JPS62255829A - Near infrared illuminator and near infrared image pickup device - Google Patents

Near infrared illuminator and near infrared image pickup device

Info

Publication number
JPS62255829A
JPS62255829A JP61100602A JP10060286A JPS62255829A JP S62255829 A JPS62255829 A JP S62255829A JP 61100602 A JP61100602 A JP 61100602A JP 10060286 A JP10060286 A JP 10060286A JP S62255829 A JPS62255829 A JP S62255829A
Authority
JP
Japan
Prior art keywords
infrared
light
near infrared
illuminator
transmission filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61100602A
Other languages
Japanese (ja)
Inventor
Yoshinori Anzai
安西 良矩
Hiroyoshi Yamazaki
山崎 広義
Takeo Nishikatsu
西勝 健夫
Yoshinori Takai
高井 美則
Takehiko Yoshinari
吉成 武彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61100602A priority Critical patent/JPS62255829A/en
Publication of JPS62255829A publication Critical patent/JPS62255829A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0488Optical or mechanical part supplementary adjustable parts with spectral filtering

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Burglar Alarm Systems (AREA)

Abstract

PURPOSE:To obtain the near infrared illuminator of a large output having an optical characteristic which is not sensed by a man, by providing a near infrared transmission filter to which a cold mirror thin film for reflecting a visible light beam and making near infrared rays transmit through is stuck, on a light irradiation part. CONSTITUTION:A near infrared illuminator has a cold mirror film consisting of the multi-layer film of a TiO2-SiO2 compound stuck on the surface of the light source 4 side of a near infrared transmission filter 5. Accordingly, when the cold mirror film 6 is not stuck on the surface of the near infrared transmission filter 5, the light beam of a visible area is absorbed and cut by the near infrared transmission filter 5. In such case, the light beam of <=about 600nm is reflected to a lamp side, therefore, an absorbed optical component of <=800nm of the near infrared transmission filter becomes only the optical component between about 700-800nm, and a temperature can be set to <=300 deg.C to which glass has a resistance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は近赤外照明器および近赤外撮像装置に関し、更
に詳細には、人間が感知できない近赤外部の放射を大出
力に得る近赤外照明器およびそれを使用した近赤外撮像
装置に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a near-infrared illuminator and a near-infrared imaging device, and more particularly, the present invention relates to a near-infrared illuminator and a near-infrared imaging device. The present invention relates to an infrared illuminator and a near-infrared imaging device using the same.

〔従来の技術〕[Conventional technology]

従来、照明装置は可視部に集中的に放射を行うものが一
般的であυ、テレビカメラなどを用いた撮像装置などに
おいては可視部に放射する照明下で撮像されていた。
Conventionally, illumination devices have generally emitted light in a concentrated manner in the visible region, and images have been captured in imaging devices using television cameras and the like under illumination that emits light in the visible region.

しかし、可視部の光を用いる撮像方法においては、対象
物や撮像装置が撮像中に見えることからくる様々の不都
合が生じる。
However, in the imaging method using visible light, various disadvantages arise due to the fact that the object and the imaging device are visible during imaging.

例えば店舗、@行、工場、住宅などの各種防犯監視装置
や来訪者認知装置においては、可視部の照明光により照
射された対象物(被撮像体)からの可視光をビデオカメ
ラによりとらえて撮像し、その信号をテレビのブラウン
管上に映像表示したり、ビデオテープに入力し、映像再
生するといった方法を採っていた。
For example, in various crime prevention monitoring devices and visitor recognition devices for stores, @ lines, factories, residences, etc., images are captured by video cameras capturing visible light from objects (objects to be imaged) illuminated by illumination light in the visible area. Then, the signal was displayed on a TV's cathode ray tube, or input to a videotape and played back.

従って、防犯監視装置においては、侵入者などが容易に
監視装置の存在金認識できるという不具合があり、また
住宅の玄関や勝手口に設置された来訪者認知装置におい
ては、来客が照明光にょシ眩惑されたシ、カメラで撮像
されていることが明確になるため不快g全おぼえるなど
の問題点があった。
Therefore, security monitoring devices have a problem in that an intruder can easily recognize the presence of the monitoring device, and visitor recognition devices installed at the entrance or back door of a residence have the problem that visitors can easily recognize the presence of the monitoring device. There were problems such as being dazzled and having to remember everything because it became clear that the image was being taken by a camera.

