JP2008298627A - Infrared sensor - Google Patents

Infrared sensor Download PDF

Info

Publication number
JP2008298627A
JP2008298627A JP2007145811A JP2007145811A JP2008298627A JP 2008298627 A JP2008298627 A JP 2008298627A JP 2007145811 A JP2007145811 A JP 2007145811A JP 2007145811 A JP2007145811 A JP 2007145811A JP 2008298627 A JP2008298627 A JP 2008298627A
Authority
JP
Japan
Prior art keywords
infrared
infrared light
light receiving
window material
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007145811A
Other languages
Japanese (ja)
Other versions
JP5506142B2 (en
Inventor
Katsuhiko Fukui
克彦 福井
Kenichiro Takahashi
健一郎 高橋
Akira Miyato
章 宮藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mikuni Corp
Osaka Gas Co Ltd
Original Assignee
Mikuni Corp
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mikuni Corp, Osaka Gas Co Ltd filed Critical Mikuni Corp
Priority to JP2007145811A priority Critical patent/JP5506142B2/en
Publication of JP2008298627A publication Critical patent/JP2008298627A/en
Application granted granted Critical
Publication of JP5506142B2 publication Critical patent/JP5506142B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an infrared sensor capable of stably measuring the temperature of an object to be heated, by detecting abnormal output of the infrared sensor due to stains of the window material of the infrared sensor. <P>SOLUTION: The infrared sensor 100 is provided with a housing 2, having an infrared optical path to which an infrared-transmitting window material 6 is attached, infrared-light receiving elements 10 in a prescribed number, arranged in the housing 2 in such a manner that a light-receiving surface faces the infrared-transmitting window material 6 and having a received infrared wavelength region which is different from each other, and an infrared light source 12, disposed in the housing 2 in such a manner that an infrared irradiating surface faces the infrared-transmitting window material. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、赤外線を用いて物質の温度を非接触で測定する赤外線センサー及び同センサーを備える加熱装置に関する。   The present invention relates to an infrared sensor that measures the temperature of a substance in a non-contact manner using infrared rays, and a heating device including the sensor.

本センサーの応用例として、特に調理に用いられる家庭用、もしくは業務用の誘導加熱調理器、ガスコンロ等の加熱調理器に取り付けて、鍋等の被加熱物の温度検出を非接触で行う赤外線センサーがある。   As an application example of this sensor, an infrared sensor that is attached to a heating cooker such as an induction heating cooker or a gas stove used especially for cooking, and detects the temperature of a heated object such as a pan in a non-contact manner. There is.

従来、火災等の不測の事故を防止することを目的として、コンロ等の加熱装置に温度センサを取付け、鍋等の被加熱物の温度を監視することが行われている。   Conventionally, for the purpose of preventing an unexpected accident such as a fire, a temperature sensor is attached to a heating device such as a stove to monitor the temperature of an object to be heated such as a pan.

特許文献1には、コンロのバーナの下方に赤外線検出素子を取付け、被加熱物の放射する赤外線を非接触で前記赤外線検出素子で検出することにより、被加熱物の温度を測定することが記載されている。上記コンロにおいては、コンロの使用時に、調理中の油零れや湯零れ、ゴミの落下等により、赤外線検出素子の受光部が汚染されて検出感度の減少や変化が生じることを防止するため、赤外線検出素子の上方に窓材が取付けられている。また、バーナーの斜め下方に赤外線検出素子を取付けて、油零れ等の影響を窓材ができる限り受けないようにすることも記載されている。しかし、一旦汚れた窓材の清浄方法に関する記載はない。従って、窓材が汚れた場合は、検出温度が不正確になる。   Patent Document 1 describes that the temperature of an object to be heated is measured by attaching an infrared detection element below the burner of the stove and detecting the infrared ray emitted from the object to be heated by the infrared detection element in a non-contact manner. Has been. In the above stove, when using the stove, in order to prevent the light receiving part of the infrared detecting element from being contaminated due to oil spilling, hot water spilling, falling dust, etc. during cooking, the detection sensitivity is reduced or changed. A window material is attached above the detection element. It also describes that an infrared detection element is attached obliquely below the burner so that the window material is not affected by oil spillage or the like as much as possible. However, there is no description regarding a method for cleaning a window material once soiled. Therefore, when the window material becomes dirty, the detected temperature becomes inaccurate.

赤外線検出素子の汚れを除去する方法としては、赤外線センサの開口部に、光触媒を有する赤外線集光用レンズを取付ける方法が開示されている(特許文献2)。この方法においては、発光器から光触媒に光を当て、レンズに付着した汚れを光分解反応により分解除去させる。しかし、光触媒、及び光触媒に照射する光の種類等の具体的記載はない。   As a method for removing dirt from an infrared detection element, a method of attaching an infrared condensing lens having a photocatalyst to an opening of an infrared sensor is disclosed (Patent Document 2). In this method, light is applied to the photocatalyst from the light emitter, and the dirt adhering to the lens is decomposed and removed by a photolysis reaction. However, there is no specific description of the photocatalyst and the type of light irradiated on the photocatalyst.

特許文献3には、焦電型赤外線検出装置の結像レンズの表面に結露した水滴による赤外線の反射や屈折を防止するため、結像レンズ基材の表面に赤外線が透過可能な光触媒性酸化チタン粒子を含有する表面層を形成することを開示している。この表面層に紫外線を照射することにより、レンズ表面の親水性を増加させ、これにより水滴を均一な吸着水層にさせるものである。しかし、光触媒により、レンズの汚れを分解することは記載されていない。従って、この文献は、本発明と直接的な技術的関係はない。   Patent Document 3 discloses a photocatalytic titanium oxide capable of transmitting infrared rays to the surface of the imaging lens base material in order to prevent reflection and refraction of infrared rays due to water droplets condensed on the surface of the imaging lens of the pyroelectric infrared detection device. The formation of a surface layer containing particles is disclosed. By irradiating the surface layer with ultraviolet rays, the hydrophilicity of the lens surface is increased, thereby making water droplets into a uniform adsorbed water layer. However, there is no description of decomposing lens dirt with a photocatalyst. Therefore, this document has no direct technical relationship with the present invention.

特許文献4は、付着汚れを自動的に分解除去できる赤外線透過窓材、それを用いる赤外線センサユニット、及び前記赤外線ユニットを組み込んだ加熱装置を開示する。この赤外線センサーユニットは、赤外線透過窓材と紫外線発光ダイオードをハウジング中に備えており、紫外線発光ダイオードより紫外線を窓材に照射することによって窓材の汚れを自動的に分解することが出来ることが記載されている。   Patent Document 4 discloses an infrared transmissive window material capable of automatically decomposing and removing attached dirt, an infrared sensor unit using the same, and a heating apparatus incorporating the infrared unit. This infrared sensor unit is equipped with an infrared transmissive window material and an ultraviolet light emitting diode in the housing, and the window material can be automatically decomposed by irradiating the window material with ultraviolet light from the ultraviolet light emitting diode. Are listed.

