JP2006275364A - Cookstove - Google Patents

Cookstove Download PDF

Info

Publication number
JP2006275364A
JP2006275364A JP2005093561A JP2005093561A JP2006275364A JP 2006275364 A JP2006275364 A JP 2006275364A JP 2005093561 A JP2005093561 A JP 2005093561A JP 2005093561 A JP2005093561 A JP 2005093561A JP 2006275364 A JP2006275364 A JP 2006275364A
Authority
JP
Japan
Prior art keywords
flame
infrared
infrared intensity
temperature
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005093561A
Other languages
Japanese (ja)
Other versions
JP4530894B2 (en
Inventor
Akira Miyato
章 宮藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2005093561A priority Critical patent/JP4530894B2/en
Publication of JP2006275364A publication Critical patent/JP2006275364A/en
Application granted granted Critical
Publication of JP4530894B2 publication Critical patent/JP4530894B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cookstove capable of accurately and quickly detecting whether flames are correctly formed by a burner for heating a heated object or not while keeping good cleaning performance and appearance. <P>SOLUTION: This cookstove comprising the burner 30 for heating the heated object N and a flame detecting means 21 for detecting the flames F formed by the burner 30, further comprises an infrared ray intensity measuring means 40 for measuring the intensity of infrared ray radiated from the flames F formed by the burner 30, and the flame detecting means 21 is constituted to detect the flames on the basis of the intensity of the infrared ray measured by the infrared ray intensity measuring means 40. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、被加熱物を加熱するバーナと、前記バーナにより形成される火炎を検知する火炎検知手段とを備えたコンロに関する。   The present invention relates to a stove including a burner that heats an object to be heated and flame detection means that detects a flame formed by the burner.

上記のように天板の上方に載置された鍋などの被加熱物を加熱するバーナを備えたコンロでは、バーナにより形成される火炎を検知する火炎検知手段を設けることで、バーナの点火時や作動中に火炎が正しく形成されているか否かを検知することができ、例えば、火炎が正しく形成されていない場合には点火不良や立ち消え等が発生したとして、バーナへのガスの供給を遮断するなどのバーナの作動制御を行うことができる。
このように火炎を検知することができる従来のコンロとしては、バーナが形成する火炎に晒される形態で設置された熱電対を設置し、その熱電対の起電力に基づいて火炎を検知するように構成されたコンロが知られている(例えば、特許文献1を参照。)。
In a stove equipped with a burner that heats an object to be heated such as a pan placed above the top plate as described above, by providing a flame detection means for detecting a flame formed by the burner, the burner is ignited. It is possible to detect whether or not the flame is formed correctly during operation, for example, if the flame is not formed correctly, the gas supply to the burner is shut off because of poor ignition or extinction, etc. It is possible to control the operation of the burner.
As a conventional stove capable of detecting a flame in this way, a thermocouple installed in a form exposed to the flame formed by the burner is installed, and the flame is detected based on the electromotive force of the thermocouple. A configured stove is known (see, for example, Patent Document 1).

特開2004−144424号公報JP 2004-144424 A

上記特許文献1に記載の従来のコンロでは、火炎を検知するための熱電対をバーナに晒される形態で設置する必要があるため、熱電対の過剰昇温や煮零れ等の汚物の付着による動作不良や、清掃性や美観の悪化等の問題があった。   In the conventional stove described in the above-mentioned Patent Document 1, it is necessary to install a thermocouple for detecting a flame in a form exposed to a burner. There were problems such as defects, deterioration in cleanability and aesthetics.

また、上記のような熱電対は、若干の熱容量を有することから応答性が比較的悪いため、点火不良や立ち消え等が発生して火炎が正しく形成されない場合でも、それを迅速に検知することができないという問題があった。   In addition, since the thermocouple as described above has a slight heat capacity, the response is relatively poor, so even when a flame is not formed correctly due to poor ignition or extinction, it is possible to detect it quickly. There was a problem that I could not.

本発明は、上記の事情に鑑みて、清掃性や美観を優れたものとしながら、被加熱物を加熱するバーナにより正しく火炎が形成されているか否かを正確且つ迅速に検知することができるコンロを提供する点にある。   In view of the above circumstances, the present invention is capable of accurately and quickly detecting whether or not a flame is correctly formed by a burner that heats an object to be heated while making the cleaning property and aesthetics excellent. Is to provide

上記目的を達成するための本発明に係るコンロは、被加熱物を加熱するバーナと、前記バーナにより形成される火炎を検知する火炎検知手段とを備えたコンロであって、その第1特徴構成は、前記バーナが形成する火炎から放射された赤外線の赤外線強度を測定する赤外線強度測定手段を備え、
前記火炎検知手段が、前記赤外線強度測定手段により測定される赤外線強度に基づいて前記火炎を検知するように構成されている点にある。
In order to achieve the above object, a stove according to the present invention is a stove including a burner that heats an object to be heated, and a flame detection means that detects a flame formed by the burner. Comprises infrared intensity measuring means for measuring the infrared intensity of infrared rays emitted from the flame formed by the burner,
The flame detection means is configured to detect the flame based on the infrared intensity measured by the infrared intensity measurement means.

上記第1特徴構成によれば、バーナにより形成される火炎により天板の上方に載置された鍋等の被加熱物を直火加熱するコンロにおいて、その被加熱物の底部付近に形成される火炎からは赤外線が放射されていることから、上記赤外線強度測定手段により、その火炎から放射された赤外線の赤外線強度を測定して、上記火炎検知手段により、その測定された赤外線強度に基づいて火炎を検知することができる。
そして、このような赤外線強度測定手段は、火炎に対して非接触に設置することができるので、過剰昇温や汚物の付着による動作不良を防止し、更に、上記赤外線強度測定手段を、火炎が形成される部分に突出させることなく、天板の下方側等に設置して、清掃性や美観を優れたものとすることができる。
また、上記赤外線強度測定手段で測定される赤外線強度は、火炎の有無に対して迅速に追従して変化することから、点火不良や立ち消え等が発生して火炎が正しく形成されない場合において、上記火炎検知手段によりそれを迅速に検知することができ、バーナへのガスの供給を遮断するなどのバーナの作動制御を行うことができる。
したがって、本発明により、清掃性や美観を優れたものとしながら、天板の上方に載置された被加熱物を加熱するバーナにより正しく火炎が形成されているか否かを正確且つ迅速に検知することができるコンロを実現することができる。
According to the said 1st characteristic structure, in the stove which heats a to-be-heated object, such as a pan placed above the top plate, directly by the flame formed by the burner, it is formed near the bottom of the to-be-heated object. Since infrared rays are radiated from the flame, the infrared intensity of the infrared rays emitted from the flame is measured by the infrared intensity measuring means, and the flame is measured based on the measured infrared intensity by the flame detecting means. Can be detected.
And since such infrared intensity measuring means can be installed in a non-contact manner with respect to the flame, it is possible to prevent malfunction due to excessive temperature rise and filth adhesion. It can be installed on the lower side of the top plate or the like without protruding from the formed portion, and can be made excellent in cleanability and aesthetics.
In addition, the infrared intensity measured by the infrared intensity measuring means changes rapidly following the presence or absence of a flame. This can be detected quickly by the detection means, and the burner operation control such as shutting off the supply of gas to the burner can be performed.
Therefore, according to the present invention, it is possible to accurately and quickly detect whether or not a flame is correctly formed by a burner that heats an object to be heated placed above the top plate, while having excellent cleanability and aesthetics. A stove that can be realized.

本発明に係るコンロの第2特徴構成は、上記第1特徴構成に加えて、前記赤外線強度測定手段が、前記被加熱物から放射された赤外線の波長範囲内にある互いに異なる複数の温度導出用波長域夫々についての赤外線強度を測定するように構成され、
前記赤外線強度測定手段により測定される前記複数の温度導出用波長域夫々についての赤外線強度の関係に基づいて、前記被加熱物の温度を求める温度導出手段を備えた点にある。
The stove according to the second aspect of the present invention has a second feature configuration in which, in addition to the first feature configuration, the infrared intensity measuring means is for deriving a plurality of different temperatures within the wavelength range of infrared rays emitted from the object to be heated. Configured to measure the infrared intensity for each wavelength region,
A temperature deriving unit is provided for obtaining the temperature of the object to be heated based on the relationship of the infrared intensity for each of the plurality of temperature deriving wavelength ranges measured by the infrared intensity measuring unit.

