JPH03243834A - Infrared detector - Google Patents

Infrared detector

Info

Publication number
JPH03243834A
JPH03243834A JP2038484A JP3848490A JPH03243834A JP H03243834 A JPH03243834 A JP H03243834A JP 2038484 A JP2038484 A JP 2038484A JP 3848490 A JP3848490 A JP 3848490A JP H03243834 A JPH03243834 A JP H03243834A
Authority
JP
Japan
Prior art keywords
infrared
infrared rays
infrared detection
rays
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2038484A
Other languages
Japanese (ja)
Inventor
Tomoshi Ueda
知史 上田
Koji Hirota
廣田 耕治
Makoto Ito
真 伊藤
Yukihiro Yoshida
幸広 吉田
Hirokazu Fukuda
福田 広和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2038484A priority Critical patent/JPH03243834A/en
Priority to US07/654,591 priority patent/US5089705A/en
Publication of JPH03243834A publication Critical patent/JPH03243834A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To allow adequate detection and IR detection in plural different frequency bands by providing an antireflection film on the vacuum side of the transmission window of an outside cylinder, the band-pass filters laminated with different refractive index materials on the front and rear surfaces of a transmission substrate, and a filter part constituting an optical window formed with a low reflectivity film on the rear surface thereof, etc. CONSTITUTION:The antireflection film 14b consisting of a material, such as Ge or Si, which does not reflect IR rays is formed on the inner side of the window 14a of the outside cylinder 14 to absorb the stray light entering from the window 14a and reflected by the surface of an inside cylinder 16. The many materials which allow the transmission of IR rays and vary in refractive index are laminated and formed on the front and rear surfaces of the substrate 40a consisting of the material to allow the transmission of the IR rays of the determined frequency band width as its base material to provide a band-pass filter function on the cold filter 40 on an IR detecting element 24; further, the optical window 40d to regulate the incident angle of IR rays is formed of the low reflectivity film 40c. The adequate detection and the detection of the IR rays of the desired frequency band width are executed in this way.

Description

【発明の詳細な説明】 目     次 ヰ既     要 産業上の利用分野 従来の技術 発明が解決しようとする課題 課題を解決するための手段 作   用 実  施  例 発明の効果 概要 外筒と内筒との間に真空部を有する真空断熱容器を有し
、その真空断熱容器の真空部に赤外線検知素子が収容さ
れる赤外線検知装置に関し、真空断熱容器の外筒内面で
の赤外線の反射による迷光を防止し、これによって適正
な検知を行うことができるようにすると共に、1台で複
数の異なる周波数帯域幅の赤外線を検知できるような赤
外線検知装置を提供することを目的とし、上面に赤外線
を透過する透過窓が形成された金属製の外筒と、表面に
金蒸着膜が形成されたガラス材料による内筒とによって
真空部が形成され、かつ前記内筒上面に赤外線検知素子
が載置固定された真空断熱容器を具備した赤外線検知装
置において、前記外筒の透過窓の真空部側表面に赤外線
が反射しない反射防止膜を形成し、所定周波数帯域幅の
赤外線を透過する材料による基板の上下面に、それぞれ
赤外線を透過し、かつ屈折率の異なる性質の材料を多数
積層してフィルタ膜を形成しタハンドパスフィルタト、
このバンドパスフィルタ下面に低反射率膜を所定のパタ
ーンに形成した光学的窓とから構成されるフィルタ部を
、前記赤外線検知素子の受光部に対向して、その受光部
よりも高く形成された台座を介して載置固定して構成す
る。
[Detailed Description of the Invention] Table of Contents Prior Art Field of Industrial Application Prior Art Problems to be Solved by the Invention Means for Solving the Problems Implementation Example Outline of the Effects of the Invention Between the outer cylinder and the inner cylinder Regarding an infrared detection device that has a vacuum insulated container with a vacuum part in between, and an infrared detection element is housed in the vacuum part of the vacuum insulated container, stray light due to reflection of infrared rays on the inner surface of the outer cylinder of the vacuum insulated container is prevented. The purpose of this is to enable proper detection and to provide an infrared detection device that can detect infrared rays of multiple different frequency bandwidths with one device. A vacuum part is formed by a metal outer cylinder on which a window is formed and an inner cylinder made of a glass material with a gold vapor-deposited film formed on the surface, and an infrared sensing element is mounted and fixed on the upper surface of the inner cylinder. In the infrared detection device equipped with a heat insulating container, an anti-reflection film that does not reflect infrared rays is formed on the vacuum section side surface of the transmission window of the outer cylinder, and on the upper and lower surfaces of a substrate made of a material that transmits infrared rays in a predetermined frequency bandwidth, A filter film is formed by laminating a large number of materials that each transmit infrared rays and have different refractive indexes.
A filter section consisting of an optical window in which a low reflectance film is formed in a predetermined pattern on the lower surface of the bandpass filter is formed opposite to the light receiving section of the infrared detecting element and higher than the light receiving section. It is configured by being placed and fixed via a pedestal.

産業上の利用分野 本発明は外筒と内筒との間に真空部を有する真空断熱容
器を有し、その真空断熱容器の真空部に赤外線検知素子
が収容される赤外線検知装置に関する。
INDUSTRIAL APPLICATION FIELD The present invention relates to an infrared detection device having a vacuum insulation container having a vacuum section between an outer cylinder and an inner cylinder, and in which an infrared detection element is housed in the vacuum section of the vacuum insulation container.

赤外線センサ(赤外線検知素子)は目標物体に接触する
ことな(物体の存在、形状、温度、組成などを知ること
ができるため、人工衛星による気象観測、防犯、防災、
地質・資源調査、赤外線サーモグラフィーによる医療用
等の多くの分野で用いられている。このような赤外線セ
ンサのうち、2元又は3元化合物半導体を利用した光電
変換型センサは、感度が高く、応答速度も速いが、通常
素子の概略液体窒素温度での冷却が必要である。
Infrared sensors (infrared detection elements) can detect the presence, shape, temperature, composition, etc. of a target object without having to come into contact with it.
It is used in many fields such as geological and resource surveys and medical applications using infrared thermography. Among such infrared sensors, photoelectric conversion sensors using binary or ternary compound semiconductors have high sensitivity and fast response speed, but usually require cooling of the element to approximately the temperature of liquid nitrogen.

