JP2017106680A - Burner for cooking stove, and cooking stove provided with the same - Google Patents

Burner for cooking stove, and cooking stove provided with the same Download PDF

Info

Publication number
JP2017106680A
JP2017106680A JP2015241526A JP2015241526A JP2017106680A JP 2017106680 A JP2017106680 A JP 2017106680A JP 2015241526 A JP2015241526 A JP 2015241526A JP 2015241526 A JP2015241526 A JP 2015241526A JP 2017106680 A JP2017106680 A JP 2017106680A
Authority
JP
Japan
Prior art keywords
burner
infrared
annular
passage hole
stove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015241526A
Other languages
Japanese (ja)
Other versions
JP6523154B2 (en
Inventor
俊介 染澤
Shunsuke Somezawa
俊介 染澤
章 宮藤
Akira Miyato
章 宮藤
康平 田上
Kohei Tagami
康平 田上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2015241526A priority Critical patent/JP6523154B2/en
Publication of JP2017106680A publication Critical patent/JP2017106680A/en
Application granted granted Critical
Publication of JP6523154B2 publication Critical patent/JP6523154B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a burner for a cooking stove capable of suppressing the adhesion of the boiling over of an object to be heated to an infrared intensity detection means and appropriately detecting the infrared intensity by the infrared intensity detection means to satisfactorily execute temperature derivation, and to provide a cooking stove provided with the burner.SOLUTION: An infrared intensity detection means 60 is provided in one side region S3 which is a region on one side divided by a straight line L passing through a ring center O of an annular peripheral part 80a of a burner head 80, in plan view, and an infrared ray passage hole 12, which directs the infrared ray radiated from the object to be heated to the infrared ray intensity detection means 60 and passes through the burner head 80, is provided in the other side region S4 which is the other side region.SELECTED DRAWING: Figure 5

Description

本発明は、バーナ本体と、当該バーナ本体に上方から着脱自在に載置されたバーナヘッドとを有し、前記バーナヘッドの平面視での環状周部から環径方向で外側へ向けて放射状に火炎を形成する放射状噴孔を有する環状バーナが備えられ、被加熱物から放射された赤外線の赤外線強度を検出する赤外線強度検出手段が、前記環状バーナより下方に備えられ、前記赤外線強度検出手段により検出された前記赤外線強度に基づいて前記被加熱物の温度を導出する温度導出手段が備えられたコンロ用バーナ、及びそれを備えたコンロに関する。   The present invention has a burner body and a burner head that is detachably mounted on the burner body from above, and is radially outward from an annular peripheral portion in a plan view of the burner head. An annular burner having a radial nozzle hole for forming a flame is provided, and an infrared intensity detecting means for detecting infrared intensity of infrared rays emitted from an object to be heated is provided below the annular burner, and the infrared intensity detecting means The present invention relates to a stove burner provided with temperature deriving means for deriving the temperature of the object to be heated based on the detected infrared intensity, and a stove equipped with the burner.

従来、調理用コンロとして、被加熱物としての鍋の底部の温度を検出する温度検出手段として、サーミスタや熱電対等の接触式温度センサを備え、当該接触式温度センサでの検出温度に基づいて、コンロ用バーナの火力調整を行う制御部が備えたものが知られている。当該調理用コンロにあっては、てんぷら火災等の防止や、調理の利便性を向上させるべく、制御部がコンロ用バーナの火力を適切に調整する。
しかしながら、温度検出手段としての接触式温度センサは、接触不良を起こす場合があり、鍋の底部の温度を適切に測定することができない虞があった。また、接触式温度センサは、鍋の底部に接触する必要があるから、天板から上方へ突出した構成を採用せざるを得ず、コンロの美観を損ねていた。
そこで、特許文献1に記載のように、赤外線の強度を検出する赤外線センサから成る非接触式温度検出装置を備えたコンロが提案されている。通常、非接触式温度検出装置にて被加熱物としての鍋の底部の温度を検出する場合、非接触式温度検出装置をコンロ用バーナの平面視で略中央部位に対し鉛直方向で下方に備える構成を採用することが多いが、当該構成にあっては、非接触式温度検出装置に対し、被加熱物からの吹きこぼれが、付着し易いという問題がある。
そこで、上記特許文献1においては、その図4の実施形態に示されるように、非接触式温度検出装置に吹きこぼれが付着することを防止するべく、平面視で、非接触式温度検出装置をコンロ用バーナの平面視での略中央部位からずらした位置に配設すると共に、被加熱物の底面からの赤外線を非接触式温度検出装置へ向けて通過する赤外線通過孔を有するコンロ用バーナを備える構成が提案されている。
Conventionally, as a cooking stove, as a temperature detection means for detecting the temperature of the bottom of a pan as an object to be heated, a contact temperature sensor such as a thermistor or a thermocouple is provided, and based on the temperature detected by the contact temperature sensor, What is equipped with the control part which adjusts the thermal power of the burner for stoves is known. In the cooking stove, the control unit appropriately adjusts the heating power of the stove burner in order to prevent a tempura fire or the like and improve the convenience of cooking.
However, the contact-type temperature sensor as the temperature detecting means may cause poor contact, and there is a possibility that the temperature of the bottom of the pan cannot be measured appropriately. Moreover, since the contact-type temperature sensor needs to contact the bottom part of a pan, it had to employ the structure which protruded upwards from the top plate, and had impaired the aesthetics of the stove.
Therefore, as described in Patent Document 1, there has been proposed a stove including a non-contact temperature detection device including an infrared sensor that detects infrared intensity. Usually, when detecting the temperature of the bottom of the pan as the object to be heated by the non-contact type temperature detection device, the non-contact type temperature detection device is provided below in the vertical direction with respect to the substantially central portion in a plan view of the stove burner. In many cases, the configuration is adopted. However, in this configuration, there is a problem that spillage from an object to be heated easily adheres to the non-contact temperature detection device.
Therefore, in the above-mentioned Patent Document 1, as shown in the embodiment of FIG. 4, the non-contact type temperature detection device is connected to the non-contact type temperature detection device in a plan view in order to prevent spillage from adhering to the non-contact type temperature detection device. And a stove burner which is disposed at a position shifted from a substantially central portion in plan view of the burner and has an infrared passage hole through which infrared rays from the bottom surface of the object to be heated pass toward the non-contact temperature detecting device. A configuration is proposed.

特許4422943号公報Japanese Patent No. 4422943

上記特許文献1の図4に示される実施形態にあっては、コンロ用バーナのどの部位に対し、どのように赤外線通過孔が設けられているか示されておらず、また、非接触式温度検出装置が、コンロ用バーナ及び赤外線通過孔に対し、どのように設けられているかについて、具体的な開示がなかった。
このため、上記特許文献1の図4に示される実施形態にあっては、赤外線通過孔及び非接触式温度検出装置の配置の仕方によっては、赤外線通過孔を通過した被加熱物からの吹きこぼれが、非接触式温度検出装置へ到達して付着し、適切な温度検出ができなくなる虞があった。
In the embodiment shown in FIG. 4 of the above-mentioned Patent Document 1, it is not shown how an infrared passage hole is provided for which part of the stove burner, and non-contact temperature detection There was no specific disclosure as to how the apparatus is provided for the stove burner and the infrared passage hole.
For this reason, in the embodiment shown in FIG. 4 of the above-mentioned Patent Document 1, depending on the arrangement of the infrared passage hole and the non-contact temperature detection device, spillage from the heated object that has passed through the infrared passage hole may occur. There is a possibility that the non-contact type temperature detecting device will reach and adhere to the device, making it impossible to detect an appropriate temperature.

本発明は、上述の課題に鑑みてなされたものであり、その目的は、被加熱物の吹きこぼれが赤外線強度検出手段に付着することを抑制し、赤外線強度検出手段にて適切に赤外線強度を検出して、温度導出を良好に実行できるコンロ用バーナ、及びそれを備えたコンロを提供する点にある。   The present invention has been made in view of the above-described problems, and the object thereof is to suppress the spill of the object to be heated from adhering to the infrared intensity detecting means, and to detect the infrared intensity appropriately by the infrared intensity detecting means. Thus, the present invention is to provide a stove burner capable of satisfactorily performing temperature derivation and a stove equipped with the burner.

上記目的を達成するためのコンロ用バーナは、
バーナ本体と、当該バーナ本体に上方から着脱自在に載置されたバーナヘッドとを有し、前記バーナヘッドの平面視での環状周部から環径方向で外側へ向けて放射状に火炎を形成する放射状噴孔を有する環状バーナが備えられ、
加熱対象の被加熱物から放射された赤外線の赤外線強度を検出する赤外線強度検出手段が、前記環状バーナの前記放射状噴孔より下方に備えられ、
前記赤外線強度検出手段により検出された前記赤外線強度に基づいて前記被加熱物の温度を導出する温度導出手段が備えられたコンロ用バーナであって、その特徴構成は、
平面視において、前記バーナヘッドの前記環状周部の環中心を通る直線で分けた一方側の領域である一方側領域に、前記赤外線強度検出手段が備えられる共に、他方側の領域である他方側領域に、前記被加熱物から放射された赤外線を前記赤外線強度検出手段へ向けて前記バーナヘッドを通過させる赤外線通過孔が備えられる点にある。
The stove burner to achieve the above objective is
It has a burner body and a burner head that is detachably mounted on the burner body from above, and forms a flame radially outward from the annular peripheral portion in plan view of the burner head. An annular burner having radial nozzle holes is provided,
Infrared intensity detection means for detecting infrared intensity of infrared rays radiated from an object to be heated is provided below the radial nozzle holes of the annular burner,
A stove burner provided with a temperature deriving unit for deriving the temperature of the object to be heated based on the infrared intensity detected by the infrared intensity detecting unit,
In plan view, the one side region, which is one region divided by a straight line passing through the ring center of the annular peripheral portion of the burner head, is provided with the infrared intensity detecting means and the other side is the other region. The region is provided with an infrared passage hole through which the burner head passes the infrared ray radiated from the heated object toward the infrared intensity detecting means.