このように可視光の下で撮像する従来の撮像装置におい
ては上記の問題点は避けることのできないものであった
In this way, the above-mentioned problems cannot be avoided in conventional imaging devices that take images under visible light.

また、照明学会誌、第43巻、第1号、P21〜P28
に記載の如く近赤外光を投光し、その反射光を増幅して
、イメージ管を用い、肉眼で観察するツクトビジョンな
どもあるが、これは撮像装置でなく、かつ特殊な用途に
用いられるもので一般的でになかった。
Also, Journal of the Illuminating Engineering Society, Volume 43, No. 1, P21-P28
There is also tsuktovision, which projects near-infrared light and amplifies the reflected light and observes it with the naked eye using an image tube, as described in , but this is not an imaging device and is used for special purposes. It was not a common occurrence.

ところで、このような問題?解決する一手段として、近
赤外部に発光する光源、例えば特公昭51−42436
号やJournal of IES、 April(1
974JP234〜P236に記載されている如く鉄付
加リチウム・アルミネート蛍光体などを使用することに
より、740 nm近辺にピークをもち650〜900
 nmに発光領域をもつ近赤外発光蛍光ランプが知られ
ている。
By the way, such a problem? As a means to solve this problem, a light source that emits light in the near-infrared region, such as Japanese Patent Publication No. 51-42436, is proposed.
issue, Journal of IES, April (1
As described in 974JP234-P236, by using an iron-added lithium aluminate phosphor, etc., it has a peak around 740 nm and a wavelength of 650-900 nm.
Near-infrared emitting fluorescent lamps having a light emission range in the nanometer range are known.

〔発明が解決し7ようとする問題点〕 しかしながら、この蛍光ランプは白熱電球より近赤外域
の効率は高く優れたものであるが、点灯とともに蛍光体
が劣化し、光出力が急激に低下するという問題点があっ
た。
[Problems that the invention seeks to solve] However, although this fluorescent lamp has higher efficiency in the near-infrared region than an incandescent lamp, the phosphor deteriorates as the lamp is turned on, resulting in a sharp drop in light output. There was a problem.

そこで、この近赤外蛍光ランプの光出力劣化の悪さを解
決するため、例えば、特開昭59−91654に示すご
とく低圧希ガス放電灯が開発された。このランプは近赤
外部に高効率に発光し、しかも劣化がほとんどないこと
から、可視部の放射を吸収し、近赤外部の光を透す近赤
外フィルターと組合せた近赤外照明器に使用され、その
優れた特性が発揮されている。
Therefore, in order to solve the poor light output deterioration of near-infrared fluorescent lamps, a low-pressure rare gas discharge lamp was developed, for example, as shown in Japanese Patent Laid-Open No. 59-91654. This lamp emits light in the near-infrared region with high efficiency and has almost no deterioration, so it can be used as a near-infrared illuminator in combination with a near-infrared filter that absorbs radiation in the visible region and transmits light in the near-infrared region. It has been used and its excellent properties have been demonstrated.

しかし、近赤外蛍光ランプや近赤外希ガス放電灯を内蔵
した近赤外照明器は、その近赤外出方が小さいため、照
射距離最大10m程度の屋内用としては適しているが、
照射部!iil 100〜200m程度の屋内投光用に
は用いることができない。
However, near-infrared illuminators with built-in near-infrared fluorescent lamps or near-infrared rare gas discharge lamps are suitable for indoor use with a maximum irradiation distance of about 10 m because their near-infrared radiation is small.
Irradiation part! iii It cannot be used for indoor lighting at a distance of about 100 to 200 m.

そこで、特開昭59−90350や特開昭59−877
48に示すごとく高圧放電を利用したランプや高ワツト
のハロゲンランプを用いて、その照射部に可視部を吸収
し、近赤外部を透過するフィルターを用いた近赤外照明
器が考えられてきた。
Therefore, JP-A-59-90350 and JP-A-59-877
As shown in 48, near-infrared illuminators have been considered that use lamps that utilize high-pressure discharge or high-wattage halogen lamps, and use filters that absorb visible light and transmit near-infrared light in the irradiation section. .

