JP2012189281A - Combustion type heating device - Google Patents

Combustion type heating device Download PDF

Info

Publication number
JP2012189281A
JP2012189281A JP2011054547A JP2011054547A JP2012189281A JP 2012189281 A JP2012189281 A JP 2012189281A JP 2011054547 A JP2011054547 A JP 2011054547A JP 2011054547 A JP2011054547 A JP 2011054547A JP 2012189281 A JP2012189281 A JP 2012189281A
Authority
JP
Japan
Prior art keywords
temperature
temperature detection
heated
heating
detection means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011054547A
Other languages
Japanese (ja)
Other versions
JP5711012B2 (en
Inventor
Akira Miyato
章 宮藤
Kazutaka Shoda
一貴 正田
Kohei Tagami
康平 田上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2011054547A priority Critical patent/JP5711012B2/en
Publication of JP2012189281A publication Critical patent/JP2012189281A/en
Application granted granted Critical
Publication of JP5711012B2 publication Critical patent/JP5711012B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radiation Pyrometers (AREA)
  • Electric Stoves And Ranges (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a combustion type heating device that can satisfactorily detect the temperature of an object to be heated whether the heating amount is large or small.SOLUTION: The combustion type heating device 100 includes: a heating means 3 for heating the object N to be heated; a temperature detection means 30 for detecting the temperature at the specified part of the object N to be heated; and a temperature estimation means 60 for estimating the temperature of the object N to be heated on the basis of the temperature at the specified part of the object N to be heated detected by the temperature detection means 30, wherein a small fire heating part where the object N to be heated is heated in such a small fire heating state that the heating amount is small is different from a large fire heating part where the object N to be heated is heated in such a large fire heating state that the heating amount is large. The combustion type heating device 100 further includes a first temperature detection means 30A for detecting the temperature at the small fire heating part and a second temperature detection means 30B for detecting the temperature at the large fire heating part. The temperature estimation means 60 estimates the temperature of the object N to be heated on the basis of the temperature detection value Tof the first temperature detection means and the temperature detection value Tof the second temperature detection means.

Description

本発明は、被加熱物を加熱する加熱手段と、前記被加熱物の特定部位の温度を検出する温度検出手段とを備え、前記温度検出手段により検出した前記被加熱物の特定部位の温度に基づいて、前記被加熱物の温度を推定する温度推定手段を備えて構成され、加熱量が小さい小火加熱状態で前記被加熱物が加熱される小火加熱部位と、加熱量が大きい大火加熱状態で前記被加熱物が加熱される大火加熱部位とが異なる燃焼式加熱装置に関する。   The present invention comprises a heating means for heating an object to be heated, and a temperature detecting means for detecting the temperature of a specific part of the object to be heated, and the temperature of the specific part of the object to be heated detected by the temperature detecting means. Based on this, the apparatus is provided with temperature estimating means for estimating the temperature of the object to be heated, and a small fire heating part where the object to be heated is heated in a small fire heating state with a small heating amount, and a large fire heating with a large heating amount The present invention relates to a combustion-type heating device that is different from a large fire heating site where the object to be heated is heated in a state.

従来より、燃焼式加熱装置の一種であるガス調理器では、天ぷら火災等を防止するために、安全機能を設けたものが知られている。このようなガス調理器では、例えば、なべ底部の温度を接触式温度センサや非接触式温度センサで検出し、検出された温度が所定の温度に達すると、調理器が過熱状態にあると判断し、バーナへのガス供給路に設けられた電磁弁を強制的に閉弁させて自動消火する等により、安全機能を実現している(例えば特許文献1、2参照)。   2. Description of the Related Art Conventionally, gas cookers that are a type of combustion heating device have been provided with a safety function in order to prevent a tempura fire or the like. In such a gas cooker, for example, the temperature of the pan bottom is detected by a contact temperature sensor or a non-contact temperature sensor, and when the detected temperature reaches a predetermined temperature, it is determined that the cooker is in an overheated state. In addition, a safety function is realized by forcibly closing a solenoid valve provided in a gas supply path to the burner to automatically extinguish the fire (for example, see Patent Documents 1 and 2).

特開2006−220395号公報JP 2006-220395 A 特開2009−92266号公報JP 2009-92266 A

しかしながら、上記従来のガス調理器のように温度検出を特定の部位で行う構成では、調理の態様によっては、温度検出を良好に行えない場合がある。例えば、なべ底中央部位に温度センサを当接して被加熱物の温度を検出する構成の場合、なべ底中央部位の温度は実際に燃焼火炎が当たるなべ底外周側部位より温度が低いため、被加熱物の温度を正確に検出することができず、且つ、温度が最も高くなる部位で検出することができない。
特に、ガス調理器のような燃焼式加熱装置では、加熱量により火炎に供給する混合ガスの量が変化するため、燃焼炎が最もよく当るなべ底の部位は加熱量により変化する。例えば、環状に配置された多数の炎孔を備えたバーナを採用するガス調理器の場合、加熱量が小さい場合はなべ底中央側部位に燃焼炎が当たるが、加熱量が大きい場合はなべ底外周側部位やなべ周壁部位に燃焼炎が当たる。このように、とりわけガス調理器のような燃焼式加熱装置では、なべ底中央部位等の特定の部位で検出する構成では、加熱量によっては被加熱物の温度を良好に検出できない場合がある。
However, in the configuration in which temperature detection is performed at a specific part as in the conventional gas cooker, temperature detection may not be performed satisfactorily depending on the cooking mode. For example, in the case of a configuration in which the temperature sensor is in contact with the pan bottom central portion to detect the temperature of the object to be heated, the temperature at the pan bottom central portion is lower than the pan bottom outer peripheral portion where the combustion flame actually hits. The temperature of the heated object cannot be accurately detected, and cannot be detected at a site where the temperature is highest.
In particular, in a combustion-type heating apparatus such as a gas cooker, the amount of mixed gas supplied to the flame varies depending on the heating amount, and therefore, the portion of the pan bottom where the combustion flame strikes best varies depending on the heating amount. For example, in the case of a gas cooker that employs a burner with a large number of flame holes arranged in an annular shape, if the amount of heating is small, the combustion flame hits the center of the pan bottom, but if the amount of heating is large, the pan bottom The combustion flame hits the outer peripheral side part and the pan peripheral wall part. As described above, in particular, in a combustion heating apparatus such as a gas cooker, the temperature of the object to be heated may not be detected well depending on the amount of heating in the configuration in which the detection is performed at a specific part such as the center part of the pan bottom.

本発明は上記実情に鑑みて為されたものであって、その目的は、加熱量が小さい場合及び加熱量が大きい場合のいずれの場合でも、被加熱物の温度を良好に検出することができる燃焼式加熱装置を提供する点にある。   The present invention has been made in view of the above circumstances, and its purpose is to detect the temperature of an object to be heated satisfactorily regardless of whether the heating amount is small or the heating amount is large. It is in providing a combustion type heating device.

この目的を達成するために、本発明に係る燃焼式加熱装置は、被加熱物を加熱する加熱手段と、前記被加熱物の特定部位の温度を検出する温度検出手段と、前記温度検出手段により検出した前記被加熱物の特定部位の温度に基づいて、前記被加熱物の温度を推定する温度推定手段とを備え、加熱量が小さい小火加熱状態で前記被加熱物が加熱される小火加熱部位と、加熱量が大きい大火加熱状態で前記被加熱物が加熱される大火加熱部位とが異なる燃焼式加熱装置であって、その第1特徴構成は、前記温度検出手段として、前記小火加熱部位の温度を検出する第1温度検出手段と、前記大火加熱部位の温度を検出する第2温度検出手段とを備え、前記温度推定手段が、前記第1温度検出手段の温度検出値及び前記第2温度検出手段の温度検出値に基づいて、前記被加熱物の温度を推定する点にある。   In order to achieve this object, a combustion heating apparatus according to the present invention comprises a heating means for heating an object to be heated, a temperature detecting means for detecting the temperature of a specific part of the object to be heated, and the temperature detecting means. Temperature estimation means for estimating the temperature of the object to be heated based on the detected temperature of the specific part of the object to be heated, and a small fire in which the object to be heated is heated in a small fire heating state with a small heating amount A combustion-type heating device in which a heating portion and a large-fire heating portion where the object to be heated is heated in a large-heat heating state in which a heating amount is large is different, and the first characteristic configuration thereof is the small-fire as the temperature detection means. 1st temperature detection means which detects the temperature of a heating part, and 2nd temperature detection means which detects the temperature of the said large fire heating part, The said temperature estimation means is the temperature detection value of the said 1st temperature detection means, and the said Temperature detection of the second temperature detection means Based on, it is the in that for estimating the temperature of the heated object.

本特徴構成によれば、被加熱物の温度は、加熱量が小さい小火加熱状態で前記被加熱物が加熱される小火加熱部位の温度を検出する第1温度検出手段と、加熱量が大きい大火加熱状態で前記被加熱物が加熱される大火加熱部位の温度を検出する第2検出手段との各々で測定される温度検出値の双方を有効に活用して推定される。従って、加熱量が小さい場合及び加熱量が大きい場合のいずれの場合でも、被加熱物の温度を良好に検出することができる燃焼式加熱装置を提供することができる。   According to this characteristic configuration, the temperature of the object to be heated is the first temperature detecting means for detecting the temperature of the small fire heating part where the object to be heated is heated in the small fire heating state where the heating amount is small, and the heating amount is It is estimated by effectively utilizing both of the temperature detection values measured by each of the second detection means for detecting the temperature of the large fire heating part where the object to be heated is heated in a large large fire heating state. Therefore, it is possible to provide a combustion type heating apparatus that can detect the temperature of the object to be heated well in both cases where the heating amount is small and the heating amount is large.

本発明に係る燃焼式加熱装置の第2特徴構成は、第1特徴構成に加えて、前記被加熱物の加熱量を調整する加熱状態調整手段と、前記加熱状態調整手段で調整された前記加熱量と、前記第1温度検出手段の温度検出値及び前記第2温度検出手段の温度検出値に基づいて、前記被加熱物の温度を推定可能な関係情報を記憶した記憶手段とを備え、前記温度推定手段は、前記関係情報を使用して、前記被加熱物の温度を推定する点にある。   In addition to the first characteristic configuration, the second characteristic configuration of the combustion heating apparatus according to the present invention is a heating state adjusting unit that adjusts a heating amount of the object to be heated, and the heating that is adjusted by the heating state adjusting unit. Storage means for storing relationship information capable of estimating the temperature of the object to be heated based on the amount and the temperature detection value of the first temperature detection means and the temperature detection value of the second temperature detection means, The temperature estimating means is to estimate the temperature of the object to be heated using the relationship information.