上記特徴構成によれば、バーナとしては、バーナヘッドを有する環状バーナを採用しており、当該バーナヘッドには赤外線通過孔が設けられているのみであるから、環状バーナの内部への吹きこぼれの進入経路は、赤外線通過孔からのみとなり、吹きこぼれの環状バーナ内部への進入を十分に抑制できる。
更に、上記環状バーナにあっては、平面視において、バーナヘッドの環状周部の環中心を通る直線で分けた一方側の領域である一方側領域に、赤外線強度検出手段が備えられる共に、他方側の領域である他方側領域に、被加熱物から放射された赤外線を赤外線強度検出手段へ向けてバーナヘッドを通過させる赤外線通過孔が備えられる構成を採用しているから、赤外線通過孔と赤外線強度検出手段とを鉛直方向に沿わせるように設ける構成に比べて、赤外線通過孔から環状バーナの内部に流入した吹きこぼれが、赤外線強度検出手段へ導かれることを抑制できる。
更に、例えば、バーナヘッドとして、その天面部が環中心を頂部として上方へ膨出した膨出形状を有するものを採用することで、赤外線通過孔から吹きこぼれが環状バーナの内部に進入することがあったとしても、当該吹きこぼれは、バーナヘッドの上方への膨出形状とされた天面部の内面を伝って移動するから、吹きこぼれのほとんどが、赤外線通過孔が設けられる他方側領域を伝って下方へ移動することとなり、一方側領域に設けられる赤外線強度検出手段へ伝わることを良好に防止できる。これにより、吹きこぼれにより赤外線強度検出手段が汚れることを防止でき、当該赤外線強度検出手段による赤外線の強度の良好な検出を維持できる。
According to the above characteristic configuration, as the burner, an annular burner having a burner head is adopted, and the burner head is only provided with an infrared passage hole, so that the spillage into the inside of the annular burner is entered. The path is only from the infrared passage hole, and can sufficiently prevent the spillage from entering the annular burner.
Further, in the annular burner, the infrared intensity detecting means is provided in one side region which is one side region divided by a straight line passing through the ring center of the annular peripheral portion of the burner head in plan view, Since the other side region, which is the side region, is equipped with an infrared passage hole that allows the infrared light emitted from the object to be heated to pass through the burner head toward the infrared intensity detection means, the infrared passage hole and the infrared ray Compared with a configuration in which the intensity detection unit is provided so as to be along the vertical direction, it is possible to suppress the spillage flowing into the annular burner from the infrared passage hole from being guided to the infrared intensity detection unit.
Furthermore, for example, by adopting a burner head having a bulging shape with its top surface bulging upward with the center of the ring at the top, blowout may enter the inside of the annular burner from the infrared passage hole. Even so, since the spillage moves along the inner surface of the top surface portion bulged upward of the burner head, most of the spillage travels down the other side region where the infrared passage hole is provided. Therefore, it is possible to satisfactorily prevent transmission to the infrared intensity detecting means provided in the one side region. Thereby, it is possible to prevent the infrared intensity detecting means from being soiled by spilling, and it is possible to maintain good detection of the intensity of infrared rays by the infrared intensity detecting means.

コンロ用バーナの更なる特徴構成は、
前記赤外線強度検出手段と前記赤外線通過孔とが、平面視において、前記バーナヘッドの前記環中心を挟んで対向する状態で備えられている点にある。
Further features of the stove burner
The infrared intensity detecting means and the infrared passage hole are provided in a state of facing each other across the ring center of the burner head in plan view.

上記特徴構成によれば、赤外線強度検出手段と赤外線通過孔とが、平面視において、バーナヘッドの環中心を挟んで対向する状態で備えられているから、例えば、バーナヘッドとして、その天面部が環中心を頂部として上方へ膨出した膨出形状を有するものを採用することで、赤外線通過孔から吹きこぼれが環状バーナの内部に進入することがあったとしても、当該吹きこぼれは、バーナヘッドの上方への膨出形状とされた天面部の内面を伝って移動するから、吹きこぼれのほとんどが、赤外線通過孔が設けられる他方側領域を伝って下方へ移動することとなり、一方側領域に設けられる赤外線強度検出手段へ伝わることを良好に防止できる。これにより、吹きこぼれにより赤外線強度検出手段が汚れることを防止でき、当該赤外線強度検出手段による赤外線の強度の良好な検出を維持できる。   According to the above characteristic configuration, the infrared intensity detection means and the infrared passage hole are provided in a state of facing each other across the ring center of the burner head in plan view. By adopting a bulging shape that bulges upward from the center of the ring, even if spillage may enter the inside of the annular burner from the infrared passage hole, the spillage is Since most of the spills move down the other side region where the infrared passage hole is provided, the infrared ray provided in the one side region. Propagation to the intensity detecting means can be prevented well. Thereby, it is possible to prevent the infrared intensity detecting means from being soiled by spilling, and it is possible to maintain good detection of the intensity of infrared rays by the infrared intensity detecting means.

コンロ用バーナの更なる特徴構成は、
前記環状バーナが、燃料ガスと燃焼用空気とを混合する混合管を備えたブンゼンバーナであり、
前記赤外線強度検出手段と前記赤外線通過孔とが、平面視において、前記赤外線通過孔を通過して前記赤外線強度検出手段へ向けて放射される赤外線の通過領域が前記混合管の管軸心に重なる状態で、且つ前記赤外線強度検出手段と前記混合管とが前記バーナヘッドの前記環中心を挟んで対向する状態で備えられている点にある。
Further features of the stove burner
The annular burner is a Bunsen burner provided with a mixing tube for mixing fuel gas and combustion air;
The infrared intensity detection means and the infrared passage hole, when seen in a plan view, pass through the infrared passage hole and radiate toward the infrared intensity detection means. The infrared passage area overlaps the tube axis of the mixing tube. The infrared intensity detecting means and the mixing tube are provided in a state where they face each other across the ring center of the burner head.

通常、ブンゼンバーナにあっては、混合管が設けられている領域にあっては、他の構成部品を設置するスペースを十分に確保できないため、当該領域に他の構成部品を設置する設計の自由度が下がるという問題がある。
上記特徴構成によれば、赤外線強度検出手段と赤外線通過孔とを、平面視において、赤外線通過孔を通過して赤外線強度検出手段へ向けて放射される赤外線の通過領域が混合管の管軸心に重なる状態で、且つ赤外線強度検出手段と混合管とがバーナヘッドの環中心を挟んで対向する状態で備えるから、赤外線強度検出手段を混合管から十分に離間した位置に設置することができ、例えば、当該赤外線強度検出手段の受光部位の設置方向等に関する設計の自由度を上げることができる。
また、上記特徴構成によれば、赤外線通過孔を通過した赤外線の通過領域が混合管に被ることを好適に防止でき、赤外線強度検出手段へ到達する赤外線量を十分に確保できる。
Normally, in the Bunsen burner, there is not enough space to install other components in the area where the mixing tube is provided, so the freedom of design to install other components in that area is not possible. There is a problem that the degree goes down.
According to the above characteristic configuration, in the plan view of the infrared intensity detection means and the infrared passage hole, the infrared passage area radiated toward the infrared intensity detection means through the infrared passage hole is the tube axis of the mixing tube. And the infrared intensity detecting means and the mixing tube are provided in a state facing each other across the center of the ring of the burner head, so that the infrared intensity detecting means can be installed at a position sufficiently separated from the mixing tube, For example, it is possible to increase the degree of design freedom regarding the installation direction of the light receiving portion of the infrared intensity detecting means.
Moreover, according to the said characteristic structure, it can prevent suitably that the infrared rays passage area | region which passed the infrared passage hole covers a mixing tube, and can fully ensure the amount of infrared rays which reaches | attains an infrared intensity detection means.

コンロ用バーナの更なる特徴構成は、
前記赤外線通過孔は、平面視において、前記バーナヘッドの前記環状周部と前記環中心との間で前記環状周部に近い領域に設けられている点にある。
Further features of the stove burner
The infrared passage hole is provided in a region close to the annular peripheral portion between the annular peripheral portion of the burner head and the ring center in plan view.

上記特徴構成によれば、平面視において、赤外線通過孔がバーナヘッドの環状周部と環中心との間で環状周部に近い領域に設けられている構成で、バーナヘッドの環状周部と環中心との間で環状周部に近い領域に設けているから、赤外線強度検出手段と赤外線通過孔とをより一層離間させることができ、赤外線通過孔からバーナ内部へ進入した吹きこぼれが赤外線強度検出手段の側へ伝わることをより一層良好に防止できる。   According to the above characteristic configuration, in plan view, the infrared passage hole is provided in a region close to the annular peripheral portion between the annular peripheral portion of the burner head and the ring center, and the annular peripheral portion and the ring of the burner head. Since it is provided in a region close to the annular periphery with the center, the infrared intensity detection means and the infrared passage hole can be further separated from each other, and the blowout spilled into the burner from the infrared passage hole is detected by the infrared intensity detection means. It is possible to better prevent the transmission to the side of the.

コンロ用バーナの更なる特徴構成は、
前記バーナヘッドは、前記環状周部の前記環中心が上方へ膨出する膨出形状の膨出頂部を有しており、
前記赤外線通過孔は、前記バーナヘッドの前記膨出頂部から偏心した位置に設けられている点にある。
Further features of the stove burner
The burner head has a bulging top portion of a bulging shape in which the ring center of the annular peripheral portion bulges upward,
The infrared passage hole is provided at a position eccentric from the bulging top of the burner head.

上記特徴構成によれば、バーナヘッドとして、環状周部の環中心が上方へ膨出する膨出形状の膨出頂部を有するものを採用すると共に、赤外線通過孔を、バーナヘッドの膨出頂部から偏心した位置に設けるから、例え、赤外線通過孔から吹きこぼれが流入したとしても、当該吹きこぼれは、膨出頂部と環状周部とを結ぶ直線のうち、赤外線通過孔を通る直線に沿って伝わるから、吹きこぼれを他方側領域内に留めることができ、更には、一方側領域に設けられる赤外線強度検出手段から離間する方向へ導くことができる。これにより、赤外線強度検出手段への吹きこぼれの付着をより一層良好に防止できる。   According to the above characteristic configuration, a burner head having a bulge-shaped bulging top portion in which the ring center of the annular peripheral portion bulges upward is adopted, and the infrared passage hole is formed from the bulging top portion of the burner head. Because it is provided at an eccentric position, even if a spilled inflow from the infrared passage hole, the spillage travels along a straight line passing through the infrared passage hole among the straight lines connecting the bulging top and the annular peripheral part. The blow-out can be kept in the other side region, and further, can be guided away from the infrared intensity detecting means provided in the one side region. As a result, it is possible to further prevent the spillage from adhering to the infrared intensity detecting means.

コンロ用バーナの更なる特徴構成は、
前記環状バーナは、燃料ガス及び燃焼用空気の混合気を前記放射状噴孔へ導く平面視で環状の環状混合気流路を有し、
前記バーナヘッドは、天面部を有すると共に、当該天面部から下方へ延びる円筒形状の円筒脚部を有するキャップ部を含み、
前記バーナヘッドが前記バーナ本体に載置された状態で、前記キャップ部の前記円筒脚部が、前記環状混合気流路と前記環状バーナの中央に形成される中央空洞とを隔離する隔離壁として配置され、
前記赤外線通過孔は、前記中央空洞と前記環状バーナの外部とを連通する状態で前記キャップ部の前記天面部に設けられている点にある。
Further features of the stove burner
The annular burner has an annular air-fuel mixture channel that is annular in a plan view that guides an air-fuel mixture of fuel gas and combustion air to the radial nozzle holes,
The burner head includes a cap portion having a top surface portion and a cylindrical cylindrical leg portion extending downward from the top surface portion,
In a state where the burner head is placed on the burner body, the cylindrical leg portion of the cap portion is disposed as an isolation wall that separates the annular air-fuel mixture channel and a central cavity formed at the center of the annular burner. And
The infrared passage hole is provided in the top surface portion of the cap portion in a state where the central cavity communicates with the outside of the annular burner.