しかし、長い照射距離を得るためには高出力ランプが必
要なため、その器具内の温度上昇、特に可視部を吸収し
、近赤外線を透過する近赤外透過フィルターの温度上昇
が太きく、フィルター・ガラスの変形、熱歪みによる破
損が生じ、大出力の近赤外照明器の製作に問題があった
However, in order to obtain a long irradiation distance, a high-output lamp is required, which increases the temperature inside the device, especially in the near-infrared transmitting filter, which absorbs visible light and transmits near-infrared light. - Glass deformation and damage due to thermal distortion occurred, causing problems in the production of high-output near-infrared illuminators.

本発明の目的は、かかる従来の問題点全解決するために
なされたもので、フィルターの温度上昇全抑制し、よっ
て高出力で長寿命の近赤外照明器を、また、この高出力
近赤外照明器と近赤外部に感度を有する撮像装置とを組
合せることにより、広範囲な近赤外撮像を可能とする装
置を提供することにある。
The purpose of the present invention was to solve all of these conventional problems, and to provide a near-infrared illuminator with high output and long life by completely suppressing the temperature rise of the filter. An object of the present invention is to provide a device that enables wide-range near-infrared imaging by combining an external illuminator and an imaging device sensitive to near-infrared light.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の近赤外照明器は、赤外部および赤外部波長より
短い波長の光を放射する光源からの光照射部に、可視光
線全反射し7且つ近赤外線を透過するコールドミラー薄
膜を被着した近赤外透過フィルターを設け、コールドミ
ラー#膜を透過後の光線の中の近赤外線波長より長波長
の元を透過するようにし、たものである。
In the near-infrared illuminator of the present invention, a cold mirror thin film that totally reflects visible light and transmits near-infrared light is coated on the light irradiation part from the light source that emits infrared light and light with a wavelength shorter than the infrared wavelength. A near-infrared transmitting filter is provided, and a wavelength longer than the near-infrared wavelength of the light after passing through the cold mirror film is transmitted.

また近赤外撮像装置は赤外部および赤外部波長より短い
波長の′yeを放射する光源からの光照射部に、可視光
線を反射し且つ近赤外線を透過するコールドミラー薄膜
を被着した近赤外透過フィルター’を設けた近赤外照明
器と、近赤外光を捉えて撮像する撮像装置とを組合せて
なるものである。
In addition, the near-infrared imaging device is a near-infrared imaging device in which a cold mirror thin film that reflects visible light and transmits near-infrared rays is coated on the light irradiation part from a light source that emits infrared light and 'ye' with a wavelength shorter than the infrared wavelength. It is a combination of a near-infrared illuminator equipped with an external transmission filter and an imaging device that captures near-infrared light to take an image.

〔作 用〕[For production]

本発明の近赤外照明器によると、可視反射膜付近赤外透
過フィルターは、その可視反射被膜がコールドミラー的
に作用し光源から被膜に入射する光の中で、近赤外光を
透過させ、近赤外光より短いミラーの限界波長(反射の
立下りを示すストップバンド)以下の光を光源側に反射
させて戻すので近赤外透過フィルターで吸収される近赤
外域以下の光を極力少なくし、近赤外透過フィルターの
温度上昇を抑制できる。また、近赤外撮像装置に用いら
れる近赤外照明器は大出力のものが得られるので広範囲
に亘シ照射できるので広範囲の撮像全可能とする。
According to the near-infrared illuminator of the present invention, the infrared transmission filter near the visible reflection film acts like a cold mirror and transmits near-infrared light among the light incident on the film from the light source. , the light below the mirror's limit wavelength (stop band indicating the fall of reflection), which is shorter than near-infrared light, is reflected back to the light source, so the light below the near-infrared region that is absorbed by the near-infrared transmission filter is minimized. It is possible to suppress the temperature rise of the near-infrared transmitting filter. Further, the near-infrared illuminator used in the near-infrared imaging device has a large output, so it can irradiate over a wide range, making it possible to capture images over a wide range.

〔実施例〕〔Example〕

以下、実施例によりこの発明の詳細な説明する。 Hereinafter, this invention will be explained in detail with reference to Examples.

実施例1。Example 1.