本特徴構成によれば、第1温度検出手段の温度検出値及び第2温度検出手段の温度検出値とともに、加熱状態調整手段で調整された被加熱物の加熱量を加味する関係情報を使用して、被加熱物の温度を適切に推定することができる。
燃焼式加熱装置では、加熱量により火炎に供給する混合ガスの量が変化するため、燃焼炎が最もよく当る部位は加熱量により変化する。例えば、環状に配置された多数の炎孔を備えたバーナを採用するガス調理器の場合、加熱量が小さい場合は調理器具の底部中央側部位に燃焼炎が当たるが、加熱量が大きい場合は調理器具の底部外周側部位や周壁部位に燃焼炎が当たる。従って、このようなガス調理器では、加熱量が小さい小火加熱状態に近い状態の場合は、小火加熱部位である調理器具の底部中央側部位の温度を検出する第1温度検出手段の温度検出値が、加熱量が大きい大火加熱状態に近い状態の場合は、大火加熱部位である調理器具の底部外周側部位や周壁部位の温度を検出する第2温度検出手段の温度検出値が、加熱により温度が最も高くなる部位の温度により近く、被加熱物の温度を推定する上で比重を置いて参考にすべき温度となる。
このように、参考にすべき温度検出値は加熱量によって変わるため、加熱量に基づいて第1温度検出手段の温度検出値及び第2温度検出手段の温度検出値からどのように被加熱物の温度を推定するかを関係情報として規定して使用することで、被加熱物の温度を適切に推定することができる。
According to this characteristic configuration, the relationship information that takes into account the amount of heating of the object to be heated adjusted by the heating state adjustment unit is used together with the temperature detection value of the first temperature detection unit and the temperature detection value of the second temperature detection unit. Thus, the temperature of the object to be heated can be estimated appropriately.
In the combustion type heating device, the amount of the mixed gas supplied to the flame varies depending on the heating amount, and therefore, the portion where the combustion flame best hits varies depending on the heating amount. For example, in the case of a gas cooker that employs a burner with a large number of flame holes arranged in an annular shape, if the amount of heating is small, the combustion flame will hit the bottom center side part of the cooking utensil, but if the amount of heating is large A combustion flame hits the outer peripheral side part and peripheral wall part of the bottom part of the cooking utensil. Therefore, in such a gas cooker, when the heating amount is close to a small fire heating state, the temperature of the first temperature detecting means for detecting the temperature of the bottom center side portion of the cooking utensil that is the small fire heating portion. When the detected value is close to the large fire heating state where the heating amount is large, the temperature detection value of the second temperature detecting means for detecting the temperature of the bottom outer peripheral portion and the peripheral wall portion of the cooking utensil that is the large fire heating portion is heated. Thus, the temperature is closer to the temperature of the part where the temperature is the highest, and should be referred to with a specific gravity in estimating the temperature of the object to be heated.
As described above, the temperature detection value to be referred to varies depending on the heating amount, and thus, based on the heating amount, how the temperature of the object to be heated is determined from the temperature detection value of the first temperature detection means and the temperature detection value of the second temperature detection means. By defining and using whether the temperature is estimated as the relationship information, the temperature of the object to be heated can be estimated appropriately.

本発明に係る燃焼式加熱装置の第3特徴構成は、第1特徴構成に加えて、前記温度推定手段が、前記第1温度検出手段の温度検出値及び前記第2温度検出手段の温度検出値の一方で、温度が高い側の温度検出値を前記被加熱物の温度と推定する点にある。   In addition to the first feature configuration, the third feature configuration of the combustion-type heating device according to the present invention includes a temperature detection value of the first temperature detection unit and a temperature detection value of the second temperature detection unit. On the other hand, the temperature detection value on the higher temperature side is estimated as the temperature of the object to be heated.

本特徴構成によれば、第1温度検出手段の温度検出値及び第2温度検出手段の温度検出値のうち、被加熱物が過度に高温となっている可能性を示す高温側の温度検出値を被加熱物の温度と推定する。このように推定した被加熱物の温度に基づいて安全制御を行うことで、被加熱物の過熱を良好に防止できる。これにより、安全性の高い燃焼式加熱装置を提供することができる。   According to this characteristic configuration, of the temperature detection value of the first temperature detection means and the temperature detection value of the second temperature detection means, the temperature detection value on the high temperature side indicating the possibility that the heated object is excessively hot. Is estimated as the temperature of the object to be heated. By performing safety control based on the estimated temperature of the object to be heated, overheating of the object to be heated can be satisfactorily prevented. Thereby, a combustion type heating device with high safety can be provided.

本発明に係る燃焼式加熱装置の第4特徴構成は、第1特徴構成〜第3特徴構成のいずれかに加えて、前記第1温度検出手段の温度検出値及び前記第2温度検出手段の温度検出値が、所定の温度範囲内であることを条件として、前記温度推定手段が、前記第1温度検出手段の温度検出値及び前記第2温度検出手段の温度検出値に基づいて、前記被加熱物の温度を推定する点にある。   In addition to any of the first to third feature configurations, the fourth feature configuration of the combustion heating apparatus according to the present invention is the temperature detection value of the first temperature detection means and the temperature of the second temperature detection means. On the condition that the detected value is within a predetermined temperature range, the temperature estimating means is configured to perform the heating based on the temperature detected value of the first temperature detecting means and the temperature detected value of the second temperature detecting means. The point is to estimate the temperature of the object.

本特徴構成によれば、第1温度検出手段の温度検出値及び第2温度検出手段の温度検出値が所定の温度範囲内であることを条件としているため、第1温度検出手段と第2温度検出手段との双方が正常に作動していると考えられる場合のみ、被加熱物の温度を推定させることができる。これにより、温度推定手段による誤推定を防止し、信頼性の高い範囲でのみ、被加熱物の温度を推定させることができる。   According to this characteristic configuration, since the temperature detection value of the first temperature detection means and the temperature detection value of the second temperature detection means are within a predetermined temperature range, the first temperature detection means and the second temperature Only when it is considered that both of the detection means and the detection means are operating normally, the temperature of the object to be heated can be estimated. Thereby, the erroneous estimation by the temperature estimation means can be prevented, and the temperature of the object to be heated can be estimated only in a highly reliable range.

本発明に係る燃焼式加熱装置の第5特徴構成は、第1特徴構成〜第4特徴構成のいずれかに加えて、前記第1温度検出手段の温度検出値及び前記第2温度検出手段の温度検出値の何れか一方又はその両方が、加熱開始から所定の時間が経過しても所定の低温側温度範囲に留まる場合に、当該温度検出値を検出した温度検出手段が異常であると判断する点にある。   The fifth characteristic configuration of the combustion heating apparatus according to the present invention is the temperature detection value of the first temperature detection means and the temperature of the second temperature detection means in addition to any of the first characteristic configuration to the fourth characteristic configuration. If one or both of the detected values remain in the predetermined low temperature range even after a predetermined time has elapsed since the start of heating, it is determined that the temperature detecting means that detected the detected temperature value is abnormal. In the point.

本特徴構成によれば、第1温度検出手段及び第2温度検出手段の何れか一方又はその両方に異常が発生していると考えられる場合に、温度検出手段の異常を的確に判断することができる。
すなわち、燃焼式加熱装置で加熱した場合、通常、被加熱物の温度は、所定の時間の経過後には、所定の温度以上に上昇する。よって、温度検出手段の温度検出値が加熱開始から所定の時間が経過しても、所定の低温側温度範囲(例えば常温付近)に留まる場合は、温度検出手段が短絡故障若しくは断線故障しているか、或いは被加熱物が温度検出手段に当接していない等の事情により、正常に温度検出されていないと考えられる。従って、本特徴構成によれば、第1温度検出手段及び第2温度検出手段の何れか一方にでも異常が発生している場合には、当該異常を的確に検知することができる。
According to this characteristic configuration, when it is considered that an abnormality has occurred in one or both of the first temperature detection means and the second temperature detection means, the abnormality of the temperature detection means can be accurately determined. it can.
That is, when heated by a combustion heating apparatus, the temperature of the object to be heated usually rises to a predetermined temperature or higher after a predetermined time has elapsed. Therefore, if the temperature detection value of the temperature detection means stays within a predetermined low temperature range (for example, near normal temperature) even after a predetermined time has elapsed since the start of heating, is the temperature detection means short-circuited or disconnected? Alternatively, it is considered that the temperature is not normally detected due to circumstances such that the object to be heated is not in contact with the temperature detecting means. Therefore, according to this characteristic configuration, when an abnormality has occurred in any one of the first temperature detection unit and the second temperature detection unit, the abnormality can be accurately detected.

本発明に係る燃焼式加熱装置の第6特徴構成は、第1特徴構成〜第5特徴構成のいずれかに加えて、前記温度検出手段が、非接触式温度センサ又は接触式温度センサである点にある。   The sixth feature configuration of the combustion heating apparatus according to the present invention is that, in addition to any of the first feature configuration to the fifth feature configuration, the temperature detection means is a non-contact temperature sensor or a contact temperature sensor. It is in.

本特徴構成によれば、温度検出手段を、例えば被加熱物の下方に位置する光透過窓を介して赤外線強度を検出する赤外線強度検出素子からなる非接触式温度センサとして、或いは、被加熱物が載置される五徳に設けられた熱電対からなる接触式温度センサとして、構成することができる。   According to this characteristic configuration, the temperature detecting means is, for example, a non-contact type temperature sensor including an infrared intensity detecting element that detects infrared intensity through a light transmission window located below the object to be heated, or the object to be heated. Can be configured as a contact-type temperature sensor made of a thermocouple provided in Gotoku.

第1実施形態に係るコンロの設置状態を示す概略図Schematic which shows the installation state of the stove which concerns on 1st Embodiment 第1実施形態に係るコンロの概略構成図Schematic configuration diagram of a stove according to the first embodiment 赤外線強度検出部の縦断面図Longitudinal cross section of infrared intensity detector 火炎から放射される赤外線の放射強度スペクトル分布を示す図Figure showing the infrared radiation intensity spectrum distribution emitted from the flame 被加熱物の温度と赤外線強度検出部の出力との関係を示す図The figure which shows the relationship between the temperature of a to-be-heated material, and the output of an infrared intensity detection part 被加熱物の温度と赤外線強度検出部の出力比との関係を示す図The figure which shows the relationship between the temperature of to-be-heated material and the output ratio of an infrared intensity detection part 被加熱物を加熱する場合の被加熱物の温度の推定或いは温度検出手段の異常の判定の処理を示すフロー図Flow chart showing processing for estimating temperature of object to be heated or determining abnormality of temperature detecting means when heating object to be heated 作動が正常な温度検出手段の温度検出値と作動が異常な温度検出手段の温度検出値とを示すグラフ図The graph which shows the temperature detection value of the temperature detection means with normal operation, and the temperature detection value of the temperature detection means with abnormal operation 第2実施形態に係るコンロの概略構成図Schematic configuration diagram of a stove according to the second embodiment 別実施形態に係るコンロの概略構成図Schematic configuration diagram of a stove according to another embodiment

〔第1実施形態〕
以下、図面に基づいて本発明の第1実施形態を説明する。
[First Embodiment]
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.

〔本発明に係るコンロの構成〕
図1に、本発明に係る燃焼式加熱装置として構成されたビルトイン式のコンロ100Aの概略図を示している。このコンロ100Aは、3つのコンロバーナ部101とグリル部102とを備えて構成され、システムキッチンのカウンター103に開口された設置部104に設けられる構成となっている。
[Configuration of stove according to the present invention]
FIG. 1 shows a schematic view of a built-in stove 100A configured as a combustion heating apparatus according to the present invention. The stove 100A includes three stove burners 101 and a grill 102, and is provided in an installation unit 104 opened in a counter 103 of the system kitchen.

図2に示すように、前記各コンロバーナ部101は、耐熱性を備える材質からなる平板状の天板1と、加熱対象物調理用の鍋等の被加熱物Nを載置可能な五徳2、その五徳2上に載置される被加熱物Nを加熱する加熱手段としてのガス燃焼式のバーナ3と、そのバーナ3の作動を制御する制御手段としての燃焼制御部4、人為操作に基づいて燃焼制御部4に前記バーナ3への点火指令、消火指令、及び、火力調節指令等を指令することで被加熱物Nの加熱量を調整する加熱状態調整手段としての操作部5等を備えて構成されている。   As shown in FIG. 2, each of the burner parts 101 has a flat top plate 1 made of a material having heat resistance, and five virtues 2 on which an object to be heated N such as a pot for cooking an object to be heated can be placed. , A gas combustion burner 3 as a heating means for heating the article N to be heated placed on the virtues 2, and a combustion control unit 4 as a control means for controlling the operation of the burner 3, based on human operation And an operation section 5 as a heating state adjusting means for adjusting the amount of heating of the article N to be heated by instructing the combustion control section 4 an ignition command, a fire extinguishing command, a heating power adjustment command, and the like. Configured.