このため、このような赤外線検知素子を用し)た赤外線
検知装置としては、内筒と外筒とからなるデユア構造で
、かつその内筒と外筒との間に真空部を有する真空断熱
容器を用い、該容器の外筒上部に、定められた波長の赤
外線を透過するバンドパスフィルタを有する赤外線透過
窓を設けるとともに、透過窓に対向した内筒頂部に多素
子から構成された赤外線検知素子を設置する。そして、
このような構成の真空断熱容器の内筒内に液体窒素のよ
うな冷媒を収容するか、あるいはジュールトムソン式の
低温冷却装置等を設けて、赤外線検知素子を概略液体窒
素温度に冷却して動作させる構成がとられている。
Therefore, an infrared detection device using such an infrared detection element is a vacuum insulated container that has a dual structure consisting of an inner cylinder and an outer cylinder, and has a vacuum section between the inner cylinder and the outer cylinder. An infrared transmission window having a bandpass filter that transmits infrared rays of a predetermined wavelength is provided at the top of the outer cylinder of the container, and an infrared detection element composed of multiple elements is installed at the top of the inner cylinder opposite to the transmission window. Set up. and,
Either a refrigerant such as liquid nitrogen is housed in the inner cylinder of the vacuum insulated container configured as described above, or a Joule-Thomson type low-temperature cooling device is installed to cool the infrared sensing element to approximately the temperature of liquid nitrogen. The configuration is such that

また、上述したような赤外線検知装置においては、透過
窓から入射した赤外線が外筒及び内筒の表面で反射し、
この反射した光、即ち迷光が赤外線検知素子の受光部に
入射して適正な検知が行えないことがある。このため迷
光を抑えることができる赤外線検知装置が必要とされて
いる。
Furthermore, in the above-mentioned infrared detection device, infrared rays incident through the transmission window are reflected by the surfaces of the outer cylinder and the inner cylinder.
This reflected light, ie, stray light, may enter the light receiving section of the infrared detection element, making it impossible to perform proper detection. Therefore, there is a need for an infrared detection device that can suppress stray light.

更に、この種の赤外線検知装置においては、バンドパス
フィルタによって透過窓を透過する赤外線の周波数帯域
幅が限定されるため、検知波長帯域の異なる赤外線検知
素子を複数個用いても、1台の赤外線検知装置では複数
の異なる波長の赤外線を検知することができない。この
ため、複数の異なる波長の赤外線を透過させ、検知する
ためには、複数の赤外線検知装置を用意し、各赤外線検
知装置に異なる周波数帯域幅のバンドパスフィルタを装
着しなければならない。このようにした場合、赤外線検
知装置を取りつけて構成される装置全体を、その分大き
くしなければならない。そこで、1台の赤外線検知装置
で複数の異なる周波数帯域幅の赤外線を検知できるよう
にすることが望まれている。
Furthermore, in this type of infrared detection device, the frequency bandwidth of the infrared light that passes through the transmission window is limited by the bandpass filter, so even if multiple infrared detection elements with different detection wavelength bands are used, one infrared detection The detection device cannot detect infrared rays of multiple different wavelengths. Therefore, in order to transmit and detect infrared rays of a plurality of different wavelengths, it is necessary to prepare a plurality of infrared detection devices and equip each infrared detection device with a bandpass filter having a different frequency bandwidth. In this case, the overall size of the device to which the infrared detection device is attached must be increased accordingly. Therefore, it is desired that one infrared detection device be able to detect infrared rays of a plurality of different frequency bandwidths.

従来の技術 第5図は従来の赤外線検知装置の概略構成図である。Conventional technology FIG. 5 is a schematic diagram of a conventional infrared detection device.

この図において、10は真空断熱容器であり、ヘリウム
循環冷却機12上に搭載されている。真空断熱容器10
はコバールから形成された外筒14と、表面に金蒸着膜
が形成されたガラス製の内筒16とを含み、その外筒1
4と内筒16との間に真空部を有し、また、外筒14、
内筒16ともコバールから形成された取付部材18上に
取り付けられ、この取付部材18がヘリウム循環冷却機
12に取り付けられた支持部材20上に固定されている
。22はリード線27を真空断熱容器10から外部に取
り出すための環状セラミック基板であり、外筒14にサ
ンドイッチ状に取り付けられている。また、内筒16の
上端面にはHgCdTe等から形成された多素子型の赤
外線検知素子24が接着されており、その赤外線検知素
子24の上部には、コールドシールド30が固定されて
いる。
In this figure, 10 is a vacuum heat insulated container, which is mounted on a helium circulation cooler 12. Vacuum insulation container 10
The outer cylinder 1 includes an outer cylinder 14 made of Kovar and an inner cylinder 16 made of glass with a gold vapor-deposited film formed on the surface.
4 and the inner cylinder 16, and the outer cylinder 14,
Both inner cylinders 16 are mounted on a mounting member 18 made of Kovar, and this mounting member 18 is fixed on a support member 20 mounted on the helium circulating cooler 12. 22 is an annular ceramic substrate for taking out the lead wire 27 from the vacuum insulation container 10 to the outside, and is attached to the outer tube 14 in a sandwich manner. Further, a multi-element type infrared detection element 24 made of HgCdTe or the like is adhered to the upper end surface of the inner cylinder 16, and a cold shield 30 is fixed to the upper part of the infrared detection element 24.