第1図は、本発明の近赤外照明器の断面図である。第1
図において、lは近赤外照明器、2は反射笠、3は反射
笠2を取付ける支持台、4は光源としてのIKWのハロ
ゲンランプ、5は近赤外線を透過する近赤外透過フィル
ター、6はこの近赤外透過フィルター5の光源4側の面
に被着されているTi02−Si20系の多層被膜より
なるコールドミラー被膜であシ、7 0 0 nm以下
の波長の光は反射し、s o o nm以上の波長の光
は透過するものである。7はこの近赤外透過フィルター
5のさらに前面に設けられた保護ガラスである。8は回
転軸で、この軸1ii!,!l)で近赤外照明器1の照
射方向を自由に変更できる構造となっている。
FIG. 1 is a sectional view of a near-infrared illuminator of the present invention. 1st
In the figure, l is a near-infrared illuminator, 2 is a reflective shade, 3 is a support stand for attaching the reflective shade 2, 4 is an IKW halogen lamp as a light source, 5 is a near-infrared transmission filter that transmits near-infrared rays, 6 is a cold mirror film made of a Ti02-Si20 multilayer film that is applied to the surface of the near-infrared transmitting filter 5 on the light source 4 side, and light with a wavelength of 700 nm or less is reflected, and s Light with a wavelength of o o nm or more is transmitted. 7 is a protective glass provided further in front of this near-infrared transmitting filter 5. 8 is the rotation axis, this axis 1ii! ,! 1), the structure allows the irradiation direction of the near-infrared illuminator 1 to be freely changed.

第2図は、本発明に使用したTi02−Si(h  多
層被膜6全一面に被着してなる近赤外透過フィルター5
の分光反射特性9aと分光透過特性9bを示すグラフで
ある。また、第3図は、本発明に使用した多層被膜を被
着していない近赤外透過フィルター5の分光透過特性9
cを示すグラフである。
FIG. 2 shows a near-infrared transmitting filter 5 formed by coating the entire surface of the TiO2-Si(h multilayer coating 6) used in the present invention.
It is a graph showing spectral reflection characteristics 9a and spectral transmission characteristics 9b. Furthermore, FIG. 3 shows the spectral transmission characteristics 9 of the near-infrared transmitting filter 5 used in the present invention, which is not coated with a multilayer coating.
It is a graph showing c.

このような構成からなる前記実施例の近赤外照明器は、
近赤外透過フィルター5の表面にコールドミラー被膜6
を被着しない場合は近赤外透過フィルター5によって可
視域の光を吸収カットしている。従って、本発明のコー
ルドミラー被膜6が設置されていない従来タイプの場合
、大出力を得るためIKWのハロゲンランプを使用する
と第3図の如< 8 0 0 nm以下の元出力約18
0Wを完全に吸収し、若干の赤外部の吸収と合せフィル
ターの温度が360℃以上となシ、フィルターの変形と
破損が起こシ間組が生じた。本発明のようにランプ4側
の近赤外透過フィルター5の表面にコールドミラー被膜
6を被着する構造にすると、第2図に示す如く、約7 
0 0 nm以下の光はランプ側に反射されるため、近
赤外透過フィルター5の8 0 0 nm以下の吸収光
成分は約700〜800nm間の光成分だけとなり温度
はガラスが十分耐え得る300℃以下におさめることが
できた。
The near-infrared illuminator of the above embodiment having such a configuration is as follows:
Cold mirror coating 6 on the surface of near-infrared transmission filter 5
When not covered, a near-infrared transmitting filter 5 absorbs and cuts visible light. Therefore, in the case of the conventional type in which the cold mirror coating 6 of the present invention is not installed, if an IKW halogen lamp is used to obtain a large output, the original output of < 800 nm or less is about 18 as shown in Fig. 3.
When 0W was completely absorbed and the temperature of the filter exceeded 360°C along with some absorption of infrared light, the filter was deformed and damaged, resulting in a gap. When the cold mirror coating 6 is applied to the surface of the near-infrared transmitting filter 5 on the lamp 4 side as in the present invention, as shown in FIG.
Since light of 0.0 nm or less is reflected to the lamp side, the near-infrared transmitting filter 5 absorbs light components of 800 nm or less only in the range of about 700 to 800 nm, and the temperature is 300 nm, which the glass can withstand sufficiently. We were able to keep the temperature below ℃.

実施例2。Example 2.