上記第2特徴構成によれば、上記温度導出手段により、被加熱物から放射された赤外線の波長範囲内にある互いに異なる複数の温度導出用波長域夫々についての赤外線強度の関係に基づいて、被加熱物の放射率の違いに依存することなく被加熱物の温度を求めるにあたり、その複数の温度導出用波長域夫々についての赤外線強度を測定するための赤外線強度測定手段を、上述した火炎検知手段による火炎検知用の赤外線強度を測定するための赤外線強度測定手段と共通化することができ、火炎検知と被加熱物温度導出との両方を合理的に行うことができる。
また、上記温度導出用波長域は、火炎からの放射が無い又は放射強度が弱い波長域に設定することで、上記温度導出手段により火炎の影響を抑制した形態で高精度に被加熱物の温度を求めることができる。
According to the second characteristic configuration, the temperature deriving unit is configured to determine the infrared intensity for each of a plurality of different temperature deriving wavelength ranges within the wavelength range of the infrared rays emitted from the object to be heated. In obtaining the temperature of the object to be heated without depending on the difference in emissivity of the heated object, the infrared intensity measuring means for measuring the infrared intensity for each of the plurality of temperature deriving wavelength ranges is the flame detecting means described above. The infrared intensity measuring means for measuring the infrared intensity for detecting the flame by means of can be used in common, and both the flame detection and the temperature of the heated object can be rationally performed.
Further, the temperature deriving wavelength range is set to a wavelength range where there is no radiation from the flame or the radiation intensity is weak, so that the temperature of the object to be heated is accurately controlled in a form in which the influence of the flame is suppressed by the temperature deriving means. Can be requested.

本発明に係るコンロの第3特徴構成は、上記第2特徴構成に加えて、前記赤外線強度測定手段が、少なくとも1つの前記温度導出用波長域についての赤外線強度として、前記火炎からの放射強度が弱い火炎影響波長域についての赤外線強度を測定し、
前記火炎検知手段が、前記火炎影響波長域についての赤外線強度に基づいて、前記火炎を検知するように構成されている点にある。
In the third feature configuration of the stove according to the present invention, in addition to the second feature configuration, the infrared intensity measurement means has an infrared intensity for at least one of the temperature deriving wavelength ranges, and the radiation intensity from the flame is Measure the infrared intensity for the weak flame influence wavelength range,
The flame detection means is configured to detect the flame based on an infrared intensity for the flame influence wavelength region.

上記第3特徴構成によれば、上記赤外線強度測定手段により測定された赤外線強度を用いて、上記火炎検知手段による火炎検知と、上記温度測定手段による被加熱物温度導出との両方を行う場合において、その赤外線強度測定手段により、被加熱物から放射された赤外線の波長範囲内にあり火炎からの放射強度が弱い火炎影響波長域についての赤外線強度を測定することにより、その火炎影響波長域についての赤外線強度を、上記温度導出手段による温度導出用の複数の温度導出用波長域夫々についての赤外線強度の少なくとも1つとして用いると共に、上記火炎検知手段による火炎検知用の赤外線強度として用いることができる。よって、赤外線強度測定手段で測定すべき互いに異なる複数の波長域の赤外線強度の数を減らして、応答性を向上すると共に、装置構成を簡略化することができる。   According to the third characteristic configuration, in the case of performing both the flame detection by the flame detection unit and the heating object temperature derivation by the temperature measurement unit using the infrared intensity measured by the infrared intensity measurement unit. The infrared intensity measurement means measures the infrared intensity within the wavelength range of the infrared radiation emitted from the object to be heated and has a weak radiation intensity from the flame. The infrared intensity can be used as at least one of the infrared intensities for each of a plurality of temperature deriving wavelength ranges for deriving the temperature by the temperature deriving means, and as the infrared intensity for detecting the flame by the flame detecting means. Therefore, the number of infrared intensities in a plurality of different wavelength ranges to be measured by the infrared intensity measuring means can be reduced to improve the responsiveness and simplify the apparatus configuration.

本発明に係るコンロの第4特徴構成は、上記第2特徴構成に加えて、前記赤外線強度測定手段が、前記複数の温度導出用波長域夫々についての赤外線強度とは別に、前記火炎から放射された赤外線の波長範囲内にある火炎検知用波長域についての赤外線強度を測定し、
前記火炎検知手段が、前記火炎検知用波長域についての赤外線強度に基づいて、前記火炎を検知するように構成されている点にある。
According to a fourth characteristic configuration of the stove according to the present invention, in addition to the second characteristic configuration, the infrared intensity measuring means is radiated from the flame separately from the infrared intensity for each of the plurality of temperature deriving wavelength ranges. Measure the infrared intensity for the flame detection wavelength range within the infrared wavelength range,
The flame detection means is configured to detect the flame based on the infrared intensity for the flame detection wavelength region.

上記第4特徴構成によれば、上記赤外線強度測定手段により、上記温度測定手段による被加熱物温度導出用の複数の温度導出用波長域夫々についての赤外線強度とは別に、上記火炎検知手段による火炎検知用の上記火炎検知用波長域についての赤外線強度を測定することで、上記複数の温度導出用波長域については火炎からの放射強度が殆ど無い波長域に設定して、上記温度導出手段により火炎の影響を排除した形態で極めて高精度に被加熱物の温度を求めることができる。   According to the fourth characteristic configuration, the flame by the flame detecting means is separated from the infrared intensity for each of a plurality of temperature deriving wavelength ranges for deriving the temperature of the object to be heated by the temperature measuring means by the infrared intensity measuring means. By measuring the infrared intensity for the flame detection wavelength range for detection, the plurality of temperature derivation wavelength ranges are set to wavelength ranges where there is almost no radiation intensity from the flame, and the temperature derivation means sets the flame. Thus, the temperature of the object to be heated can be obtained with extremely high accuracy in a form that eliminates the influence of.

本発明に係るコンロの第5特徴構成は、上記第2乃至第4特徴構成の何れかに加えて、前記赤外線強度測定手段が、赤外線強度を測定する単一の測定部と、前記測定部に入射する赤外線の波長域を切り換える切換部とで構成されている点にある。   A fifth feature configuration of the stove according to the present invention includes, in addition to any of the second to fourth feature configurations described above, the infrared intensity measurement unit includes a single measurement unit that measures infrared intensity, and the measurement unit. It is in the point comprised by the switching part which switches the wavelength range of the infrared rays which enter.

上記第5特徴構成によれば、上記赤外線強度測定手段において、上記切換部により測定部に入射される赤外線の波長域を切り換えることで、複数の波長域夫々についての赤外線強度を上記単一の測定部により測定するように構成することができ、装置構成を簡略化することができる。
即ち、上記赤外線強度測定手段において、上記切換部により、上記測定部に入射する赤外線の波長域を各温度導出用波長域に逐次切り換えて、単一の上記測定部により、互いに異なる複数の温度導出用波長域夫々についての赤外線強度を各別に測定することができる。更には、上記第4特徴構成の如く、上記温度導出用波長域とは別の火炎検知用波長域についての赤外線強度を測定する場合には、上記切換部により、上記測定部に入射する赤外線の波長域を上記温度導出用波長域と火炎検知用波長域とに逐次切り換えて、単一の上記測定部により、温度導出用波長域についての赤外線強度と火炎検知用波長域についての赤外線強度とを各別に測定することができる。
According to the fifth feature configuration, in the infrared intensity measuring means, the infrared intensity for each of a plurality of wavelength ranges is changed to the single measurement by switching the wavelength range of the infrared ray incident on the measurement unit by the switching unit. It can comprise so that it may measure by a part, and an apparatus structure can be simplified.
That is, in the infrared intensity measuring means, the switching unit sequentially switches the wavelength range of infrared rays incident on the measuring unit to each temperature deriving wavelength range, and the single measuring unit derives a plurality of different temperatures. The infrared intensity for each wavelength range can be measured separately. Furthermore, as in the fourth feature configuration, when measuring the infrared intensity in a flame detection wavelength range different from the temperature derivation wavelength range, the switching unit causes the infrared rays incident on the measurement unit to be measured. By sequentially switching the wavelength range between the temperature deriving wavelength range and the flame detecting wavelength range, the infrared intensity for the temperature deriving wavelength range and the infrared intensity for the flame detecting wavelength range are determined by a single measuring unit. It can be measured separately.