上記特徴構成によれば、赤外線通過孔から流入することがある吹きこぼれは、中央空洞を形成する隔離壁を伝わる状態で下方へ流下するように構成できる。   According to the above characteristic configuration, the spillage that may flow in from the infrared passage hole can be configured to flow downward while being transmitted through the isolation wall that forms the central cavity.

これまで説明してきたコンロ用バーナを備えたコンロは、これまで説明してきた作用効果を好適に奏するコンロとして、良好に機能する。   The stove provided with the stove burner described so far functions well as a stove that suitably exhibits the effects described so far.

コンロ用バーナの全体斜視図Whole perspective view of stove burner コンロ用バーナの分解斜視図Disassembled perspective view of stove burner コンロ用バーナの分解断面図Exploded sectional view of the burner コンロ用バーナの組付断面図Cross section of stove burner assembly コンロ用バーナの平面図Top view of stove burner 斜め前方下側からの斜視でのコンロ用バーナの図Figure of stove burner in perspective from diagonally lower front コンロに備えられたコンロ用バーナを示す図The figure which shows the burner for the stove with which the stove was equipped コンロ用バーナを備えたコンロの斜視図Perspective view of stove with stove burner

本発明の実施形態に係るコンロ用バーナ、及び当該コンロ用バーナを備えたコンロ200について、図面に基づいて説明する。尚、当該実施形態においては、矢印Zの矢示方向を上方側とし、矢印Zの矢示方向と逆方向を下方側とする。
図7、8に示すコンロ200は、平面状の上面を有すると共に加熱口を有する天板50と、加熱口の上方に離間させた状態で被加熱物Hを載置可能な五徳51と、燃料ガスGと一次燃焼用空気Aとの混合気Mを燃焼させ加熱口から上方へ混合気Mを噴出して被加熱物Hを加熱するコンロ用バーナとを備えている。
尚、被加熱物Hとしては、ガラス、鉄、アルマイト、及びステンレス等の一般的な材質の鍋等が好適に用いられる。
A stove burner according to an embodiment of the present invention and a stove 200 including the stove burner will be described with reference to the drawings. In this embodiment, the direction indicated by the arrow Z is the upper side, and the direction opposite to the direction indicated by the arrow Z is the lower side.
The stove 200 shown in FIGS. 7 and 8 includes a top plate 50 having a flat upper surface and a heating port, five virtues 51 on which the object to be heated H can be placed in a state of being separated above the heating port, fuel A stove burner that burns the air-fuel mixture M of the gas G and the primary combustion air A, jets the air-fuel mixture M upward from the heating port, and heats the article to be heated H is provided.
In addition, as a to-be-heated material H, the pan etc. of common materials, such as glass, iron, anodized, and stainless steel, are used suitably.

コンロ用バーナは、図1〜7に示すように、ブンゼン燃焼式の外炎式バーナであり、バーナ本体70と、当該バーナ本体70に上方から着脱自在に載置されたバーナヘッド80とを有し、当該バーナヘッド80の平面視での環状周部80aから環径方向で外側へ向けて放射状に主火炎K1を形成する主火炎用噴孔81(放射状噴孔の一例)と、主火炎K1を保炎する袖火K2を形成する袖火用噴孔82(放射状噴孔の一例)とを有する環状バーナ100を備えて構成されている。
当該環状バーナ100のバーナ本体70は、図2、3、4に示すように、内部に燃料ガスGと一次燃焼用空気Aとを混合する混合管65を形成するように構成されている。当該混合管65には、燃料ガスGを噴出させるガスノズル64が設けられており、ガスノズル64から噴出する燃料ガスGと共に一次燃焼用空気Aが流入して、混合管65の内部にて混合気Mが形成される。
1 to 7, the stove burner is a Bunsen combustion type external flame type burner having a burner body 70 and a burner head 80 that is detachably mounted on the burner body 70 from above. A main flame nozzle 81 (an example of a radial nozzle hole) that radially forms the main flame K1 radially outward from the annular peripheral portion 80a in plan view of the burner head 80, and the main flame K1 And an annular burner 100 having a sleeve-fire nozzle hole 82 (an example of a radial nozzle hole) that forms a sleeve-fire K2 that holds the flame.
As shown in FIGS. 2, 3, and 4, the burner body 70 of the annular burner 100 is configured to form a mixing pipe 65 that mixes the fuel gas G and the primary combustion air A therein. The mixing pipe 65 is provided with a gas nozzle 64 for ejecting the fuel gas G, and the primary combustion air A flows in with the fuel gas G ejected from the gas nozzle 64, and the mixture M is formed inside the mixing pipe 65. Is formed.

コンロ用バーナは、図7に示すように、被加熱物Hの底面から放射され、環状バーナ100の内部を通過した赤外線の強度を検出する赤外線強度検出手段60を備えると共に、当該赤外線強度検出手段60にて検出された赤外線の強度に基づいて、被加熱物Hの温度を導出する温度導出手段61とを備えている。制御装置62は、温度導出手段61にて導出された温度に基づいて、ガスノズル64に接続されるガス流路に設けられる燃料ガスGの流量調整弁63の開度を調整し、被加熱物Hの自動温度制御や、過昇温時の緊急停止制御等を実行する。因みに、赤外線強度検出手段60は、図7に示すように、天板50、及び環状バーナ100の鉛直方向で下方に設けられる。尚、環状バーナ100の下方とは、平面視で、環状バーナ100に重畳しない領域も含むものである。
尚、赤外線強度検出手段60は、被加熱物Hの底面から放射される赤外線の、互いに異なる2つの波長域における夫々の赤外線強度を各別に検出するものであり、さらに、温度導出手段61は、赤外線強度検出手段60により検出された2つの波長域における赤外線強度の比に基づいて、被加熱物Hの温度を導出するものである。このように構成することで、被加熱物Hの輻射率に依存することなく、正確に被加熱物Hの底面の温度を検出することができる。尚、赤外線強度検出手段60の具体的構成については、公知であるので、ここではその詳細な説明は割愛する。
As shown in FIG. 7, the stove burner includes an infrared intensity detection means 60 that detects the intensity of infrared rays that are radiated from the bottom surface of the heated object H and pass through the annular burner 100, and the infrared intensity detection means. And a temperature deriving unit 61 for deriving the temperature of the object to be heated H based on the intensity of infrared rays detected at 60. Based on the temperature derived by the temperature deriving means 61, the control device 62 adjusts the opening degree of the flow adjustment valve 63 of the fuel gas G provided in the gas flow path connected to the gas nozzle 64, and the heated object H Automatic temperature control and emergency stop control at excessive temperature rise. Incidentally, the infrared intensity detection means 60 is provided below the top plate 50 and the annular burner 100 in the vertical direction, as shown in FIG. In addition, the downward direction of the annular burner 100 includes a region that does not overlap the annular burner 100 in plan view.
The infrared intensity detecting means 60 detects the infrared intensity of each of the infrared rays radiated from the bottom surface of the object H to be heated in two different wavelength ranges, and the temperature deriving means 61 further comprises: The temperature of the object to be heated H is derived based on the ratio of the infrared intensity in the two wavelength ranges detected by the infrared intensity detecting means 60. By comprising in this way, the temperature of the bottom face of the to-be-heated object H can be detected correctly, without depending on the emissivity of the to-be-heated object H. The specific configuration of the infrared intensity detecting means 60 is well known, and therefore detailed description thereof is omitted here.

このように、環状バーナ100は、その内部を、被加熱物Hの底面から放射された赤外線を通過するように構成しているのであるが、その具体的構成につき、以下に説明する。
環状バーナ100は、図2、3、4に示すように、バーナ本体70を構成するバーナ本体基部40と、バーナ本体70を構成するバーナ本体上部30と、バーナヘッド80を構成する環状切欠部材20と、バーナヘッド80を構成するキャップ部10とを、記載の順に下方から積載する形態で、設けられている。
バーナ本体基部40は、混合管65の管軸心P1(図2で水平方向Xに沿う軸)に沿う状態で、混合管65の下方側を成す第1樋形状部位44を備えると共に、混合管65の管軸心P1に直交する直線P2(図2で鉛直方向Zに沿う直線)に沿う軸心を有すると共に内部に中央空洞S1を有する円筒部位41を備えている。
当該円筒部位41の筒側面には、平面視で混合管65の管軸心P1に沿う方向で第1樋形状部位44とは逆方向に向かって延びると共に側面視(図3、4に示す方向視)で斜め下方に向けて延びる庇部位42が設けられている。更に、円筒部位41の筒側面には、当該庇部位42の下方空間と円筒部位41の中央空洞S1とを連通する開孔42aが設けられている。
因みに、円筒部位41の中央空洞S1側の内面には、中央空洞S1側へ突出する突起部43aが設けられており、詳細については後述するが、当該突起部43aにより、バーナヘッド80がバーナ本体70に対して環周方向において位置決めされる。
尚、バーナ本体基部40の円筒部位41の近傍で中央空洞S1の外側には、図2に示すように、バーナ本体基部40を上下方向に貫通する開口部45が設けられており、当該開口部45を挿通する形態で点火プラグ(図示せず)が配設されている。
As described above, the annular burner 100 is configured so that the infrared rays emitted from the bottom surface of the article to be heated H pass through, and the specific configuration will be described below.
As shown in FIGS. 2, 3, and 4, the annular burner 100 includes a burner body base 40 that constitutes the burner body 70, a burner body upper part 30 that constitutes the burner body 70, and an annular notch member 20 that constitutes the burner head 80. And the cap portion 10 constituting the burner head 80 are provided in such a manner that they are stacked from below in the order described.
The burner body base 40 includes a first bowl-shaped portion 44 that forms the lower side of the mixing tube 65 in a state along the tube axis P1 (the axis along the horizontal direction X in FIG. 2) of the mixing tube 65, and the mixing tube A cylindrical portion 41 having an axial center along a straight line P2 (a straight line along the vertical direction Z in FIG. 2) perpendicular to the 65 pipe axial center P1 and having a central cavity S1 therein is provided.
The cylindrical side surface of the cylindrical portion 41 extends in the direction along the tube axis P1 of the mixing tube 65 in a plan view in the direction opposite to the first bowl-shaped portion 44 and is viewed from the side (the direction shown in FIGS. 3 and 4). A heel part 42 extending obliquely downward is provided. Furthermore, an opening 42 a is provided on the cylindrical side surface of the cylindrical portion 41 so as to communicate the lower space of the flange portion 42 and the central cavity S 1 of the cylindrical portion 41.
Incidentally, a projection 43a projecting toward the central cavity S1 is provided on the inner surface of the cylindrical portion 41 on the side of the central cavity S1, and the details will be described later. Positioned relative to 70 in the circumferential direction.
As shown in FIG. 2, an opening 45 is provided in the vicinity of the cylindrical portion 41 of the burner body base 40 and outside the central cavity S1 so as to penetrate the burner body base 40 in the vertical direction. A spark plug (not shown) is disposed in such a manner that 45 is inserted.