実施例1と同一構成の投光器を使用し、ランプをハロゲ
ンランプに代えて940Wの高圧ナトリウムランプ(形
名=NH 9 4 0 L/DL)を使用して近赤外展
間器を製作した。この場合、コールドミラー被膜のある
場合と無い場合の近赤外透過フィルターの温度を各々測
定比較すると、255°Cと390℃であシ、本発明の
コールドミラーを設けたものは実用できることが判明し
た。
A near-infrared spreader was manufactured using a floodlight having the same configuration as in Example 1, and using a 940W high-pressure sodium lamp (model name: NH 9 40 L/DL) in place of the halogen lamp. In this case, when we measured and compared the temperatures of the near-infrared transmitting filter with and without the cold mirror coating, it was found that the temperatures were 255°C and 390°C, and that the filter provided with the cold mirror of the present invention could be put to practical use. did.

実施例3。Example 3.

実施例lと同一構成の投光器を用い、ランプとして50
0W以上の電球、ハロゲンランプ、高圧ナトリウムラン
プ、あるいは他の種々の高圧放電灯を組合せて大出力近
赤外照明器を製作した。これらを用いて照射距離150
m地点での光の感知度とコールドミラー被膜を被着した
近赤外透過フィルターの透過立上り波長(第4図に示す
透過率50%を示す波長A点)の関係を調べた。その結
果A点の波長が7 6 0 nm以上のコールドミラー
  □被膜を被着した近赤外フィルターを使用すれば、
光の照射が感知されず大出力近赤外照明器としてi!!
’tL′t/″″′!′″111・        、
1また、同時にコールドミラー被膜を被着した近  1
l赤外透過フイルターの被膜被着側の反射率立下シ波長
(第4図に示す反射率50%を示すストップノ々ンド波
長B点)とコールドミラー被膜を被潰し  □た近赤外
透過フィルターの温度上昇の関係を調べた。ランプに前
述した一般照明用のランプを用いた場合、B点の波長は
600〜760nmiCあれば近赤外放射出力にほとん
ど影咎せずコールドミラー被膜を被着した近赤外透過フ
ィルターの温度を300℃以下に下げ得ることが判明し
た。B虞を600nm以下とした場合、可視部の透過光
か多いため、コールドミラー被膜を被着した近赤外透過
フィルターの温度が上昇し7て問題が生じた。
Using a floodlight with the same configuration as in Example 1, 50 mm was used as a lamp.
A high-output near-infrared illuminator was fabricated by combining a 0W or higher light bulb, a halogen lamp, a high-pressure sodium lamp, or various other high-pressure discharge lamps. Using these, the irradiation distance is 150
The relationship between the light sensitivity at point m and the transmission rising wavelength of a near-infrared transmission filter coated with a cold mirror film (wavelength point A showing 50% transmittance shown in FIG. 4) was investigated. As a result, a cold mirror with a wavelength of 760 nm or more at point A. □ If a near-infrared filter with a coating is used,
The i! !
'tL't/'''''! '''111・ ,
1 In addition, a cold mirror coating was applied at the same time.
□Near-infrared transmission by covering the cold mirror coating with the fall wavelength of the reflectance of the infrared transmission filter on the side where the coating is applied (stop wavelength point B showing the reflectance of 50% shown in Figure 4) We investigated the relationship between filter temperature rise. When the above-mentioned lamp for general lighting is used as the lamp, if the wavelength of point B is 600 to 760 nmiC, it will hardly affect the near-infrared radiation output and the temperature of the near-infrared transmitting filter coated with a cold mirror film can be adjusted. It was found that the temperature could be lowered to 300°C or less. When the B factor was set to 600 nm or less, more light was transmitted in the visible region, and the temperature of the near-infrared transmitting filter coated with the cold mirror film rose, causing a problem.

実施例4゜ 第5図は実施例1から実施例3に示した本発明の大出力
近赤外照明器1と近赤外域に感度を持つ近赤外カメラ1
0i一体にした防犯用の近赤外光撮像装置11の例であ
る。
Embodiment 4 FIG. 5 shows the high-output near-infrared illuminator 1 of the present invention shown in Embodiments 1 to 3 and the near-infrared camera 1 having sensitivity in the near-infrared region.
This is an example of a near-infrared light imaging device 11 for crime prevention integrated with Oi.

近赤外カメラ10は、大出力近赤外照明器lから侵入者
50に照射された近赤外光の反射光を受けて撮像するも
ので、近赤外光を透過するレンズ、露光量全調節する絞
り、750〜1000 nmの近赤外光、特に800〜
900 nmに高感度を持つ固体撮像素子、この固体撮
像索子よりの信号を増@利御し、外部のモニターテレビ
あるいは映像記録器に出力する映像制御回路からなって
いる。
The near-infrared camera 10 receives reflected light of the near-infrared light irradiated onto the intruder 50 from the high-output near-infrared illuminator l, and takes an image. Aperture to adjust, near infrared light of 750-1000 nm, especially 800-
It consists of a solid-state imaging device with high sensitivity at 900 nm, and a video control circuit that amplifies and controls the signal from this solid-state imaging device and outputs it to an external monitor TV or video recorder.