〔第1実施形態〕
本発明に係るコンロの第1実施形態について、図面に基づいて説明する。
図1に示すように、第1実施形態のコンロは、円形の加熱口1aを有する平板状の天板1、加熱口1aの上方に離間させて鍋等の被加熱物Nを載置可能な載置部としての五徳2、その五徳2上に載置される被加熱物Nを加熱するバーナ30、五徳2の下方側箇所に設置されて、バーナ30により形成される火炎Fが放射する赤外線及び被加熱物Nの底部から放射される赤外線が入射され該赤外線の赤外線強度を測定する赤外線強度測定装置40(赤外線強度測定手段の一例)、バーナの作動を制御する制御装置20等を備えて構成されている。
また、この制御装置20は、詳細については後述するが、赤外線強度測定装置40の測定結果に基づいて火炎を検知する火炎検知部21(火炎検知手段の一例)、同測定結果に基づいて被加熱物Nの温度を求める温度導出部22(温度導出手段の一例)、火炎検知部21の火炎検知結果や温度導出部22の導出温度に基づいて、バーナ30の作動を制御する作動制御部23として構成される。
[First Embodiment]
A stove according to a first embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the stove of the first embodiment can be placed with a flat top plate 1 having a circular heating port 1 a and a heated object N such as a pan separated from the heating port 1 a. Gotoku 2 as a mounting part, a burner 30 for heating an object to be heated N placed on the 5th virtue 2, an infrared ray that is installed at a lower position of Gotoku 2 and is emitted by a flame F formed by the burner 30 And an infrared intensity measuring device 40 (an example of infrared intensity measuring means) that receives infrared rays emitted from the bottom of the object N and measures the infrared intensity of the infrared rays, and a control device 20 that controls the operation of the burner. It is configured.
The control device 20, which will be described in detail later, is a flame detection unit 21 (an example of flame detection means) that detects a flame based on the measurement result of the infrared intensity measurement device 40, and is heated based on the measurement result. A temperature deriving unit 22 (an example of a temperature deriving unit) for obtaining the temperature of the object N, an operation control unit 23 for controlling the operation of the burner 30 based on the flame detection result of the flame detection unit 21 and the derived temperature of the temperature deriving unit 22 Composed.

以下、コンロの各部について説明を加える。
先ず、前記バーナ30について説明を加えると、前記バーナ30は、ブンゼン燃焼式の内炎式に構成してある。
つまり、その内炎式のバーナ30は、燃料供給路5を通じて供給される燃料ガスGを噴出するガスノズル31、そのガスノズル31から燃料ガスGが噴出されると共に、その燃料ガスGの噴出に伴う吸引作用により一次燃焼用空気Aが供給される混合管32、及び、内周部に混合気を噴出する複数の炎口33を備えて、前記混合管32から混合気が供給される環状の内炎用ケーシング部材34等を備えて構成してある。
そして、前記バーナ30を、前記加熱口1aの下方に位置させて設けてある。
Hereinafter, each part of the stove will be described.
First, the burner 30 will be described. The burner 30 is configured as a Bunsen combustion type internal flame type.
In other words, the internal flame type burner 30 is configured to eject the fuel gas G supplied through the fuel supply path 5, the fuel gas G is ejected from the gas nozzle 31, and the suction accompanying the ejection of the fuel gas G An annular inner flame which is provided with a mixing tube 32 to which primary combustion air A is supplied by action and a plurality of flame ports 33 for injecting the air-fuel mixture to the inner periphery, and to which the air-fuel mixture is supplied from the mixing tube The casing member 34 and the like are provided.
The burner 30 is provided below the heating port 1a.

この内炎式のバーナ30においては、混合管32から内炎用ケーシング部材34内に供給された燃料ガスGと一次燃焼用空気Aとの混合気が炎口33から内炎用ケーシング部材34の中心に向けて略水平方向に噴出され、その噴出された燃料ガスGと一次燃焼用空気Aとの混合気が燃焼して、火炎Fが前記加熱口1aを通って上向きに形成される。   In the inner flame type burner 30, the mixture of the fuel gas G and the primary combustion air A supplied from the mixing pipe 32 into the inner flame casing member 34 is supplied from the flame port 33 to the inner flame casing member 34. The air-fuel mixture of the injected fuel gas G and the primary combustion air A is combusted in a substantially horizontal direction toward the center, and a flame F is formed upward through the heating port 1a.

前記燃料供給路5には、前記ガスノズル31への燃料ガスGの供給を断続する燃料供給断続弁6と、ガスノズル31への燃料ガスGの供給量を調節する燃料供給量調節弁7を設けてある。
また、バーナ30の内炎用ケーシング部材34内の下方には、加熱口1aを介して落下した煮零れ等を受けるための汁受け皿8を設けてある。
The fuel supply path 5 is provided with a fuel supply intermittent valve 6 for intermittently supplying the fuel gas G to the gas nozzle 31 and a fuel supply amount adjusting valve 7 for adjusting the supply amount of the fuel gas G to the gas nozzle 31. is there.
A soup pan 8 is provided below the inner flame casing member 34 of the burner 30 for receiving boiled food that has fallen through the heating port 1a.

更に、その汁受け皿8には、その上縁部に沿って、前記二次空気取入口14を形成するための複数の切り欠き8aを、間隔を開けて形成してある。
そして、前記内炎用ケーシング部材34の底面と前記複数の切り欠き8aとにより、複数の前記二次空気取入口14を、バーナ30の内炎用ケーシング部材34の下方に入り込んだ箇所に、周方向に沿って間隔を開けて形成してある。
Furthermore, a plurality of notches 8a for forming the secondary air intake port 14 are formed at intervals in the juice receiving tray 8 along the upper edge portion thereof.
Then, the plurality of secondary air intake ports 14 are surrounded by a bottom surface of the inner flame casing member 34 and the plurality of cutouts 8a at locations where the burner 30 enters the lower part of the inner flame casing member 34. Formed at intervals along the direction.

次に、前記赤外線強度測定装置40による赤外線の強度測定、及び、前記温度導出部22による被加熱物Nの温度導出について説明を加える。
赤外線強度測定装置40は、複数の二次空気取入口14のうちの一つの二次空気取入口14からの二次燃焼用空気の通流域に、バーナ30の内炎用ケーシング部材34の下方に入り込ませた状態で且つカバー部材46を被加熱物Nの底部に対して斜め上向きに臨ませた状態で設けてある。
そして、この赤外線強度測定装置40は、被加熱物Nから放射される赤外線の波長範囲内にある互いに異なる2つの温度導出用波長域夫々についての赤外線強度を測定するように構成してある。
又、前記温度導出部22を、前記赤外線強度測定装置40にて検出される前記2つの温度導出用波長域夫々についての赤外線強度の比(前記複数の温度導出用波長域夫々についての赤外線強度の関係に相当し、以下、赤外線強度比と記載する場合がある)に基づいて、被加熱物Nの温度を求めるように構成してある。
Next, the infrared intensity measurement by the infrared intensity measuring device 40 and the temperature derivation of the heated object N by the temperature derivation unit 22 will be described.
The infrared intensity measuring device 40 is provided in the flow area of the secondary combustion air from one of the plurality of secondary air intakes 14 below the inner flame casing member 34 of the burner 30. The cover member 46 is provided in a state in which the cover member 46 faces obliquely upward with respect to the bottom of the article N to be heated.
The infrared intensity measuring device 40 is configured to measure the infrared intensity for each of two different temperature derivation wavelength ranges within the wavelength range of the infrared rays emitted from the heated object N.
In addition, the temperature deriving unit 22 is configured to detect the ratio of the infrared intensity for each of the two temperature deriving wavelength ranges detected by the infrared intensity measuring device 40 (the infrared intensity for each of the plurality of temperature deriving wavelength ranges). The temperature of the article N to be heated is determined based on the relationship, which may be hereinafter referred to as an infrared intensity ratio).