バーナ本体上部30は、混合管65の管軸心P1に沿う状態で、混合管65の上方側を成す第2樋形状部位34を備えると共に、バーナ本体70へのバーナヘッド80の載置状態(図4に示す状態)において、バーナ本体基部40の円筒部位41の筒外周を所定の間隔を隔てて外囲すると共にバーナ本体基部40の庇部位42の上面に当接する当接部35を有する環状外囲部位31を備えている。
更に、バーナ本体上部30には、バーナ本体上部30とバーナ本体基部40との締結状態(図4に示す状態)で、環状外囲部位31の上部の環内側を削り取って形成された空間である受入部位32が設けられている。
説明を追加すると、当該受入部位32は、図2に示すように、環状外囲部位31の上方内側を環状に切り欠いて形成されており、環状の底部を有する環状受入部位32bと、当該環状受入部位32bの上方に連続する形状で且つ上方へ向けて擂鉢形状に広がる擂鉢状受入部位32cとから成る。尚、環状受入部位32bには、環周方向の一部に環径方向の外方へ切り欠く切欠部位32aが形成されている。
そして、当該受入部位32にバーナヘッド80が受け入れられて、バーナ本体70に対してバーナヘッド80が載置されることになる。
また、バーナ本体上部30に形成される開口部33には、熱電対(図示せず)が挿通されて設けられており、制御装置62は、当該熱電対の検出結果に基づいて、環状バーナ100での失火の有無を判定する。
The upper portion 30 of the burner body includes a second bowl-shaped portion 34 that forms the upper side of the mixing tube 65 in a state along the tube axis P <b> 1 of the mixing tube 65, and the mounting state of the burner head 80 on the burner body 70 ( In the state shown in FIG. 4, the annular outer periphery of the cylindrical portion 41 of the burner main body base 40 is surrounded by a predetermined interval and has an abutting portion 35 that contacts the upper surface of the flange portion 42 of the burner main body base 40. The surrounding part 31 is provided.
Further, the burner main body upper portion 30 is a space formed by scraping the inner ring of the upper portion of the annular outer peripheral portion 31 in a fastening state of the burner main body upper portion 30 and the burner main body base portion 40 (state shown in FIG. 4). A receiving site 32 is provided.
When the description is added, as shown in FIG. 2, the receiving part 32 is formed by notching the upper inner side of the annular outer peripheral part 31 in an annular shape, and an annular receiving part 32b having an annular bottom, It consists of a bowl-shaped receiving part 32c that has a shape continuous above the receiving part 32b and spreads upward in a bowl shape. The annular receiving portion 32b is formed with a notched portion 32a that is notched outwardly in the radial direction in part of the circumferential direction.
Then, the burner head 80 is received in the receiving part 32, and the burner head 80 is placed on the burner body 70.
In addition, a thermocouple (not shown) is inserted into the opening 33 formed in the upper portion 30 of the burner main body 30, and the control device 62 controls the annular burner 100 based on the detection result of the thermocouple. Determine if there is a misfire in

バーナヘッド80は、図1〜5に示すように、平面視で円盤形状のキャップ部10と、平面視で環形状を有すると共にその上部において環中央から外側へ放射状に延びる直線に沿う複数の第1切欠溝21を有する環状切欠部材20とから構成されている。
説明を追加すると、キャップ部10は、平面視で円盤中心O(バーナヘッド80の環状周部80aの環中心に相当)が上方へ膨出する膨出形状の膨出頂部を有すると共に当該膨出頂部から偏心した位置に赤外線通過孔12を有する天面部14と、当該天面部14から下方へ延びる円筒形状の円筒脚部13を備えている。説明を追加すると、天面部14は、側面視で、その上面が円弧形状に構成されている。
キャップ部10は、バーナヘッド80がバーナ本体70へ載置された載置状態(図4に示す状態)において、円筒脚部13の筒外面がバーナ本体基部40の円筒部位41の筒内面に摺動案内される形態で、円筒部位41の軸心P2と円盤中心Oが一致するように位置決めされる。
更に、キャップ部10の円筒脚部13は、バーナ本体70側の端部から天面部14側へ向けて、円筒壁の一部を切り欠く切欠部位13bを備えている。当該切欠部位13bは、バーナヘッド80がバーナ本体70へ載置された載置状態(図4に示す状態)において、円筒部位41の内面に設けられる突起部43aと係合する形態で、キャップ部10をバーナ本体基部40に対して軸心P2回りで位置決めする。
また、キャップ部10の円筒脚部13は、バーナヘッド80がバーナ本体70へ載置された載置状態(図4に示す状態)において、バーナ本体基部40の円筒部位41に形成される開孔42aに対向する部位に、開孔13aを有している。
As shown in FIGS. 1 to 5, the burner head 80 has a disc-shaped cap portion 10 in a plan view and a plurality of first portions along a straight line that has a ring shape in a plan view and extends radially outward from the center of the ring at an upper portion thereof. An annular notch member 20 having one notch groove 21 is formed.
When the description is added, the cap portion 10 has a bulging top portion having a bulging shape in which a disc center O (corresponding to the ring center of the annular peripheral portion 80a of the burner head 80) bulges upward in plan view. A top surface portion 14 having an infrared passage hole 12 at a position eccentric from the top portion and a cylindrical cylindrical leg portion 13 extending downward from the top surface portion 14 are provided. If a description is added, the upper surface part 14 will be comprised by the circular arc shape in the upper surface by the side view.
The cap portion 10 is configured such that the outer surface of the cylinder leg 13 slides on the inner surface of the cylinder portion 41 of the burner body base 40 when the burner head 80 is placed on the burner body 70 (the state shown in FIG. 4). In such a manner that it is guided by movement, it is positioned so that the axis P2 of the cylindrical portion 41 and the disk center O coincide.
Furthermore, the cylindrical leg portion 13 of the cap portion 10 includes a cutout portion 13b that cuts out a part of the cylindrical wall from the end portion on the burner body 70 side toward the top surface portion 14 side. The cutout portion 13b is configured to engage with the protrusion 43a provided on the inner surface of the cylindrical portion 41 in the mounted state (the state shown in FIG. 4) in which the burner head 80 is placed on the burner body 70. 10 is positioned around the axis P2 with respect to the burner body base 40.
Further, the cylindrical leg portion 13 of the cap portion 10 has an opening formed in the cylindrical portion 41 of the burner body base 40 in the mounting state (the state shown in FIG. 4) where the burner head 80 is mounted on the burner body 70. An opening 13a is provided at a portion facing 42a.

環状切欠部材20は、上述したように、平面視で環形状を有すると共にその上部において環中央から外側へ放射状に延びる直線に沿う複数の第1切欠溝21を有しており、当該複数の第1切欠溝21は、環周方向で略等間隔に形成されている。ただし、環状バーナ100がコンロ200に設置されている設置状態(図7、8に示す状態)において、五徳51と対向する部位においては、隣接する第1切欠溝21の間隔を広くとるように構成している。
環状切欠部材20の下部には、バーナ本体基部40の受入部位32の環状受入部位32bの環状の底部に当接支持される底面を有すると共に、当該底面において平面視で環中央から外側へ放射状に延びる直線に沿う複数の第2切欠溝22を有している。当該複数の第2切欠溝22は、環周方向で略等間隔に形成されている。当該実施形態においては、第1切欠溝21に対し、環周方向で略同一位置に設けられている。
尚、環状切欠部材20は、下方側面に側方へ突出する突起24を有しており、当該突起24が、バーナ本体上部30の環状受入部位32bに形成される切欠部位32aに嵌入する形態で、バーナ本体上部30に対する環周方向での位置決めされる。
更に、当該環状切欠部材20は、受入部位32への受入状態(図4に示す状態)において、その下方側面と、受入部位32の環状受入部位32b及び擂鉢状受入部位32cとの間に、間隙を有する状態となる。
当該構成により、図4に示すように、バーナヘッド80がバーナ本体70へ載置された載置状態(図4に示す状態)において、キャップ部10の下方側面と環状切欠部材20の上方側面の第1切欠溝21とで外囲される領域にて主火炎用流路R2が形成されると共に、バーナ本体70の上方側面(受入部位32の環状受入部位32b及び擂鉢状受入部位32cにて形成される面)と環状切欠部材20の下方側面(底面以外で第2切欠溝22にて形成される面、及び受入部位32の環状受入部位32bと擂鉢状受入部位32cとに対向する面)とに外囲される隙間にて袖火用流路R3が形成される。
袖火用流路R3に関し、説明を追加すると、図4に示す断面図において、まずもって、環状受入部位32bは、水平方向に沿う底面部位32bbと、当該底面部位32bbから略垂直に立ち上がる側面部位32bsを有すると共に、擂鉢状受入部位32cは、傾斜面を構成する傾斜面部位32csを有する。そして、袖火用流路R3は、当該其処面部位32bbと側面部位32bsと傾斜面部位32csと、それらに対向する環状切欠部材20の下方側面との間に形成される。
As described above, the annular notch member 20 has a plurality of first notch grooves 21 along a straight line extending radially outward from the center of the ring at the top thereof, and having an annular shape in plan view. The 1 notch groove 21 is formed at substantially equal intervals in the circumferential direction. However, in the installation state in which the annular burner 100 is installed on the stove 200 (the state shown in FIGS. 7 and 8), the adjacent first notch groove 21 is configured to be wide at the part facing the virtues 51. doing.
The lower portion of the annular notch member 20 has a bottom surface that is in contact with and supported by the annular bottom portion of the annular receiving portion 32b of the receiving portion 32 of the burner main body base 40, and is radially outward from the center of the ring in plan view on the bottom surface. A plurality of second cutout grooves 22 are provided along the extending straight line. The plurality of second cutout grooves 22 are formed at substantially equal intervals in the circumferential direction. In the embodiment, the first notch groove 21 is provided at substantially the same position in the circumferential direction.
The annular notch member 20 has a protrusion 24 that protrudes laterally on the lower side surface, and the protrusion 24 fits into a notch part 32 a formed in the annular receiving part 32 b of the burner body upper part 30. , Positioning in the circumferential direction relative to the burner body upper portion 30.
Further, the annular notch member 20 has a gap between the lower side surface thereof and the annular receiving portion 32b and the mortar-shaped receiving portion 32c of the receiving portion 32 in the receiving state (the state shown in FIG. 4) in the receiving portion 32. It will be in the state which has.
With this configuration, as shown in FIG. 4, in the placement state where the burner head 80 is placed on the burner body 70 (state shown in FIG. 4), the lower side surface of the cap portion 10 and the upper side surface of the annular notch member 20 A main flame channel R2 is formed in a region surrounded by the first notch groove 21, and is formed at the upper side surface of the burner body 70 (the annular receiving portion 32b and the mortar-shaped receiving portion 32c of the receiving portion 32). And a lower side surface of the annular notch member 20 (a surface formed by the second notch groove 22 other than the bottom surface, and a surface facing the annular receiving portion 32b and the mortar receiving portion 32c of the receiving portion 32). The sleeve fire channel R3 is formed by a gap surrounded by the sleeve.
In the cross-sectional view shown in FIG. 4, the annular receiving part 32b is firstly divided into a bottom part 32bb along the horizontal direction, and a side part rising substantially vertically from the bottom part 32bb. While having 32bs, the mortar-shaped receiving part 32c has an inclined surface part 32cs constituting an inclined surface. The sleeve fire channel R3 is formed between the surface portion 32bb, the side surface portion 32bs, the inclined surface portion 32cs, and the lower side surface of the annular notch member 20 facing them.

