrared temperature measuring device
JP2013204918A (en) * 2012-03-28 2013-10-07 Osaka Gas Co Ltd Cooking stove
US20180320904A1 (en) * 2015-11-17 2018-11-08 BSH Hausgeräte GmbH Gas cooker and cooking hob arrangement

Also Published As

Publication number Publication date
JP7269083B2 (en) 2023-05-08

Similar Documents

Publication Publication Date Title
JP5135140B2 (en) Flame detector
TWI513974B (en) Detector
US11441845B2 (en) Stove guard using a broad field of view
CN112748575B (en) Display device for vehicle
JP2013002966A (en) Non-dispersion type infrared gas sensor
JP5096276B2 (en) Flame detection unit
WO2020189630A1 (en) Smoke detector
JP2007011684A (en) Fire sensor
JP2020176766A (en) Infrared detection unit and heating cooker
JP2010164470A (en) Water level detection device and heating cooker
JP2021025869A (en) Infrared detection unit and heating and cooking device
JP5410105B2 (en) Infrared temperature measuring device
JP2007205920A (en) Multiple reflection type cell, and infrared type gas detector
JP5921282B2 (en) Infrared temperature measuring device
JP4999869B2 (en) Water level detection device and cooking device
CN110346045A (en) A kind of gas-cooker anti-dry detection method, detection device and gas-cooker
JP5135141B2 (en) Flame detector
JP7341819B2 (en) flame detector
JPH11242926A (en) Photoelectric key operation array
JPH1172368A (en) Optical sensor
JP4906812B2 (en) Water level detection device and cooking device
JP2021134959A (en) Gas cooking stove
JPH0361825A (en) Measurement position indicator of radiation thermometer
JP2021148322A (en) Gas cooking stove
JPH0567418A (en) Optical sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230421

R150 Certificate of patent or registration of utility model

Ref document number: 7269083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150