前記2つの温度導出用波長域は、被加熱物Nから放射される赤外線の波長範囲内において前記バーナ30の火炎からの放射が無い又は放射強度が弱い範囲内に設定してある。   The two temperature deriving wavelength ranges are set in a range where there is no radiation from the flame of the burner 30 or the radiation intensity is weak within the wavelength range of infrared rays radiated from the object N to be heated.

赤外線強度測定装置40について、更に説明を加える。
図2に示すように、赤外線強度測定装置40は、通過させる赤外線の波長域が互いに異なる2個のバンドパスフィルタ41a,41bと、それら2個のバンドパスフィルタ41a,41bを通過した赤外線の赤外線強度を各別に測定する2個の赤外線素子42a,42bとを備えて構成して、被加熱物Nから放射される赤外線における互いに異なる2つの温度導出用波長域夫々についての赤外線強度を測定するように構成してある。ちなみに、前記バンドパスフィルタ41a,41bは、所定の温度導出用波長域の赤外線のみを選択的に透過させるように構成されている。
The infrared intensity measuring device 40 will be further described.
As shown in FIG. 2, the infrared intensity measuring device 40 includes two bandpass filters 41a and 41b having different wavelength ranges of infrared rays to be transmitted, and infrared infrared rays that have passed through the two bandpass filters 41a and 41b. Two infrared elements 42a and 42b that measure the intensity separately are configured to measure the infrared intensity for each of two different temperature derivation wavelength ranges in the infrared rays emitted from the heated object N. It is configured. Incidentally, the bandpass filters 41a and 41b are configured to selectively transmit only infrared rays in a predetermined temperature deriving wavelength region.

更に、説明を加えると、光入射用の開口部44を備えたパッケージング43内に、前記開口部44を通じて入射する赤外線の赤外線強度を測定可能なように、前記2個の赤外線素子42a,42bを並べて設け、前記開口部44における一方の赤外線素子42aに対して赤外線が入射する部分に一方のバンドパスフィルタ41aを設け、前記開口部44における他方の赤外線素子42bに対して赤外線が入射する部分に他方のバンドパスフィルタ41bを設けてある。
又、パッケージング43内には、前記2個の赤外線素子42a,42bを駆動させる駆動部45を設けてある。
更に、前記2個のバンドパスフィルタ41a,41bの表面の全面を覆うように、赤外線を透過可能なカバー部材46を設けて、そのカバー部材46にて、前記2個のバンドパスフィルタ41a,41bを保護するように構成してある。
Further, the two infrared elements 42a and 42b are described so that the infrared intensity of the infrared rays incident through the opening 44 can be measured in the packaging 43 having the opening 44 for light incidence. Are arranged side by side, one band pass filter 41a is provided in a portion where the infrared ray is incident on one infrared element 42a in the opening 44, and a portion where the infrared ray is incident on the other infrared element 42b in the opening 44. The other band pass filter 41b is provided.
In the packaging 43, a drive unit 45 for driving the two infrared elements 42a and 42b is provided.
Further, a cover member 46 capable of transmitting infrared rays is provided so as to cover the entire surface of the two band-pass filters 41a and 41b, and the two band-pass filters 41a and 41b are formed by the cover member 46. Is configured to protect.

以下、前記2つの温度導出用波長域の設定の仕方について説明する。
図3に、実際のバーナ30にて形成される火炎から放射される赤外線の放射強度スペクトル分布を示す。図3に示すように、赤外線の波長範囲のうち、1.5μm以上且つ1.8μm以下の範囲、2.0μm以上且つ2.4μm以下の範囲、3.1μm以上且つ4.2μm以下の範囲、及び、8.0μm以上且つ12.0μm以下の範囲では、火炎からの放射が無い又は放射強度が弱い。
従って、前記2つの温度導出用波長域を、1.5μm以上且つ1.8μm以下の範囲内、2.0μm以上且つ2.4μm以下の範囲内、3.1μm以上且つ4.2μm以下の範囲内、及び8.0μm以上且つ12.0μm以下の範囲内に設定することにより、前記2つの温度導出用波長域を、赤外線の波長範囲内において前記バーナ30の火炎からの放射が無い又は放射強度が弱い範囲内に設定することができる。
そして、例えば、前記2つの温度導出用波長域を、3.1μm以上且つ4.2μm以下の範囲内において、3.1μmの波長域と、3.9μmの波長域とに設定してある。
Hereinafter, how to set the two temperature deriving wavelength ranges will be described.
FIG. 3 shows the infrared radiation intensity spectrum distribution emitted from the flame formed by the actual burner 30. As shown in FIG. 3, in the infrared wavelength range, a range of 1.5 μm to 1.8 μm, a range of 2.0 μm to 2.4 μm, a range of 3.1 μm to 4.2 μm, In the range of 8.0 μm or more and 12.0 μm or less, there is no radiation from the flame or the radiation intensity is weak.
Therefore, the two temperature deriving wavelength ranges are in the range of 1.5 μm to 1.8 μm, in the range of 2.0 μm to 2.4 μm, in the range of 3.1 μm to 4.2 μm. And the temperature range for deriving the two temperatures within the wavelength range of infrared rays without the radiation from the flame of the burner 30 or the radiation intensity is set within the range of 8.0 μm or more and 12.0 μm or less. It can be set within a weak range.
For example, the two temperature deriving wavelength ranges are set to a wavelength range of 3.1 μm and a wavelength range of 3.9 μm within a range of 3.1 μm to 4.2 μm.

以下、前記赤外線素子42a,42bについて説明する。
PbS(硫化鉛)又はPbSe(セレン化鉛)を赤外線セルとして用いて構成した赤外線素子42a,42bは、1.5μmから5.0μmの範囲内の赤外線を常温(300K)の動作温度にて検出可能であり、しかも、3.1μm以上且つ4.2μm以下の範囲内の赤外線に対する感度が比較的高くて検出出力が大きい。
従って、上述のように、前記2つの温度導出用波長域を3.1μm以上且つ4.2μm以下の範囲内に設定する場合、赤外線素子42a,42bを、PbS(硫化鉛)又はPbSe(セレン化鉛)を赤外線セルとして用いて構成するのが好ましい。
Hereinafter, the infrared elements 42a and 42b will be described.
Infrared elements 42a and 42b constructed using PbS (lead sulfide) or PbSe (lead selenide) as an infrared cell detect infrared rays in the range of 1.5 μm to 5.0 μm at an operating temperature of room temperature (300 K). Moreover, the sensitivity to infrared rays within the range of 3.1 μm or more and 4.2 μm or less is relatively high and the detection output is large.
Therefore, as described above, when the two temperature deriving wavelength ranges are set within the range of 3.1 μm or more and 4.2 μm or less, the infrared elements 42a and 42b are made of PbS (lead sulfide) or PbSe (selenide). Lead) is preferably used as the infrared cell.

次に、前記温度導出部22により被加熱物の温度を求める温度導出処理について、説明する。尚、以下の説明では、前記2つの温度導出用波長域をλ1,λ2にて示す。ちなみに、温度導出用波長域λ2の方が温度導出用波長域λ1よりも長波長側になる。
図4に、予め実験により求めた前記赤外線強度測定装置40における前記2つの温度導出用波長域λ1,λ2夫々についての出力値(赤外線強度に対応する)と被加熱物の温度との関係を示す。ちなみに、この図4に示す関係は、放射率が0.92の被加熱物を用いて得たものである。
又、図5に、被加熱物の温度と、赤外線強度測定装置40における温度導出用波長域λ2に対応する出力値と温度導出用波長域λ1に対応する出力値との比である出力比(前記赤外線強度比に対応する)との関係(以下、温度対赤外線強度比の関係と記載する場合がある)を示す。
Next, a temperature derivation process for obtaining the temperature of the object to be heated by the temperature derivation unit 22 will be described. In the following description, the two temperature deriving wavelength regions are denoted by λ1 and λ2. Incidentally, the temperature deriving wavelength region λ2 is longer than the temperature deriving wavelength region λ1.
FIG. 4 shows the relationship between the output value (corresponding to the infrared intensity) and the temperature of the object to be heated for each of the two temperature deriving wavelength ranges λ1 and λ2 in the infrared intensity measuring device 40 obtained in advance by experiments. . Incidentally, the relationship shown in FIG. 4 is obtained by using a heated object having an emissivity of 0.92.
FIG. 5 shows an output ratio (the ratio between the temperature of the object to be heated and the output value corresponding to the temperature deriving wavelength region λ2 and the output value corresponding to the temperature deriving wavelength region λ1 in the infrared intensity measuring device 40). (Corresponding to the infrared intensity ratio) (hereinafter, sometimes referred to as a relationship between temperature and infrared intensity ratio).