このコールドシールド30は第6図に示すように、赤外
線検知素子24の上部にインジュウム等から形成された
環状の固定台31上に接着されており、赤外線検知素子
24の受光部24aに接触しないようにしである。また
、コールドシールド30は、同図に示すように、赤外線
波長領域を透過する透明なZnS (硫化亜鉛)材料を
母材とした基板30,1上面に、定められた周波数帯域
幅の赤外線のみを透過するGe (ゲルマニュウム)又
はSi(シリコン)等の材料による反射防止膜30bを
形成し、基板302下面に低反射率膜30Cを形成する
ことによって、破線で示す赤外線35の入射角を規制す
る光学的窓30dを形成し、更に、この窓30dに反射
防止膜30b′を形成して構成されている。
As shown in FIG. 6, this cold shield 30 is adhered to the top of the infrared sensing element 24 on an annular fixing base 31 made of indium or the like, so as not to come into contact with the light receiving part 24a of the infrared sensing element 24. It's Nishide. In addition, as shown in the figure, the cold shield 30 transmits only infrared rays in a predetermined frequency band onto the upper surface of the substrate 30, 1, which is made of a transparent ZnS (zinc sulfide) material that transmits infrared wavelength region. An optical system that regulates the angle of incidence of infrared rays 35 indicated by a broken line by forming an anti-reflection film 30b made of a transparent material such as Ge (germanium) or Si (silicon) and forming a low reflectance film 30C on the lower surface of the substrate 302. A target window 30d is formed, and an antireflection film 30b' is further formed on this window 30d.

また、外筒14の上面は定められた周波数帯域幅の赤外
線のみを透過させるバンドパスフィルタ機能を有する窓
14aとなっており、Ge又はSl等の材料によって形
成されている。
Further, the upper surface of the outer cylinder 14 is a window 14a having a bandpass filter function that transmits only infrared rays in a predetermined frequency band, and is formed of a material such as Ge or Sl.

上述したような構成において、循環冷却機12を駆動す
るとSO3から形成されたロッド26及び銅合金から形
成された熱伝導性バネ28を介して赤外線検知素子24
が概略液体窒素温度にまで冷却されて、赤外線を検知す
ることができる。
In the above-described configuration, when the circulating cooler 12 is driven, the infrared sensing element 24 is activated via the rod 26 made of SO3 and the thermally conductive spring 28 made of copper alloy.
is cooled to approximately the temperature of liquid nitrogen, allowing infrared radiation to be detected.

発明が解決しようとする課題 ところで、上述した従来の赤外線検知装置においては、
窓14aから入射した赤外線が、矢印Yで示すように内
筒16の表面及び外筒の表面で反射し、この反射した光
、即ち迷光が赤外線検知素子24に入射する。この迷光
は、赤外線検知素子24が被写体から受ける赤外線、即
ち信号光に対して偽信号となるので、前記したようにこ
の迷光が赤外線検知素子24に入射すると誤検知となる
問題があった。
Problems to be Solved by the Invention By the way, in the above-mentioned conventional infrared detection device,
Infrared rays incident through the window 14a are reflected on the surfaces of the inner cylinder 16 and the outer cylinder as shown by arrow Y, and this reflected light, that is, stray light, enters the infrared detection element 24. This stray light becomes a false signal to the infrared rays that the infrared detection element 24 receives from the subject, that is, the signal light, and therefore, as described above, when this stray light enters the infrared detection element 24, there is a problem of false detection.

また、この赤外線検知装置においては、バンドパスフィ
ルタによって窓14aを透過する赤外線の周波数帯域幅
が制限されるため、1つの赤外線検知装置では、検知波
長帯域の異なる赤外線検知素子を複数個用いても、複数
の異なる周波数帯域幅の赤外線を検知することができな
い欠点があった。
Furthermore, in this infrared detection device, the frequency bandwidth of the infrared rays transmitted through the window 14a is limited by the bandpass filter, so one infrared detection device may use a plurality of infrared detection elements with different detection wavelength bands. However, it has the disadvantage that it cannot detect infrared rays in multiple different frequency bandwidths.

更に、複数の異なる周波数帯域幅の赤外線を検知するた
めには、複数個の赤外線検知装置を用意し、それぞれに
異なる周波数帯域幅の赤外線のみを透過するバンドパス
フィルタを装着しなければならないが、このように複数
個の赤外線検知装置を用いた場合、赤外線検知装置が取
りつけられて構成される装置を、その分大きくしなけれ
ばならない問題が生じる。
Furthermore, in order to detect infrared rays with multiple different frequency bandwidths, it is necessary to prepare multiple infrared detection devices and equip each with a bandpass filter that transmits only infrared rays with different frequency bandwidths. When a plurality of infrared detection devices are used in this way, a problem arises in that the device to which the infrared detection devices are attached must be made correspondingly larger.

本発明はこのような点に鑑みてなされたものであり、真
空断熱容器の外筒内面での赤外線の反射による迷光を防
止し、これによって適正な検知を行うことができるよう
にすると共に、1台で複数の異なる周波数帯域幅の赤外
線を検知できるような赤外線検知装置を提供することを
目的とする。
The present invention has been made in view of these points, and it is possible to prevent stray light due to reflection of infrared rays on the inner surface of the outer cylinder of a vacuum insulated container, and thereby enable proper detection. An object of the present invention is to provide an infrared detection device capable of detecting infrared rays with a plurality of different frequency bandwidths.

課題を解決するための手段 本発明は、上面に赤外線を透過する透過窓が形成された
金属製の外筒と、表面に金蒸着膜が形成されたガラス材
料による内筒とによって真空部が形成され、かつ前記内
筒上面に赤外線検知素子が載置固定された真空断熱容器
を具備した赤外線検知装置において、前記外筒の透過窓
の真空部側表面に赤外線が反射しない反射防止膜を形成
する。
Means for Solving the Problems In the present invention, a vacuum section is formed by a metal outer cylinder having a transmission window that transmits infrared rays formed on the upper surface, and an inner cylinder made of a glass material having a gold vapor-deposited film formed on the surface. In the infrared detection device, the infrared detection device is equipped with a vacuum insulation container in which an infrared detection element is mounted and fixed on the upper surface of the inner cylinder, and an antireflection film that does not reflect infrared rays is formed on the vacuum part side surface of the transmission window of the outer cylinder. .