固体撮像素子はシリコンのPn接合あるいはショトキ形
の受光素子と、MOS形のトランジスタ、または電荷転
送デノ々イスでこれらの受光素子に生じた撮像信号を外
部に取シ出す信号伝達部とから構成されている。
A solid-state image sensor consists of a silicon Pn junction or shotgun type photodetector, and a signal transmission section that extracts the image signal generated in these photodetectors to the outside using a MOS transistor or a charge transfer device. has been done.

このように構成された防犯用の近赤外光撮像装置11に
あっては、夜間でも可視域に発光する一般照明用ランプ
の点灯は必要とせす、全て消灯し、代りに大出力近赤外
照明器1が点灯される。この大出方近赤外照明器1から
放射される光は、可視光がフィルターでカットされ近赤
外光のみ放射される。そのため、人間の眼では殆んど見
えず、また大出力近赤外照明器を使用しているので10
0〜200m遠方より監視することができ、この防犯装
置の存在も分からない。このため、侵入者は監視されて
いることも分からず、無防備で侵入してくるので、容易
に撮像装置11で撮像できる。
In the near-infrared light imaging device 11 for crime prevention configured in this way, it is not necessary to turn on the general illumination lamps that emit light in the visible range even at night; instead, all lights are turned off, and high-output near-infrared light is used instead. The illuminator 1 is turned on. The visible light emitted from the large-output near-infrared illuminator 1 is filtered, and only the near-infrared light is emitted. Therefore, it is almost invisible to the human eye, and since a high-output near-infrared illuminator is used,
It can be monitored from 0 to 200 meters away, and the existence of this security device is unknown. For this reason, the intruder does not know that he is being monitored and enters unprotected, so that he can easily take an image with the imaging device 11.

ところで、前記実施例では大出力近赤外照明器1と近赤
外カメラ10を一体にして近赤外撮像装置11としたが
、これに限定されるものでなく、大出力近赤外照明器l
と近赤外カメラ10とを分離してもよい。即ち本発明は
大出力近赤外照明器より放射され、被写体の表面で反射
される近赤外光を近赤外カメラで捉え映像化する撮像装
置は全て含むことは言うまでもない。
By the way, in the above embodiment, the high-output near-infrared illuminator 1 and the near-infrared camera 10 are integrated into the near-infrared imaging device 11, but the invention is not limited to this, and the high-output near-infrared illuminator l
The near-infrared camera 10 and the near-infrared camera 10 may be separated. That is, it goes without saying that the present invention includes any imaging device that captures near-infrared light emitted from a high-output near-infrared illuminator and reflected on the surface of a subject with a near-infrared camera and images it.

前記実施列ではコールドミラー被膜として近赤外透過フ
ィルターガラス上に酸化チタン、酸化硅累の多層被膜を
用いた例を示したが、これに限定されるものではなく、
ガラス上に高屈折率の物質、例えばZrChと低屈折率
の物質、例えばM g F zなどを交互に多層被膜と
してもよく、また、金属被膜などを含めた多層被膜とし
てもよい。
In the above embodiment, an example was shown in which a multilayer coating of titanium oxide and silicon oxide was used on a near-infrared transmitting filter glass as a cold mirror coating, but the present invention is not limited to this.
A multilayer coating may be formed by alternating a high refractive index substance such as ZrCh and a low refractive index substance such as M g F z on the glass, or a multilayer coating including a metal coating or the like may be formed.