ちなみに、この図5に示す温度対赤外線強度比の関係は、以下のようにして求めたものである。
即ち、放射率εの異なる複数の被加熱物夫々について、被加熱物の温度を複数の温度に異ならせて、複数の温度夫々について前記出力比を得る。そして、そのように放射率εの異なる複数の被加熱物について得たデータに基づいて、温度と出力比との関係の近似式を求めて、その求めた近似式を温度対赤外線強度比の関係としてある。
従って、放射率εが種々に異なる被加熱物N夫々の温度対赤外線強度比の関係を、共通の1つの温度対赤外線強度比の関係とすることができるのである。
Incidentally, the relationship between temperature and infrared intensity ratio shown in FIG. 5 is obtained as follows.
That is, for each of a plurality of heated objects having different emissivities ε, the temperature of the heated object is changed to a plurality of temperatures, and the output ratio is obtained for each of the plurality of temperatures. Then, based on the data obtained for a plurality of objects to be heated with different emissivities ε, an approximate expression of the relationship between the temperature and the output ratio is obtained, and the obtained approximate expression is related to the relationship between the temperature and the infrared intensity ratio. It is as.
Therefore, the relationship between the temperature-to-infrared intensity ratios of the heated objects N having various emissivities ε can be made into a common temperature-to-infrared intensity ratio relationship.

上述のように求めた図5に示す如き温度対赤外線強度比の関係を、前記温度導出部22の記憶部(図示省略)に記憶させてある。   The relationship between the temperature and infrared intensity ratio as shown in FIG. 5 obtained as described above is stored in the storage unit (not shown) of the temperature deriving unit 22.

そして、前記温度導出部22は、赤外線強度測定装置40における温度導出用波長域λ2に対応する出力値と温度導出用波長域λ1に対応する出力値との出力比(前記赤外線強度比に対応する)を求め、記憶している温度対赤外線強度比の関係から被加熱物Nの温度を求めるように構成してある。
従って、被加熱物Nの温度をその被加熱物Nの放射率に依存することなく正確に求めることができる。
The temperature deriving unit 22 outputs an output ratio between the output value corresponding to the temperature deriving wavelength region λ2 and the output value corresponding to the temperature deriving wavelength region λ1 in the infrared intensity measuring device 40 (corresponding to the infrared intensity ratio). ) And the temperature of the object N to be heated is determined from the stored relationship between the temperature and infrared intensity ratio.
Therefore, the temperature of the object to be heated N can be accurately obtained without depending on the emissivity of the object to be heated N.

前記温度導出部22にて求められた温度は、前記作動制御部23に出力され、この作動制御部23は、前記温度導出部22にて求められた温度に基づいて、前記燃料供給断続弁6、前記燃料供給量調節弁7等を制御することにより、被加熱物Nの自動温度制御、被加熱物Nの過昇温時の緊急消火制御等を行うように構成してある。   The temperature obtained by the temperature deriving unit 22 is output to the operation control unit 23, which operates the fuel supply intermittent valve 6 based on the temperature obtained by the temperature deriving unit 22. By controlling the fuel supply amount adjusting valve 7 and the like, automatic temperature control of the heated object N, emergency fire extinguishing control when the heated object N is overheated, and the like are performed.

前記自動温度制御及び緊急消火制御については、公知の各種制御を採用することが可能であるので、詳細な説明を省略して、一例を上げて簡単に説明する。
前記作動制御部23は、前記自動温度制御では、前記温度導出部22にて求められた被加熱物Nの温度が温度設定部(図示省略)等により設定された目標温度になるように、前記燃料供給量調節弁7の開度を調節することにより、前記バーナ30の火力を調節する。
前記作動制御部23は、前記緊急消火制御では、前記温度導出部22にて求められた被加熱物Nの温度が過昇温防止用のハイカット温度に達すると、前記燃料供給断続弁6を閉弁することにより、前記バーナ30を消火する。
As the automatic temperature control and the emergency fire extinguishing control, it is possible to employ various known controls, so that detailed description will be omitted and an example will be briefly described.
In the automatic temperature control, the operation control unit 23 is configured so that the temperature of the article N to be heated obtained by the temperature deriving unit 22 becomes a target temperature set by a temperature setting unit (not shown) or the like. The heating power of the burner 30 is adjusted by adjusting the opening of the fuel supply amount adjusting valve 7.
In the emergency fire extinguishing control, the operation control unit 23 closes the fuel supply intermittent valve 6 when the temperature of the heated object N obtained by the temperature deriving unit 22 reaches a high cut temperature for preventing excessive temperature rise. By turning off the valve, the burner 30 is extinguished.

次に、前記火炎検知部21による火炎Fの検知について説明を加える。
火炎検知部21は、赤外線強度測定装置40により測定される赤外線強度に基づいて火炎Fを検知するように構成されている。
即ち、赤外線強度測定装置40によりある一定以上の赤外線強度を測定したことを火炎Fが存在するとして検知するように構成されている。
Next, the detection of the flame F by the flame detector 21 will be described.
The flame detector 21 is configured to detect the flame F based on the infrared intensity measured by the infrared intensity measuring device 40.
In other words, the infrared intensity measuring device 40 is configured to detect that the flame F is present when the infrared intensity of a certain level or more is measured.

また、赤外線強度測定装置40は、上述した複数の温度導出用波長域のうちの少なくとも1つの赤外線強度として、バーナ30により形成される火炎Fからの放射強度が弱い火炎影響波長域についての赤外線強度を測定するように構成されている。
即ち、赤外線強度測定装置40は、被加熱物Nから放射された赤外線の波長範囲内において、火炎Fからの放射強度が弱い波長域、言い換えれば火炎Fからの放射により若干影響される波長域を、上記火炎影響波長域に設定し、その火炎影響波長域についての赤外線強度を測定する。
具体的には、例えば図3に示す火炎Fから放射される赤外線の放射強度スペクトル分布を参照して、上記火炎影響波長域は、火炎Fの影響が僅かにある例えば3.1μm以上且つ3.3μm以下の範囲内や4.0μm以上且つ4.2μm以下の範囲内等に設定することができ、本実施形態では、上記火炎影響波長域を3.1μmに設定している。
Further, the infrared intensity measuring device 40 uses, as the infrared intensity of at least one of the plurality of temperature deriving wavelength ranges described above, the infrared intensity for the flame-affected wavelength range where the radiation intensity from the flame F formed by the burner 30 is weak. Is configured to measure.
That is, the infrared intensity measuring device 40 has a wavelength range in which the radiation intensity from the flame F is weak within the wavelength range of the infrared radiation emitted from the article N to be heated, in other words, a wavelength range that is slightly affected by the radiation from the flame F. The above-mentioned flame influence wavelength range is set, and the infrared intensity of the flame influence wavelength range is measured.
Specifically, referring to the infrared intensity spectrum distribution of the infrared rays emitted from the flame F shown in FIG. 3, for example, the flame influence wavelength region is slightly affected by the flame F, for example, 3.1 μm or more and 3. It can be set within a range of 3 μm or less, or within a range of 4.0 μm or more and 4.2 μm or less, and in this embodiment, the flame influence wavelength range is set to 3.1 μm.