以上の構成を採用することにより、図4に示すように、バーナヘッド80がバーナ本体70へ載置された載置状態(図4に示す状態)において、バーナ本体基部40の円筒部位41の外周面と、バーナ本体基部40の庇部位42の上方側面と、バーナ本体上部30の環状外囲部位31と、環状切欠部材20とで外囲される空間に形成される平面視で環状の環状混合気流路R1が形成される。尚、図4の断面図では示されていないが、バーナヘッド80がバーナ本体70へ載置された載置状態(図4に示す状態)において、バーナ本体上部30の環状外囲部位31は、バーナ本体基部40の外囲壁46(図2に図示)と気密に連結されており、当該外囲壁46も、環状混合気流路R1を形成する部位となる。また、当該構成において、円筒脚部13は、バーナヘッド80がバーナ本体70に載置された載置状態(図4に示す状態)で、環状混合気流路R1とバーナ本体基部40の円筒部位41の内側に形成される中央空洞S1とを隔離する隔離壁として働く。
更に、以上の構成を採用することにより、図4に示すように、当該環状混合気流路R1と主火炎用噴孔81とを連通接続する主火炎用流路R2と、環状混合気流路R1と袖火用噴孔82とを連通接続する袖火用流路R3とが、独立して環状混合気流路R1に接続して設けられる。
また、袖火用流路R3は、環状切欠部材20とバーナ本体上部30との受入部位32との間に形成される間隙にて構成しているから、その流路長を十分に長くできる。結果、袖火用流路R3の環状混合気流路R1の側の端部R3aから袖火用噴孔82までの流路長である袖火用流路R3の流路長が、主火炎用流路R2の環状混合気流路R1の側の端部R2aから主火炎用噴孔81までの流路長である主火炎用流路R2の流路長よりも長く構成されている。
更に、環状混合気流路R1の管周方向の特定位置での、袖火用流路R3の環状混合気流路R1の側の端部R3aと、主火炎用流路R2の環状混合気流路R1の側の端部R2aとの位置関係に関し、袖火用流路R3の環状混合気流路R1の側の端部R3aは、主火炎用流路R2の環状混合気流路R1の側の端部R2aよりも、環状混合気流路R1の上流側に設けられている。
主火炎用流路R2に関し、説明を追加すると、図4に示す断面図において、まずもって、環状切欠部材20は、その環内周側において上下方向(矢印Zに沿う方向)に延びる環内周垂直壁部20aと、その環内周側において環内周垂直壁部20aに連続して設けられると共に環径方向で外側で斜め上方に延びる環内周傾斜壁20bが備えられている。そして、主火炎用流路R2は、当該環内周壁部20a及び環内周傾斜壁20bと、バーナヘッド80の下方側面と、バーナ本体70の円筒部位41の外面とに外囲される隙間にて主火炎用流路R2が形成される。
また、当該実施形態に係る環状バーナ100にあっては、袖火用流路R3を通流する混合気Mの圧力損失が、主火炎用流路R2を通流する混合気Mの圧力損失よりも小さくなるように、袖火用流路R3と主火炎用流路R2とが構成されている。
以上の構成により、火力を大きくして一次空気量が多くなった場合でも、袖火用噴孔82にて形成される袖火K2が、主火炎用噴孔81にて形成される主火炎K1の燃焼状態の変化の影響を受けることをより一層抑制できる。
尚、当該実施形態にあっては、環状バーナ100の環状周部80aに形成される主火炎用噴孔81と袖火用噴孔82とは、図4に示すように、環状切欠部材20の上方側の環状端部壁83にて互いに分離した状態で設けられている。図4の断面図において、当該環状端部壁83の上端部は、キャップ部10の天面部14の下端部と、バーナ本体上部30の擂鉢状受入部位32cの上端部とを結ぶ直線の近傍まで延設されている。
これにより、主火炎用噴孔81と袖火用噴孔82とを通流する混合気Mの流れは、より一層互いに独立した状態を維持でき、袖火K2が、主火炎用噴孔81にて形成される主火炎K1の燃焼状態の変化の影響を受けることを抑制できる。
By adopting the above configuration, as shown in FIG. 4, the outer periphery of the cylindrical portion 41 of the burner main body base 40 in the mounting state (the state shown in FIG. 4) in which the burner head 80 is mounted on the burner main body 70. An annular mixture in a plan view formed in a space surrounded by the surface, the upper side surface of the flange portion 42 of the burner body base 40, the annular enclosure portion 31 of the burner body upper portion 30, and the annular notch member 20. An air flow path R1 is formed. Although not shown in the sectional view of FIG. 4, in the mounting state (the state shown in FIG. 4) in which the burner head 80 is mounted on the burner body 70, the annular surrounding portion 31 of the burner body upper portion 30 is The outer peripheral wall 46 (illustrated in FIG. 2) of the burner main body base 40 is airtightly connected, and the outer peripheral wall 46 is also a part that forms the annular mixed gas flow path R1. Further, in the configuration, the cylindrical leg portion 13 is in the mounting state (the state shown in FIG. 4) in which the burner head 80 is mounted on the burner main body 70, and the cylindrical portion 41 of the annular mixture channel R <b> 1 and the burner main body base 40. It acts as an isolation wall that isolates the central cavity S1 formed inside the wall.
Further, by adopting the above configuration, as shown in FIG. 4, a main flame channel R2 that connects the annular mixture channel R1 and the main flame nozzle hole 81, and an annular mixture channel R1. A sleeve fire channel R3 that communicates with the sleeve fire nozzle 82 is independently connected to the annular mixture channel R1.
Further, since the sleeve fire channel R3 is formed by a gap formed between the annular notch member 20 and the receiving portion 32 of the burner body upper portion 30, the length of the channel can be made sufficiently long. As a result, the length of the sleeve flame channel R3, which is the length of the sleeve flame channel R3 from the end portion R3a on the annular mixture channel R1 side to the sleeve flame nozzle 82, is the main flame stream. It is configured to be longer than the flow path length of the main flame flow path R2, which is the flow path length from the end portion R2a on the annular mixture flow path R1 side of the path R2 to the main flame injection hole 81.
Furthermore, the end portion R3a of the sleeve flame channel R3 on the annular gas mixture channel R1 side and the annular gas mixture channel R1 of the main flame channel R2 at a specific position in the pipe circumferential direction of the annular gas channel R1. With respect to the positional relationship with the end R2a on the side, the end R3a on the side of the annular mixture channel R1 of the sleeve flame channel R3 is more than the end R2a on the side of the annular mixture channel R1 of the main flame channel R2. Is also provided upstream of the annular mixture flow path R1.
With respect to the main flame channel R2, in the cross-sectional view shown in FIG. 4, first, the annular notch member 20 has an annular inner periphery extending in the vertical direction (a direction along the arrow Z) on the inner peripheral side of the ring. A vertical wall portion 20a and an annular inner peripheral inclined wall 20b provided on the inner circumferential side of the vertical wall portion 20a are provided continuously to the inner circumferential ring vertical wall portion 20a and extend obliquely upward on the outer side in the radial direction. The main flame flow path R2 is formed in a space surrounded by the ring inner peripheral wall portion 20a and the ring inner peripheral inclined wall 20b, the lower side surface of the burner head 80, and the outer surface of the cylindrical portion 41 of the burner body 70. Thus, the main flame channel R2 is formed.
Further, in the annular burner 100 according to this embodiment, the pressure loss of the mixture M flowing through the sleeve flame channel R3 is less than the pressure loss of the mixture M flowing through the main flame channel R2. The sleeve fire channel R3 and the main flame channel R2 are configured so as to be smaller.
With the above configuration, even when the thermal power is increased and the primary air amount is increased, the sleeve flame K2 formed in the sleeve flame nozzle 82 is changed to the main flame K1 formed in the main flame nozzle 81. It is possible to further suppress the influence of changes in the combustion state.
In the present embodiment, the main flame nozzle hole 81 and the sleeve flame nozzle hole 82 formed in the annular peripheral portion 80a of the annular burner 100 are formed by the annular notch member 20 as shown in FIG. The upper annular end wall 83 is separated from each other. In the cross-sectional view of FIG. 4, the upper end portion of the annular end wall 83 extends to the vicinity of a straight line connecting the lower end portion of the top surface portion 14 of the cap portion 10 and the upper end portion of the bowl-shaped receiving portion 32 c of the burner body upper portion 30. It is extended.
As a result, the flow of the air-fuel mixture M flowing through the main flame nozzle hole 81 and the sleeve flame nozzle hole 82 can be maintained more independently of each other, and the sleeve flame K2 is transferred to the main flame nozzle hole 81. It is possible to suppress the influence of the change in the combustion state of the main flame K1 formed.

次に、赤外線の通過領域Rについて説明を加える。
以上の構成を採用することにより、バーナヘッド80がバーナ本体70へ載置された載置状態(図4に示す状態)において、図4に示すように、環状混合気流路R1にその一部を凹欠する被凹欠流路部位(流路断面積が小さくなる部位で、図4で符号R1aで示される部位)が、環状混合気流路R1の環周方向で一部に設けられる。当該構成により、赤外線通過孔12を通過して赤外線強度検出手段60(図5、図7に図示)へ向けて放射される赤外線の通過領域Rが、被凹欠流路部位R1aが凹欠されることにより形成される空間S2(庇部位42の下方側の領域:環状混合気流路R1が凹欠されることにより流路の外部に広がった空間)に形成されることとなる。
即ち、被加熱物Hの底面から放射された赤外線のうち、キャップ部10の天面部14に設けられる赤外線通過孔12を通過した赤外線は、図4に示すように、中央空洞S1を通過し、キャップ部10の円筒脚部13の開孔13aを通過し、バーナ本体基部40の円筒部位41の開孔42aを通過し、庇部位42の下方側の領域である空間S2を通過した後、赤外線強度検出手段60へ到達する。
換言すると、赤外線通過孔12を通過した赤外線が、図4に示すように、中央空洞S1を通過し、キャップ部10の円筒脚部13の開孔13aを通過し、バーナ本体基部40の円筒部位41の開孔42aを通過し、庇部位42の下方側の領域である空間S2を通過した後、赤外線強度検出手段60へ到達するように、赤外線通過孔12及び赤外線強度検出手段60が設けられる。因みに、赤外線強度検出手段60から赤外線通過孔12を臨む場合、図6に示されるように、環状バーナ100は、その下方部位が大きくえぐれた形状となる。
当該構成を採用することにより、図7に示すように、被加熱物Hから放射され赤外線通過孔12を通過して赤外線強度検出手段60へ到達する赤外線と、被加熱物Hの底面との成す角度αを、例えば、角度の比較的小さい鋭角に設定することができ、赤外線強度検出手段60と赤外線通過孔12との距離を十分に大きくした場合であっても、コンロ200の鉛直方向(矢印Zに沿う方向)での高さを十分に小さくしてコンパクト化を図ることができる。これにより、コンロ200の高さ方向でのコンパクト化を図りつつ、赤外線強度検出手段60と赤外線通過孔12との距離を十分に大きくして、赤外線通過孔12から環状バーナ100の内部に進入する虞のある吹きこぼれが、赤外線強度検出手段60まで伝わることを良好に防止できる。
Next, an explanation will be given about the infrared ray passing region R.
By adopting the above configuration, in the mounting state where the burner head 80 is mounted on the burner body 70 (the state shown in FIG. 4), as shown in FIG. A recessed notch channel part (a part where the channel cross-sectional area is reduced and indicated by a symbol R1a in FIG. 4) is provided in part in the circumferential direction of the annular mixture channel R1. With this configuration, an infrared passage region R that passes through the infrared passage hole 12 and is radiated toward the infrared intensity detecting means 60 (shown in FIGS. 5 and 7) is recessed in the notched channel portion R1a. As a result, a space S2 is formed (a region on the lower side of the heel part 42: a space that spreads out of the flow path when the annular mixture flow path R1 is recessed).
That is, among the infrared rays radiated from the bottom surface of the heated object H, the infrared rays that have passed through the infrared passage hole 12 provided in the top surface portion 14 of the cap portion 10 pass through the central cavity S1, as shown in FIG. After passing through the opening 13a of the cylindrical leg portion 13 of the cap portion 10, passing through the opening 42a of the cylindrical portion 41 of the burner main body base 40, and passing through the space S2 which is the lower region of the flange portion 42, infrared rays The intensity detection means 60 is reached.
In other words, as shown in FIG. 4, the infrared rays that have passed through the infrared passage hole 12 pass through the central cavity S <b> 1, pass through the opening 13 a of the cylindrical leg portion 13 of the cap portion 10, and the cylindrical portion of the burner body base portion 40. The infrared passage hole 12 and the infrared intensity detecting means 60 are provided so as to reach the infrared intensity detecting means 60 after passing through the opening 42 a of 41 and passing through the space S <b> 2 that is a region below the heel part 42. . Incidentally, when facing the infrared ray passage hole 12 from the infrared intensity detecting means 60, as shown in FIG. 6, the annular burner 100 has a shape in which the lower part thereof is greatly hollowed out.
By adopting this configuration, as shown in FIG. 7, an infrared ray radiated from the heated object H, passing through the infrared passage hole 12 and reaching the infrared intensity detecting means 60, and a bottom surface of the heated object H are formed. The angle α can be set to, for example, an acute angle with a relatively small angle, and even when the distance between the infrared intensity detecting means 60 and the infrared passage hole 12 is sufficiently large, the vertical direction of the stove 200 (arrow The height in the direction along Z) can be made sufficiently small to achieve compactness. Accordingly, the distance between the infrared intensity detecting means 60 and the infrared passage hole 12 is sufficiently increased while making the stove 200 compact in the height direction, and enters the inside of the annular burner 100 from the infrared passage hole 12. It is possible to satisfactorily prevent a feared spill from being transmitted to the infrared intensity detecting means 60.

尚、上述の如く、環状混合気流路R1に被凹欠流路部位R1aを設ける場合、当該被凹欠流路部位R1aの流路断面積は小さくなり、当該流路断面積は小さいほど、被凹欠流路部位R1aの近傍に設けられる主火炎用噴孔81及び袖火用噴孔82へ導かれる混合気Mの流量が、被凹欠流路部位R1aから離れて設けられる主火炎用噴孔81及び袖火用噴孔82へ導かれる混合気Mの流量と異なることとなる。主火炎用噴孔81及び袖火用噴孔82にて形成される火炎が、環状バーナ100の環周方向で、略均等な燃焼状態を維持する観点からは、被凹欠流路部位R1aの流路断面積は、被凹欠流路部位R1a以外の環状混合気流路R1の流路断面積と大きく異ならないことが好ましい。このため、当該実施形態では、赤外線通過孔12は、図5に示すように、平面視において、バーナヘッド80の環状周部80aと環中心(キャップ部10の円盤中心O)との間で環状周部80aに近い領域に設けられている。
これにより、平面視で赤外線強度検出手段60と赤外線通過孔12とを同一距離に設ける条件で、且つ被加熱物Hから放射され赤外線通過孔12を通過して赤外線強度検出手段60へ到達する赤外線と被加熱物Hの底面との成す角度を同一角度に設定する条件において、赤外線通過孔12を平面視においてバーナヘッド80の環状周部80aと環中心(キャップ部10の円盤中心O)との間で環中心に近い領域に設ける場合に比べ、赤外線通過孔12から環状混合気流路R1までの距離を大きくすることができるから、環状混合気流路R1の被凹欠流路部位R1aの凹欠量を小さくでき、当該被凹欠流路部位R1aでの混合気Mの流れの乱れを抑制できる。
As described above, when the recessed channel portion R1a is provided in the annular mixture channel R1, the channel cross-sectional area of the recessed channel region R1a is small, and the smaller the channel cross-sectional area is, the smaller the channel cross-sectional area is. The flow rate of the air-fuel mixture M guided to the main flame nozzle hole 81 and the sleeve flame nozzle 82 provided in the vicinity of the recessed channel portion R1a is the main flame jet provided away from the recessed channel portion R1a. This is different from the flow rate of the air-fuel mixture M guided to the hole 81 and the sleeve-fired nozzle hole 82. From the viewpoint of maintaining a substantially uniform combustion state in the circumferential direction of the annular burner 100, the flame formed by the main flame nozzle hole 81 and the sleeve flame nozzle hole 82 is formed in the recessed notch channel portion R1a. It is preferable that the channel cross-sectional area does not differ greatly from the channel cross-sectional area of the annular mixture channel R1 other than the recessed channel portion R1a. For this reason, in this embodiment, as shown in FIG. 5, the infrared passage hole 12 has an annular shape between the annular peripheral portion 80 a of the burner head 80 and the ring center (the disk center O of the cap portion 10) in plan view. It is provided in a region close to the peripheral portion 80a.
Thereby, the infrared ray radiated from the heated object H and passing through the infrared ray passage hole 12 and reaching the infrared ray intensity detection unit 60 under the condition that the infrared ray intensity detection unit 60 and the infrared ray passage hole 12 are provided at the same distance in a plan view. And the bottom surface of the object to be heated H are set to the same angle, the infrared passage hole 12 is formed between the annular peripheral portion 80a of the burner head 80 and the ring center (the disk center O of the cap portion 10) in plan view. Since the distance from the infrared passage hole 12 to the annular mixture channel R1 can be increased as compared with the case where it is provided in the region close to the center of the ring, the notch of the recessed channel portion R1a of the annular mixture channel R1 The amount can be reduced, and the disturbance of the flow of the air-fuel mixture M in the recessed channel portion R1a can be suppressed.

赤外線強度検出手段60と赤外線通過孔12との位置関係について、説明を追加すると、図5に示すように、平面視において、バーナヘッド80の環状周部80aの環中心(キャップ部10の円盤中心O)を通る直線Lで分けた一方側の領域である一方側領域S3に、赤外線強度検出手段60が備えられると共に、他方側の領域である他方側領域S4に、被加熱物Hから放射された赤外線を赤外線強度検出手段60へ向けて通過させる赤外線通過孔12が備えられる。
当該実施形態に係るキャップ部10は、その天面部14の円盤中心Oが上方へ膨出する膨出形状を有し、天面部14の内面は外面と略同形状に構成されているため、上述の配置を採用することで、赤外線通過孔12から進入する吹きこぼれは、膨出形状を有する天面部14の内面に沿って伝わるから、赤外線強度検出手段60の側へ伝わることを良好に抑制できる。
更に、赤外線通過孔12から進入する吹きこぼれが赤外線強度検出手段60へ伝わることを更に抑制する観点から、図4に示すように、平面視において、赤外線強度検出手段60と赤外線通過孔12とが、バーナヘッド80の環状周部80aの環中心(キャップ部10の円盤中心O)を挟んで対向する状態で設けられている。
When a description is added about the positional relationship between the infrared intensity detecting means 60 and the infrared passage hole 12, as shown in FIG. 5, the ring center of the annular peripheral portion 80a of the burner head 80 (the center of the disk of the cap portion 10) is shown in a plan view. Infrared intensity detecting means 60 is provided in one side region S3 which is one region divided by a straight line L passing through O), and the other side region S4 which is the other side region is radiated from the heated object H. An infrared passage hole 12 through which the infrared ray passes toward the infrared intensity detecting means 60 is provided.
The cap portion 10 according to this embodiment has a bulging shape in which the disk center O of the top surface portion 14 bulges upward, and the inner surface of the top surface portion 14 is configured to have substantially the same shape as the outer surface. By adopting this arrangement, the spillage entering from the infrared passage hole 12 is transmitted along the inner surface of the top surface portion 14 having the bulging shape, so that it can be well suppressed from being transmitted to the infrared intensity detecting means 60 side.
Furthermore, from the viewpoint of further suppressing the blow-through that enters from the infrared passage hole 12 from being transmitted to the infrared intensity detection means 60, as shown in FIG. 4, the infrared intensity detection means 60 and the infrared passage hole 12 in plan view, The burner head 80 is provided so as to face each other with the ring center of the annular peripheral portion 80a of the burner head 80 (the disk center O of the cap portion 10) interposed therebetween.

更に、上述した環状混合気流路R1の被凹欠流路部位R1aは、赤外線通過孔12を通過して赤外線強度検出手段60へ向けて放射される赤外線の通過領域Rのうち、赤外線強度検出手段60とバーナヘッド80の環状周部80aの環中心(キャップ部10の円盤中心O)との間の領域と環状混合気流路R1とが重なる部位に形成されている。これにより、平面視で赤外線強度検出手段60と赤外線通過孔12とを同一距離に設ける条件で、且つ被加熱物Hから放射され赤外線通過孔12を通過して赤外線強度検出手段60へ到達する赤外線と、被加熱物Hの底面との成す角度を同一角度に設定する条件において、赤外線強度検出手段60と赤外線通過孔12とが、バーナヘッド80の環状周部80aの環中心(キャップ部10の円盤中心O)を挟まずに設けられる場合に比べ、赤外線通過孔12から環状混合気流路R1までの距離を大きくすることができるから、環状混合気流路R1の被凹欠流路部位R1aの凹欠量を小さくでき、当該被凹欠流路部位R1aでの混合気Mの流れの乱れを抑制できる。   Further, the recessed channel portion R1a of the annular mixture channel R1 described above is an infrared intensity detecting means in the infrared passing region R that passes through the infrared passing hole 12 and is emitted toward the infrared intensity detecting means 60. 60 and a region between the annular center of the annular peripheral portion 80a of the burner head 80 (the disk center O of the cap portion 10) and the annular mixture channel R1 are formed to overlap each other. Thereby, the infrared ray radiated from the heated object H and passing through the infrared ray passage hole 12 and reaching the infrared ray intensity detection unit 60 under the condition that the infrared ray intensity detection unit 60 and the infrared ray passage hole 12 are provided at the same distance in a plan view. And the infrared ray intensity detecting means 60 and the infrared passage hole 12 are arranged so that the ring center of the annular peripheral portion 80a of the burner head 80 (the cap portion 10) Compared to the case where the disk center O) is not provided, the distance from the infrared passage hole 12 to the annular mixture channel R1 can be increased, and therefore the concave portion of the recessed channel portion R1a of the annular mixture channel R1. The missing amount can be reduced, and the disturbance of the flow of the air-fuel mixture M in the recessed notch channel portion R1a can be suppressed.

通常、ブンゼンバーナとしての環状バーナ100にあっては、混合管65が設けられている領域にあっては、他の構成部品を設置するスペースを十分に確保できないため、当該領域に他の構成部品を設置する設計の自由度が下がるという問題がある。
そこで、当該実施形態にあっては、赤外線強度検出手段60と赤外線通過孔12とが、平面視において、赤外線通過孔12を通過して赤外線強度検出手段60へ向けて放射される赤外線の通過領域が混合管65の管軸心P1に重なる状態で、且つ赤外線強度検出手段60と混合管65とがバーナヘッド80の環状周部80aの環中心(キャップ部10の円盤中心O)を挟んで対向する状態で備えられている。これにより、例えば、赤外線強度検出手段60の受光部位の設置方向等に関する設計の自由度を上げることができる。
Usually, in the annular burner 100 as a Bunsen burner, in a region where the mixing pipe 65 is provided, a sufficient space for installing other components cannot be secured. There is a problem that the degree of freedom in the design of the installation is reduced.
Therefore, in this embodiment, the infrared intensity detection means 60 and the infrared passage hole 12 pass through the infrared passage hole 12 and radiate toward the infrared intensity detection means 60 in a plan view. Is overlapped with the tube axis P1 of the mixing tube 65, and the infrared intensity detecting means 60 and the mixing tube 65 face each other with the ring center of the annular peripheral portion 80a of the burner head 80 (the disk center O of the cap portion 10) interposed therebetween. It is prepared in the state to do. Thereby, the freedom degree of the design regarding the installation direction etc. of the light-receiving part of the infrared intensity detection means 60 can be raised, for example.

〔別実施形態〕
(1)上記実施形態にあっては、平面視において、赤外線強度検出手段60と赤外線通過孔12とが、バーナヘッド80の環状周部80aの環中心(キャップ部10の円盤中心O)を挟んで対向する状態で設けられている構成例を示した。
しかしながら、平面視において、赤外線強度検出手段60と赤外線通過孔12とが、必ずしも、バーナヘッド80の環状周部80aの環中心(キャップ部10の円盤中心O)を挟んで対向する状態で設けられていなくても構わない。
[Another embodiment]
(1) In the above embodiment, the infrared intensity detection means 60 and the infrared passage hole 12 sandwich the ring center of the annular peripheral portion 80a of the burner head 80 (the disk center O of the cap portion 10) in plan view. The example of a structure provided in the state which opposes by was shown.
However, in plan view, the infrared intensity detecting means 60 and the infrared passage hole 12 are not necessarily provided so as to face each other across the ring center of the annular peripheral portion 80a of the burner head 80 (the disk center O of the cap portion 10). It doesn't have to be.

(2)上記実施形態にあっては、赤外線強度検出手段60と赤外線通過孔12とが、平面視において、赤外線通過孔12を通過して赤外線強度検出手段60へ向けて放射される赤外線の通過領域が混合管65の管軸心P1に重なる状態で、且つ赤外線強度検出手段60と混合管65とがバーナヘッド80の環状周部80aの環中心(キャップ部10の円盤中心O)を挟んで対向する状態で備えられている構成例を示した。
しかしながら、本発明は当該実施形態に限定されるものではなく、平面視において、赤外線強度検出手段60と赤外線通過孔12とを結ぶ直線が、混合管65の管軸心P1と所定の角度を有する構成であっても良い。
(2) In the above-described embodiment, the infrared intensity detection means 60 and the infrared passage hole 12 pass infrared rays that pass through the infrared passage hole 12 and radiate toward the infrared intensity detection means 60 in plan view. The region overlaps the tube axis P1 of the mixing tube 65, and the infrared intensity detecting means 60 and the mixing tube 65 sandwich the ring center of the annular peripheral portion 80a of the burner head 80 (the disk center O of the cap portion 10). A configuration example provided in a state of facing each other is shown.
However, the present invention is not limited to this embodiment, and a straight line connecting the infrared intensity detecting means 60 and the infrared passage hole 12 has a predetermined angle with the tube axis P1 of the mixing tube 65 in plan view. It may be a configuration.

(3)上記実施形態にあっては、バーナヘッド80は、清掃性向上の観点から、別体のキャップ部10と環状切欠部材20とから構成する例を示したが、キャップ部10と環状切欠部材20とを一体に構成しても構わない。 (3) In the above-described embodiment, the burner head 80 has been described as an example in which the burner head 80 is configured from the separate cap portion 10 and the annular notch member 20 from the viewpoint of improving the cleaning property. You may comprise the member 20 integrally.

(4)上記実施形態において、キャップ部10の天面部14は、平面視で円盤中心O(バーナヘッド80の環状周部80aの環中心に相当)が上方へ膨出する膨出形状の膨出頂部を有すると共に当該膨出頂部から偏心した位置に赤外線通過孔12を有する構成例を示した。しかしながら、キャップ部10の天面部14は、上方へ膨出していなくても良く、上面が平面の平板形状であっても良い。 (4) In the above embodiment, the top surface portion 14 of the cap portion 10 has a bulging shape in which the disk center O (corresponding to the ring center of the annular peripheral portion 80a of the burner head 80) bulges upward in plan view. The structural example which has the infrared rays passage hole 12 in the position which has a top part and was eccentric from the said bulging top part was shown. However, the top surface portion 14 of the cap portion 10 does not have to bulge upward, and may have a flat plate shape with a flat upper surface.

(5)上記実施形態にあっては、袖火用流路R3の環状混合気流路R1の側の端部R3aから袖火用噴孔82までの流路長である袖火用流路R3の流路長が、主火炎用流路R2の環状混合気流路R1の側の端部R2aから主火炎用噴孔81までの流路長である主火炎用流路R2の流路長よりも長く構成されている例を示した。
しかしながら、本発明は、当該構成に限定されるものではなく、袖火用流路R3の環状混合気流路R1の側の端部R3aから袖火用噴孔82までの流路長である袖火用流路R3の流路長が、主火炎用流路R2の環状混合気流路R1の側の端部R2aから主火炎用噴孔81までの流路長である主火炎用流路R2の流路長よりも短い構成や、同一の長さの構成であっても良い。
(5) In the embodiment described above, the sleeve fire channel R3, which is the channel length from the end R3a on the annular mixture channel R1 side of the sleeve fire channel R3 to the sleeve fire nozzle 82, is provided. The channel length is longer than the channel length of the main flame channel R2, which is the channel length from the end portion R2a on the annular mixture channel R1 side of the main flame channel R2 to the main flame nozzle 81. A configured example is shown.
However, the present invention is not limited to this configuration, and the length of the sleeve flame is the length from the end portion R3a of the sleeve flame passage R3 on the side of the annular mixture channel R1 to the sleeve flame nozzle 82. The flow of the main flame flow path R2 is such that the flow path length of the main flow path R3 is the length of the main flame flow path R2 from the end R2a on the annular mixture flow path R1 side to the main flame injection hole 81. The configuration may be shorter than the road length or the same length.

(6)上記実施形態に係る環状バーナ100にあっては、袖火用流路R3を通流する混合気Mの圧力損失が、主火炎用流路R2を通流する混合気Mの圧力損失よりも小さくなるように、袖火用流路R3と主火炎用流路R2とが構成されている例を示した。
しかしながら、袖火用流路R3を通流する混合気Mの圧力損失が、主火炎用流路R2を通流する混合気Mの圧力損失以上となるように、袖火用流路R3と主火炎用流路R2とが構成されていても構わない。
(6) In the annular burner 100 according to the above embodiment, the pressure loss of the air-fuel mixture M flowing through the sleeve flame channel R3 is the pressure loss of the air-fuel mixture M flowing through the main flame channel R2. An example in which the sleeve fire channel R3 and the main flame channel R2 are configured to be smaller than the above is shown.
However, the sleeve fire channel R3 and the main flame channel R3 are connected so that the pressure loss of the mixture M flowing through the sleeve flame channel R3 is equal to or greater than the pressure loss of the mixture M flowing through the main flame channel R2. The flame flow path R2 may be configured.

尚、上記実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。   The configuration disclosed in the above embodiment (including another embodiment, the same shall apply hereinafter) can be applied in combination with the configuration disclosed in the other embodiment, as long as no contradiction occurs. The embodiment disclosed in this specification is an exemplification, and the embodiment of the present invention is not limited to this. The embodiment can be appropriately modified without departing from the object of the present invention.

本発明のコンロ用バーナ、及びそれを備えたコンロは、被加熱物の吹きこぼれが赤外線強度検出手段に付着することを抑制し、赤外線強度検出手段にて適切に赤外線強度を検出して、温度導出を良好に実行できるコンロ用バーナ、及びそれを備えたコンロとして、有効に利用可能である。   The stove burner of the present invention, and the stove equipped with the burner, suppresses the spill of the heated object from adhering to the infrared intensity detecting means, detects the infrared intensity appropriately by the infrared intensity detecting means, and derives the temperature. Can be effectively used as a burner for a stove that can perform the above well, and a stove equipped with the burner.

12 :赤外線通過孔
20 :環状切欠部材
21 :第1切欠溝
60 :赤外線強度検出手段
61 :温度導出手段
62 :制御装置
65 :混合管
70 :バーナ本体
80 :バーナヘッド
80a :環状周部
100 :環状バーナ
200 :コンロ
H :被加熱物
M :混合気
P1 :管軸心
R :通過領域
R1 :環状混合気流路
S3 :一方側領域
S4 :他方側領域
12: Infrared passage hole 20: annular notch member 21: first notch groove 60: infrared intensity detecting means 61: temperature derivation means 62: control device 65: mixing pipe 70: burner body 80: burner head 80a: annular peripheral portion 100: Annular burner 200: Stove H: Object to be heated M: Mixture P1: Pipe axis R: Passage region R1: Annulus mixture flow path S3: One side region S4: Other side region

Claims (7)

バーナ本体と、当該バーナ本体に上方から着脱自在に載置されたバーナヘッドとを有し、前記バーナヘッドの平面視での環状周部から環径方向で外側へ向けて放射状に火炎を形成する放射状噴孔を有する環状バーナが備えられ、
加熱対象の被加熱物から放射された赤外線の赤外線強度を検出する赤外線強度検出手段が、前記環状バーナの前記放射状噴孔より下方に備えられ、
前記赤外線強度検出手段により検出された前記赤外線強度に基づいて前記被加熱物の温度を導出する温度導出手段が備えられたコンロ用バーナであって、
平面視において、前記バーナヘッドの前記環状周部の環中心を通る直線で分けた一方側の領域である一方側領域に、前記赤外線強度検出手段が備えられる共に、他方側の領域である他方側領域に、前記被加熱物から放射された赤外線を前記赤外線強度検出手段へ向けて前記バーナヘッドを通過させる赤外線通過孔が備えられるコンロ用バーナ。
It has a burner body and a burner head that is detachably mounted on the burner body from above, and forms a flame radially outward from the annular peripheral portion in plan view of the burner head. An annular burner having radial nozzle holes is provided,
Infrared intensity detection means for detecting infrared intensity of infrared rays radiated from an object to be heated is provided below the radial nozzle holes of the annular burner,
A stove burner provided with temperature deriving means for deriving the temperature of the object to be heated based on the infrared intensity detected by the infrared intensity detecting means,
In plan view, the one side region, which is one region divided by a straight line passing through the ring center of the annular peripheral portion of the burner head, is provided with the infrared intensity detecting means and the other side is the other region. A stove burner provided with an infrared passage hole through which the infrared ray radiated from the object to be heated passes through the burner head toward the infrared intensity detecting means.
前記赤外線強度検出手段と前記赤外線通過孔とが、平面視において、前記バーナヘッドの前記環中心を挟んで対向する状態で備えられている請求項1に記載のコンロ用バーナ。   2. The stove burner according to claim 1, wherein the infrared intensity detection means and the infrared passage hole are provided so as to face each other across the ring center of the burner head in plan view. 前記環状バーナが、燃料ガスと燃焼用空気とを混合する混合管を備えたブンゼンバーナであり、
前記赤外線強度検出手段と前記赤外線通過孔とが、平面視において、前記赤外線通過孔を通過して前記赤外線強度検出手段へ向けて放射される赤外線の通過領域が前記混合管の管軸心に重なる状態で、且つ前記赤外線強度検出手段と前記混合管とが前記バーナヘッドの前記環中心を挟んで対向する状態で備えられている請求項2に記載のコンロ用バーナ。
The annular burner is a Bunsen burner provided with a mixing tube for mixing fuel gas and combustion air;
The infrared intensity detection means and the infrared passage hole, when seen in a plan view, pass through the infrared passage hole and radiate toward the infrared intensity detection means. The infrared passage area overlaps the tube axis of the mixing tube. The stove burner according to claim 2, wherein the burner is provided in a state where the infrared intensity detecting means and the mixing tube are opposed to each other across the ring center of the burner head.
前記赤外線通過孔は、平面視において、前記バーナヘッドの前記環状周部と前記環中心との間で前記環状周部に近い領域に設けられている請求項2又は3に記載のコンロ用バーナ。   4. The stove burner according to claim 2, wherein the infrared passage hole is provided in a region close to the annular peripheral portion between the annular peripheral portion of the burner head and the ring center in a plan view. 前記バーナヘッドは、前記環状周部の前記環中心が上方へ膨出する膨出形状の膨出頂部を有しており、
前記赤外線通過孔は、前記バーナヘッドの前記膨出頂部から偏心した位置に設けられている請求項1〜4の何れか一項に記載のコンロ用バーナ。
The burner head has a bulging top portion of a bulging shape in which the ring center of the annular peripheral portion bulges upward,
The burner for a stove according to any one of claims 1 to 4, wherein the infrared passage hole is provided at a position eccentric from the bulging top of the burner head.
前記環状バーナは、燃料ガス及び燃焼用空気の混合気を前記放射状噴孔へ導く平面視で環状の環状混合気流路を有し、
前記バーナヘッドは、天面部を有すると共に、当該天面部から下方へ延びる円筒形状の円筒脚部を有するキャップ部を含み、
前記バーナヘッドが前記バーナ本体に載置された状態で、前記キャップ部の前記円筒脚部が、前記環状混合気流路と前記環状バーナの中央に形成される中央空洞とを隔離する隔離壁として配置され、
前記赤外線通過孔は、前記中央空洞と前記環状バーナの外部とを連通する状態で前記キャップ部の前記天面部に設けられている請求項1〜5の何れか一項に記載のコンロ用バーナ。
The annular burner has an annular air-fuel mixture channel that is annular in a plan view that guides an air-fuel mixture of fuel gas and combustion air to the radial nozzle holes,
The burner head includes a cap portion having a top surface portion and a cylindrical cylindrical leg portion extending downward from the top surface portion,
In a state where the burner head is placed on the burner body, the cylindrical leg portion of the cap portion is disposed as an isolation wall that separates the annular air-fuel mixture channel and a central cavity formed at the center of the annular burner. And
The burner for a stove according to any one of claims 1 to 5, wherein the infrared passage hole is provided in the top surface portion of the cap portion in a state where the central cavity communicates with the outside of the annular burner.
請求項1〜6の何れか一項に記載のコンロ用バーナを備えたコンロ。   A stove comprising the stove burner according to any one of claims 1 to 6.
JP2015241526A 2015-12-10 2015-12-10 Stove burner and stove with the same Active JP6523154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015241526A JP6523154B2 (en) 2015-12-10 2015-12-10 Stove burner and stove with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015241526A JP6523154B2 (en) 2015-12-10 2015-12-10 Stove burner and stove with the same

Publications (2)

Publication Number Publication Date
JP2017106680A true JP2017106680A (en) 2017-06-15
JP6523154B2 JP6523154B2 (en) 2019-05-29

Family

ID=59060707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015241526A Active JP6523154B2 (en) 2015-12-10 2015-12-10 Stove burner and stove with the same

Country Status (1)

Country Link
JP (1) JP6523154B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109140528A (en) * 2018-09-03 2019-01-04 温州市迈勒厨房设备有限公司 A kind of infrared ray energy-saving gas-combusting stove for Chinese meal

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58132331U (en) * 1982-03-01 1983-09-06 株式会社ターダ gas stove
JPH01117428U (en) * 1988-02-02 1989-08-08
JPH1163502A (en) * 1997-08-11 1999-03-05 Rinnai Corp Burner for cooking stove
JP2002340339A (en) * 2001-03-16 2002-11-27 Osaka Gas Co Ltd Cooking stove
JP2006214653A (en) * 2005-02-03 2006-08-17 Osaka Gas Co Ltd Cooking stove
JP2006275364A (en) * 2005-03-29 2006-10-12 Osaka Gas Co Ltd Cookstove
JP2009150613A (en) * 2007-12-21 2009-07-09 Hanshin Electric Co Ltd Cooking heating device
JP2014145537A (en) * 2013-01-29 2014-08-14 Osaka Gas Co Ltd Stove, operation method of stove, estimation method of material for heating vessel used in stove and estimation method of material for heating vessel

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58132331U (en) * 1982-03-01 1983-09-06 株式会社ターダ gas stove
JPH01117428U (en) * 1988-02-02 1989-08-08
JPH1163502A (en) * 1997-08-11 1999-03-05 Rinnai Corp Burner for cooking stove
JP2002340339A (en) * 2001-03-16 2002-11-27 Osaka Gas Co Ltd Cooking stove
JP2006214653A (en) * 2005-02-03 2006-08-17 Osaka Gas Co Ltd Cooking stove
JP2006275364A (en) * 2005-03-29 2006-10-12 Osaka Gas Co Ltd Cookstove
JP2009150613A (en) * 2007-12-21 2009-07-09 Hanshin Electric Co Ltd Cooking heating device
JP2014145537A (en) * 2013-01-29 2014-08-14 Osaka Gas Co Ltd Stove, operation method of stove, estimation method of material for heating vessel used in stove and estimation method of material for heating vessel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109140528A (en) * 2018-09-03 2019-01-04 温州市迈勒厨房设备有限公司 A kind of infrared ray energy-saving gas-combusting stove for Chinese meal

Also Published As

Publication number Publication date
JP6523154B2 (en) 2019-05-29

Similar Documents

Publication Publication Date Title
US8689779B2 (en) Gas burner
KR101847285B1 (en) Burner and cooking appliance therewith and manufacturing method therof
US10393386B2 (en) System of gas burners, in particular for a cooking top for household use
US20170038078A1 (en) System of gas burners, in particular for a cooking top for household use
JP2017106680A (en) Burner for cooking stove, and cooking stove provided with the same
JP2011133124A (en) Gas burner for cooking stove
JP2017106681A (en) Burner for cooking stove, and cooking stove provided with the same
JP2017106684A (en) Burner for cooking stove, and cooking stove provided with the same
JP2017106683A (en) Burner for cooking stove and cooking stove including the same
JP6239914B2 (en) Gas stove
JP2017106682A (en) Burner for cooking stove, and cooking stove provided with the same
JP2013124851A (en) Gas cooking stove
JP6127345B2 (en) Gas burner
KR101300899B1 (en) Burner
JP2013124852A (en) Gas cooking stove
JP2009121706A (en) Concentric burner for stove
KR101301436B1 (en) Cup-type burner device
JP4428669B2 (en) Stove burner for stove
JP2017125637A (en) Backfire detection device of burner for cooking stove
JP7267895B2 (en) Cooking system with gas stove
JP6553891B2 (en) Seal structure between the stove burner and the top plate
JP2002317935A (en) Burner for cooking stove
JP6767173B2 (en) Burner for stove
JP6814576B2 (en) Gas cooker
JP2021060185A (en) Gas cooking stove

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190425

R150 Certificate of patent or registration of utility model

Ref document number: 6523154

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150