そして、所定周波数帯域幅の赤外線を透過する材料によ
る基板の上下面に、それぞれ赤外線を透過し、かつ屈折
率の異なる性質の材料を多数積層してフィルタ膜を形成
したバンドパスフィルタと、このバンドパスフィルタ下
面に低反射率膜を所定のパターンに形成した光学的窓と
から構成されるフィルタ部を、前記赤外線検知素子の受
光部に対向して、その受光部よりも高く形成された台座
を介して載置固定して構成する。
Then, a bandpass filter is formed by laminating a large number of materials that transmit infrared rays and have different refractive indexes to form a filter film on the upper and lower surfaces of a substrate made of a material that transmits infrared rays in a predetermined frequency band. A filter section consisting of an optical window in which a low reflectance film is formed in a predetermined pattern on the lower surface of the pass filter is placed opposite to the light receiving section of the infrared sensing element, and a pedestal formed higher than the light receiving section is mounted. It is configured by placing and fixing it through the cable.

また、本発明の他の側面によると、上面に赤外線を透過
する透過窓が形成された金属製の外筒と、表面に金蒸着
膜が形成されたガラス材料による内筒とによって真空部
が形成され、かつ前記内筒上面に赤外線検知素子が載置
固定された真空断熱容器を具備した赤外線検知装置にお
いて、前記外筒の透過窓の真空部側表面に赤外線が反射
しない反射防止膜を形成する。そして、所定周波数帯域
幅の赤外線を透過しない硬質材料を異方性エツチングに
よって、所定厚に形成し、かつ所定位置に所定の大きさ
の貫通孔を形成した第1部材及び第2部材から成るマイ
クロパーツと、所定周波数帯域幅の赤外線を透過する材
料による基板の上下面に、それぞれ赤外線を透過し、か
つ屈折率の異なる性質の材料を多数積層してフィルタ膜
を形成したバンドパスフィルタとから構成されるフィル
タ部を、その受光部上方に前記貫通孔が位置するように
、前記赤外線検知素子上に載置固定する。
According to another aspect of the present invention, a vacuum section is formed by a metal outer cylinder having a transmission window formed on its upper surface that transmits infrared rays, and an inner cylinder made of a glass material having a gold vapor-deposited film formed on its surface. In the infrared detection device, the infrared detection device is equipped with a vacuum insulation container in which an infrared detection element is mounted and fixed on the upper surface of the inner cylinder, and an antireflection film that does not reflect infrared rays is formed on the vacuum part side surface of the transmission window of the outer cylinder. . Then, a hard material that does not transmit infrared rays in a predetermined frequency band width is formed to a predetermined thickness by anisotropic etching, and a first member and a second member are formed with through holes of a predetermined size at predetermined positions. It consists of parts and a bandpass filter in which a filter film is formed by laminating a large number of materials that transmit infrared rays and have different refractive indexes on the upper and lower surfaces of a substrate made of materials that transmit infrared rays in a predetermined frequency bandwidth. The filter section is mounted and fixed on the infrared detecting element so that the through hole is located above the light receiving section.

更に、内筒上に複数個の赤外線検知素子を搭載し、各々
の赤外線検知素子上にフィルタ部を設ける構成をとるこ
ともできる。
Furthermore, it is also possible to adopt a configuration in which a plurality of infrared detection elements are mounted on the inner cylinder and a filter section is provided on each infrared detection element.

作   用 本発明によれば、外筒の透過窓の真空部側表面に赤外線
が反射しない反射防止膜が形成されており、また、所定
周波数帯域幅の赤外線を透過するバンドパスフィルタと
、低反射率膜を所定のパターンに形成した光学的窓とか
ら構成されるフィルタ部が、赤外線検知素子の受光部に
対向して、その受光部よりも高く形成された台座上に載
置固定されている。
Function According to the present invention, an anti-reflection film that does not reflect infrared rays is formed on the vacuum part side surface of the transmission window of the outer cylinder, and a band-pass filter that transmits infrared rays in a predetermined frequency bandwidth and a low-reflection film are formed. A filter section consisting of an optical window formed by forming a filter film in a predetermined pattern is placed and fixed on a pedestal formed higher than the light receiving section of the infrared sensing element, facing the light receiving section. .

従って、透過窓から入射し、内筒表面で反射した迷光が
外筒面で反射することがないので、赤外線検知素子に迷
光が入射することがなくなる。これによって、迷光によ
る誤検知がなくなり、適正な検知を行うことができる。
Therefore, stray light that enters through the transmission window and is reflected on the surface of the inner cylinder is not reflected on the surface of the outer cylinder, so that no stray light enters the infrared detecting element. This eliminates false detection due to stray light and allows proper detection.

また、光学的窓によって、赤外線の入射角が規制され、
更にバンドパスフィルタによって所定周波数帯域幅の赤
外線が透過して、赤外線検知素子に入射されるので、所
望の周波数帯域幅の赤外線を検知することができる。
In addition, the incident angle of infrared rays is regulated by the optical window,
Furthermore, infrared rays having a predetermined frequency bandwidth are transmitted through the bandpass filter and are incident on the infrared detection element, so that infrared rays having a desired frequency bandwidth can be detected.

また、本発明の他の側面によると、所定の大きさの貫通
孔が形成され、かつ所定周波数帯域幅の赤外線を透過し
ない硬質材料によるマイクロパーツと、バンドパスフィ
ルタとによってフィルタ部を形成し、このフィルタ部が
赤外線検知素子上に載置固定されていおり、前記貫通孔
によって赤外線の入射角を規制しているので、温度・湿
度等の外部要因が変化しても、貫通孔の設定位置が変化
することがない。これによって赤外線検知素子の視野角
を正しく規制することができる。
According to another aspect of the present invention, the filter section is formed by a micro part made of a hard material in which a through hole of a predetermined size is formed and which does not transmit infrared rays of a predetermined frequency bandwidth, and a band pass filter, This filter section is placed and fixed on the infrared detection element, and the through hole regulates the incident angle of the infrared rays, so even if external factors such as temperature and humidity change, the set position of the through hole remains unchanged. never changes. This allows the viewing angle of the infrared sensing element to be properly regulated.

また、内筒上に複数の赤外線検知素子を搭載し、各々の
赤外線検知素子上に個々にフィルタ部を設けた場合には
、個々のフィルタ部のバンドパスフィルタの周波数帯域
幅を、各赤外線検知素子の検知波長帯域に対応させてや
れば、複数の周波数帯域幅の赤外線を検知することがで
きる。
In addition, when multiple infrared detection elements are mounted on the inner cylinder and a filter section is individually provided on each infrared detection element, the frequency bandwidth of the bandpass filter of each filter section can be adjusted for each infrared detection element. By making it correspond to the detection wavelength band of the element, it is possible to detect infrared rays in a plurality of frequency band widths.

実  施  例 以下、図面を参照して本発明の実施例について説明する
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の第1の実施例による赤外線検知装置の
構成を示す図である。この図において第5図に示した従
来例の各部に対応する部分には同一の符号を付し、その
説明を省略する。
FIG. 1 is a diagram showing the configuration of an infrared detection device according to a first embodiment of the present invention. In this figure, parts corresponding to those of the conventional example shown in FIG. 5 are given the same reference numerals, and their explanations will be omitted.

この第1の実施例による赤外線検知装置が第5図に示す
従来のものと異なる点は、バンドパスフィルタを従来の
コールドシールド30に形成し、これをコールドフィル
タ40とし、更に外筒14の窓14aからバンドパスフ
ィルタ機能を取り除き、窓14aの内側に赤外線を反射
しないGe又はS】等の材料による反射防止膜14bを
形威したことである。
The infrared detection device according to the first embodiment is different from the conventional one shown in FIG. The bandpass filter function is removed from the window 14a, and an antireflection film 14b made of a material such as Ge or S which does not reflect infrared rays is formed inside the window 14a.

即ち、コールドフィルタ40は第2図に示すように、バ
ンドパスフィルタ41と、このバンドパスフィルタ41
の下面に所定パターンで形成された低反射率膜40Cと
によって構成されている。
That is, as shown in FIG. 2, the cold filter 40 includes a bandpass filter 41 and a bandpass filter 41.
A low reflectance film 40C formed in a predetermined pattern on the lower surface of the reflectance film 40C.

バンドパスフィルタ41は、Ge等の定められた周波数
帯域幅の赤外線を透過する材料を母材とした基板40H
の上下面に、赤外線を透過し、かつ屈折率の異なる性質
の材料をそれぞれ多数積層してフィルタ膜40b及び4
0b′を形成したものである。また、低反射率膜40c
が所定パターンで形成されることによって、図示するよ
うに、受光部24aと対向する部分に光学的窓40dを
形成している。そして、この光学的窓40dによって、
破線で示す赤外線35の入射角が規制される。
The bandpass filter 41 includes a substrate 40H made of a material such as Ge that transmits infrared rays in a predetermined frequency bandwidth.
A large number of materials that transmit infrared rays and have different refractive indexes are laminated on the upper and lower surfaces of the filter films 40b and 4.
0b' is formed. In addition, the low reflectance film 40c
is formed in a predetermined pattern, thereby forming an optical window 40d in a portion facing the light receiving portion 24a, as shown in the figure. And, with this optical window 40d,
The angle of incidence of infrared rays 35 indicated by a broken line is regulated.

このような構成によれば、外筒14の窓14aに反射防
止膜14bを形成したので、窓14aから入射し、内筒
゛16表面で反射する迷光が、その反射防止膜14bで
吸収される。従って、従来のように迷光が赤外線検知素
子24に入射されることがなくなり、これによって迷光
による誤検知がなくなる。
According to this configuration, since the anti-reflection film 14b is formed on the window 14a of the outer cylinder 14, stray light that enters through the window 14a and is reflected on the surface of the inner cylinder 16 is absorbed by the anti-reflection film 14b. . Therefore, stray light is no longer incident on the infrared detection element 24 as in the conventional case, thereby eliminating false detection due to stray light.

また、赤外線検知素子24上のコールドフィルタ40に
バンドパスフィルタ機能を持たせ、更に従来のように、
低反射率膜40Cによって赤外線35の入射角を規制す
る光学的窓40dを形成したので、定められた周波数帯
域幅の赤外線のみを赤外線検知素子24の受光部に入射
させることができる。
In addition, the cold filter 40 on the infrared detection element 24 has a bandpass filter function, and furthermore, as in the conventional case,
Since the optical window 40d that regulates the incident angle of the infrared rays 35 is formed by the low reflectance film 40C, only infrared rays having a predetermined frequency band can be made to enter the light receiving portion of the infrared detecting element 24.

次に、第3図を参照して本発明の第2の実施例について
説明する。
Next, a second embodiment of the present invention will be described with reference to FIG.

この第2の実施例が第1図及び第2図に示す第1の実施
例と異なる点は、第3図に示すように、コールドフィル
タ50をバンドパスフィルタ51とマイクロパーツ52
とによって形威したことである。
The difference between this second embodiment and the first embodiment shown in FIGS. 1 and 2 is that, as shown in FIG.
This was expressed through the following.

バンドパスフィルタ51は、Ge等の定められた周波数
帯域幅の赤外線を透過する材料を母材とした基板51a
の上下面に、赤外線を透過し、かつ屈折率の異なる性質
の材料をそれぞれ多数積層してフィルタ膜51b及び5
1b′を形成したものである。
The bandpass filter 51 includes a substrate 51a made of a material such as Ge that transmits infrared rays in a predetermined frequency bandwidth.
A large number of materials that transmit infrared rays and have different refractive indexes are laminated on the upper and lower surfaces of the filter films 51b and 5.
1b'.

また、マイクロパーツ52はSi等の材料を、物質の物
理的性質が方向によって異なることを利用した異方性エ
ツチングによって、定められた形状に成形したものであ
る。即ち、図示するように、エツチングによって所定の
厚さに形成し、かつ所定位置に所定形状の開口部52a
Hを形威した環状の第1Si部材52aを設ける。更に
、同エツチングによって、所定の厚さに形威し、かつ受
光部24aと対向する部分に、破線で示す赤外線35の
入射角を規制する開口部52bHを形成した環状の第2
Si部材52bを設けて、これら第1及び第2Si部材
52a、52bを上下に接着する。そして、このマイク
ロパーツ52を赤外線検知i子24とバンドパスフィル
タ51との間に介装する。
Further, the micro parts 52 are formed by molding a material such as Si into a predetermined shape by anisotropic etching, which takes advantage of the fact that the physical properties of substances differ depending on the direction. That is, as shown in the figure, an opening 52a is formed to a predetermined thickness by etching and has a predetermined shape at a predetermined position.
An annular first Si member 52a in the shape of an H is provided. Furthermore, by the same etching, a second annular opening 52bH, which has a predetermined thickness and has an opening 52bH shown by a broken line that regulates the incident angle of the infrared rays 35, is formed in the part facing the light receiving part 24a.
A Si member 52b is provided, and these first and second Si members 52a, 52b are bonded vertically. Then, this micropart 52 is interposed between the infrared detection element 24 and the bandpass filter 51.

このようにすれば、マイクロパーン52が硬Xのものな
ので、温度・湿度等の外部要因が変化しても、赤外線検
知素子24とバンドパスフィルタ51との間隔が変化す
ることがない。従って、旦バンドパスフィルタ51を透
過する赤外線35の入射角を設定しておけば、その精度
を長く保証することができる。
In this way, since the micro-pun 52 is made of hard X, the distance between the infrared detection element 24 and the bandpass filter 51 will not change even if external factors such as temperature and humidity change. Therefore, once the angle of incidence of the infrared rays 35 that passes through the bandpass filter 51 is set, its accuracy can be guaranteed for a long time.

次に、第4図を参照して本発明の第3の実施例について
説明する。
Next, a third embodiment of the present invention will be described with reference to FIG.

この第3の実施例は、内筒16上に検知波長帯域の異な
る赤外線検知素子24.24’を設置したものである。
In this third embodiment, infrared detection elements 24 and 24' having different detection wavelength bands are installed on the inner cylinder 16.

これらの赤外線検知素子24.24′上に固定されるコ
ールドフィルタ40 (50)は、第■又は第2の実施
例で示した構成によるものであり、いずれを用いてもか
まわないが、各コールドフィルタを構成するバンドパス
フィルタは、それぞれ周波数帯域幅の異なる赤外線を透
過させるものとする。つまり、各赤外線検知素子24.
24’の検知波長帯域に適合させる。
The cold filters 40 (50) fixed on these infrared detecting elements 24, 24' have the configuration shown in the second embodiment or the second embodiment, and either one may be used, but each cold filter It is assumed that the bandpass filters constituting the filter transmit infrared rays having different frequency bandwidths. That is, each infrared sensing element 24.
24' detection wavelength band.

このような構成によれば、各赤外線検知素子24.24
’毎に、定められた周波数帯域幅の赤外線を検知するこ
とができるので、↓台の赤外線検知装置で異なる周波数
帯域幅の赤外線を検知することができる。
According to such a configuration, each infrared sensing element 24.24
Since it is possible to detect infrared rays with a predetermined frequency bandwidth for each ', it is possible to detect infrared rays with different frequency bandwidths using ↓ infrared detection devices.

また、この例においては、内筒16上に2つの赤外線検
知素子24.24’を設置したが、物理的に載置可能な
多数の素子24.・・・を設置してもよい。
Further, in this example, two infrared sensing elements 24.24' are installed on the inner cylinder 16, but there are many elements 24.24' that can be physically mounted. ... may be installed.

発明の詳細 な説明したように、本発明によれば、次に述べるような
効果がある。
As described in detail, the present invention has the following effects.

即ち、透過窓から入射し、内筒表面で反射した迷光が外
筒面で反射することがないので、赤外線検知素子に迷光
が入射することがなくなる。これによって、迷光による
誤検知がなくなり、適正な検知を行うことができる効果
がある。
That is, since stray light that enters through the transmission window and is reflected on the inner cylinder surface is not reflected on the outer cylinder surface, no stray light enters the infrared detection element. This eliminates erroneous detection due to stray light and allows for proper detection.

また、光学的窓によって、赤外線の入射角が規制され、
更にバンドパスフィルタによって定められた周波数帯域
幅の赤外線が透過して、赤外線検知素子に入射するので
、所望の周波数帯域幅の赤外線を検知することができる
効果がある。
In addition, the incident angle of infrared rays is regulated by the optical window,
Furthermore, since infrared rays with a frequency bandwidth determined by the bandpass filter are transmitted and incident on the infrared detection element, there is an effect that infrared rays with a desired frequency bandwidth can be detected.

更に、硬質材料によるマイクロパーツを利用した本発明
によれば、温度・湿度等の外部要因が変化しても、貫通
孔の設定位置が変化することがない。これによって赤外
線の入射角を正しく規制することができ、−旦赤外線の
入射角を設定しておけば、その精度を長く保証すること
ができる効果がある。
Further, according to the present invention, which utilizes micro parts made of hard materials, the set position of the through hole does not change even if external factors such as temperature and humidity change. This allows the angle of incidence of infrared rays to be regulated correctly, and once the angle of incidence of infrared rays is set, the accuracy can be guaranteed for a long time.

また、内筒上に複数の赤外線検知素子を搭載し、個々の
赤外線検知素子上に設けるフィルタ部のバンドパスフィ
ルタの周波数帯域幅を、各赤外線検知素子の検知波長帯
域に対応させてやれば、1台の赤外線検知装置で複数の
周波数帯域幅の赤外線を検知することができる効果があ
る。
Furthermore, if a plurality of infrared detection elements are mounted on the inner cylinder, and the frequency bandwidth of the bandpass filter of the filter section provided on each infrared detection element is made to correspond to the detection wavelength band of each infrared detection element, This has the advantage that one infrared detection device can detect infrared rays of multiple frequency bandwidths.

これによって従来のように周波数帯域幅の異なる赤外線
を検知するために、複数の赤外線検知装置を用いなくて
もよく、赤外線検知装置を取りつけて構成される装置全
体を小さくすることができる効果があり、更に、装置を
小さくすることによって製造コストを下げることができ
る効果がある。
This eliminates the need to use multiple infrared detectors to detect infrared rays with different frequency bandwidths as in the past, and has the effect of making it possible to reduce the size of the entire device configured by installing infrared detectors. Furthermore, by making the device smaller, manufacturing costs can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例による赤外線検知装置の概略構
成図、 第2図は本発明の第■の実施例による赤外線検知装置の
コールドフィルタと、その近傍部品の拡大図、 第3図は本発明の第2の実施例による赤外線検知装置の
コールドフィルタと、その近傍部品の拡大図、 第4図は本発明の第3の実施例による赤外線検知装置を
説明するための図、 第5図は従来の赤外線検知装置の概略構成図、第6図は
第5図に示す赤外線検知装置のコールドシールドと、そ
の近傍部品の拡大図である。 0・・・真空断熱容器、 4・・・外筒 4a・・・透過窓、 4b・・・反射防止膜、 6・・・内筒、 4・・・赤外線検知素子、 4a・・・受光部、 0.50・・・フィルタ部、 1.51・・・バンドパスフィルタ、 Qa、51a・・・基板、 Ob、40b’   51b、51b’・・・フィルタ
膜、 C・・・低反射率膜、 d・・光学的窓、 ・・・マイクロパーツ、 aH,52bH−・・貫通孔、 a・・・第1部材、 b・・・第2部材。 40゜ 40b、40b’ 0c 0d 1 1 基板 フィルタH臭 イさ4反身4奉l享1 光雲[白)ぐジ 金星 バンドパスフィルタク 第2図 0〜寸ψ〜 一声一声〜 脩 211−
Fig. 1 is a schematic configuration diagram of an infrared detecting device according to an embodiment of the present invention, Fig. 2 is an enlarged view of a cold filter of an infrared detecting device according to a second embodiment of the present invention, and its neighboring parts; An enlarged view of a cold filter of an infrared detection device according to a second embodiment of the present invention and its surrounding parts; FIG. 4 is a diagram for explaining an infrared detection device according to a third embodiment of the present invention; FIG. 5 6 is a schematic configuration diagram of a conventional infrared detection device, and FIG. 6 is an enlarged view of the cold shield of the infrared detection device shown in FIG. 5 and its neighboring parts. 0...Vacuum insulation container, 4...Outer tube 4a...Transmission window, 4b...Anti-reflection film, 6...Inner tube, 4...Infrared detection element, 4a...Light receiving part , 0.50...Filter part, 1.51...Band pass filter, Qa, 51a...Substrate, Ob, 40b' 51b, 51b'...Filter film, C...Low reflectance film , d...Optical window,...Micro parts, aH, 52bH-...Through hole, a...First member, b...Second member. 40゜40b, 40b' 0c 0d 1 1 Substrate filter H odor 4 anti-body 4 service 1 light cloud [white] guji Venus band pass filter 2nd figure 0 ~ dimension ψ ~ one voice ~ 211-

Claims (1)