そして、上記火炎検知部21は、例えばバーナ30の点火時から一定時間経過するまでに、上記火炎影響波長域についての赤外線強度が一定以上上昇したことを、火炎Fが正しく形成されているものとして火炎Fを検知することができ、もし火炎Fが検知できなかった場合には、作動制御手段23は、点火不良が発生したとして、上述した緊急消火制御を実行して、燃料供給断続弁6を閉弁することにより、前記バーナ30を消火することができる。   Then, the flame detection unit 21 assumes that the flame F is correctly formed, for example, that the infrared intensity for the flame-affected wavelength range has risen above a certain level before a certain time has elapsed since the ignition of the burner 30. The flame F can be detected. If the flame F cannot be detected, the operation control means 23 performs the above-described emergency fire extinguishing control and determines that the fuel supply intermittent valve 6 The burner 30 can be extinguished by closing the valve.

〔第2実施形態〕
以下、本発明に係るコンロの第2実施形態について、図面に基づいて説明する。
第2実施形態のコンロは、上記第1実施形態のコンロと同様の構成については説明を割愛するが、赤外線強度測定装置40及び火炎検知部22の構成が、上記第1実施形態とは異なる。
[Second Embodiment]
Hereinafter, a stove according to a second embodiment of the present invention will be described with reference to the drawings.
The stove of the second embodiment omits the description of the same configuration as the stove of the first embodiment, but the configurations of the infrared intensity measuring device 40 and the flame detection unit 22 are different from those of the first embodiment.

即ち、第2実施形態の赤外線強度測定装置40は、複数の温度導出用波長域夫々についての赤外線強度とは別に、火炎Fから放射された赤外線の波長範囲内にある火炎検知用波長域についての赤外線強度を測定するように構成してある。
具体的には、図6に示すように、赤外線強度測定装置40は、上記第1実施形態と同様に、2つの温度導出用波長域夫々の赤外線を通過させる2個のバンドパスフィルタ41a,41bと、その2個のバンドパスフィルタ41a,41bを通過した赤外線の赤外線強度を各別に測定する2個の赤外線素子42a,42bを備え、それに加えて、上記火炎検知用波長域の赤外線を通過させるバンドパスフィルタ41cと、そのバンドパスフィルタ41cを通過した赤外線の強度を測定する赤外線素子42cを備える。
That is, the infrared intensity measuring device 40 of the second embodiment is different from the infrared intensity for each of the plurality of temperature deriving wavelength ranges, for the flame detection wavelength range within the wavelength range of the infrared rays emitted from the flame F. The infrared intensity is measured.
Specifically, as shown in FIG. 6, the infrared intensity measuring device 40 has two band-pass filters 41a and 41b that pass infrared rays in two temperature deriving wavelength ranges, as in the first embodiment. And two infrared elements 42a and 42b that individually measure the infrared intensity of the infrared rays that have passed through the two bandpass filters 41a and 41b, and in addition, allow the infrared rays in the flame detection wavelength range to pass. A band-pass filter 41c and an infrared element 42c for measuring the intensity of infrared light that has passed through the band-pass filter 41c are provided.

よって、火炎検知部21は、上記赤外線素子42cで測定した火炎検知用波長域についての赤外線強度がある一定以上である場合には、火炎Fが形成されているものとして検知することができる。
そして、作動制御手段23は、バーナ30の点火時から一定時間経過するまでに、又は、バーナ30の作動中に、上記火炎検知部21により火炎Fが検知できなかった場合には、点火不良や立ち消えが発生したとして、燃料供給断続弁6を閉弁することにより、前記バーナ30を消火することができる。
Therefore, the flame detection unit 21 can detect that the flame F is formed when the infrared intensity of the flame detection wavelength region measured by the infrared element 42c is greater than or equal to a certain value.
Then, the operation control means 23 determines that if the flame F is not detected by the flame detection unit 21 until a certain time has elapsed since the ignition of the burner 30 or during the operation of the burner 30, When the extinction has occurred, the burner 30 can be extinguished by closing the fuel supply intermittent valve 6.

また、上記火炎検知用波長域は、火炎Fから放射される赤外線の波長範囲内であればどの波長域でも構わないが、例えば図3に示すように、火炎Fの放射による影響が極めて高い4.2μmよりも大きく且つ8.0μmよりも小さい範囲内、更に好ましくは4.2μmよりも大きく且つ4.7μmよりも小さい範囲内に設定すれば、火炎検知部21において高精度に火炎Fを検知することができる。
また、上記バンドパスフィルタ41cを省略したり、このバンドパスフィルタ41cを全ての波長域の赤外線を通過させるものに変更するなどしても構わない。
Further, the wavelength range for flame detection may be any wavelength range within the wavelength range of infrared rays emitted from the flame F. For example, as shown in FIG. The flame detection unit 21 detects the flame F with high accuracy by setting it within a range larger than 0.2 μm and smaller than 8.0 μm, more preferably within a range larger than 4.2 μm and smaller than 4.7 μm. can do.
Further, the bandpass filter 41c may be omitted, or the bandpass filter 41c may be changed to one that allows infrared rays in all wavelength regions to pass.

〔第3実施形態〕
以下、本発明に係るコンロの第3実施形態について、図面に基づいて説明する。
第3実施形態のコンロは、上記第2実施形態のコンロと同様の構成については説明を割愛するが、赤外線強度測定装置40の構成が、上記第2実施形態とは異なる。
[Third Embodiment]
Hereinafter, a third embodiment of a stove according to the present invention will be described with reference to the drawings.
The stove of the third embodiment omits the description of the same configuration as the stove of the second embodiment, but the configuration of the infrared intensity measuring device 40 is different from the second embodiment.

即ち、第3実施形態の赤外線強度測定装置40は、赤外線強度を測定する単一の測定部としての単一の赤外線素子42と、その赤外線素子42に入射する赤外線の波長域を切り換える切換部47とで構成されている。   That is, the infrared intensity measuring device 40 of the third embodiment includes a single infrared element 42 as a single measuring unit that measures infrared intensity, and a switching unit 47 that switches the wavelength range of infrared rays incident on the infrared element 42. It consists of and.

具体的には、図7に示すように、赤外線強度測定装置40は、上記第2実施形態と同様に、2つの温度導出用波長域夫々の赤外線を通過させる2個のバンドパスフィルタ41a,41bと、上記火炎検知用波長域の赤外線を通過させるバンドパスフィルタ41cとを備えるのであるが、この3個のバンドパスフィルタ41a,41b,41cが、開口部44と赤外線素子42との間で左右に変位自在なようにパッケージング43に支持されたフィルタ配置板41に併設されている。
そして、切換部47が、このフィルタ配置板41を左右に摺動自在なアクチュエータで構成されており、このフィルタ配置板41を左右に変位させて、開口部44と赤外線素子42との間に夫々のバンドパスフィルタ41a,41b,41cを逐次位置させることで、赤外線素子42に入射される赤外線の波長域を切り換えることができる。
Specifically, as shown in FIG. 7, the infrared intensity measuring device 40 has two band-pass filters 41a and 41b that allow the infrared rays in the two temperature deriving wavelength ranges to pass through, as in the second embodiment. And a band-pass filter 41c that transmits infrared rays in the flame detection wavelength range. These three band-pass filters 41a, 41b, and 41c are arranged between the opening 44 and the infrared element 42 in the left and right directions. The filter arrangement plate 41 is supported by the packaging 43 so as to be freely displaceable.
The switching unit 47 is composed of an actuator that can slide the filter arrangement plate 41 to the left and right. The filter arrangement plate 41 is displaced to the left and right, so that the filter arrangement plate 41 is disposed between the opening 44 and the infrared element 42, respectively. By sequentially positioning the band-pass filters 41a, 41b, and 41c, the wavelength range of infrared rays incident on the infrared element 42 can be switched.