要は、コールドミラー被膜を被着し7た近赤外透過フィ
ルターの特性として、600〜760 nmに反射波長
の立下シ特性があり、それ以下の波長で高反射特性を、
760 nrn以上の波長で高透過特性全持つものであ
ればよい。
In short, the characteristics of a near-infrared transmission filter coated with a cold mirror film are that it has a falling reflection wavelength characteristic between 600 and 760 nm, and a high reflection characteristic at wavelengths below that.
Any material having high transmission characteristics at a wavelength of 760 nrn or more may be used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、特定の反射・透
過特性を有するコールドミラー被膜を近赤外透過フィル
ターの光源側の面に被着し、大出力光源全使用しても近
赤外透過フィルターの温度全十分耐える低い温度に抑制
することを可能とし、しかも人間に感知されない光特性
をもつ大出力の近赤外照明器を提供できるとともに、こ
の大出力近赤外照明器と近赤外域に感度を有する撮像カ
メラとを組み合せた近赤外撮像装置とすることによって
、従来の可視光を用いて撮像する場合に生じる様々な不
都合を取り除くことができ、撮像対象者などに照明され
ていることや、撮像されていることを意識させないで映
像を得ることが可能となシ、さらに高性能な大出力近赤
外照明器で遠距離まで照射でき、広範囲な撮像が可能と
なる。
As explained above, according to the present invention, a cold mirror coating having specific reflection/transmission characteristics is applied to the light source side surface of the near-infrared transmission filter, so that even when all high-output light sources are used, near-infrared It is possible to suppress the temperature of the transmission filter to a low enough temperature to withstand the entire temperature, and also to provide a high-output near-infrared illuminator with optical characteristics that are undetectable to humans. By using a near-infrared imaging device in combination with an imaging camera that is sensitive to the outer region, various inconveniences that occur when imaging using conventional visible light can be eliminated, and it is possible to avoid illumination of the person to be imaged. It is possible to obtain images without the user being aware that the person is there or that the image is being captured, and a high-performance, high-output near-infrared illuminator can illuminate a long distance, making it possible to capture a wide range of images.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例である近赤外照明器の構成説
明図、第2図は本発明に用いるコールドミラー被膜を被
着し一友近赤外透過フイルターの反射特性と透過特性を
示す図、第3図は本発明に用いる近赤外透過フィルター
の透過特性を示す図、第4図はコールドミラー被膜を被
着した近赤外透過フィルターの反射特性の立下シ、透過
特性の立上多波長を示す図、第5図は本発明の近赤外撮
像装置を防犯装置に応用した場合の構成説明図である。 1・・・近赤外照明器、2・・・反射笠、3・・・支持
台、4・・・光源、5・・・近赤外透過フィルター、6
・・・コールドミラー被膜、7・・・保護ガラス、10
・・・近赤外カメラ、11・・・近赤外光撮像装置。 図中、同一符号は同一または相当部分を示す。 代理人   大  岩  増  雑 事 l 図 6:コーノ建SラーネpL耳莫
Fig. 1 is an explanatory diagram of the configuration of a near-infrared illuminator which is an embodiment of the present invention, and Fig. 2 shows the reflection and transmission characteristics of a Kazutomo near-infrared transmitting filter coated with a cold mirror film used in the present invention. 3 is a diagram showing the transmission characteristics of the near-infrared transmission filter used in the present invention, and FIG. FIG. 5, which is a diagram showing multiple wavelengths at startup, is an explanatory diagram of the configuration when the near-infrared imaging device of the present invention is applied to a security device. DESCRIPTION OF SYMBOLS 1... Near-infrared illuminator, 2... Reflective shade, 3... Support stand, 4... Light source, 5... Near-infrared transmission filter, 6
... Cold mirror coating, 7... Protective glass, 10
... Near-infrared camera, 11... Near-infrared light imaging device. In the drawings, the same reference numerals indicate the same or corresponding parts. Agent Oiwa Masu Miscellaneous l Figure 6: Kono Ken S Rahne pL ear mo

Claims (4)

【特許請求の範囲】[Claims] (1)赤外部および赤外部波長より短い波長の光を放射
する光源と、この光源からの光照射部に設けられ、一面
に可視光線を反射し、近赤外線を透過するコールドミラ
ー薄膜と、このコールドミラー薄膜透過後の光線中近赤
外線波長より長波長の光を透過する可視反射膜付近赤外
透過フィルターとを備えたことを特徴とする近赤外照明
器。
(1) A light source that emits infrared light and light with a wavelength shorter than the infrared wavelength, a cold mirror thin film that is provided at the light irradiation part from the light source, and that reflects visible light on one side and transmits near-infrared light; A near-infrared illuminator comprising: an infrared transmission filter near a visible reflection film that transmits light having a wavelength longer than the near-infrared wavelength in the light beam after passing through the cold mirror thin film.
(2)前記可視反射膜付近赤外透過フィルターは可視光
反射率の立下り点の波長を600〜760nmにしたこ
とを特徴とする特許請求の範囲第1項に記載の近赤外照
明器。
(2) The near-infrared illuminator according to claim 1, wherein the infrared transmission filter near the visible reflection film has a falling point wavelength of visible light reflectance of 600 to 760 nm.
(3)前記可視反射膜付近赤外透過フィルターは760
nm以上の波長を透過することを特徴とする特許請求の
範囲第1項に記載の近赤外照明器。
(3) The infrared transmission filter near the visible reflection film is 760
The near-infrared illuminator according to claim 1, which transmits wavelengths of nm or more.
(4)赤外部および赤外部波長より短い波長の光を放射
する光源からの光照射部に、可視光線を反射し且つ近赤
外線を透過するコールドミラー薄膜を被着した近赤外透
過フィルターを設けた近赤外照明器と、この近赤外照明
器より被写体に放射された近赤外光の反射光を捉えて撮
像する撮像装置とを備えてなることを特徴とする近赤外
撮像装置。
(4) A near-infrared transmission filter coated with a cold mirror thin film that reflects visible light and transmits near-infrared rays is provided at the light irradiation part from the light source that emits infrared light and light with a wavelength shorter than the infrared wavelength. 1. A near-infrared imaging device comprising: a near-infrared illuminator; and an imaging device that captures and images reflected near-infrared light emitted from the near-infrared illuminator to a subject.
JP61100602A 1986-04-28 1986-04-28 Near infrared illuminator and near infrared image pickup device Pending JPS62255829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61100602A JPS62255829A (en) 1986-04-28 1986-04-28 Near infrared illuminator and near infrared image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61100602A JPS62255829A (en) 1986-04-28 1986-04-28 Near infrared illuminator and near infrared image pickup device

Publications (1)

Publication Number Publication Date
JPS62255829A true JPS62255829A (en) 1987-11-07

Family

ID=14278412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61100602A Pending JPS62255829A (en) 1986-04-28 1986-04-28 Near infrared illuminator and near infrared image pickup device

Country Status (1)

Country Link
JP (1) JPS62255829A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241617A (en) * 2007-03-28 2008-10-09 Osaka Gas Co Ltd Infrared intensity detection device for cooker
CN105738993A (en) * 2014-12-09 2016-07-06 鸿富锦精密工业(深圳)有限公司 Optical filter and lens module with optical filter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241617A (en) * 2007-03-28 2008-10-09 Osaka Gas Co Ltd Infrared intensity detection device for cooker
CN105738993A (en) * 2014-12-09 2016-07-06 鸿富锦精密工业(深圳)有限公司 Optical filter and lens module with optical filter

Similar Documents

Publication Publication Date Title
US20110079713A1 (en) Uni-axis type lens module for thermal imaging camera
JP5165625B2 (en) InGaAs image enhancement camera
US7345414B1 (en) Lamp for night vision system
US6323491B1 (en) Corona discharge imaging system for outdoor daylight use
JP2691226B2 (en) Infrared imaging optics
WO1985005220A1 (en) Near-infrared radiation illuminator and near-infrared pickup apparatus
TWM352055U (en) Image projection and capture apparatus
JPS62255829A (en) Near infrared illuminator and near infrared image pickup device
JP4296308B2 (en) Highly sensitive thermal radiation detection using an emission microscope with room temperature optics
JPH0630241B2 (en) Near infrared illuminator and near infrared imaging device
JP2000134611A (en) Trespasser monitoring device
JP5590931B2 (en) Illuminated surveillance camera device
JPH07244718A (en) Security unit
JPH0275916A (en) Infrared ray detector
JPS6011316B2 (en) High temperature object monitoring device
CN212064174U (en) Monitoring device
JPH05303961A (en) Halogen type near infrared lighting system
JPS60236448A (en) Near infrared luminescent low pressure rare gas discharge lamp and near infrared image pickup device
JPS61105977A (en) Tv camera
JPH0388480A (en) Halation prevention ccd camera equipment
JPH06165037A (en) Approach monitor sensor
JPH0388481A (en) Halation prevention ccd camera equipment
JPH05227461A (en) Video camera
JP2009081649A (en) Imaging apparatus, and lens abnormality diagnosis system
JP2006046926A (en) Radiation temperature measuring apparatus