前記バーナ3は、ブンゼン燃焼式のバーナであり、燃料供給路6を通じて供給される燃料ガスGを噴出するガスノズル7、そのガスノズル7から燃料ガスGが噴出されると共に、その燃料ガスGの噴出に伴う吸引作用により燃焼用空気Aが供給される混合管8、及び、混合管8から供給される混合気を径方向外方側に噴出する複数の炎口9を備えたバーナ本体10等を備えて構成され、前記バーナ本体10は天板1に形成された開口11を通して上方に露出する状態となっている。そして、炎口9から噴出される混合気を燃焼させて火炎Fを形成して被加熱物Nを加熱するように構成されている。前記燃料供給路6には、前記ガスノズル7への燃料ガスGの供給を断続する燃料供給断続弁12と、ガスノズル7への燃料ガスGの供給量を調節する燃料供給量調節弁13とが設けられる。又、図示はしないが、バーナ3の炎口9の近傍には点火用のイグナイタ及びバーナ3への点火状態を確認する熱電対等も設けられる。   The burner 3 is a Bunsen combustion type burner, and a gas nozzle 7 for ejecting a fuel gas G supplied through a fuel supply path 6, the fuel gas G is ejected from the gas nozzle 7, and the fuel gas G is ejected. A mixing pipe 8 to which combustion air A is supplied by the accompanying suction action, and a burner main body 10 provided with a plurality of flame ports 9 for jetting the air-fuel mixture supplied from the mixing pipe 8 radially outward. The burner body 10 is exposed upward through an opening 11 formed in the top plate 1. And it is comprised so that the to-be-heated material N may be heated by combusting the air-fuel | gaseous mixture injected from the flame opening 9, and forming the flame F. The fuel supply path 6 is provided with a fuel supply intermittent valve 12 for intermittently supplying the fuel gas G to the gas nozzle 7 and a fuel supply amount adjusting valve 13 for adjusting the supply amount of the fuel gas G to the gas nozzle 7. It is done. Although not shown, an ignition igniter and a thermocouple for confirming the ignition state of the burner 3 are provided in the vicinity of the flame opening 9 of the burner 3.

前記燃焼制御部4は、操作部5により点火指令が指令されるとバーナ3に点火させる点火処理を実行する。つまり、燃料供給断続弁12を開弁させて燃料供給量調節弁13におけるガス供給量を点火用供給量に調整してイグナイタを作動させて前記バーナ3に点火させ、且つ、熱電対にて点火状態が確認されるとイグナイタの作動を停止する。又、燃焼制御部4は、バーナ3が点火した後に操作部5により火力調節指令が指令されるとその火力調節指令に基づいて燃料供給量調節弁13におけるガス供給量を変更調整する。そして、燃焼制御部4は、操作部5により消火指令が指令されるとバーナ3の消火処理を実行する。つまり、燃料供給断続弁12及び燃料供給量調節弁13を閉弁させて燃料ガスGの供給を停止させてバーナ3の燃焼を停止させる。   The combustion control unit 4 executes an ignition process for igniting the burner 3 when an ignition command is commanded by the operation unit 5. That is, the fuel supply intermittent valve 12 is opened, the gas supply amount in the fuel supply amount adjustment valve 13 is adjusted to the ignition supply amount, the igniter is operated to ignite the burner 3, and the thermocouple is ignited When the condition is confirmed, the igniter stops operating. Further, when a heating power adjustment command is commanded by the operation unit 5 after the burner 3 is ignited, the combustion control unit 4 changes and adjusts the gas supply amount in the fuel supply amount adjustment valve 13 based on the heating power adjustment command. And the combustion control part 4 will perform the fire extinguishing process of the burner 3, if the fire extinguishing command is commanded by the operation part 5. That is, the fuel supply intermittent valve 12 and the fuel supply amount adjustment valve 13 are closed to stop the supply of the fuel gas G, and the combustion of the burner 3 is stopped.

そして、このコンロ100Aには、天板1の下方側に位置して被加熱物Nから放射された赤外線の強度を検出する赤外線強度検出部40と、その赤外線強度検出部40により検出された赤外線の強度に基づいて被加熱物Nの温度を検出する温度検出部50とが設けられており、温度検出手段30を構成している。前記赤外線強度検出部40及び前記温度検出部50は、コンロ100Aの3つのコンロバーナ部101の夫々に2箇所ずつ、加熱量が小さい小火加熱状態で被加熱物Nが加熱される小火加熱部位の温度を検出する第1温度検出手段30A(40A、50A)と、加熱量が大きい大火加熱状態で被加熱物Nが加熱される大火加熱部位の温度を検出する第2温度検出手段30B(40B、50B)として設けられている。そして、前記赤外線強度検出部40(40A、40B)が、被加熱物Nから放射される赤外線における互いに異なる2つの波長域夫々についての赤外線強度を検出するように構成され、前記温度検出部50(50A、50B)が、赤外線強度検出部40(40A、40B)で検出される2つの波長域夫々についての赤外線強度の関係、具体的には、前記2つの波長域夫々についての赤外線強度の比に基づいて、小火加熱部位及び大火加熱部位における被加熱物Nの温度検出値TA、TBを検出するように構成されている。さらに、赤外線強度検出部40は、赤外線の波長範囲のうちのバーナ3の火炎からの放射が無い又は放射強度が弱い範囲内に設定された波長域の赤外線強度を検出するように構成されている。 And in this stove 100A, the infrared intensity detection part 40 which detects the intensity | strength of the infrared rays emitted from the to-be-heated material N located in the downward side of the top plate 1, and the infrared rays detected by the infrared intensity detection part 40 And a temperature detecting unit 50 that detects the temperature of the object N to be heated based on the intensity of the light. The infrared intensity detection unit 40 and the temperature detection unit 50 are small fire heating in which the object to be heated N is heated in a small fire heating state with a small heating amount at two locations on each of the three stove burner units 101 of the stove 100A. First temperature detection means 30A (40A, 50A) for detecting the temperature of the part, and second temperature detection means 30B for detecting the temperature of the large fire heating part where the heated object N is heated in the large fire heating state with a large heating amount ( 40B, 50B). And the said infrared intensity detection part 40 (40A, 40B) is comprised so that the infrared intensity about two mutually different wavelength ranges in the infrared rays radiated | emitted from the to-be-heated material N may be detected, and the said temperature detection part 50 ( 50A, 50B) is a relationship between the infrared intensity for each of the two wavelength ranges detected by the infrared intensity detector 40 (40A, 40B), specifically, the ratio of the infrared intensity for each of the two wavelength ranges. Based on this, the temperature detection values T A and T B of the object N to be heated in the small fire heating part and the large fire heating part are detected. Further, the infrared intensity detection unit 40 is configured to detect infrared intensity in a wavelength range set within a range where there is no radiation from the flame of the burner 3 in the infrared wavelength range or the radiation intensity is weak. .

図1、図2に示すように、3つのコンロバーナ部101の夫々において、天板1における前記バーナ本体10の外周部側の近傍位置及び当該近傍位置から少し離れた位置に、上下方向に光が透過する状態で透光性部材からなる2つの光透過窓14(14A、14B)が形成されている。光透過窓14は、天板1を構成する材質とは異なる透光性材料で構成されている。2つの光透過窓14A、14Bは夫々、加熱量が小さい小火加熱状態で前記被加熱物が加熱される小火加熱部位と、加熱量が大きい大火加熱状態で前記被加熱物が加熱される大火加熱部位とにおいて、被加熱物Nから放射される赤外線を通過させる位置に形成されており、赤外線強度検出部40A、40Bが、夫々、前記光透過窓14A、14Bの下方側であって、且つ、前記バーナ本体10の横側箇所に位置させて設けられており、被加熱物Nから放射されて光透過窓14A、14Bを通過した赤外線の強度を検出するように構成されている。すなわち、赤外線強度検出部40A、40Bが夫々、五徳2に載置支持された被加熱物Nの小火加熱部位、大火加熱部位の底部から放射されて光透過窓14A、14Bを通過した赤外線の強度を受光するように構成されている。   As shown in FIG. 1 and FIG. 2, in each of the three stove burner portions 101, light is emitted in the vertical direction at a position near the outer peripheral side of the burner body 10 on the top plate 1 and a position slightly away from the position. Two light transmission windows 14 (14A, 14B) made of a light transmissive member are formed in a state where the light is transmitted. The light transmission window 14 is made of a light transmissive material different from the material constituting the top plate 1. The two light transmission windows 14A and 14B each have a small fire heating portion where the object to be heated is heated in a small fire heating state with a small heating amount, and the heating object is heated in a large fire heating state with a large heating amount. In the large fire heating part, it is formed at a position that allows infrared rays radiated from the object N to be heated, and the infrared intensity detectors 40A and 40B are respectively below the light transmission windows 14A and 14B, And it is provided in the side part of the said burner main body 10, and it is comprised so that the intensity | strength of the infrared rays radiated | emitted from the to-be-heated material N and having passed through the light transmission windows 14A and 14B may be detected. That is, the infrared intensity detectors 40A and 40B are radiated from the bottoms of the small fire heating part and the large fire heating part of the heated object N placed and supported by Gotoku 2, respectively, and passed through the light transmission windows 14A and 14B. It is configured to receive the intensity.

〔温度検出手段による被加熱物の温度の検出〕
前記赤外線強度検出部40(40A、40B)及び前記温度検出部50(50A、50B)は、夫々、3つのコンロバーナ部101に対して各別に備えられる構成となっているが、各コンロバーナ部101毎に備えられるものは同じ構成であるから、以下の説明においては、各別に設けられる3つのうちの1つについて代表して説明する。
[Detection of temperature of object to be heated by temperature detection means]
The infrared intensity detection unit 40 (40A, 40B) and the temperature detection unit 50 (50A, 50B) are configured to be provided separately for each of the three combo burner units 101. Since what is provided for each 101 has the same configuration, in the following description, one of the three provided separately will be described as a representative.

まず、赤外線強度検出部40(40A、40B)の構成について説明する。
図3に示すように、赤外線強度検出部40は、通過させる赤外線の波長域が互いに異なる2個のバンドパスフィルタ41a、41bと、それら2個のバンドパスフィルタ41a、41bを通過した赤外線を各別に検出する2個の赤外線検出素子42a、42bとを備えて構成して、被加熱物Nから放射される赤外線における互いに異なる2つの波長域夫々についての赤外線強度を検出するように構成されている。ちなみに、前記バンドパスフィルタ41a、41bは、所定の波長域の赤外線のみを選択的に透過させるように構成されている。
First, the configuration of the infrared intensity detector 40 (40A, 40B) will be described.
As shown in FIG. 3, the infrared intensity detection unit 40 includes two bandpass filters 41a and 41b having different wavelength ranges of infrared rays to pass through, and infrared rays that have passed through the two bandpass filters 41a and 41b. Two infrared detection elements 42a and 42b that are separately detected are configured to detect infrared intensities in two different wavelength ranges in the infrared rays radiated from the object N to be heated. . Incidentally, the bandpass filters 41a and 41b are configured to selectively transmit only infrared rays in a predetermined wavelength range.

説明を加えると、光入射用の開口部44を備えたパッケージング43内に、前記開口部44を通じて入射する赤外線を検出可能なように、前記2個の赤外線検出素子42a、42bを並べて設け、前記開口部44における一方の赤外線検出素子42aに対して赤外線が入射する部分に一方のバンドパスフィルタ41aを設け、前記開口部44における他方の赤外線検出素子42b対して赤外線が入射する部分に他方のバンドパスフィルタ41bを設けている。又、パッケージング43内には、前記2個の赤外線検出素子42a、42bを駆動させる駆動部45が設けられる。更に、前記2個のバンドパスフィルタ41a、41bの表面の全面を覆うように、赤外線を透過可能なカバー部材46を設けて、そのカバー部材46にて、前記2個のバンドパスフィルタ41a、41bを保護するように構成してある。   In other words, the two infrared detection elements 42a and 42b are provided side by side in a packaging 43 having a light incident opening 44 so that infrared light incident through the opening 44 can be detected. One band pass filter 41a is provided in a portion where the infrared ray is incident on one infrared detection element 42a in the opening 44, and the other portion is provided in a portion where the infrared ray is incident on the other infrared detection element 42b in the opening 44. A band pass filter 41b is provided. In the packaging 43, a drive unit 45 for driving the two infrared detection elements 42a and 42b is provided. Further, a cover member 46 capable of transmitting infrared rays is provided so as to cover the entire surface of the two band-pass filters 41a and 41b, and the two band-pass filters 41a and 41b are provided by the cover member 46. Is configured to protect.

次に、前記2つの波長域の設定の仕方について説明する。
図4に実際のバーナ3にて形成される火炎から放射される赤外線の放射強度スペクトル分布を示す。この図から明らかなように、赤外線の波長範囲のうち、1.5μm以上且つ1.8μm以下の範囲、2.0μm以上且つ2.4μm以下の範囲、3.1μm以上且つ4.2μm以下の範囲、及び、8.0μm以上且つ12.0μm以下の範囲では、火炎からの放射が無い又は放射強度が弱い。
従って、前記2つの波長域を、1.5μm以上且つ1.8μm以下の範囲内、2.0μm以上且つ2.4μm下の範囲内、3.1μm以上且つ4.2μm以下の範囲内、及び8.0μm以上且つ12.0μm以下の範囲内に設定することにより、前記2つの波長域を、赤外線の波長範囲のうちの前記バーナ3の火炎からの放射が無い又は放射強度が弱い範囲内に設定することができるが、この実施形態では、例えば、前記2つの波長域を、3.1μm以上且つ4.2μm以下の範囲内における互いに異なる波長域に設定してある。
Next, how to set the two wavelength ranges will be described.
FIG. 4 shows the infrared radiation intensity spectrum distribution emitted from the flame formed by the actual burner 3. As is clear from this figure, the infrared wavelength range is 1.5 μm or more and 1.8 μm or less, 2.0 μm or more and 2.4 μm or less, 3.1 μm or more and 4.2 μm or less. In the range of 8.0 μm or more and 12.0 μm or less, there is no radiation from the flame or the radiation intensity is weak.
Therefore, the two wavelength ranges are within a range of 1.5 μm to 1.8 μm, within a range of 2.0 μm to 2.4 μm, within a range of 3.1 μm to 4.2 μm, and 8 By setting within the range of 0.0 μm or more and 12.0 μm or less, the two wavelength ranges are set within a range where there is no radiation from the flame of the burner 3 in the infrared wavelength range or the radiation intensity is weak. However, in this embodiment, for example, the two wavelength ranges are set to different wavelength ranges within a range of 3.1 μm to 4.2 μm.

次に、前記赤外線検出素子42a、42bについて説明を加える。
PbS(硫化鉛)又はPbSe(セレン化鉛)を赤外線セルとして用いて構成した赤外線検出素子42a、42bは、1.5μmから5.0μmの範囲内の赤外線を常温(300K)の動作温度にて検出可能であり、しかも、3.1μm以上且つ4.2μm以下の範囲内の赤外線に対する感度が比較的高くて検出出力が大きい。
従って、上述のように、前記2つの波長域を3.1μm以上且つ4.2μm以下の範囲内に設定する場合、赤外線検出素子42a、42bを、PbS(硫化鉛)又はPbSe(セレン化鉛)を赤外線セルとして用いて構成するのが好ましい。また、前記赤外線検出素子42a、42bとしては、上記の材料以外にも昇電素子やサーモパイル等を用いることもできる。
Next, the infrared detection elements 42a and 42b will be described.
Infrared detectors 42a and 42b configured using PbS (lead sulfide) or PbSe (lead selenide) as an infrared cell emit infrared rays in the range of 1.5 μm to 5.0 μm at an operating temperature of normal temperature (300K). Further, the sensitivity to infrared rays within the range of 3.1 μm or more and 4.2 μm or less is relatively high and the detection output is large.
Therefore, as described above, when the two wavelength ranges are set within the range of 3.1 μm or more and 4.2 μm or less, the infrared detection elements 42a and 42b are made of PbS (lead sulfide) or PbSe (lead selenide). Is preferably used as an infrared cell. Further, as the infrared detecting elements 42a and 42b, a power raising element, a thermopile or the like can be used in addition to the above materials.

次に、前記温度検出部50(50A、50B)により、当該温度検出部50A、50Bの位置における被加熱物Nの温度検出値TA、TBを求める処理について説明する。尚、以下の説明では、前記2つの波長域をλ1、λ2にて示す。ちなみに、波長域λ2の方が波長域λ1よりも長波長側になる。
図5に、予め実験により求めた被加熱物Nの温度と前記赤外線強度検出部40における前記2つの波長域λ1、λ2夫々についての出力値(赤外線強度に対応する)との関係を示す。この図5に示す関係は、放射率(輻射率)が0.92の被加熱物を用いて得たものである。
Next, a process for obtaining the temperature detection values T A and T B of the heated object N at the positions of the temperature detection units 50A and 50B by the temperature detection unit 50 (50A and 50B) will be described. In the following description, the two wavelength regions are denoted by λ1 and λ2. Incidentally, the wavelength region λ2 is longer than the wavelength region λ1.
FIG. 5 shows the relationship between the temperature of the object N to be heated obtained in advance by experiments and the output values (corresponding to the infrared intensity) for the two wavelength regions λ1 and λ2 in the infrared intensity detector 40. The relationship shown in FIG. 5 is obtained by using an object to be heated having an emissivity (emissivity) of 0.92.

又、図6に、被加熱物Nの温度と、赤外線強度検出部40(40A、40B)における波長域λ1に対応する出力値と波長域λ2に対応する出力値との比である出力比(前記赤外線強度比に対応する)との関係(以下、温度対赤外線強度比の関係と記載する場合がある)を示すが、この図6に示す温度対赤外線強度比の関係は、以下のようにして求めたものである。   FIG. 6 shows an output ratio (the ratio between the temperature of the object to be heated N and the output value corresponding to the wavelength region λ1 and the output value corresponding to the wavelength region λ2 in the infrared intensity detector 40 (40A, 40B)). The relationship between the temperature and the infrared intensity ratio shown in FIG. 6 is as follows. It is what I asked for.

すなわち、放射率の異なる複数の被加熱物夫々について、被加熱物の温度を複数の温度に異ならせて、複数の温度夫々について前記出力比を得る。そして、そのように放射率εの異なる複数の被加熱物について得たデータに基づいて、温度と出力比との関係の近似式を求めて、その求めた近似式を温度対赤外線強度比の関係としてある。従って、放射率εが種々に異なる被加熱物N夫々の温度対赤外線強度比の関係を、共通の1つの温度対赤外線強度比の関係とすることができるのである。このようにして求めた図6に示す如き温度対赤外線強度比の関係を前記温度検出部50の記憶部(図示省略)に記憶させてある。   That is, for each of a plurality of heated objects having different emissivities, the output ratio is obtained for each of the plurality of temperatures by changing the temperature of the heated object to a plurality of temperatures. Then, based on the data obtained for a plurality of objects to be heated with different emissivities ε, an approximate expression of the relationship between the temperature and the output ratio is obtained, and the obtained approximate expression is related to the relationship between the temperature and the infrared intensity ratio. It is as. Therefore, the relationship between the temperature-to-infrared intensity ratios of the heated objects N having various emissivities ε can be made into a common temperature-to-infrared intensity ratio relationship. The relationship between the temperature and infrared intensity ratio as shown in FIG. 6 obtained in this way is stored in the storage unit (not shown) of the temperature detection unit 50.

前記温度検出部50(50A、50B)は、赤外線強度検出部40(40A、40B)における波長域λ1に対応する出力値と波長域λ2に対応する出力値との出力比(前記赤外線強度比に対応する)を求め、記憶している温度対赤外線強度比の関係から、当該温度検出部50A、50Bの位置における被加熱物Nの温度検出値TA、TBを求める。このような出力値の比をとることで、当該温度検出部50A、50Bの位置における被加熱物Nの温度検出値TA、TBを、その被加熱物Nの放射率に依存することなく正確に検出することができる。そして、前記温度検出部50A、50Bで求められた当該温度検出部50A、50Bの位置における被加熱物Nの温度検出値TA、TBは、燃焼制御部4に出力され、後述する被加熱物Nの温度Tの推定(〔図7〕S4)等に用いられる。 The temperature detection unit 50 (50A, 50B) outputs an output ratio between the output value corresponding to the wavelength region λ1 and the output value corresponding to the wavelength region λ2 in the infrared intensity detection unit 40 (40A, 40B). And the temperature detection values T A and T B of the object N to be heated at the positions of the temperature detection units 50A and 50B are obtained from the stored relationship between the temperature and infrared intensity ratio. By taking such a ratio of the output values, the temperature detection values T A and T B of the heated object N at the positions of the temperature detecting units 50A and 50B are not dependent on the emissivity of the heated object N. It can be detected accurately. Then, the temperature detection values T A and T B of the object to be heated N at the positions of the temperature detection units 50A and 50B obtained by the temperature detection units 50A and 50B are output to the combustion control unit 4 to be described later. It is used for estimation of the temperature T of the object N ([FIG. 7] S4).

ちなみに、前記波長域を、1.5μm以上且つ1.8μm以下の範囲内に設定している場合には、前記光透過窓14を構成する透光性部材としては、例えば、普通のガラス、結晶化ガラス、石英、サファイヤ、CaF2(フッ化カルシウム)、MgF2(フッ化マグネシウム)、ZnSe(セレン化亜鉛)、Si(シリコン)、Y23(酸化イットリウム)等を用いることができる。又、前記波長域を、2.0μm以上且つ2.4μm以下の範囲内に設定している場合には、1.5μm以上且つ1.8μm以下の範囲で例示した各種の材質のものが利用可能であり、それとは別にGe(ゲルマニウム)も用いることもできる。 Incidentally, in the case where the wavelength range is set in the range of 1.5 μm or more and 1.8 μm or less, as the translucent member constituting the light transmission window 14, for example, ordinary glass, crystal Glass fluoride, quartz, sapphire, CaF 2 (calcium fluoride), MgF 2 (magnesium fluoride), ZnSe (zinc selenide), Si (silicon), Y 2 O 3 (yttrium oxide), or the like can be used. In addition, when the wavelength range is set in the range of 2.0 μm to 2.4 μm, various materials exemplified in the range of 1.5 μm to 1.8 μm can be used. Apart from that, Ge (germanium) can also be used.

前記波長域を、3.1μm以上且つ4.2μm以下の範囲内に設定している場合には、結晶化ガラス、石英、サファイヤ、CaF2、MgF2、ZnSe、Si、Y23等を用いることができる。前記波長域を、8.0μm以上且つ12μm以下の範囲内に設定している場合には、CaF2、MgF2、ZnSe、Si、Ge、Y23、ポリエチレン樹脂等を用いることができる。 When the wavelength range is set in the range of 3.1 μm or more and 4.2 μm or less, crystallized glass, quartz, sapphire, CaF 2 , MgF 2 , ZnSe, Si, Y 2 O 3, etc. Can be used. When the wavelength range is set within a range of 8.0 μm to 12 μm, CaF 2 , MgF 2 , ZnSe, Si, Ge, Y 2 O 3 , polyethylene resin, or the like can be used.

〔被加熱物の温度の推定と温度検出手段の異常の判断〕
燃焼制御部4は、加熱開始から所定の時間tが経過した後、第1温度検出手段30A及び第2温度検出手段30Bで温度検出を行い、第1温度検出手段30A及び第2温度検出手段30Bが正常に作動しているかどうかを判断する。
そして、第1温度検出手段30A及び第2温度検出手段30Bがともに正常に作動していると判断した場合は、第1温度検出手段30A及び第2温度検出手段30Bが検出した温度検出値TA、TBに基づいて、被加熱物Nの温度Tを推定する。
一方、第1温度検出手段30A及び第2温度検出手段30Bの何れか一方又はその両方が正常に作動していないと判断した場合は、使用者に報知する。
[Estimation of temperature of object to be heated and judgment of abnormality of temperature detection means]
After a predetermined time t has elapsed from the start of heating, the combustion control unit 4 performs temperature detection with the first temperature detection means 30A and the second temperature detection means 30B, and the first temperature detection means 30A and the second temperature detection means 30B. Determine if is working properly.
When the first temperature detecting means 30A and the second temperature detecting means 30B is determined to be operating together properly, the detected temperature value T A of the first temperature detecting means 30A and the second temperature detecting means 30B detects , T B is used to estimate the temperature T of the object N to be heated.
On the other hand, when it is determined that one or both of the first temperature detection means 30A and the second temperature detection means 30B are not operating normally, the user is notified.

図7のフロー図を用いて説明する。燃焼制御部4は、加熱開始から所定の時間tが経過すると(S1)、第1温度検出手段30Aで小火加熱部位の温度を、第2温度検出手段30Bで大火加熱部位の温度を、夫々、温度検出値TA、TBとして検出する(S2)。そして、検出した温度検出値TA及びTBが、所定の温度範囲θ(例えば80℃〜250℃の範囲)に含まれるかどうかを判断する(S3)。
温度検出値TA及びTBがともに所定の温度範囲θに含まれる場合は(S3:Yes)、第1温度検出手段30A及び第2温度検出手段30Bがともに正常に作動していると判断して、温度検出値TA及びTBに基づいて、温度推定手段60により被加熱物Nの温度Tを推定する(S4)。
一方、温度検出値TA及びTBの何れか一方又はその両方が所定の温度範囲θに含まれておらず(S3:No)、しかも、当該温度検出値TA及びTBが所定の低温側温度範囲θL(例えば0℃〜50℃の範囲)に留まる場合には、当該温度検出値を検出した温度検出手段30の作動が異常と判断する(S5)。
This will be described with reference to the flowchart of FIG. When a predetermined time t has elapsed from the start of heating (S1), the combustion control unit 4 uses the first temperature detection means 30A to set the temperature of the small fire heating part and the second temperature detection means 30B to set the temperature of the large fire heating part, respectively. The temperature detection values T A and T B are detected (S2). Then, it is determined whether or not the detected temperature detection values T A and T B are included in a predetermined temperature range θ (for example, a range of 80 ° C. to 250 ° C.) (S3).
When the temperature detection values T A and T B are both included in the predetermined temperature range θ (S3: Yes), it is determined that both the first temperature detection means 30A and the second temperature detection means 30B are operating normally. Then, based on the temperature detection values T A and T B , the temperature T of the object to be heated N is estimated by the temperature estimation means 60 (S4).
On the other hand, it not included on either one or both are given temperature range θ detected temperature value T A and T B (S3: No), moreover, the low temperature the temperature detection value T A and T B is given When the temperature is in the side temperature range θ L (for example, a range of 0 ° C. to 50 ° C.), it is determined that the operation of the temperature detecting means 30 that detects the detected temperature value is abnormal (S5).

図8のグラフ図を用いて、温度検出値と所定の温度範囲との比較に基づく温度検出手段の異常の判断(S3)について説明する。温度検出手段30には、小火加熱部位の温度を検出する第1温度検出手段30Aと大火加熱部位の温度を検出する第2温度検出手段30Bとが存在するが、異常の判断方法は同様であるため、以下では、第1温度検出手段30Aの異常の判断方法について説明する。   The determination (S3) of abnormality of the temperature detection means based on the comparison between the temperature detection value and a predetermined temperature range will be described using the graph of FIG. The temperature detection means 30 includes a first temperature detection means 30A for detecting the temperature of the small fire heating part and a second temperature detection means 30B for detecting the temperature of the large fire heating part, but the abnormality determination method is the same. Therefore, in the following, a method for determining abnormality of the first temperature detection unit 30A will be described.

図8のグラフ図は、正常に作動している第1温度検出手段30Aの温度検出値TAの経時変化(グラフa、b、c)と、作動が異常な第1温度検出手段30Aの温度検出値TAの経時変化(グラフd)を示している。この例において、(グラフd)が「作動が異常」であるのは、光透過窓14Aに汚れが付着しており、被加熱物Nの小火加熱部位の底部から放射される赤外線が、赤外線強度検出部40Aに正常に受光されていないためである。 Graph of Figure 8, time course of the detected temperature value T A of the first temperature detecting means 30A are operating normally (the graph a, b, c) and the temperature of the working abnormal first temperature detecting means 30A shows change with time of the detected value T a (the graph d). In this example, “operation is abnormal” in (graph d) is that dirt is attached to the light transmission window 14A, and infrared rays radiated from the bottom of the small fire heating portion of the article N to be heated are infrared rays. This is because the intensity detector 40A is not normally receiving light.

グラフaから順に説明する。グラフaは、水などの室温に近い被加熱物Nを入れた調理容器を加熱した際に、正常に作動している第1温度検出手段30Aが検出する温度検出値TAの経時変化である。前述のように、第1温度検出手段30Aは、被加熱物Nの小火加熱部位の温度検出値TAを検出するものであるが、この調理容器内には室温に近い被加熱物Nが入っており、バーナ3が点火された際(時間「0」)の第1温度検出手段30Aの温度検出値TAはほぼ室温と等しい。そして、第1温度検出手段30Aの温度検出値TAは、被加熱物Nが加熱されるとともに上昇し、加熱開始から所定の時間tの経過後にはすでに所定の温度範囲θに到達している。 Description will be made in order from the graph a. Graph a, when heating the cooking vessel containing an object to be heated N near room temperature such as water, is the change over time of the temperature detection value T A of the first temperature detecting means 30A which is normally operated is detected . As described above, the first temperature detecting means 30A is detects a temperature detection value T A of the small fire heating portion of the heated object N, the heated object N near room in the cooking vessel has entered, the detected temperature value T a of the first temperature detecting means 30A when the burner 3 is ignited (time "0") is substantially equal to room temperature. Then, the detected temperature value T A of the first temperature detecting means 30A has reached elevated already at a predetermined temperature range θ after elapse from the start of heating of the predetermined time t with the heated object N is heated .

次に、グラフbについて説明する。グラフbは、冷凍食品など低温の被加熱物Nを加熱した際に、正常に作動している第1温度検出手段30Aが検出する温度検出値TAの経時変化である。冷凍された被加熱物Nを加熱する場合、冷凍された被加熱物Nを投入した後、すぐに加熱を開始するケースがほとんどである。また、冷凍された被加熱物Nは固体であることが殆どなので、被加熱物Nと調理容器との間には空気が入り込み、被加熱物Nから調理容器への伝熱を阻害する。そのため、バーナ3が点火された際(時間「0」)には、被加熱物Nの温度は調理容器底面までは伝熱されきっていない。従って、点火時の第1温度検出手段30Aの温度検出値TAは、被加熱物Nを投入する前の調理容器の温度に近似され、室温に近い。この第1温度検出手段30Aの温度検出値TAは、時間が経過し、冷凍された被加熱物Nの温度が調理容器に伝熱されるとともに、一旦下降する。しかしその後、バーナ3による加熱に伴い、第1温度検出手段30Aの温度検出値TAは上昇し、加熱開始から所定の時間tの経過後には、すでに所定の温度範囲θに到達する。 Next, the graph b will be described. Graph b, when heating the object to be heated N cold such as frozen food, a change with time of the temperature detection value T A of the first temperature detecting means 30A which is normally operated is detected. When the frozen object N is heated, heating is started immediately after the frozen object N is charged. Moreover, since the frozen to-be-heated object N is almost solid, air enters between the to-be-heated object N and a cooking container, and the heat transfer from the to-be-heated object N to a cooking container is inhibited. Therefore, when the burner 3 is ignited (time “0”), the temperature of the heated object N has not been transferred to the bottom of the cooking container. Therefore, the temperature detection value T A of the first temperature detection means 30A at the time of ignition is approximated to the temperature of the cooking container before the object to be heated N is charged, and is close to room temperature. Temperature detection value T A of the first temperature detecting means 30A, the time elapses, the temperature of the frozen article to be heated N together with the heat is transferred to the cooking vessel, once lowered. But then, due to the heating by the burner 3, the temperature detection value T A of the first temperature detecting means 30A rises, after a predetermined time t from the start of heating, already reaches a predetermined temperature range theta.

続いて、グラフcについて説明する。グラフcは、予め所定の温度範囲θ内に加熱された被加熱物Nをさらに加熱した際に、正常に作動している第1温度検出手段30Aが検出する温度検出値TAの経時変化である。被加熱物Nはあらかじめ所定の温度範囲θ内に加熱されているため、この場合のバーナ3が点火された際(時間「0」)の第1温度検出手段30Aの温度検出値TAは、所定の温度範囲θ内にある。この第1温度検出手段30Aの温度検出値TAは、時間が経過し、被加熱物Nが加熱されるとともに上昇するが、被加熱物Nは予め所定の温度範囲θ内に加熱されているため、その上昇速度は緩やかであり、加熱開始から所定の時間tの経過後も、温度検出値TAは所定の温度範囲θ内に留まる。 Subsequently, the graph c will be described. Graph c, when a previously given further an object to be heated N which is heated in the temperature range θ heating, over time the change in the detected temperature value T A of the first temperature detecting means 30A which is normally operated is detected is there. Since the heated object N is being heated in advance within a predetermined temperature range theta, temperature detection value T A of the first temperature detecting means 30A when the burner 3 in this case has been ignited (time "0"), the It is within a predetermined temperature range θ. Temperature detection value T A of the first temperature detecting means 30A may over time, but increases with the heated object N is heated, the heated object N is heated in advance in the predetermined temperature range θ Therefore, the rising speed is slow, elapses after the start of heating of the predetermined time t is also the temperature detection value T a remains within a predetermined temperature range theta.

次に、グラフdについて説明する。グラフdは、光透過窓14Aに汚れが付着しているため、被加熱物Nの小火加熱部位の底部から放射される赤外線が正常に赤外線強度検出部40Aに受光されない状態で第1温度検出手段30Aが検出する温度検出値TAの経時変化である。このような状態にある場合、バーナ3によって被加熱物Nが加熱されても、第1温度検出手段30Aはほぼ一定の温度を検出し続ける。これは、光透過窓14Aに汚れが付着しているため、第1温度検出手段30Aが、温度検出値TAを検出するための赤外線を、赤外線強度検出部40Aで適切に受光できていないためである。このような場合には、温度検出値TAは、加熱開始から所定の時間tが経過しても、所定の温度範囲θに到達しない。 Next, the graph d will be described. In the graph d, since the dirt is attached to the light transmission window 14A, the first temperature detection is performed in a state where the infrared ray radiated from the bottom of the small fire heating part of the object N is not normally received by the infrared intensity detection unit 40A. It means 30A is a temporal change of the detected temperature value T a to be detected. In such a state, even if the article to be heated N is heated by the burner 3, the first temperature detection means 30A continues to detect a substantially constant temperature. This is because, since the dirt on the light transmission window 14A is attached, the first temperature detecting means 30A is an infrared for detecting the temperature detection value T A, had not been appropriately received by the infrared intensity detecting unit 40A It is. In such a case, the temperature detection value T A is also passed since the start of heating the predetermined time t does not reach a predetermined temperature range theta.

以上のように、第1温度検出手段30Aが正常に作動している場合、加熱開始から所定の時間tが経過する頃には、温度検出値は所定の温度範囲θに到達している(グラフa、b、c)。一方、作動が異常な場合には、加熱開始から所定の時間tが経過しても、温度検出値が所定の温度範囲θに到達しない場合がある(グラフd)。従って、加熱開始から所定の時間tが経過した後の温度検出値を、温度検出手段30Aが正常に作動しているかどうかの判断に用いることができる。温度検出値と所定の温度範囲との比較に基づく温度検出手段の異常の判断(S3)は、このような背景に基づく。   As described above, when the first temperature detection unit 30A is operating normally, the temperature detection value reaches the predetermined temperature range θ around the predetermined time t from the start of heating (graph). a, b, c). On the other hand, when the operation is abnormal, the temperature detection value may not reach the predetermined temperature range θ even when the predetermined time t has elapsed from the start of heating (graph d). Therefore, the temperature detection value after a predetermined time t has elapsed from the start of heating can be used to determine whether the temperature detection means 30A is operating normally. The determination of the abnormality of the temperature detection means (S3) based on the comparison between the temperature detection value and the predetermined temperature range is based on such background.

なお、「加熱開始から所定の時間t」及び「所定の温度範囲θ」は、室温のほか、被加熱物や調理容器の種類、加熱量等によって最適値が異なり、使用地域や使用用途などによって適宜設定可能である。例えば、本実施形態では、5分、80℃〜250℃の範囲で設定している。   Note that the “predetermined time t from the start of heating” and “predetermined temperature range θ” vary depending on the region of use, the intended use, etc. It can be set as appropriate. For example, in this embodiment, it is set in the range of 80 ° C. to 250 ° C. for 5 minutes.

続いて、被加熱物Nの温度Tの推定(S4)について説明する。
図7に示すように、被加熱物Nの温度Tの推定(S4)は、温度検出値TA、TBと所定の温度範囲θとの比較に基づく温度検出手段30の異常の判断(S3)の結果、第1温度検出手段30A及び第2温度検出手段30Bがともに正常に作動していると判断された場合に行われる(S3:Yes)。
温度推定手段60は、操作部5で調整された加熱量と、第1温度検出手段30Aの温度検出値TA及び第2温度検出手段30Bの温度検出値TBに基づいて、被加熱物Nの温度Tを推定可能な関係情報pを記憶した記憶手段65とを備えており、温度推定手段60は、前記関係情報pを使用して、被加熱物Nの温度Tを推定する。
Next, the estimation (S4) of the temperature T of the article N to be heated will be described.
As shown in FIG. 7, the estimation of the temperature T of the object to be heated N (S4) is performed by determining whether the temperature detecting means 30 is abnormal (S3) based on a comparison between the temperature detection values T A and T B and a predetermined temperature range θ. ) Is performed when it is determined that both the first temperature detection means 30A and the second temperature detection means 30B are operating normally (S3: Yes).
Temperature estimating means 60, a heating amount adjusted by the operation unit 5, on the basis of the detected temperature value T B of the detected temperature value T A and the second temperature detection means 30B of the first temperature detecting means 30A, the object to be heated N Storage means 65 that stores relationship information p that can estimate the temperature T of the object. The temperature estimation means 60 estimates the temperature T of the object N to be heated using the relationship information p.

関係情報pは、例えば0≦p≦1の範囲の係数である。操作部5で調整された加熱量と連関して、加熱量が小さいほどpは0に近く、加熱量が大きいほどpは1に近い値になるように設定されている。温度推定手段60は、このように設定された関係情報pを使用して、第1温度検出手段30Aの温度検出値TA及び第2温度検出手段30Bの温度検出値TBに基づいて、被加熱物Nの温度Tを、次式で推定する。
T=(1−p)×TA+p×TB
The relationship information p is a coefficient in the range of 0 ≦ p ≦ 1, for example. In association with the heating amount adjusted by the operation unit 5, p is set closer to 0 as the heating amount is smaller, and p is closer to 1 as the heating amount is larger. Temperature estimating means 60, by using the set relationship information p thus, on the basis of the detected temperature value T B of the detected temperature value T A and the second temperature detection means 30B of the first temperature detecting means 30A, the The temperature T of the heated object N is estimated by the following equation.
T = (1−p) × T A + p × T B

上式によれば、関係情報pは加熱量が小さいほど0に近く、加熱量が大きいほど1に近い値となる係数であるため、加熱量が小さいほど第1温度検出手段30Aによる小火加熱部位の温度検出値TAに比重を置いて、加熱量が大きいほど第2温度検出手段30Bによる大火加熱部位の温度検出値TBに比重を置いて、被加熱物Nの温度Tを推定する。
このような加熱量に基づく温度検出値TA、TBの比重の軽重によれば、上式に基づく被加熱物Nの温度Tの推定値は、加熱量と加熱部位の性質を適切に反映したものとなる。すなわち、上式は、コンロ100Aにおいて、加熱量により火炎Fに供給する燃料ガスGの量が変化するため、加熱量が小さい場合は火炎Fは被加熱物Nの底部の中央側部位に最もよく当たるが、加熱量が大きい場合は被加熱物Nの底部の外周側部位や周壁部位に最もよく当たるという加熱量と加熱部位の性質を適切に反映しているため、被加熱物Nの温度Tを良好に推定することができる。
According to the above equation, the relationship information p is a coefficient that is closer to 0 as the heating amount is smaller, and closer to 1 as the heating amount is larger. Therefore, the smaller the heating amount, the smaller the heating by the first temperature detection means 30A. The specific gravity is put on the temperature detection value T A of the part, and the temperature T of the article N to be heated is estimated by putting the specific gravity on the temperature detection value T B of the large fire heating part by the second temperature detection means 30B as the heating amount increases. .
According to the lightness of the specific gravity of the temperature detection values T A and T B based on such heating amount, the estimated value of the temperature T of the object to be heated N based on the above equation appropriately reflects the heating amount and the properties of the heated part. Will be. That is, in the stove 100A, the amount of the fuel gas G supplied to the flame F varies depending on the amount of heating in the stove 100A. Therefore, when the amount of heating is small, the flame F is best applied to the central portion of the bottom of the article N However, when the heating amount is large, the heating amount and the property of the heating portion that best hits the outer peripheral side portion and the peripheral wall portion of the bottom of the heated object N are appropriately reflected. Can be estimated well.

なお、上記した関係情報pの設定や、被加熱物Nの温度Tの推定式として示したT=(1−p)×TA+p×TBは一例に過ぎず、適宜改変が可能である。例えば、関係情報pを加熱量だけでなく、加熱量及び加熱開始からの時間に関係して定まる値としてもよい。また、被加熱物Nの温度Tを、関係情報pを用いずに推定する構成としてもよい。例えば、温度Tを 、温度検出値TA及びTBの平均や、温度検出値TA及び温度検出値TBのうち温度の高い検出値或いは低い検出値として推定してもよい。 Note that the setting of the relationship information p described above and T = (1−p) × T A + p × T B shown as an estimation formula for the temperature T of the object N to be heated are merely examples, and can be appropriately modified. . For example, the relationship information p may be a value determined in relation to not only the heating amount but also the heating amount and the time from the start of heating. Moreover, it is good also as a structure which estimates the temperature T of the to-be-heated material N, without using the relationship information p. For example, the temperature T, the average and the detected temperature value T A and T B, may be estimated as a high detection value or low detection value of the temperature of the temperature detection value T A and the detected temperature value T B.

続いて、温度検出手段の異常の判断(S5)について説明する。
図7に示すように、温度検出手段の異常の判断(S5)は、温度検出値と所定の温度範囲との比較に基づく温度検出手段の異常の判断(S3)の結果、温度検出値TA及びTBの何れか一方又はその両方が所定の温度範囲θに含まれていない場合に行われる(S3:No)。
バーナ3が正常に作動している場合、加熱開始から所定の時間tが経過すると、第1温度検出手段30Aの温度検出値TA及び第2温度検出手段30Bの温度検出値TBはいずれも、火炎Fによる加熱により、所定の温度範囲θ内に上昇しているはずである。従って、加熱開始から所定の時間tが経過しても温度検出値TA、TBの何れか一方又はその両方が温度範囲θ内に到達していない場合は、当該温度検出手段30A、30Bに何らかの異常が発生している可能性がある。特に、温度検出値TA、TBが所定の低温側温度範囲θLに留まっている場合は、当該温度検出値TA、TBを検出した温度検出手段30A、30Bが、短絡故障や断線故障、或いは被加熱物が温度検出手段30A、30Bに当接していない等の事情により、正常に温度を検出できていない可能性がある。このような温度範囲θに基づいた異常判断を行うことで、温度検出手段30(30A、30B)の異常を適切に判断できる(S5)。
Next, determination of abnormality of the temperature detection means (S5) will be described.
As shown in FIG. 7, the abnormality determination of the temperature detection means (S5), the result of abnormality determination of the temperature detection means based on the comparison between the detected temperature value and a predetermined temperature range (S3), the detected temperature value T A And T B , or both of them are not included in the predetermined temperature range θ (S3: No).
If the burner 3 is operating normally, the predetermined time t has elapsed from the start of heating, both the temperature detection value T B of the detected temperature value T A and the second temperature detection means 30B of the first temperature detecting means 30A is By heating with the flame F, it should have risen within a predetermined temperature range θ. Therefore, if one or both of the temperature detection values T A and T B have not reached the temperature range θ even after a predetermined time t has elapsed since the start of heating, the temperature detection means 30A and 30B are informed. Some abnormality may have occurred. In particular, when the temperature detection values T A and T B remain in the predetermined low temperature side temperature range θ L , the temperature detection means 30A and 30B that detect the temperature detection values T A and T B are short-circuited or disconnected. There is a possibility that the temperature cannot be normally detected due to a failure or a situation in which the object to be heated is not in contact with the temperature detecting means 30A, 30B. By performing abnormality determination based on such a temperature range θ, it is possible to appropriately determine abnormality of the temperature detection means 30 (30A, 30B) (S5).

なお、この場合の「低温側温度範囲θL」は、被加熱物Nの温度Tが温度検出手段30で検出されておらず、温度検出手段30が単に室温を検出している場合を考慮し、本実施形態では、例えば、室温を含む0℃〜50℃の範囲で設定している。この「低温側温度範囲θL」も、「所定の温度範囲θ」と同様に、室温のほか、被加熱物や調理容器の種類、加熱量等によって最適値が異なるため、使用地域や使用用途などによって適宜設定可能に構成するとよい。 Note that the “low temperature side temperature range θ L ” in this case takes into consideration the case where the temperature T of the article to be heated N is not detected by the temperature detection means 30 and the temperature detection means 30 simply detects the room temperature. In this embodiment, for example, the temperature is set in a range of 0 ° C. to 50 ° C. including room temperature. This “low temperature side temperature range θ L ” is also different from the room temperature, as well as the room temperature, the optimum value differs depending on the type of object to be heated, cooking container, heating amount, etc. It may be configured so that it can be set as appropriate.

コンロ100Aは、上記により温度検出手段30に異常を判断すると、前面操作パネル105に設けられた異常報知ランプ18を点灯させて、使用者に異常の発生を報知する。異常報知ランプ18は、3つのコンロバーナ部101に対して夫々各別に備えられる。図1に示すように、異常報知ランプ18は、例えばコンロ100Aにおける前面操作パネル105における3つのコンロバーナ部101の夫々に対する操作部5の近傍に設けられる。異常報知ランプ18の点灯により、該当するコンロバーナ部101の温度検出手段30が異常と判断されたことを、使用者が容易に認識できるように構成されている。   When the stove 100A determines that the temperature detecting means 30 is abnormal as described above, the stove 100A turns on the abnormality notification lamp 18 provided on the front operation panel 105 to notify the user of the occurrence of the abnormality. An abnormality notification lamp 18 is provided for each of the three combustor units 101. As shown in FIG. 1, the abnormality notification lamp 18 is provided, for example, in the vicinity of the operation unit 5 for each of the three stove burner units 101 in the front operation panel 105 in the stove 100A. When the abnormality notification lamp 18 is turned on, the user can easily recognize that the temperature detecting means 30 of the corresponding combustor unit 101 is determined to be abnormal.

〔第2実施形態〕
次に、本発明の第2実施形態を図面に基づいて説明する。
この第2実施形態では、温度検出手段30以外の構成は第1実施形態と同じであるから、温度検出手段30の構成についてのみ説明し、他は説明を省略する。
[Second Embodiment]
Next, 2nd Embodiment of this invention is described based on drawing.
In the second embodiment, since the configuration other than the temperature detection unit 30 is the same as that of the first embodiment, only the configuration of the temperature detection unit 30 will be described, and the description of the other will be omitted.

図9は、第2実施形態に係るコンロ100Bの概略構成図である。コンロ100Bは、第1実施形態に係るコンロ100Aにおいて、赤外線強度検出部40(40A、40B)及び温度検出部50(50A、50B)により非接触式温度センサとして構成した温度検出手段30を、五徳2の小火加熱部位及び大火加熱部位の2箇所に配置した熱電対40a、40bにより接触式温度センサとして構成したものである。   FIG. 9 is a schematic configuration diagram of a stove 100B according to the second embodiment. The stove 100B is the same as the stove 100A according to the first embodiment except that the temperature detection means 30 configured as a non-contact temperature sensor by the infrared intensity detection unit 40 (40A, 40B) and the temperature detection unit 50 (50A, 50B) The thermocouples 40a and 40b are arranged as two contact-type temperature sensors at two locations of the small fire heating part and the large fire heating part.

この第2実施形態に係るコンロ100Bは、熱電対40a、40bを五徳2上に載置された被加熱物Nの底部に当接させて、被加熱物Nの小火加熱部位、大火加熱部位の底部の温度Ta、Tbを検出する。そして、熱電対40a、40bで求められた被加熱物Nの小火加熱部位、大火加熱部位の底部の温度Ta、Tbは、燃焼制御部4に出力され、第1実施形態に係るコンロ100Aと同様に、被加熱物Nの温度Tの推定や温度検出手段30(30a、30b)の作動状態の判断等に用いられる。 In the stove 100B according to the second embodiment, the thermocouples 40a and 40b are brought into contact with the bottom of the heated object N placed on the Gotoku 2, and the small fire heating part and the large fire heating part of the heated object N The temperatures T a and T b at the bottom of the are detected. Then, the temperatures T a and T b of the bottom portion of the small fire heating part and the large fire heating part of the heated object N obtained by the thermocouples 40a and 40b are output to the combustion control unit 4, and the stove according to the first embodiment. Similar to 100A, it is used for estimation of the temperature T of the object N to be heated, determination of the operating state of the temperature detection means 30 (30a, 30b), and the like.

〔別の実施形態〕
以下、本発明の別実施形態について説明する。
[Another embodiment]
Hereinafter, another embodiment of the present invention will be described.

(1)上記実施形態では、光透過窓14が1つの透光性部材からなる1つの窓を構成するものを例示したが、このような構成に代えて、例えば図10に示すように、上記実施形態における前記2つの波長域λ1,λ2の夫々における赤外線検出素子の夫々に対する光透過部位に対応させて、夫々、異なる種類の透光性部材にて各別に形成される2つの窓部14a、14bにて光透過窓14を構成するものでもよい。尚、この構成においては、各赤外線検出素子42a,42bに対する赤外線を受光するときの指向性を備えさせて、2つの窓部14a、14bのうちの対応する窓部を通して入射する赤外線を識別する状態で適正に検出できるようにするとよい。又、図10に示すように、各赤外線検出素子42a,42bに対する赤外線入射方向を第1実施形態のように鉛直方向にするものに代えて斜め方向に設定するようにしてもよい。 (1) In the above embodiment, the light transmission window 14 is exemplified as one window made of one light transmissive member, but instead of such a structure, for example, as shown in FIG. Two window portions 14a respectively formed of different types of translucent members, corresponding to the light transmission portions for the infrared detection elements in the two wavelength ranges λ1 and λ2 in the embodiment, respectively. The light transmission window 14 may be configured by 14b. In this configuration, the directivity when receiving infrared rays with respect to each of the infrared detection elements 42a and 42b is provided, and the infrared rays incident through the corresponding window portion of the two window portions 14a and 14b are identified. It is good to be able to detect properly. Further, as shown in FIG. 10, the infrared incident direction with respect to each infrared detecting element 42a, 42b may be set to an oblique direction instead of the vertical direction as in the first embodiment.

(2)上記実施形態では、前記天板の一部に、天板を構成する材質とは異なる透光性材料からなる光透過窓を形成する構成としたが、このような構成に代えて、前記天板を赤外線が透過する透光性材料、例えば結晶化ガラス等を用いて構成して、天板における外周部縁部を矩形状に設けられた補強用の枠体にて囲む状態で構成して、その補強用の枠体にて囲まれる平板面形成箇所の全体により前記光透過窓を形成する構成としてもよい。 (2) In the above embodiment, a light transmission window made of a translucent material different from the material constituting the top plate is formed on a part of the top plate, but instead of such a configuration, The top plate is configured using a translucent material that transmits infrared rays, for example, crystallized glass, and the outer peripheral edge of the top plate is surrounded by a rectangular reinforcing frame. And it is good also as a structure which forms the said light transmission window by the whole flat plate surface formation location enclosed by the frame for the reinforcement.

(3)上記実施形態では、赤外線強度検出手段が、2個のバンドパスフィルタ41a、41bを通過した赤外線を各別に検出する2個の赤外線検出素子42a、42bを備えて、被加熱物Nから放射される赤外線における互いに異なる2つの波長域夫々についての赤外線強度を検出するように構成したが、このような構成に代えて、1つの赤外線検出素子に対して2個のバンドパスフィルタが交互に作用するように位置を切り換えて、その切り換えた状態の夫々における赤外線検出素子の検出値を用いて、互いに異なる波長域の赤外線強度を検出する構成としてもよい。 (3) In the above embodiment, the infrared intensity detection means includes two infrared detection elements 42a and 42b that individually detect the infrared rays that have passed through the two bandpass filters 41a and 41b. Although it was configured to detect the infrared intensity for each of the two different wavelength ranges in the emitted infrared, instead of such a configuration, two band-pass filters are alternately provided for one infrared detection element. The position may be switched so as to act, and the infrared intensity in different wavelength ranges may be detected using the detection value of the infrared detection element in each of the switched states.

(4)上記実施形態では、温度検出手段30により温度を求める処理として、被加熱物Nの温度Tを2つの波長域夫々についての赤外線強度の比に基づいて求める構成としたが、このような構成に代えて次のように構成してもよい。
例えば、予め、放射率の異なる複数の被加熱物Nを用いて、被加熱物Nの温度Tを複数の温度に異ならせて、複数の温度夫々について、前記複数の波長域夫々についての赤外線強度を得て、そのように得た前記複数の波長域夫々についての赤外線強度を、前記複数の温度夫々に対応させた状態でマップデータにして記憶させておく。そして、前記マップデータから、前記赤外線強度検出手段で検出される前記複数の波長域夫々についての赤外線強度の関係に一致する又は類似する赤外線強度の関係を求めると共に、その求めた赤外線強度の関係に対応する温度を求め、その求めた温度を被加熱物Nの温度Tとするように構成する。
ちなみに、この場合は、前記複数の波長域としては、上記実施形態のように2つの波長域でも良いし、3つ以上の波長域でも良い。
(4) In the above embodiment, the temperature detection means 30 determines the temperature T based on the ratio of the infrared intensity for each of the two wavelength ranges as the temperature T of the object to be heated N. Instead of the configuration, the following configuration may be used.
For example, by using a plurality of objects to be heated N having different emissivities in advance, the temperatures T of the objects to be heated N are changed to a plurality of temperatures, and for each of the plurality of temperatures, the infrared intensity for each of the plurality of wavelength ranges. Infrared intensity for each of the plurality of wavelength ranges obtained in this way is stored as map data in a state corresponding to each of the plurality of temperatures. Then, from the map data, an infrared intensity relationship that matches or is similar to the infrared intensity relationship for each of the plurality of wavelength regions detected by the infrared intensity detection means is determined, and the determined infrared intensity relationship A corresponding temperature is obtained, and the obtained temperature is set as the temperature T of the article N to be heated.
Incidentally, in this case, the plurality of wavelength ranges may be two wavelength ranges as in the above embodiment, or may be three or more wavelength ranges.

(5)上記実施形態では、温度推定手段60が、加熱状態調整手段で調整された加熱量と第1温度検出手段30Aの温度検出値TA及び第2温度検出手段30Bの温度検出値TBに基づいて、関係情報pを使用して被加熱物Nの温度Tを推定する構成を例示したが、温度推定手段60が、第1温度検出手段30Aの温度検出値TA及び第2温度検出手段30Bの温度検出値TBの一方で、温度が高い側の温度検出値を被加熱物Nの温度Tと推定するように構成してもよい。
このようにして推定された被加熱物Nの温度Tに基づいて安全制御を行うように構成すれば、より危険度の高い高温側の温度検出値に基づいて安全制御を行うことができるため、より慎重で安全性の高い安全制御を実現できる。
(5) In the above embodiment, the temperature estimation means 60, the heating amount was adjusted by heating conditioning means and the detected temperature value T B of the detected temperature value T A and the second temperature detection means 30B of the first temperature detecting means 30A based on, but illustrates the configuration of estimating the temperature T of the heated object N by using the relation information p, temperature estimation unit 60, the detected temperature value T a and the second temperature detection of the first temperature detecting means 30A while the temperature detection value T B means 30B, it may constitute a temperature detection value of the temperature is high side to estimate the temperature T of the heated object N.
If the safety control is performed based on the temperature T of the object N thus estimated, the safety control can be performed based on the temperature detection value on the high temperature side with a higher degree of danger. Safer and safer safety control can be realized.

(6)上記実施形態では、温度検出値に基づいて温度検出手段30の作動状態を判断する構成を例示したが、例えば上記第1実施形態において、光透過窓14が汚れている汚れ状態であるか否かを検出する汚れ状態検出手段を備え、光透過窓14が汚れ状態と検出された場合には、温度検出手段30の作動を異常と判断する構成としてもよい。 (6) In the above embodiment, the configuration in which the operating state of the temperature detecting unit 30 is determined based on the temperature detection value is exemplified. However, for example, in the first embodiment, the light transmission window 14 is dirty. It is good also as a structure which is equipped with the stain | pollution | contamination state detection means which detects whether it is, and determines that the action | operation of the temperature detection means 30 is abnormal when the light transmission window 14 is detected as a dirt state.

(7)上記実施形態では、温度検出手段30を異常と判断した場合には、異常報知ランプ18により使用者に異常判断を報知する構成を例示したが、使用者への報知は一例に過ぎない。使用者への報知に代えて、或いは、使用者への報知に加えて、例えば、温度推定手段60で推定された被加熱物Nの温度Tに基づいて前記燃料供給断続弁12、前記燃料供給量調節弁13等を制御することで被加熱物Nの温度Tの自動制御や被加熱物Nの過昇温時の緊急停止制御等を行うといったように、加熱手段の作動を制御する構成としてもよい。 (7) In the above embodiment, when the temperature detection unit 30 is determined to be abnormal, the abnormality notification lamp 18 notifies the user of the abnormality determination. However, the notification to the user is merely an example. . Instead of notifying the user or in addition to notifying the user, for example, based on the temperature T of the article N to be heated estimated by the temperature estimating means 60, the fuel supply intermittent valve 12, the fuel supply As a configuration for controlling the operation of the heating means, such as automatic control of the temperature T of the heated object N or emergency stop control when the heated object N is overheated by controlling the amount adjusting valve 13 or the like. Also good.

(8)上記実施形態では、異常報知ランプ18により使用者に異常判断を報知する構成を例示したが、異常報知ランプ18は一例に過ぎない。例えば、音声によって異常を報知するブザーやスピーカで構成してもよい。 (8) In the above embodiment, the configuration in which the abnormality notification lamp 18 notifies the user of the abnormality determination is illustrated, but the abnormality notification lamp 18 is only an example. For example, you may comprise with the buzzer and speaker which alert | report abnormality by an audio | voice.

3 バーナ(加熱手段)
5 操作部(加熱状態調整手段)
30 温度検出手段
30A 第1温度検出手段
30B 第2温度検出手段
40、40A、40B 赤外線強度検出部(温度検出手段)
40a、40b 熱電対(温度検出手段)
50、50A、50B 温度検出部(温度検出手段)
60 温度推定手段
65 記憶手段
100 燃焼式加熱装置
100A、100B コンロ(燃焼式加熱装置)
N 被加熱物
3 Burner (heating means)
5 Operation part (heating state adjustment means)
30 Temperature detection means 30A First temperature detection means 30B Second temperature detection means 40, 40A, 40B Infrared intensity detection unit (temperature detection means)
40a, 40b Thermocouple (temperature detection means)
50, 50A, 50B Temperature detection unit (temperature detection means)
60 Temperature estimation means 65 Storage means 100 Combustion heating apparatus 100A, 100B Stove (combustion heating apparatus)
N heated object

Claims (6)

被加熱物を加熱する加熱手段と、
前記被加熱物の特定部位の温度を検出する温度検出手段と、
前記温度検出手段により検出した前記被加熱物の特定部位の温度に基づいて、前記被加熱物の温度を推定する温度推定手段とを備え、
加熱量が小さい小火加熱状態で前記被加熱物が加熱される小火加熱部位と、加熱量が大きい大火加熱状態で前記被加熱物が加熱される大火加熱部位とが異なる燃焼式加熱装置であって、
前記温度検出手段として、前記小火加熱部位の温度を検出する第1温度検出手段と、
前記大火加熱部位の温度を検出する第2温度検出手段とを備え、
前記温度推定手段が、前記第1温度検出手段の温度検出値及び前記第2温度検出手段の温度検出値に基づいて、前記被加熱物の温度を推定する燃焼式加熱装置。
Heating means for heating an object to be heated;
Temperature detecting means for detecting the temperature of a specific part of the object to be heated;
Temperature estimation means for estimating the temperature of the heated object based on the temperature of the specific part of the heated object detected by the temperature detecting means,
A combustion-type heating device in which a small fire heating part where the object to be heated is heated in a small fire heating state with a small heating amount and a large fire heating part where the object to be heated is heated in a large fire heating state with a large heating amount There,
As the temperature detection means, first temperature detection means for detecting the temperature of the small fire heating part,
Second temperature detecting means for detecting the temperature of the large fire heating part,
A combustion heating apparatus in which the temperature estimation means estimates the temperature of the object to be heated based on a temperature detection value of the first temperature detection means and a temperature detection value of the second temperature detection means.
前記被加熱物の加熱量を調整する加熱状態調整手段と、
前記加熱状態調整手段で調整された前記加熱量と、前記第1温度検出手段の温度検出値及び前記第2温度検出手段の温度検出値に基づいて、前記被加熱物の温度を推定可能な関係情報を記憶した記憶手段とを備え、
前記温度推定手段は、前記関係情報を使用して、前記被加熱物の温度を推定する請求項1記載の燃焼式加熱装置。
A heating state adjusting means for adjusting a heating amount of the object to be heated;
A relationship in which the temperature of the object to be heated can be estimated based on the heating amount adjusted by the heating state adjusting unit, the temperature detection value of the first temperature detection unit, and the temperature detection value of the second temperature detection unit. Storage means for storing information,
The combustion type heating apparatus according to claim 1, wherein the temperature estimation unit estimates the temperature of the object to be heated using the relationship information.
前記温度推定手段が、前記第1温度検出手段の温度検出値及び前記第2温度検出手段の温度検出値の一方で、温度が高い側の温度検出値を前記被加熱物の温度と推定する請求項1記載の燃焼式加熱装置。   The temperature estimation unit estimates a temperature detection value on a higher temperature side as a temperature of the object to be heated, one of a temperature detection value of the first temperature detection unit and a temperature detection value of the second temperature detection unit. Item 2. A combustion heating apparatus according to Item 1. 前記第1温度検出手段の温度検出値及び前記第2温度検出手段の温度検出値が、所定の温度範囲内であることを条件として、前記温度推定手段が、前記第1温度検出手段の温度検出値及び前記第2温度検出手段の温度検出値に基づいて、前記被加熱物の温度を推定する請求項1から3のいずれか一項記載の燃焼式加熱装置。   On the condition that the temperature detection value of the first temperature detection means and the temperature detection value of the second temperature detection means are within a predetermined temperature range, the temperature estimation means detects the temperature of the first temperature detection means. The combustion heating apparatus according to any one of claims 1 to 3, wherein a temperature of the object to be heated is estimated based on a value and a temperature detection value of the second temperature detection means. 前記第1温度検出手段の温度検出値及び前記第2温度検出手段の温度検出値の何れか一方又はその両方が、加熱開始から所定の時間が経過しても所定の低温側温度範囲に留まる場合に、当該温度検出値を検出した温度検出手段が異常であると判断する請求項1〜4のいずれか一項記載の燃焼式加熱装置。   When one or both of the temperature detection value of the first temperature detection means and the temperature detection value of the second temperature detection means remain in a predetermined low temperature range even after a predetermined time has elapsed since the start of heating. Furthermore, the combustion-type heating apparatus as described in any one of Claims 1-4 which judges that the temperature detection means which detected the said temperature detection value is abnormal. 前記温度検出手段が、非接触式温度センサ又は接触式温度センサである請求項1〜5のいずれか一項記載の燃焼式加熱装置。   The combustion type heating device according to any one of claims 1 to 5, wherein the temperature detection means is a non-contact temperature sensor or a contact temperature sensor.
JP2011054547A 2011-03-11 2011-03-11 Combustion heating device Active JP5711012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011054547A JP5711012B2 (en) 2011-03-11 2011-03-11 Combustion heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011054547A JP5711012B2 (en) 2011-03-11 2011-03-11 Combustion heating device

Publications (2)

Publication Number Publication Date
JP2012189281A true JP2012189281A (en) 2012-10-04
JP5711012B2 JP5711012B2 (en) 2015-04-30

Family

ID=47082657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011054547A Active JP5711012B2 (en) 2011-03-11 2011-03-11 Combustion heating device

Country Status (1)

Country Link
JP (1) JP5711012B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014145537A (en) * 2013-01-29 2014-08-14 Osaka Gas Co Ltd Stove, operation method of stove, estimation method of material for heating vessel used in stove and estimation method of material for heating vessel
CN110440306A (en) * 2018-05-04 2019-11-12 青岛海尔智慧厨房电器有限公司 A kind of control method and gas-cooker of gas-cooker
JP7423558B2 (en) 2021-01-27 2024-01-29 日立グローバルライフソリューションズ株式会社 heating cooker

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06101833A (en) * 1992-02-20 1994-04-12 Paloma Ind Ltd Thermocouple for burners
US5787874A (en) * 1995-01-06 1998-08-04 Cramer Gmbh Gas-fired ceramic-cooktop burner
US6663009B1 (en) * 2001-05-14 2003-12-16 Whirlpool Corporation Gas cooker
JP2005140397A (en) * 2003-11-06 2005-06-02 Matsushita Electric Ind Co Ltd Heating cooking apparatus with temperature detection function and its program
JP2005337596A (en) * 2004-05-27 2005-12-08 Matsushita Electric Ind Co Ltd Gas cooker
JP3751358B2 (en) * 1996-03-28 2006-03-01 東京瓦斯株式会社 Flame leakage prevention device and pan diameter detection device in a stove
JP2006220395A (en) * 2005-02-14 2006-08-24 Osaka Gas Co Ltd Cooking stove
JP2009019825A (en) * 2007-07-12 2009-01-29 Rinnai Corp Stove
JP2009092266A (en) * 2007-10-04 2009-04-30 Paloma Ind Ltd Gas cooker
EP2405203A1 (en) * 2010-07-07 2012-01-11 Vestel Beyaz Esya Sanayi Ve Ticaret A.S. A cooking device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06101833A (en) * 1992-02-20 1994-04-12 Paloma Ind Ltd Thermocouple for burners
US5787874A (en) * 1995-01-06 1998-08-04 Cramer Gmbh Gas-fired ceramic-cooktop burner
JP3751358B2 (en) * 1996-03-28 2006-03-01 東京瓦斯株式会社 Flame leakage prevention device and pan diameter detection device in a stove
US6663009B1 (en) * 2001-05-14 2003-12-16 Whirlpool Corporation Gas cooker
JP2005140397A (en) * 2003-11-06 2005-06-02 Matsushita Electric Ind Co Ltd Heating cooking apparatus with temperature detection function and its program
JP2005337596A (en) * 2004-05-27 2005-12-08 Matsushita Electric Ind Co Ltd Gas cooker
JP2006220395A (en) * 2005-02-14 2006-08-24 Osaka Gas Co Ltd Cooking stove
JP2009019825A (en) * 2007-07-12 2009-01-29 Rinnai Corp Stove
JP2009092266A (en) * 2007-10-04 2009-04-30 Paloma Ind Ltd Gas cooker
EP2405203A1 (en) * 2010-07-07 2012-01-11 Vestel Beyaz Esya Sanayi Ve Ticaret A.S. A cooking device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014145537A (en) * 2013-01-29 2014-08-14 Osaka Gas Co Ltd Stove, operation method of stove, estimation method of material for heating vessel used in stove and estimation method of material for heating vessel
CN110440306A (en) * 2018-05-04 2019-11-12 青岛海尔智慧厨房电器有限公司 A kind of control method and gas-cooker of gas-cooker
JP7423558B2 (en) 2021-01-27 2024-01-29 日立グローバルライフソリューションズ株式会社 heating cooker

Also Published As

Publication number Publication date
JP5711012B2 (en) 2015-04-30

Similar Documents

Publication Publication Date Title
US10344984B2 (en) Safety burner system with automatic shut-off
JP4422943B2 (en) Stove
JP5380176B2 (en) grill
JP5388203B2 (en) Gas stove
JP5138257B2 (en) Infrared intensity detector for cooking appliances
JP5711012B2 (en) Combustion heating device
JP4557741B2 (en) Stove
JP4448400B2 (en) Gas stove with thermal power control function
JP5684625B2 (en) Stove
JP6958852B2 (en) Gas stove
JP6037854B2 (en) Stove, operating method of stove, estimation method of heating container material used on stove, and estimation method of heating container material
JP5875921B2 (en) Stove
JP2006275364A (en) Cookstove
JP4989273B2 (en) Cooker
JP2006275466A (en) Composite sensor and combustion device
JP7026912B2 (en) Gas stove
JP5149538B2 (en) Cooker
JP2005102846A (en) Grill
JP2006207964A (en) Cooking stove
KR20120053581A (en) Automatic heat adjusting method for gas range
JP4137702B2 (en) grill
JP7219438B2 (en) Gas stove
JP4557733B2 (en) Stove
JP4628118B2 (en) Stove
JP2005102847A (en) Grill

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150305

R150 Certificate of patent or registration of utility model

Ref document number: 5711012

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150