〔第4実施形態〕
以下、本発明に係るコンロの第4実施形態について、図面に基づいて説明する。
第4実施形態のコンロは、上記第3実施形態のコンロと同様に、赤外線強度測定装置40が、赤外線強度を測定する単一の測定部としての単一の赤外線素子42と、その赤外線素子42に入射する赤外線の波長域を切り換える切換部47とで構成されている。
具体的には、図8(a)及び(b)に示すように、上記フィルタ配置板41を円盤型に形成して、3個のバンドパスフィルタ41a,41b,41cをそのフィルタ配置板41の周方向に配置し、切換部47を、このフィルタ配置板41を回転自在なアクチュエータで構成することで、赤外線素子42に入射される赤外線の波長域を切り換えるように構成されている。
[Fourth Embodiment]
Hereinafter, a stove according to a fourth embodiment of the present invention will be described with reference to the drawings.
The stove according to the fourth embodiment is similar to the stove according to the third embodiment, in which the infrared intensity measuring device 40 has a single infrared element 42 as a single measuring unit for measuring the infrared intensity, and the infrared element 42. And a switching unit 47 for switching the wavelength range of the infrared rays incident on the.
Specifically, as shown in FIGS. 8A and 8B, the filter arrangement plate 41 is formed in a disk shape, and three band-pass filters 41a, 41b, 41c are formed on the filter arrangement plate 41. It arrange | positions in the circumferential direction, and it is comprised so that the switch part 47 may comprise the filter arrangement | positioning board 41 by a rotatable actuator, and the wavelength range of the infrared rays injected into the infrared element 42 is switched.

〔別実施形態〕
次に別実施形態を説明する。
(1) 上記の各実施形態において、バーナ30をブンゼン燃焼式の内炎式に構成したが、別に、図9に示すように、バーナ30を、ブンゼン燃焼式の外炎式に構成しても構わない。
つまり、バーナ30は、上記実施形態と同様のガスノズル31及び混合管32と、円周状の外周部に混合気を噴出する複数の炎口35を備えて、前記混合管32から混合気が供給される外炎用ケーシング部材36を天板1の上方に突出する形態で備えて構成してある。
[Another embodiment]
Next, another embodiment will be described.
(1) In each of the above embodiments, the burner 30 is configured as a Bunsen combustion type internal flame type. However, as shown in FIG. 9, the burner 30 may be configured as a Bunsen combustion type external flame type. I do not care.
That is, the burner 30 includes a gas nozzle 31 and a mixing tube 32 similar to those in the above-described embodiment, and a plurality of flame ports 35 for ejecting the air-fuel mixture to the circumferential outer periphery, and the air-fuel mixture is supplied from the mixing tube 32. The outer flame casing member 36 is provided so as to protrude above the top plate 1.

この外炎式のバーナ30においては、混合管32から外炎用ケーシング部材36内に供給された燃料ガスGと一次燃焼用空気Aとの混合気が炎口35から外炎用ケーシング部材36の径方向外方に向けて噴出され、その噴出された燃料ガスGと一次燃焼用空気Aとの混合気が燃焼して、火炎Fが形成される。   In the outer flame type burner 30, the mixture of the fuel gas G and the primary combustion air A supplied from the mixing pipe 32 into the outer flame casing member 36 is supplied from the flame port 35 to the outer flame casing member 36. The air-fuel mixture of the jetted fuel gas G and the primary combustion air A is burned outward in the radial direction, and a flame F is formed.

そして、このような外炎式のバーナ30に対しては、赤外線測定装置40を、天板1に形成された窓部50を介して、被加熱物Nや火炎Fから放射された赤外線が入射する形態で、天板1の下方に設けることができる。
尚、上記窓部50は、赤外線を透過する部材で封鎖されていても開口部であっても構わない。
Then, the infrared ray emitted from the object to be heated N or the flame F is incident on the infrared flame type burner 30 through the window portion 50 formed on the top plate 1. In such a form, it can be provided below the top plate 1.
The window 50 may be sealed with a member that transmits infrared rays or may be an opening.

(2) 上記の各実施形態においては、前記赤外線強度測定装置40を、被加熱物Nから放射される赤外線における互いに異なる2つの温度導出用波長域夫々についての赤外線強度を測定するように構成し、温度導出部22において、その測定した2つの温度導出用波長域夫々についての赤外線強度を用いて被加熱物Nの温度を求めるように構成したが、別に、赤外線強度測定装置40により単一又は3つ以上の温度導出用波長域についての赤外線強度を測定して、上記温度導出部22により、その単一又は3つ以上の赤外線強度を用いて被加熱物Nの温度を求めるように構成しても構わない。 (2) In each of the above embodiments, the infrared intensity measuring device 40 is configured to measure the infrared intensity in each of two different temperature derivation wavelength ranges in the infrared rays emitted from the heated object N. The temperature deriving unit 22 is configured to obtain the temperature of the object to be heated N by using the infrared intensity for each of the two temperature deriving wavelength ranges measured. Infrared intensity is measured for three or more temperature deriving wavelength ranges, and the temperature deriving unit 22 is used to determine the temperature of the object N to be heated using the single or three or more infrared intensity. It doesn't matter.

即ち、前記赤外線強度測定装置40を、被加熱物Nから放射される赤外線における互いに異なる複数の波長域夫々についての赤外線強度を測定するように構成する場合、前記温度導出部22による前記温度導出処理の具体的な構成は、上記の各実施形態において例示した構成、即ち、前記被加熱物の温度を前記2つの波長域夫々についての赤外線強度の比に基づいて求める構成に限定されるものではない。
例えば、予め、放射率の異なる複数の被加熱物Nを用いて、被加熱物Nの温度を複数の温度に異ならせて、複数の温度夫々について、前記複数の波長域夫々についての赤外線強度を得て、そのように得た前記複数の波長域夫々についての赤外線強度を、前記複数の温度夫々に対応させた状態でマップデータにして記憶させておく。
そして、前記マップデータから、前記赤外線強度測定装置40にて検出される前記複数の波長域夫々についての赤外線強度の関係に一致する又は類似する赤外線強度の関係を求めると共に、その求めた赤外線強度の関係に対応する温度を求め、その求めた温度を被加熱物の温度とするように構成する。
尚、これら被加熱物Nの温度導出のための構成を省略しても構わない。
That is, when the infrared intensity measuring device 40 is configured to measure the infrared intensity for each of a plurality of different wavelength ranges in the infrared ray radiated from the heated object N, the temperature deriving process by the temperature deriving unit 22. The specific configuration is not limited to the configuration illustrated in each of the above embodiments, that is, the configuration in which the temperature of the object to be heated is obtained based on the ratio of the infrared intensity for each of the two wavelength ranges. .
For example, by using a plurality of objects to be heated N having different emissivities in advance, the temperatures of the objects to be heated N are changed to a plurality of temperatures, and for each of the plurality of temperatures, the infrared intensity for each of the plurality of wavelength ranges is set. Thus, the infrared intensity for each of the plurality of wavelength ranges obtained in this way is stored as map data in a state corresponding to each of the plurality of temperatures.
Then, from the map data, an infrared intensity relationship that matches or is similar to the infrared intensity relationship for each of the plurality of wavelength ranges detected by the infrared intensity measuring device 40 is determined, and the determined infrared intensity A temperature corresponding to the relationship is obtained, and the obtained temperature is set as the temperature of the object to be heated.
In addition, you may abbreviate | omit the structure for temperature derivation | leading-out of these to-be-heated material N. FIG.