【特許請求の範囲】 1、上面に赤外線を透過する透過窓(14a)が形成さ
れた金属製の外筒(14)と、表面に金蒸着膜が形成さ
れたガラス材料による内筒(16)とによって真空部が
形成され、かつ前記内筒(16)上面に赤外線検知素子
(24)が載置固定された真空断熱容器(10)を具備
した赤外線検知装置において、 前記外筒(14)の透過窓(14a)の真空部側表面に
赤外線が反射しない反射防止膜(14b)を形成し、所
定周波数帯域幅の赤外線を透過する材料による基板(4
0a)の上下面に、それぞれ赤外線を透過し、かつ屈折
率の異なる性質の材料を多数積層してフィルタ膜(40
b、40b′)を形成したバンドパスフィルタ(41)
と、このバンドパスフィルタ(41)下面に低反射率膜
(40c)を所定のパターンに形成した光学的窓(40
d)とから構成されるフィルタ部(40)を、 前記赤外線検知素子(24)の受光部(24a)に対向
して、その受光部(24a)よりも高く形成された台座
(31)を介して載置固定したことを特徴とする赤外線
検知装置。 2、上面に赤外線を透過する透過窓(14a)が形成さ
れた金属製の外筒(14)と、表面に金蒸着膜が形成さ
れたガラス材料による内筒(16)とによって真空部が
形成され、かつ前記内筒(16)上面に赤外線検知素子
(24)が載置固定された真空断熱容器(10)を具備
した赤外線検知装置において、 前記外筒(14)の透過窓(14a)の真空部側表面に
赤外線が反射しない反射防止膜(14b)を形成し、所
定周波数帯域幅の赤外線を透過しない硬質材料を異方性
エッチングによって、所定厚に形成し、かつ所定位置に
所定の大きさの貫通孔(52aH、52bH)を形成し
た第1部材(52a)及び第2部材(52b)から成る
マイクロパーツ(52)と、所定周波数帯域幅の赤外線
を透過する材料による基板(51a)の上下面に、それ
ぞれ赤外線を透過し、かつ屈折率の異なる性質の材料を
多数積層してフィルタ膜(51b、51b′)を形成し
たバンドパスフィルタ(51)とから構成されるフィル
タ部(50)を、 受光部(24a)上方に前記貫通孔(52aH、52b
H)が位置するように、前記赤外線検知素子(24)上
に載置固定したことを特徴とする赤外線検知装置。 3、請求項1又は請求項2記載の赤外線検知装置におい
て、前記内筒(16)上に赤外線検知素子(24)を複
数個搭載すると共に、各々の赤外線検知素子(24)上
に、フィルタ部(40、50)を載置固定したことを特
徴とする赤外線検知装置。
[Claims] 1. A metal outer cylinder (14) with a transmission window (14a) that transmits infrared rays formed on the upper surface, and an inner cylinder (16) made of glass material with a gold vapor-deposited film formed on its surface. In the infrared detection device comprising a vacuum insulation container (10) in which a vacuum part is formed by and an infrared detection element (24) is placed and fixed on the upper surface of the inner cylinder (16), the outer cylinder (14) An antireflection film (14b) that does not reflect infrared rays is formed on the vacuum part side surface of the transmission window (14a), and a substrate (4) made of a material that transmits infrared rays in a predetermined frequency bandwidth is formed.
A filter film (40
b, 40b') forming a bandpass filter (41)
And an optical window (40) with a low reflectance film (40c) formed in a predetermined pattern on the lower surface of this bandpass filter (41).
d) through a pedestal (31) formed higher than the light receiving part (24a) of the infrared detecting element (24). An infrared detection device characterized in that it is mounted and fixed. 2. A vacuum section is formed by a metal outer cylinder (14) with a transmission window (14a) formed on the top surface that transmits infrared rays, and an inner cylinder (16) made of glass material with a gold vapor-deposited film formed on its surface. In the infrared detection device comprising a vacuum insulation container (10) in which an infrared detection element (24) is placed and fixed on the upper surface of the inner cylinder (16), the transmitting window (14a) of the outer cylinder (14) An anti-reflection film (14b) that does not reflect infrared rays is formed on the vacuum part side surface, and a hard material that does not transmit infrared rays in a predetermined frequency band is formed to a predetermined thickness by anisotropic etching, and a predetermined size is formed at a predetermined position. A micro part (52) consisting of a first member (52a) and a second member (52b) in which through-holes (52aH, 52bH) are formed, and a substrate (51a) made of a material that transmits infrared rays in a predetermined frequency bandwidth. A filter section (50) consisting of a bandpass filter (51) formed on the upper and lower surfaces of which filter films (51b, 51b') are formed by laminating a large number of materials that transmit infrared rays and have different refractive indexes. The through holes (52aH, 52b) are formed above the light receiving part (24a).
An infrared detecting device, characterized in that the infrared detecting element (24) is mounted and fixed so that the infrared detecting element (24) is located at the position indicated by H). 3. In the infrared detection device according to claim 1 or 2, a plurality of infrared detection elements (24) are mounted on the inner cylinder (16), and a filter section is provided on each infrared detection element (24). An infrared detection device characterized by mounting and fixing (40, 50).
JP2038484A 1990-02-16 1990-02-21 Infrared detector Pending JPH03243834A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2038484A JPH03243834A (en) 1990-02-21 1990-02-21 Infrared detector
US07/654,591 US5089705A (en) 1990-02-16 1991-02-13 Infrared detector having dewar with film coatings to suppress reflections

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2038484A JPH03243834A (en) 1990-02-21 1990-02-21 Infrared detector

Publications (1)

Publication Number Publication Date
JPH03243834A true JPH03243834A (en) 1991-10-30

Family

ID=12526534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2038484A Pending JPH03243834A (en) 1990-02-16 1990-02-21 Infrared detector

Country Status (1)

Country Link
JP (1) JPH03243834A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08327461A (en) * 1995-05-26 1996-12-13 Nec Corp Infrared detector and its manufacture
JP2008241617A (en) * 2007-03-28 2008-10-09 Osaka Gas Co Ltd Infrared intensity detection device for cooker
JP2014115244A (en) * 2012-12-12 2014-06-26 Tdk Corp Infrared detector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08327461A (en) * 1995-05-26 1996-12-13 Nec Corp Infrared detector and its manufacture
JP2008241617A (en) * 2007-03-28 2008-10-09 Osaka Gas Co Ltd Infrared intensity detection device for cooker
JP2014115244A (en) * 2012-12-12 2014-06-26 Tdk Corp Infrared detector

Similar Documents

Publication Publication Date Title
US7262412B2 (en) Optically blocked reference pixels for focal plane arrays
US5811815A (en) Dual-band multi-level microbridge detector
US4990782A (en) Radiation shield for thermoelectrically cooled infrared detectors
EP0865672B1 (en) Infrared radiation detector having a reduced active area
US4996427A (en) Imager for simultaneously obtaining two images of differing color bands using a single photodetector area array
NO316945B1 (en) Fixed catadioptric lens
US5568186A (en) Focal plane filtered multispectral multidetector imager
US5434413A (en) Virtual cold shield and cold filter for infrared detector arrays
US5225893A (en) Two-color focal plane array sensor arrangement
US3770958A (en) Infrared radiation detection by a matched system
US6404397B1 (en) Compact all-weather electromagnetic imaging system
JP2014190783A (en) Electromagnetic wave detector and imaging device provided with the same
US6596997B2 (en) Retro-reflector warm stop for uncooled thermal imaging cameras and method of using the same
JPH03243834A (en) Infrared detector
US3722282A (en) Apparatus for remotely displaying temperature differences of an object
US4987305A (en) Infra-red sensing system
US5089705A (en) Infrared detector having dewar with film coatings to suppress reflections
JPH0282122A (en) Infrared image pickup device
US3348058A (en) Radiation detection system having wide field of view
US5015857A (en) Infrared detector
JPH0718753B2 (en) Infrared optics
US3163760A (en) Refractive optics infrared scanning system
JPH03238326A (en) Infrared-ray detecting apparatus
JP2771381B2 (en) Infrared detector with cold shield
JPH01155220A (en) Infrared optical system