しかし、上記赤外線センサーユニットでは、汚れを分解するまでに一定時間を要する欠点がある。すなわち煮零れ等、調理中に生じる汚れを分解するまで正確な温度を測定する事が困難である。特に、固形物の食材が窓材を覆った場合には温度測定が出来ず、致命的な状況となる。この対策方法として特許文献5には赤外線検出手段に対し、汚れ抑制手段が設けられ、汚れが付着し温度測定が不能になる事を防止する方法が提案されているが、汚れ抑制手段の耐久性に問題がある。   However, the infrared sensor unit has a drawback that it takes a certain time to decompose the dirt. That is, it is difficult to measure the exact temperature until the dirt generated during cooking, such as boiling, is decomposed. In particular, when the solid food material covers the window material, the temperature cannot be measured, which is a fatal situation. As a countermeasure against this, Patent Document 5 proposes a method for preventing contamination by attaching dirt to the infrared detection means and preventing temperature measurement from being performed. There is a problem.

更に、基本的には、安全性の観点から窓材の汚れを音声等で調理者に知らしめ、自動で炎を切る手段が必要である。
特開2002−340339号公報 (特許請求の範囲) 特許第3202562号公報 (特許請求の範囲) 特開平9−229767号公報 (特許請求の範囲) 特開2006−266827号公報 (特許請求の範囲) 特開2006−214653号公報 (特許請求の範囲)
Furthermore, basically, from the viewpoint of safety, there is a need for a means for informing the cook of the dirt on the window material by voice or the like and automatically turning off the flame.
JP 2002-340339 A (Claims) Japanese Patent No. 3202562 (Claims) JP-A-9-229767 (Claims) JP 2006-266827 A (Claims) JP 2006-214653 A (Claims)

本発明は上記事情に鑑みなされたもので、その目的とするところは窓材の汚れによる赤外線センサーの出力異常を未然に検出して安定した被加熱物の温度測定ができる赤外線センサー及び、赤外線センサーに汚れが発生した場合には調理者等に汚れた事を知らしめ、自動で炎を消す機能を有する加熱装置を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to detect an abnormal output of the infrared sensor due to dirt on the window material in advance and to stably measure the temperature of the object to be heated, and the infrared sensor It is an object of the present invention to provide a heating device having a function of automatically extinguishing a flame by letting a cook or the like know that the soil has been soiled.

本発明は以下に記載するものである。   The present invention is described below.

〔1〕 赤外線透過窓材を取り付けた赤外線光路を有するハウジングと、受光面を前記赤外線透過窓材に向けてハウジング内に設けられた所定数の互いに受光赤外線波長領域の異なる赤外線受光素子と、赤外線照射面を前記赤外線透過窓材に向けてハウジング内に設けられた赤外線光源とを有する赤外線センサー。   [1] A housing having an infrared light path with an infrared transmission window member attached thereto, a predetermined number of infrared light receiving elements having different light reception infrared wavelength regions provided in the housing with a light receiving surface facing the infrared transmission window member, and an infrared ray An infrared sensor having an infrared light source provided in a housing with an irradiation surface facing the infrared transmission window member.

〔2〕 赤外線光源の周囲に断熱スリーブを設けてなる〔1〕に記載の赤外線センサー。   [2] The infrared sensor according to [1], wherein a heat insulating sleeve is provided around the infrared light source.

〔3〕 赤外線光源が、赤外線透過窓材の赤外線受光素子の上方部分を照射してなる〔1〕に記載の赤外線センサー。   [3] The infrared sensor according to [1], wherein the infrared light source irradiates an upper portion of the infrared light receiving element of the infrared transmitting window material.

〔4〕 赤外線光路を有するハウジングと、前記赤外線光路に所定の角度傾斜して取り付けられた赤外線透過窓材と、受光面を前記赤外線透過窓材に向けてハウジング内に設けられた所定数の互いに受光赤外線波長領域の異なる赤外線受光素子と、赤外線照射面を前記赤外線透過窓材に向けると共に、赤外線透過窓材に関して前記赤外線受光素子と反対側のハウジングに取り付けられた赤外線光源とを有する赤外線センサー。   [4] A housing having an infrared light path, an infrared transmission window member attached to the infrared light path at a predetermined angle, and a predetermined number of each other provided in the housing with the light receiving surface facing the infrared transmission window member An infrared sensor comprising: an infrared light receiving element having a different light receiving infrared wavelength region; an infrared light source attached to a housing opposite to the infrared light receiving element with respect to the infrared transmitting window material while directing an infrared irradiation surface to the infrared transmitting window material.

〔5〕 被加熱物を加熱する加熱手段と、前記加熱手段の加熱量の制御手段と、前記被加熱物から放射される赤外線の強さを検出する〔1〕乃至〔4〕のいずれかに記載の赤外線センサーと、赤外線光源のオン・オフ制御を行い、オン時・オフ時それぞれのときの赤外線受光素子の出力より前記赤外線透過窓材の汚れの有無を検出する演算制御手段と表示手段とを備え、前記赤外線センサーにより検出される赤外線の強度に基づいて加熱量を制御すると共に表示手段を制御することを特徴とする加熱装置。   [5] Any one of [1] to [4], wherein the heating means for heating the object to be heated, the means for controlling the heating amount of the heating means, and the intensity of infrared rays emitted from the object to be heated are detected. The infrared sensor described above, an on / off control of the infrared light source, and an arithmetic control means and a display means for detecting the presence or absence of dirt on the infrared transmitting window material from the output of the infrared light receiving element at the on time and at the off time, And a heating device that controls the amount of heating based on the intensity of infrared rays detected by the infrared sensor and controls the display means.

本発明の赤外線センサーは、赤外線透過窓材に赤外線を照射して赤外線透過窓材の汚れを常時観測しているので、窓材に汚れが付着したことを確実に、かつ直ちに検出できる。その結果、この赤外線センサーの素子出力は長期間にわたり信頼性が高くなる。   In the infrared sensor of the present invention, since infrared rays are irradiated on the infrared transmission window material and the dirt of the infrared transmission window material is constantly observed, it is possible to reliably and immediately detect that the dirt has adhered to the window material. As a result, the element output of this infrared sensor becomes highly reliable over a long period of time.

更に、窓材の汚れによる赤外線センサーの出力異常を検出できるので、この赤外線センサーを組み込んだ加熱装置は、汚れが発生した場合には調理者に汚れた事を直ちに知らしめ、自動で炎を消す機能を備えることができるので安全性が向上する。   Furthermore, abnormalities in the output of the infrared sensor due to dirt on the window material can be detected, so the heating device incorporating this infrared sensor immediately informs the cook that the dirt has been made and automatically extinguishes the flame. Since the function can be provided, safety is improved.

以下、本発明につき、図面を参照して詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the drawings.

図1は、本発明の赤外線センサーの一例を示す側面断面図である。図1中、100は赤外線センサーで、2は内部が中空の筒状のハウジングである。前記ハウジング2の底部は底壁4で閉塞されている。前記ハウジング2の上部は赤外線透過窓材6により閉塞されている。前記底壁4と前記赤外線透過窓材6とにより、前記ハウジング2の中空部8は外部と隔離された赤外線光路を構成している。   FIG. 1 is a side sectional view showing an example of the infrared sensor of the present invention. In FIG. 1, 100 is an infrared sensor, and 2 is a cylindrical housing having a hollow inside. The bottom of the housing 2 is closed by a bottom wall 4. The upper part of the housing 2 is closed by an infrared transmitting window material 6. By the bottom wall 4 and the infrared transmitting window material 6, the hollow portion 8 of the housing 2 constitutes an infrared optical path isolated from the outside.

前記底壁4には、センサ搭載用基板9が立設されている。   A sensor mounting substrate 9 is erected on the bottom wall 4.

前記センサ搭載用基板9には、所定数(本図では2個)の赤外線検出素子10がその赤外線受光面を前記赤外線透過窓材6に向けて搭載され、前記赤外線検出素子10の光軸は、赤外線光路の光軸Xと平行になっている。前記赤外線受光素子10には1.5〜1.8、2〜2.4、3.1〜4.2、8〜17μの範囲の赤外線を選択的に透過させる光学フィルタ(不図示)のいずれかが装着されている。赤外線受光素子の数は2以上が好ましい。   A predetermined number (two in this figure) of infrared detecting elements 10 are mounted on the sensor mounting substrate 9 with the infrared light receiving surface thereof facing the infrared transmitting window material 6, and the optical axis of the infrared detecting element 10 is , Parallel to the optical axis X of the infrared light path. Any one of optical filters (not shown) that selectively transmit infrared rays in the range of 1.5 to 1.8, 2 to 2.4, 3.1 to 4.2, and 8 to 17 μm is provided in the infrared light receiving element 10. Is installed. The number of infrared light receiving elements is preferably 2 or more.

12は赤外線光源で、前記センサ搭載用基板9上に取り付けられ、前記赤外線光源12の照射する赤外線の光軸14は中空部8で構成する赤外線光路の光軸Xに対して所定角θ傾斜している。θは70°以下が好ましく、50°以下がより好ましく、30〜5°が特に好ましい。その結果、前記赤外線光源12の光軸14は、赤外線透過窓材6の赤外線受光素子10の上方部分16を照射している。   An infrared light source 12 is mounted on the sensor mounting substrate 9, and an infrared optical axis 14 irradiated by the infrared light source 12 is inclined at a predetermined angle θ with respect to an optical axis X of an infrared optical path formed by the hollow portion 8. ing. θ is preferably 70 ° or less, more preferably 50 ° or less, and particularly preferably 30 to 5 °. As a result, the optical axis 14 of the infrared light source 12 irradiates the upper portion 16 of the infrared light receiving element 10 of the infrared transmitting window material 6.

赤外線光源12は熱線ヒータまたはPt、Ru等をパターン印刷した面状ヒータもしくは、ニクロム等のコイル線材で構成されており、赤外線波長依存性のないものが好ましい。また赤外線光源12への通電パターンはパルス通電で、具体的には1〜10Hzで十分である。   The infrared light source 12 is composed of a hot wire heater, a planar heater on which Pt, Ru or the like is printed, or a coil wire material such as nichrome, and preferably has no infrared wavelength dependency. The energization pattern to the infrared light source 12 is pulse energization, specifically, 1 to 10 Hz is sufficient.

18は前記赤外線光源12の周囲を覆って形成された筒状の断熱スリーブで、その上方は開口している。この前記断熱スリーブ18は、前記赤外線光源12の発熱が前記赤外線受光素子10に伝わって、前記赤外線受光素子10を加熱することを防いでいる。なお、20は前記赤外線受光素子10のリード線で、このリード線20を介して前記赤外線受光素子10に入射した赤外線量に対応する検出信号が外部に取り出される。   Reference numeral 18 denotes a cylindrical heat insulating sleeve formed so as to cover the periphery of the infrared light source 12, and the upper part thereof is open. The heat insulating sleeve 18 prevents heat from the infrared light source 12 from being transmitted to the infrared light receiving element 10 to heat the infrared light receiving element 10. Reference numeral 20 denotes a lead wire of the infrared light receiving element 10 through which a detection signal corresponding to the amount of infrared light incident on the infrared light receiving element 10 is taken out.

22は前記赤外線光源12に電力を供給するリード線で、このリード線22を介して前記赤外線光源12に電力が供給され、赤外線が放射される。   A lead wire 22 supplies power to the infrared light source 12, and power is supplied to the infrared light source 12 via the lead wire 22 to emit infrared light.

赤外線透過窓材6は、赤外線が透過できる材料で形成された平板である。その材質は、シリコン、ゲルマニウム、サファイヤ、石英、セレン化亜鉛、硫化亜鉛、塩化ナトリウム、塩化カリウム、臭化カリウム、フッ化カルシウム、酸化マグネシウム等が例示され、透過する赤外線の波長等に応じて適宜選択される。赤外線透過窓材6の寸法も特に制限が無く、用途に応じて適宜選択される。   The infrared transmitting window material 6 is a flat plate formed of a material that can transmit infrared rays. Examples of the material include silicon, germanium, sapphire, quartz, zinc selenide, zinc sulfide, sodium chloride, potassium chloride, potassium bromide, calcium fluoride, magnesium oxide, and the like. Selected. There is no restriction | limiting in particular also in the dimension of the infrared transmission window material 6, According to a use, it selects suitably.

次に、上記赤外線センサー100の動作を説明する。   Next, the operation of the infrared sensor 100 will be described.

温度が測定されるべき被加熱物(不図示)から、温度に応じて放射される赤外線は、赤外線センサー100の赤外線透過窓材6を通って中空部8内に入り、次いで、各赤外線受光素子10により被加熱物の温度に対応する赤外線量が検出される。   Infrared rays radiated from a heated object (not shown) whose temperature is to be measured enter the hollow portion 8 through the infrared transmitting window material 6 of the infrared sensor 100, and then each infrared light receiving element. 10 detects the amount of infrared rays corresponding to the temperature of the object to be heated.

赤外線透過窓材6の表面24は、時間の経過と共に、汚れ26により汚染される。   The surface 24 of the infrared transmitting window material 6 is contaminated by the dirt 26 as time passes.

一方、断熱スリーブ18で周囲を囲まれた赤外線光源12からは、赤外線が表面24に向けて照射されている。この照射される赤外線は、窓材表面24に付着した汚れ26によって反射される。この反射された赤外線は赤外線受光素子10により、検出され、赤外線量に対応する検出信号をリード線20を介して外部に送出する。この検出信号を観測することにより窓の汚れ状態がわかる。窓材表面24に汚れ26がない場合は、赤外線光源の光は外部へ放出される。従って、光源がONの時の出力は、汚れがない場合は殆ど変化がないが、汚れがある場合は、通常よりも大きな出力を現すことになる。   On the other hand, infrared rays are emitted toward the surface 24 from the infrared light source 12 surrounded by the heat insulating sleeve 18. The irradiated infrared rays are reflected by the dirt 26 attached to the window material surface 24. The reflected infrared light is detected by the infrared light receiving element 10 and a detection signal corresponding to the amount of infrared light is transmitted to the outside through the lead wire 20. By observing this detection signal, the dirty state of the window can be determined. When the window material surface 24 is free of dirt 26, the light from the infrared light source is emitted to the outside. Accordingly, the output when the light source is ON is almost unchanged when there is no dirt, but when it is dirty, an output larger than usual is displayed.

また、赤外線光源12の温度は50〜1000℃が好ましい。   The temperature of the infrared light source 12 is preferably 50 to 1000 ° C.

赤外線光源12はパルス通電制御である。但し、電力としては、直流、交流、三角波、パルス波等任意の電力を供給できる。赤外線光源12の過熱を防止するためにはパルス波が好ましい。また、後述する被加熱物の温度測定と汚れに基づく赤外線量の測定とを区別して測定する為には、パルス波を用いることは好適である。   The infrared light source 12 is pulse energization control. However, any power such as direct current, alternating current, triangular wave, and pulse wave can be supplied as the power. In order to prevent overheating of the infrared light source 12, a pulse wave is preferable. Moreover, in order to distinguish and measure the temperature measurement of the heated object to be described later and the measurement of the amount of infrared rays based on dirt, it is preferable to use a pulse wave.

図2は本発明赤外線センサーの他の例を示す側面断面図である。この例においては、赤外線光源12は、その光軸を中空部8の光軸と一致させて設けている。更に、断熱スリーブ18の上部側は傾斜して切欠いてあるが、その他の構成は図1と同様であるので同一箇所に同一符号を付けて、その説明を省略する。   FIG. 2 is a side sectional view showing another example of the infrared sensor of the present invention. In this example, the infrared light source 12 is provided with its optical axis aligned with the optical axis of the hollow portion 8. Furthermore, although the upper side of the heat insulating sleeve 18 is inclined and cut out, the other components are the same as those in FIG.

この例においては、断熱スリーブ18の上部側は赤外線受光素子10に近接する断熱スリーブ18の壁aが赤外線受光素子10から遠い断熱スリーブ18の壁bよりも低く形成されている。このため、赤外線光源12から照射される赤外線は赤外線受光素子10の上部部分16に到達しやすくなっている。その他の符号は図1と同様である。   In this example, the upper side of the heat insulating sleeve 18 is formed such that the wall a of the heat insulating sleeve 18 close to the infrared light receiving element 10 is lower than the wall b of the heat insulating sleeve 18 far from the infrared light receiving element 10. For this reason, the infrared rays emitted from the infrared light source 12 easily reach the upper portion 16 of the infrared light receiving element 10. Other reference numerals are the same as those in FIG.

図3は本発明の赤外線センサーの更に他の例を示す側面断面図である。この例にあっては、赤外線透過窓材6は赤外線光路の光軸Xに対して90℃以下の挟角αでハウジング2内に取り付けてある。αとしては80°〜10°が好ましく、60°〜30°がより好ましい。更に、赤外線光源12は赤外線透過窓材6に対して赤外線受光素子10と反対側のハウジング2の壁2aに取り付けてられている。その他の符号は図1と同様である。図3の場合、赤外線透過窓材6に汚れがない時は赤外線光源から放射される赤外線は赤外線透過窓材6を通過して中空部8に入り、内壁で乱反射した赤外線が赤外線受光素子に入っていくため、出力が増大する。汚れがある時は赤外線は汚れにより反射されて中空部8に入らず、従って赤外線受光素子にも入らず、その結果赤外線受光素子の出力はそのままである。   FIG. 3 is a side sectional view showing still another example of the infrared sensor of the present invention. In this example, the infrared transmissive window member 6 is mounted in the housing 2 at an included angle α of 90 ° C. or less with respect to the optical axis X of the infrared light path. α is preferably 80 ° to 10 °, more preferably 60 ° to 30 °. Further, the infrared light source 12 is attached to the wall 2 a of the housing 2 opposite to the infrared light receiving element 10 with respect to the infrared transmitting window material 6. Other reference numerals are the same as those in FIG. In the case of FIG. 3, when the infrared transmission window material 6 is not soiled, the infrared light emitted from the infrared light source passes through the infrared transmission window material 6 and enters the hollow portion 8, and the infrared light irregularly reflected by the inner wall enters the infrared light receiving element. Therefore, the output increases. When there is dirt, the infrared light is reflected by the dirt and does not enter the hollow portion 8, and therefore does not enter the infrared light receiving element. As a result, the output of the infrared light receiving element remains unchanged.

この場合、この例は、組み立て性、艤装性を考慮し、赤外線光源をハウジングに対し水平に配置し、赤外線透過窓材もしくはレンズを傾けて配置した例である。この場合赤外線受光素子は、赤外線光源からの赤外線エネルギーをハウジング内壁の反射光からもらうため、内壁の面粗度は可能な限り良いことが望ましい。尚、組み立て性、艤装性に制限が無い場合にはこの限りではなく、例えば赤外線光源を上部に赤外線受光素子と対向するように配置し、アーム等で移動可能な機構を設け、汚れ検知の時に目的の位置に移動するようにしても構わない。
(加熱装置)
図4は、本発明過熱装置の一例であるコンロ120を示すものである。
In this case, this example is an example in which an infrared light source is disposed horizontally with respect to the housing and an infrared transmission window material or lens is inclined in consideration of assemblability and outfitting. In this case, since the infrared light receiving element receives infrared energy from the infrared light source from the reflected light of the inner wall of the housing, it is desirable that the surface roughness of the inner wall is as good as possible. Note that this is not the case when there is no limit to the assemblability and the outfitting. For example, an infrared light source is disposed on the upper part so as to face the infrared light receiving element, and a mechanism that can be moved by an arm or the like is provided. You may make it move to the target position.
(Heating device)
FIG. 4 shows a stove 120 which is an example of the superheater of the present invention.

図4中、42は天板で、加熱口44が形成されている。前記加熱口44の周りには、五徳46が配設されている。48は、加熱口44の下方に設けられたバーナで、環状ケーシング部50と、前記環状ケーシング部50に連結された混合管52と、混合管52に連結されたガスノズル54とからなる。ガス配管56から供給されるガスは、ノズル54を通って混合管52内で空気が混合された後、環状ケーシング部50に形成された炎口58から炎59となって放出される。これらは、加熱手段の一例を構成している。   In FIG. 4, 42 is a top plate, and a heating port 44 is formed. Around the heating port 44, a virtue 46 is disposed. A burner 48 is provided below the heating port 44 and includes an annular casing portion 50, a mixing tube 52 connected to the annular casing portion 50, and a gas nozzle 54 connected to the mixing tube 52. The gas supplied from the gas pipe 56 is discharged as a flame 59 from a flame port 58 formed in the annular casing portion 50 after air is mixed in the mixing pipe 52 through the nozzle 54. These constitute an example of the heating means.

炎59により、被加熱物60は加熱され、被加熱物60の温度に対応した赤外線が被加熱物60から放射される。前記放射された赤外線は、環状ケーシング部50の下方に配設された汁受皿62の中央に穿設された赤外線透過孔64を通って赤外線センサー100に到達する。   The heated object 60 is heated by the flame 59, and infrared rays corresponding to the temperature of the heated object 60 are emitted from the heated object 60. The emitted infrared rays reach the infrared sensor 100 through an infrared transmission hole 64 formed in the center of a juice receiving tray 62 disposed below the annular casing portion 50.

このセンサー100は、図1〜3に記載された構造を有するものである。以下、図1に示す赤外線センサーを例にして説明する。赤外線は図1に示す赤外線センサー100の赤外線透過窓材6を通って赤外線光路を構成する中空部8内に入り、次いで赤外線検出素子10により被加熱物の温度に対応する赤外線量が検出される。赤外線センサー100は検出波長が異なる複数の赤外線検出素子10を備えて、波長の異なる赤外線を同時に検出することにより、測定誤差を減少させている。この点に付、詳述すると、この方法(多色法)は、最低2個の異なる波長域の赤外線検出素子を用い、それらの出力比を算出することにより放射率をキャンセルし、放射率が異なっていても正確な温度を検出する方法である。   This sensor 100 has the structure described in FIGS. Hereinafter, the infrared sensor shown in FIG. 1 will be described as an example. Infrared rays pass through the infrared transmitting window member 6 of the infrared sensor 100 shown in FIG. 1 and enter the hollow portion 8 constituting the infrared optical path, and then the infrared detecting element 10 detects the amount of infrared rays corresponding to the temperature of the object to be heated. . The infrared sensor 100 includes a plurality of infrared detection elements 10 having different detection wavelengths, and simultaneously detects infrared rays having different wavelengths, thereby reducing measurement errors. This method (multicolor method) uses at least two infrared detection elements in different wavelength regions, cancels the emissivity by calculating their output ratio, and the emissivity is increased. This is a method for detecting an accurate temperature even if they are different.

赤外線検出素子10の出力は、演算制御手段65に送られ、信号処理が行われる。例えば、赤外線検出素子10の出力が被加熱物60の過熱状態や、被加熱物60が存在しないことを示す場合は、加熱量の制御手段である調整弁66に信号が送られ、調整弁66が閉じられ、コンロ120に供給される混合ガスの供給が停止される。即ち、これらは前記加熱手段の加熱量の制御手段の一例を構成している。   The output of the infrared detection element 10 is sent to the arithmetic control means 65 for signal processing. For example, when the output of the infrared detecting element 10 indicates an overheated state of the object 60 to be heated or that the object 60 to be heated does not exist, a signal is sent to the adjusting valve 66 which is a heating amount control means, and the adjusting valve 66 Is closed, and the supply of the mixed gas supplied to the stove 120 is stopped. That is, they constitute an example of a heating amount control means of the heating means.

図1において赤外線透過窓材6が汚れ26で汚染されていない場合は、赤外線光源12の放射する赤外線は、赤外線透過窓材6を透過して赤外線センサー100外部に放出され、赤外線受光素子10には赤外線光源12の照射する赤外線はほぼ検出されない。   In FIG. 1, when the infrared transmission window material 6 is not contaminated by the dirt 26, the infrared rays emitted from the infrared light source 12 are transmitted through the infrared transmission window material 6 and emitted to the outside of the infrared sensor 100. Infrared light emitted from the infrared light source 12 is hardly detected.

赤外線透過窓材6の表面24は、調理時に被加熱物60内の内容物があふれ出て汚染されることがある。   The surface 24 of the infrared transmitting window 6 may be contaminated with the contents in the heated object 60 overflowing during cooking.

この場合は、赤外線光源12から照射される赤外線が汚れ26により反射される。この赤外線は赤外線透過窓材6を通って赤外線受光素子10に入射する。赤外線受光素子10は、入射する赤外線量に応じた検出信号を演算制御手段65に送り、演算制御手段65が汚れが有ると判断すると、例えば調整弁66に信号が送られ、調整弁66が閉じられる。更に、警報等の表示手段68が作動して、赤外線透過窓材6が汚れていることを利用者に知らせる。利用者が窓材を清掃することにより、赤外線センサー100は最初の状態に復帰する。更に演算制御手段65は、赤外線光源のオン・オフ制御を行い、オン時とオフ時の赤外線受光素子の出力を検出し、これらの出力を比較する機能を有し、これにより、汚れの有無を検出するものである。   In this case, the infrared rays irradiated from the infrared light source 12 are reflected by the dirt 26. The infrared light enters the infrared light receiving element 10 through the infrared transmitting window material 6. When the infrared light receiving element 10 sends a detection signal corresponding to the amount of incident infrared rays to the calculation control means 65 and the calculation control means 65 determines that there is dirt, for example, a signal is sent to the adjustment valve 66 and the adjustment valve 66 is closed. It is done. Further, a display means 68 such as an alarm is activated to notify the user that the infrared transmission window material 6 is dirty. When the user cleans the window material, the infrared sensor 100 returns to the initial state. Further, the arithmetic control means 65 has a function of performing on / off control of the infrared light source, detecting the output of the infrared light receiving element at the on time and at the off time, and comparing these outputs. It is to detect.

赤外線光源より放射される赤外線は、パルス信号であり、被加熱物から常時発せられている赤外線に重畳されて受光素子で検出されるが、汚れ検知にはパルス信号のON、OFF時の差分を読み取ることで汚れ度合いを検知する。   Infrared light emitted from the infrared light source is a pulse signal and is detected by the light receiving element superimposed on the infrared light that is constantly emitted from the object to be heated. The degree of dirt is detected by reading.

なお、上記説明においては、コンロを例として説明したが、これに限られず各種の加熱装置に同様にして赤外線センサユニットを組込める。更に、上記例においては図1に示される赤外線センサーを用いたが、これに限られず、図2、3に記載した赤外線センサーを用いても良い。   In the above description, the stove has been described as an example. However, the present invention is not limited to this, and the infrared sensor unit can be incorporated in various heating devices in the same manner. Furthermore, in the above example, the infrared sensor shown in FIG. 1 is used, but the present invention is not limited to this, and the infrared sensor shown in FIGS.

また、赤外線透過窓材に特開2005−274559で示した光触媒機能を持たせても構わない。   Moreover, you may give the infrared ray transmission window material the photocatalyst function shown by Unexamined-Japanese-Patent No. 2005-274559.

次に、実施例により本発明を具体的に説明するが、本発明はこれに限定されるものではない。   Next, the present invention will be specifically described by way of examples, but the present invention is not limited thereto.

実施例1
図1に示す赤外線センサーを製造した。直径4cm、厚さ2mmのシリコン製赤外線透過窓材をアルミ製の直径5cm、高さ8cmのハウジングに取付けた。赤外線透過窓材の下方6cmの位置に受光面が配置するように赤外線受光素子2個をセンサ搭載用基板に取付けた。赤外線受光素子はサーモパイルを用い3.7〜4.0μmと9.2〜9.7μmの赤外線透過領域を有するフィルターを装着した。
Example 1
The infrared sensor shown in FIG. 1 was manufactured. A silicon infrared transmitting window material having a diameter of 4 cm and a thickness of 2 mm was attached to an aluminum housing having a diameter of 5 cm and a height of 8 cm. Two infrared light receiving elements were attached to the sensor mounting substrate so that the light receiving surface was positioned 6 cm below the infrared transmitting window material. As the infrared light receiving element, a thermopile was used, and filters having infrared transmission regions of 3.7 to 4.0 μm and 9.2 to 9.7 μm were attached.

受光素子と同様に赤外線光源(CAL−SENSOR社製商品名 赤外パルス光源)を取付けた。その際、赤外線光源の光軸を赤外線光路に対して20°傾けた。これにより、赤外線光源の光軸は赤外線受光素子の真上の赤外線透過窓材と交差した。更に、赤外線光源の周囲にステンレス製の円筒状の断熱スリーブを取付けた。   Similarly to the light receiving element, an infrared light source (trade name: infrared pulse light source manufactured by CAL-SENSOR) was attached. At that time, the optical axis of the infrared light source was tilted by 20 ° with respect to the infrared light path. As a result, the optical axis of the infrared light source intersected with the infrared transmission window material directly above the infrared light receiving element. Furthermore, a stainless steel cylindrical heat insulating sleeve was attached around the infrared light source.

なお、赤外線光源、赤外線受光素子の各リード線は、底壁を貫通して、赤外線センサーの外部に取出した。   The lead wires of the infrared light source and the infrared light receiving element penetrated the bottom wall and were taken out of the infrared sensor.

上記センサーを用いて、汚れ物質として水道水が窓材に付着した際の表示温度の変化を調べた。赤外線光源にパルス高0.9V、パルス幅0.5m秒、パルス間隔0.5m秒の連続パルスを供給した。このパルスに同期させて、受光素子から信号を取出した。   Using the above sensor, the change in display temperature when tap water adhered to the window material as a soiling substance was examined. A continuous pulse having a pulse height of 0.9 V, a pulse width of 0.5 ms, and a pulse interval of 0.5 ms was supplied to an infrared light source. In synchronization with this pulse, a signal was extracted from the light receiving element.

その結果を図5に示す。尚、被測定物(熱源)の温度は180℃一定とした。仮に測定精度の規格を表示温度±15℃とした場合、汚れ物質が窓材の40%占有しただけで被加熱物から発せられる赤外線が遮断され、表示温度は公差範囲を逸脱した。   The result is shown in FIG. The temperature of the object to be measured (heat source) was constant at 180 ° C. Assuming that the standard of measurement accuracy is the display temperature ± 15 ° C., the infrared rays emitted from the object to be heated are cut off only when the dirt material occupies 40% of the window material, and the display temperature deviates from the tolerance range.

次に、上記赤外線センサーを組込んで、図4に示す加熱装置を製造した。この加熱装置は、被加熱物の温度を正確に表示すると共に、センサーの赤外線透過窓材が汚れると、警報機が鳴り、汚れを警告した。   Next, a heating device shown in FIG. 4 was manufactured by incorporating the infrared sensor. This heating device accurately displayed the temperature of the object to be heated, and when the infrared transmission window material of the sensor became dirty, an alarm sounded and warned of the contamination.

実施例2
赤外線光源の取付け位置が相違する以外は実施例1と同様にして図3に示す赤外線センサを製造した。
Example 2
The infrared sensor shown in FIG. 3 was manufactured in the same manner as in Example 1 except that the mounting position of the infrared light source was different.

上記実施例1と同様に汚れ物質(水)の量を変化させた場合の赤外線受光素子の出力変化割合を測定した。変化割合とは、汚れが無い状態で赤外線光源を通電した際の赤外線受光素子の出力を1とし、汚れが付着した際の出力減少量を汚れが無い状態との比で表現したものである。その結果を図6に示す。汚れ物質の量が増すにつれ、赤外線光源がオン時に得られる赤外線受光素子の出力が減少することが分かった。精度規格±15℃を満足するためには、例えば閾値を0.5に設定することで汚れ度合いを確実に検知できた。   Similarly to Example 1, the output change rate of the infrared light receiving element when the amount of the soiling substance (water) was changed was measured. The change rate is expressed as a ratio of the output decrease when the infrared light source is energized in a state where there is no dirt to 1 and the output decrease amount when the dirt is attached to the state where there is no dirt. The result is shown in FIG. It was found that the output of the infrared light receiving element obtained when the infrared light source is turned on decreases as the amount of soiling substances increases. In order to satisfy the accuracy standard ± 15 ° C., for example, by setting the threshold value to 0.5, it was possible to reliably detect the degree of contamination.

本発明の赤外線センサーの一例を示す側面断面図である。It is side surface sectional drawing which shows an example of the infrared sensor of this invention. 本発明の赤外線センサーの他の一例を示す側面断面図である。It is side surface sectional drawing which shows another example of the infrared sensor of this invention. 本発明の赤外線センサーの更に他の一例を示す側面断面図である。It is side surface sectional drawing which shows another example of the infrared sensor of this invention. 本発明の加熱装置の構成の一例を示す概略図である。It is the schematic which shows an example of a structure of the heating apparatus of this invention. 本発明の赤外線センサーの赤外線透過窓材に付着した汚れの占有率と表示温度との関係を示すグラフであるIt is a graph which shows the relationship between the occupation rate of the stain | pollution | contamination adhering to the infrared rays transparent window material of the infrared sensor of this invention, and display temperature. 本発明の赤外線センサーの赤外線透過窓材に付着した汚れの占有率と赤外線受光素子出力変化割合との関係を示すグラフである。It is a graph which shows the relationship between the occupation rate of the stain | pollution | contamination adhering to the infrared transmission window material of the infrared sensor of this invention, and an infrared rays light receiving element output change rate.

符号の説明Explanation of symbols

100 赤外線センサー
2 ハウジング
4 底壁
6 赤外線透過窓材
8 中空部
9 センサ搭載用基板
10 赤外線受光素子
12 赤外線光源
14 光軸
16 上方部分
18 断熱スリーブ
20 赤外線受光素子のリード線
22 赤外線光源のリード線
24 窓材表面
26 汚れ
a 、b 壁
2a ハウジング壁
X 光軸
α、θ 角度
42 天板
44 加熱口
46 五徳
48 バーナ
50 環状ケーシング部
52 混合管
54 ガスノズル
56 ガス配管
58 炎口
59 炎
60 被加熱物
62 汁受皿
64 赤外線透過孔
65 制御部
66 調整弁
68 表示手段
DESCRIPTION OF SYMBOLS 100 Infrared sensor 2 Housing 4 Bottom wall 6 Infrared transmission window material 8 Hollow part 9 Sensor mounting board 10 Infrared light receiving element 12 Infrared light source 14 Optical axis 16 Upper part 18 Insulating sleeve 20 Lead wire of infrared light receiving element 22 Lead wire of infrared light source 24 Window material surface 26 Dirt
a, b Wall 2a Housing Wall X Optical axis α, θ Angle 42 Top plate 44 Heating port 46 Gotoku 48 Burner 50 Annular casing part 52 Mixing tube 54 Gas nozzle 56 Gas piping 58 Flame port 59 Flame 60 Heated object 62 Juice tray 64 Infrared ray Permeation hole 65 Control unit 66 Adjustment valve 68 Display means

Claims (5)

赤外線透過窓材を取り付けた赤外線光路を有するハウジングと、受光面を前記赤外線透過窓材に向けてハウジング内に設けられた所定数の互いに受光赤外線波長領域の異なる赤外線受光素子と、赤外線照射面を前記赤外線透過窓材に向けてハウジング内に設けられた赤外線光源とを有する赤外線センサー。 A housing having an infrared light path having an infrared transmission window member attached thereto, a predetermined number of infrared light receiving elements having different light receiving infrared wavelength regions provided in the housing with the light receiving surface facing the infrared transmission window member, and an infrared irradiation surface. An infrared sensor having an infrared light source provided in the housing toward the infrared transmitting window material. 赤外線光源の周囲に断熱スリーブを設けてなる請求項1に記載の赤外線センサー。 The infrared sensor according to claim 1, wherein a heat insulating sleeve is provided around the infrared light source. 赤外線光源が、赤外線透過窓材の赤外線受光素子の上方部分を照射してなる請求項1に記載の赤外線センサー。 The infrared sensor according to claim 1, wherein the infrared light source irradiates an upper portion of the infrared light receiving element of the infrared transmitting window material. 赤外線光路を有するハウジングと、前記赤外線光路に所定の角度傾斜して取り付けられた赤外線透過窓材と、受光面を前記赤外線透過窓材に向けてハウジング内に設けられた所定数の互いに受光赤外線波長領域の異なる赤外線受光素子と、赤外線照射面を前記赤外線透過窓材に向けると共に、赤外線透過窓材に関して前記赤外線受光素子と反対側のハウジングに取り付けられた赤外線光源とを有する赤外線センサー。 A housing having an infrared optical path; an infrared transmitting window member attached to the infrared optical path at a predetermined angle; and a predetermined number of mutually receiving infrared wavelengths provided in the housing with a light receiving surface facing the infrared transmitting window member An infrared sensor comprising: an infrared light receiving element having a different area; and an infrared light source attached to a housing opposite to the infrared light receiving element with respect to the infrared transmitting window material while directing an infrared irradiation surface to the infrared transmitting window material. 被加熱物を加熱する加熱手段と、前記加熱手段の加熱量の制御手段と、前記被加熱物から放射される赤外線の強さを検出する請求項1乃至4のいずれかに記載の赤外線センサーと、赤外線光源のオン・オフ制御を行い、オン時・オフ時それぞれのときの赤外線受光素子の出力より前記赤外線透過窓材の汚れの有無を検出する演算制御手段と表示手段とを備え、前記赤外線センサーにより検出される赤外線の強度に基づいて加熱量を制御すると共に表示手段を制御することを特徴とする加熱装置。 The infrared sensor according to any one of claims 1 to 4, wherein a heating means for heating an object to be heated, a means for controlling a heating amount of the heating means, and an intensity of infrared rays emitted from the object to be heated are detected. An infrared ray light source on / off control, and a calculation control means and a display means for detecting the presence or absence of dirt on the infrared transmission window material from the output of the infrared light receiving element at the on time and at the off time, respectively, A heating apparatus that controls the amount of heating and the display means based on the intensity of infrared rays detected by a sensor.
JP2007145811A 2007-05-31 2007-05-31 Infrared sensor Active JP5506142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007145811A JP5506142B2 (en) 2007-05-31 2007-05-31 Infrared sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007145811A JP5506142B2 (en) 2007-05-31 2007-05-31 Infrared sensor

Publications (2)

Publication Number Publication Date
JP2008298627A true JP2008298627A (en) 2008-12-11
JP5506142B2 JP5506142B2 (en) 2014-05-28

Family

ID=40172271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007145811A Active JP5506142B2 (en) 2007-05-31 2007-05-31 Infrared sensor

Country Status (1)

Country Link
JP (1) JP5506142B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010286259A (en) * 2009-06-09 2010-12-24 Konica Minolta Business Technologies Inc Temperature detector and image-forming device including the same
JP2017162110A (en) * 2016-03-08 2017-09-14 深田工業株式会社 Flame detector
JP2017190939A (en) * 2016-04-11 2017-10-19 衆智光電科技股▲ふん▼有限公司 Gas cooking stove having temperature sensing function
US20180348021A1 (en) * 2015-11-25 2018-12-06 Minimax Gmbh & Co. Kg Explosion-protected housing for means for transmitting and receiving electromagnetic radiation
CN108983304A (en) * 2018-07-30 2018-12-11 安徽科达自动化集团股份有限公司 A kind of precision infrared photoelectric sensor
JP2020176766A (en) * 2019-04-18 2020-10-29 株式会社ミクニ Infrared detection unit and heating cooker
JP2021025869A (en) * 2019-08-05 2021-02-22 株式会社ミクニ Infrared detection unit and heating and cooking device
US11635516B2 (en) 2020-03-18 2023-04-25 Ricoh Company, Ltd. Detection device, detection system and detection method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884387A (en) * 1981-10-30 1983-05-20 ア−ムテツク・インダストリ−ズ・インコ−ポレイテツド Fire detector
JPH01265109A (en) * 1988-04-15 1989-10-23 Matsushita Electric Works Ltd Photoelectric switch
JPH06102092A (en) * 1992-09-22 1994-04-12 Japan Radio Co Ltd Optical sensor
JP2000277796A (en) * 1999-03-24 2000-10-06 Citizen Electronics Co Ltd Photosensor and its manufacture
JP2002340339A (en) * 2001-03-16 2002-11-27 Osaka Gas Co Ltd Cooking stove
JP2005249307A (en) * 2004-03-04 2005-09-15 Rinnai Corp Stove pan bottom temperature sensor
JP2005337596A (en) * 2004-05-27 2005-12-08 Matsushita Electric Ind Co Ltd Gas cooker
JP2006266827A (en) * 2005-03-23 2006-10-05 Mikuni Corp Window material for transmitting infrared light, infrared sensor unit, and combustion apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884387A (en) * 1981-10-30 1983-05-20 ア−ムテツク・インダストリ−ズ・インコ−ポレイテツド Fire detector
JPH01265109A (en) * 1988-04-15 1989-10-23 Matsushita Electric Works Ltd Photoelectric switch
JPH06102092A (en) * 1992-09-22 1994-04-12 Japan Radio Co Ltd Optical sensor
JP2000277796A (en) * 1999-03-24 2000-10-06 Citizen Electronics Co Ltd Photosensor and its manufacture
JP2002340339A (en) * 2001-03-16 2002-11-27 Osaka Gas Co Ltd Cooking stove
JP2005249307A (en) * 2004-03-04 2005-09-15 Rinnai Corp Stove pan bottom temperature sensor
JP2005337596A (en) * 2004-05-27 2005-12-08 Matsushita Electric Ind Co Ltd Gas cooker
JP2006266827A (en) * 2005-03-23 2006-10-05 Mikuni Corp Window material for transmitting infrared light, infrared sensor unit, and combustion apparatus

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8534913B2 (en) 2009-06-09 2013-09-17 Konica Minolta Business Technologies, Inc. Temperature detector, image forming device having temperature detector, and contamination detection method for temperature detector
JP2010286259A (en) * 2009-06-09 2010-12-24 Konica Minolta Business Technologies Inc Temperature detector and image-forming device including the same
US11821757B2 (en) * 2015-11-25 2023-11-21 Minimax Gmbh Explosion-protected housing for means for transmitting and receiving electromagnetic radiation
US20180348021A1 (en) * 2015-11-25 2018-12-06 Minimax Gmbh & Co. Kg Explosion-protected housing for means for transmitting and receiving electromagnetic radiation
JP2017162110A (en) * 2016-03-08 2017-09-14 深田工業株式会社 Flame detector
JP2017190939A (en) * 2016-04-11 2017-10-19 衆智光電科技股▲ふん▼有限公司 Gas cooking stove having temperature sensing function
CN108983304A (en) * 2018-07-30 2018-12-11 安徽科达自动化集团股份有限公司 A kind of precision infrared photoelectric sensor
CN108983304B (en) * 2018-07-30 2024-02-20 安徽科达自动化集团股份有限公司 Precise infrared photoelectric sensor
JP2020176766A (en) * 2019-04-18 2020-10-29 株式会社ミクニ Infrared detection unit and heating cooker
JP7269083B2 (en) 2019-04-18 2023-05-08 株式会社ミクニ Infrared detection unit and cooking device
JP7269127B2 (en) 2019-08-05 2023-05-08 株式会社ミクニ Infrared detection unit and cooking device
JP2021025869A (en) * 2019-08-05 2021-02-22 株式会社ミクニ Infrared detection unit and heating and cooking device
US11635516B2 (en) 2020-03-18 2023-04-25 Ricoh Company, Ltd. Detection device, detection system and detection method

Also Published As

Publication number Publication date
JP5506142B2 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
JP5506142B2 (en) Infrared sensor
JP4853036B2 (en) Induction heating device
JP5070845B2 (en) Cooker
US6140617A (en) Cooktop control and monitoring system including detecting properties of a utensil through a solid-surface cooktop
JP2008176937A5 (en)
JP5388203B2 (en) Gas stove
JP2001522460A (en) Micromachining inference type light-heat gas sensor
JP2002299029A (en) Induction cooker
FI127878B (en) Stoveguard, that uses wide field of view
JP4921057B2 (en) Radiation temperature measuring device
JP6755105B2 (en) Flame detector
JP4659494B2 (en) Infrared transmitting window material, infrared sensor unit, and combustion apparatus
JP4557741B2 (en) Stove
JP2006275466A (en) Composite sensor and combustion device
JP5875921B2 (en) Stove
EP4226088A1 (en) Utensil profile determination system
JP2005121490A (en) Flame detector equipped with automatic test function
JP2018128162A (en) Gas cooking stove
JP2012189281A (en) Combustion type heating device
JP7337026B2 (en) heating cooker
JP2005209440A (en) Electric heating cooker
JP7269083B2 (en) Infrared detection unit and cooking device
JP7394701B2 (en) heating cooker
JP7304304B2 (en) Gas stove
JP2018128169A (en) Stove

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120514

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121030

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121212

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140318

R150 Certificate of patent or registration of utility model

Ref document number: 5506142

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250