第1実施形態におけるコンロの概略構成図Schematic configuration diagram of a stove in the first embodiment 赤外線強度測定装置の縦断面図Longitudinal section of infrared intensity measuring device 火炎から放射される赤外線の放射強度スペクトル分布を示す図Figure showing the infrared radiation intensity spectrum distribution emitted from the flame 被加熱物の温度と赤外線強度測定装置の出力との関係を示す図A diagram showing the relationship between the temperature of the object to be heated and the output of the infrared intensity measuring device 被加熱物の温度と赤外線強度測定装置の出力比との関係を示す図The figure which shows the relationship between the temperature of the object to be heated and the output ratio of the infrared intensity measuring device 第2実施形態における赤外線強度測定装置の縦断面図Longitudinal sectional view of the infrared intensity measuring device in the second embodiment 第3実施形態における赤外線強度測定装置の縦断面図Longitudinal sectional view of the infrared intensity measuring device in the third embodiment 第4実施形態における赤外線強度測定装置の縦断面図(a)及びフィルタ配置板の平面図(b)Longitudinal sectional view (a) of infrared intensity measuring device according to the fourth embodiment and plan view (b) of filter arrangement plate 別実施形態におけるコンロの概略構成図Schematic configuration diagram of a stove in another embodiment

符号の説明Explanation of symbols

21:火炎検知部(火炎検知手段)
22:温度導出部(温度導出手段)
30:バーナ
40:赤外線強度測定装置(赤外線強度測定手段)
42,42a,42b,42c:赤外線素子(測定部)
47:切換部
21: Flame detection unit (flame detection means)
22: Temperature deriving unit (temperature deriving means)
30: Burner 40: Infrared intensity measuring device (infrared intensity measuring means)
42, 42a, 42b, 42c: Infrared element (measurement unit)
47: Switching unit

Claims (5)

被加熱物を加熱するバーナと、前記バーナにより形成される火炎を検知する火炎検知手段とを備えたコンロであって、
前記バーナが形成する火炎から放射された赤外線の赤外線強度を測定する赤外線強度測定手段を備え、
前記火炎検知手段が、前記赤外線強度測定手段により測定される赤外線強度に基づいて前記火炎を検知するように構成されているコンロ。
A stove comprising a burner for heating an object to be heated, and a flame detection means for detecting a flame formed by the burner,
Infrared intensity measuring means for measuring the infrared intensity of infrared rays emitted from the flame formed by the burner,
A stove configured such that the flame detection means detects the flame based on the infrared intensity measured by the infrared intensity measurement means.
前記赤外線強度測定手段が、前記被加熱物から放射された赤外線の波長範囲内にある互いに異なる複数の温度導出用波長域夫々についての赤外線強度を測定するように構成され、
前記赤外線強度測定手段により測定される前記複数の温度導出用波長域夫々についての赤外線強度の関係に基づいて、前記被加熱物の温度を求める温度導出手段を備えた請求項1に記載のコンロ。
The infrared intensity measuring means is configured to measure the infrared intensity for each of a plurality of different temperature deriving wavelength ranges within the wavelength range of infrared rays emitted from the object to be heated;
2. The stove according to claim 1, further comprising a temperature deriving unit that obtains the temperature of the object to be heated based on an infrared intensity relationship for each of the plurality of temperature deriving wavelength ranges measured by the infrared intensity measuring unit.
前記赤外線強度測定手段が、少なくとも1つの前記温度導出用波長域についての赤外線強度として、前記火炎からの放射強度が弱い火炎影響波長域についての赤外線強度を測定し、
前記火炎検知手段が、前記火炎影響波長域についての赤外線強度に基づいて、前記火炎を検知するように構成されている請求項2に記載のコンロ。
The infrared intensity measuring means measures the infrared intensity for the flame influence wavelength range where the radiation intensity from the flame is weak, as the infrared intensity for the at least one temperature deriving wavelength range,
The stove according to claim 2, wherein the flame detection means is configured to detect the flame based on an infrared intensity for the flame influence wavelength region.
前記赤外線強度測定手段が、前記複数の温度導出用波長域夫々についての赤外線強度とは別に、前記火炎から放射された赤外線の波長範囲内にある火炎検知用波長域についての赤外線強度を測定し、
前記火炎検知手段が、前記火炎検知用波長域についての赤外線強度に基づいて、前記火炎を検知するように構成されている請求項2に記載のコンロ。
The infrared intensity measuring means measures the infrared intensity for the flame detection wavelength range within the wavelength range of infrared rays emitted from the flame, separately from the infrared intensity for each of the plurality of temperature derivation wavelength ranges,
The stove according to claim 2, wherein the flame detection means is configured to detect the flame based on an infrared intensity for the flame detection wavelength region.
前記赤外線強度測定手段が、赤外線強度を測定する単一の測定部と、前記測定部に入射する赤外線の波長域を切り換える切換部とで構成されている請求項2〜4の何れか一項に記載のコンロ。   The said infrared intensity measurement means is comprised by the single measurement part which measures infrared intensity, and the switching part which switches the wavelength range of the infrared rays which inject into the said measurement part. The stove described.
JP2005093561A 2005-03-29 2005-03-29 Stove Expired - Fee Related JP4530894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005093561A JP4530894B2 (en) 2005-03-29 2005-03-29 Stove

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005093561A JP4530894B2 (en) 2005-03-29 2005-03-29 Stove

Publications (2)

Publication Number Publication Date
JP2006275364A true JP2006275364A (en) 2006-10-12
JP4530894B2 JP4530894B2 (en) 2010-08-25

Family

ID=37210310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005093561A Expired - Fee Related JP4530894B2 (en) 2005-03-29 2005-03-29 Stove

Country Status (1)

Country Link
JP (1) JP4530894B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008286471A (en) * 2007-05-17 2008-11-27 Osaka Gas Co Ltd Heating cooker
JP2012149885A (en) * 2012-05-14 2012-08-09 Osaka Gas Co Ltd Heating cooker
JP2017106681A (en) * 2015-12-10 2017-06-15 大阪瓦斯株式会社 Burner for cooking stove, and cooking stove provided with the same
JP2017106682A (en) * 2015-12-10 2017-06-15 大阪瓦斯株式会社 Burner for cooking stove, and cooking stove provided with the same
JP2017106680A (en) * 2015-12-10 2017-06-15 大阪瓦斯株式会社 Burner for cooking stove, and cooking stove provided with the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6096830A (en) * 1983-10-31 1985-05-30 Osaka Gas Co Ltd Combustion detector
JPS60105950U (en) * 1983-12-22 1985-07-19 日本電気株式会社 Gas stove with gas leak prevention
JP2002340339A (en) * 2001-03-16 2002-11-27 Osaka Gas Co Ltd Cooking stove

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6096830A (en) * 1983-10-31 1985-05-30 Osaka Gas Co Ltd Combustion detector
JPS60105950U (en) * 1983-12-22 1985-07-19 日本電気株式会社 Gas stove with gas leak prevention
JP2002340339A (en) * 2001-03-16 2002-11-27 Osaka Gas Co Ltd Cooking stove

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008286471A (en) * 2007-05-17 2008-11-27 Osaka Gas Co Ltd Heating cooker
JP2012149885A (en) * 2012-05-14 2012-08-09 Osaka Gas Co Ltd Heating cooker
JP2017106681A (en) * 2015-12-10 2017-06-15 大阪瓦斯株式会社 Burner for cooking stove, and cooking stove provided with the same
JP2017106682A (en) * 2015-12-10 2017-06-15 大阪瓦斯株式会社 Burner for cooking stove, and cooking stove provided with the same
JP2017106680A (en) * 2015-12-10 2017-06-15 大阪瓦斯株式会社 Burner for cooking stove, and cooking stove provided with the same

Also Published As

Publication number Publication date
JP4530894B2 (en) 2010-08-25

Similar Documents

Publication Publication Date Title
JP4422943B2 (en) Stove
JP6933334B2 (en) Sensor device and gas stove
JP5138257B2 (en) Infrared intensity detector for cooking appliances
JP4530894B2 (en) Stove
JP2007057226A (en) Gas cookstove with temperature sensor
JP4557736B2 (en) Stove
JP4557741B2 (en) Stove
JP5684625B2 (en) Stove
JP4557732B2 (en) Stove
JP5875921B2 (en) Stove
JP6037854B2 (en) Stove, operating method of stove, estimation method of heating container material used on stove, and estimation method of heating container material
JP5149538B2 (en) Cooker
JP5711012B2 (en) Combustion heating device
JP2006275466A (en) Composite sensor and combustion device
JP5002036B2 (en) Stove
JP4557737B2 (en) Stove
JP4628118B2 (en) Stove
JP4989273B2 (en) Cooker
JP4557733B2 (en) Stove
JPS5939647B2 (en) Combustion safety device
JP5351995B2 (en) Cooker
KR102132476B1 (en) Cooking appliance
JP6840355B2 (en) Stove
KR101623633B1 (en) Cooking appliance
JP2019184083A (en) Heating cooker

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100608

R150 Certificate of patent or registration of utility model

Ref document number: 4530894

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees